WO2002077121A1 - Flame retardant, method for preparation thereof and flame-retardant resin composition - Google Patents

Flame retardant, method for preparation thereof and flame-retardant resin composition Download PDF

Info

Publication number
WO2002077121A1
WO2002077121A1 PCT/JP2002/002557 JP0202557W WO02077121A1 WO 2002077121 A1 WO2002077121 A1 WO 2002077121A1 JP 0202557 W JP0202557 W JP 0202557W WO 02077121 A1 WO02077121 A1 WO 02077121A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame
flame retardant
magnesium hydroxide
retardant
hydroxide particles
Prior art date
Application number
PCT/JP2002/002557
Other languages
French (fr)
Japanese (ja)
Inventor
Kazumasa Kanemoto
Original Assignee
Kyowa Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co., Ltd. filed Critical Kyowa Chemical Industry Co., Ltd.
Publication of WO2002077121A1 publication Critical patent/WO2002077121A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/02Compounds of alkaline earth metals or magnesium
    • C09C1/028Compounds containing only magnesium as metal
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K21/00Fireproofing materials
    • C09K21/14Macromolecular materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Definitions

  • the present invention relates to a flame retardant used for the purpose of flame retarding by mixing it with a shelf, and a flame retardant resin composition obtained by blending the flame retardant with a resin. More specifically, protect the polymer materials used in the housing of home appliances, electric wires, cables, automobile vehicles, ships, aircraft, railway vehicles, building materials, electronic devices, printed circuit boards, etc. from disasters caused by heat such as fire.
  • the present invention relates to a flame retardant and a flame-retardant resin composition used for the purpose of carrying out.
  • JP-A-58-185645 discloses antimony trioxide by an alkoxysilane surface treatment
  • JP-A-58-179269 discloses an antimony compound obtained by a polysiloxane surface treatment.
  • the hydrated metal compound used as a flame retardant requires a larger amount to achieve the same flame retardancy as other organic flame retardant compounds. Therefore, the physical properties of the polymer are significantly reduced. Further, a polymer-flame-retardant composition blended with a hydrated metal compound as a flame retardant and a silicone compound as a flame-retardant aid is known to slightly improve the flame-retardant properties. It is still necessary to use a large amount of the compound in order to obtain the same flame retardance as that of the system-based flame retardant compound, and it is difficult to reduce the compounding amount. The problems described above have not been solved when any of them is used as a flame retardant. An object of the present invention is to mainly reduce the amount of a hydrated metal compound in order to prevent this.
  • the present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, obtained magnesium hydroxide particles further coated with a silicone compound having a SiH group in the molecular structure on magnesium hydroxide particles coated with water glass.
  • a silicone compound having a SiH group in the molecular structure on magnesium hydroxide particles coated with water glass When blended in a polymer, they found that good flame retardancy was possible even with low filling compared to a flame retardant not subjected to the surface treatment, and completed the present invention.
  • a flame retardant characterized in that magnesium hydroxide particles coated with water glass are surface-treated with a silicone compound having a SiH group in a molecular structure.
  • a flame-retardant resin composition comprising a flame retardant of the present invention in which two coating layers, a water glass layer and a silicone layer, are formed on the surface of the above-mentioned magnesium hydroxide particles.
  • the flame retardant of the present invention its production method and the flame-retardant resin composition will be described more specifically.
  • the magnesium hydroxide particles in the present invention are not limited as long as they are used as a flame retardant for a resin. It can be either synthetic or natural.
  • the magnesium hydroxide particles are preferably those in which crystals have grown well, and those with little aggregation.
  • the average particle size of the magnesium hydroxide particles 2 0 m or less, preferably 0. 5 to 5 m is suitable, 8 £ Ding specific surface area of 2 0 111 2 8 or less, preferably 2 to 1 0 m 2 / g is appropriate.
  • Water glass coated on the surface of magnesium hydroxide particles is No. 1, 2 or 3
  • amorphous silica dissolved in Na ⁇ H is used.
  • the solvent used is preferably water or an alcohol-based solvent alone or as a mixed solvent.
  • the amount of the coated water glass per 100 parts by weight of magnesium hydroxide is suitably 0.1 to 10 parts by weight, preferably 0.1 to 5 to 7 parts by weight.
  • the magnesium hydroxide particles surface-treated with water glass are further coated on the surface with a silicon compound.
  • Examples of the silicon compound used in the present invention include a polyorganosiloxane having a basic structure represented by the following general formula (1) and having a SiH group in the molecular structure.
  • R is the same or different from each other; a saturated or unsaturated monovalent hydrocarbon group; R 'and R "are the same or different; a hydrogen atom, a saturated or unsaturated monovalent hydrocarbon;
  • the group, n or m each represents an integer of 0 to 100,000, and each is preferably an integer of 0 to 50,000.S 11 equivalents are preferably in the range of 40 to 100, and 40 to 5
  • the value of R is more preferably in the range of 100 and most preferably in the range of 40 to 100.
  • Preferred R is a saturated or unsaturated monovalent carbon atom having 1 to 10 carbon atoms such as a methyl group, an ethyl group or a phenyl group. Hydrocarbon group.
  • Preferred R and R “include the same group as R, or a saturated or unsaturated monovalent hydrocarbon group having 1 to 10 carbon atoms selected from the group including a hydrogen atom.
  • the silicone compound having a SiH group in the molecular structure used in the present invention includes a reactive silicone, a crosslinking agent for silicone rubber, and the like.
  • a reactive silicone for silicone rubber
  • silicone oil for water repellent treatment.
  • the coating amount of the silicone compound is 100 parts by weight of the magnesium hydroxide particles. 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, is suitable.
  • a catalyst may be used if necessary.
  • Such catalysts include tin catalysts such as dibutyltin dilaurate and dibutyltin diacetate; titanium catalysts such as tetrabutyl titanate; iron catalysts such as iron octoate; platinum catalysts such as chloroplatinic acid; And molybdenum-based catalysts. Particularly preferred among these are tin catalysts.
  • the catalyst is preferably added in an amount of 0.1 to 30 parts by weight, more preferably 5 to 10 parts by weight, based on 100 parts by weight of the silicone compound having a SiH group in the molecular structure. Use parts by weight.
  • the method for coating the magnesium hydroxide particles coated with water glass used in the present invention with a silicone compound having a SiH bond in the molecular structure includes, for example, a wet treatment in an organic solvent followed by drying or Spraying or spray-drying a silicone compound.
  • the coating temperature is preferably 0 to 100 ° C., more preferably room temperature to 60, and particularly preferably room temperature. .
  • the reaction atmosphere for coating the magnesium hydroxide particles coated with water glass used in the present invention with a silicone compound having a SiH bond in the molecular structure can be either air or an inert gas atmosphere. Good, but desirably under an inert gas atmosphere.
  • the organic solvent used when the magnesium hydroxide particles used in the present invention are surface-treated with water glass and then surface-treated with a silicon compound having a SiH group in the molecular structure.
  • examples thereof include alcohol compounds such as methanol, ethanol, cyclohexanol, n-butanol, n-hexanol, isopropyl alcohol, n-amyl alcohol, and ethylene glycol; tetrahydrofuran, getyl ether Amide compounds such as ethylformamide, dimethylformamide, and glycerolformamide; benzene, toluene, xylene, ethylbenzene, aniline, pyridine, benzol Aromatic compounds such as nitrile; ketone compounds such as acetone, methyl ethyl ketone, getyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl is
  • the heat treatment temperature is 0 to 200 ° C. It is preferably from 80 to 120 ° C, particularly preferably from 100 to 120 ° C.
  • the heat treatment atmosphere is air or inert gas. either will do.
  • the magnesium hydroxide particles coated with the water glass layer and the silicone compound layer described above are excellent as flame retardants for resins.
  • the resin of the flame-retardant resin composition of the present invention is any moldable thermoplastic resin or thermosetting resin.
  • resins include polyethylene, polypropylene, polybutene-11, poly4-methylpentene, ethylene-propylene copolymer, ethylene-butene-11 copolymer, ethylene-4-methylpentene copolymer, propylene-butene Olefin-based polymers or copolymers such as 11-copolymer, propylene-14-methylpentene copolymer, ethylene-acrylic acid ester copolymer, ethylene-monoacetate biel copolymer; polystyrene; Styrene-based polymers or copolymers such as acrylonitrile lube styrene-styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-styrene-acrylic acid ester copolymer; vinyl chloride resin, vinyl chlor
  • olefin-based polymers or copolymers such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer and ethylene-acrylate copolymer.
  • the blending ratio of the flame retardant blended with the resin is, for example, 0.1 to 200 parts by weight, preferably 30 to 150 parts by weight, per 100 parts by weight of the resin. More preferably, 50 to 120 parts by weight is most preferable. If the amount is less than 0.1 part by weight, the flame retardancy is inferior. If the amount exceeds 200 parts by weight, the mechanical properties deteriorate, which is not preferable.
  • the flame retardant resin composition of the present invention has an oxygen index defined by JISK 7201 of 25 or more, and achieves 26 or more and most preferably 27 or more under suitable conditions.
  • the flame retardant of the present invention is blended in the resin.
  • the flame-retardant resin composition of the present invention may further contain other flame-retardant substances, if necessary.
  • boric acid-containing compounds such as zinc borate hydrate, barium metaborate, and borax; ammonium phosphate, ammonium polyphosphate, melamine phosphate, red phosphorus, phosphate ester, tris (chloroethyl) Phosphate, Tris (monochloropropyl propyl) phosphate, Tris (dichrolic propyl) phosphate, triallyl phosphate, tris (3-hydroxypropyl) phosphate, tris (tribromophenyl) phosphate, tris3) Monopropyl propyl phosphate, tris (dibromophenyl) phosphate, Lis (tripromoneopentyl) phosphate, tetrakis (2-ch
  • Tribromophenyl Flame-retardant compounds containing halogens, such as fumaramide, N-methylhexabrodiphenylamine, styrene bromide, and diarylchlorendate; chlorendic anhydride, phthalic anhydride, and bisphenol Examples include compounds containing A, glycidyl compounds such as glycidyl ether, polyhydric alcohols such as diethylene glycol and erythritol, and modified carpamide. These are used alone or in combination of two or more.
  • the flame-retardant resin composition of the present invention may contain other additives as necessary.
  • crosslinking agents crosslinking accelerators, crosslinking accelerators, activators, crosslinking inhibitors, antioxidants, antioxidants, ozone deterioration inhibitors, ultraviolet absorbers, light stabilizers, tackifiers , Plasticizers, softeners, reinforcing agents, reinforcing agents, foaming agents, foaming aids, stabilizers, lubricants, release agents, antistatic agents, denaturing agents, coloring agents, coupling agents, preservatives, anti-capi agents, Modifiers, adhesives, fragrances, polymerization catalysts, polymerization initiators, polymerization inhibitors, polymerization inhibitors, polymerization regulators, polymerization initiators, crystal nucleating agents, compatibilizers, dispersants, defoamers, etc. No. These are used alone or in combination of two or more.
  • the flame-retardant resin composition of the present invention comprises a resin, a flame retardant and, if necessary, other components selected from the group of, for example, a roll, a bider, a Banbury mixer, an intermix, a single-screw extruder, and a twin-screw extruder.
  • the flame-retardant resin composition is prepared by kneading with one or more kneaders, for example, a press molding machine, an injection molding machine, a mold molding machine, a blow molding machine, an extrusion molding machine, and a spinning machine. It can be molded by one or more molding machines selected from the group of molding machines.
  • the flame-retardant resin composition of the present invention is used for plastic parts of machinery and equipment, plastic parts of buildings, and plastic parts of vehicles, which can be a heat source such as electricity, gas, petroleum, coal, and nuclear power.
  • a heat source such as electricity, gas, petroleum, coal, and nuclear power.
  • magnesium hydroxide particles Kisuma 5 manufactured by Kyowa Chemical Co., Ltd.
  • 10 g of a silicone compound having a SiH bond in the molecular structure DMS-H25 manufactured by Azmax: Table 1
  • THF tetrahydrofuran
  • Water 90 OML magnesium hydroxide particles (manufactured by Kyowa Chemical Kisuma 5) 1 100 g was ⁇ , water glass (Co. Tokuyama Ltd. Kei sodium # 31) with respect to the magnesium hydroxide particles member at S i0 2 terms g, and after stirring for 30 minutes, dehydrate and dry. 100 g of the obtained water-glass-treated magnesium hydroxide particles were mixed with 10 g of a silicone compound having a SiH bond (DMS-H25 manufactured by Azmax) and dibutyltin dilaurate lg in 300 mL of tetrahydrofuran at room temperature. After stirring for 1 hour, tetrahydrofuran (THF) was removed with a single evaporator. Next, the material from which the solvent had been removed was subjected to a heat treatment at 120 ° C. for 12 hours in a dryer to obtain a flame retardant of the present invention.
  • a silicone compound having a SiH bond (DMS-H25 manufactured by Azmax)
  • a flame retardant of the present invention was obtained in the same manner as in Synthesis Example 2 except that dibutyltin dilaurate was not added.
  • Synthesis Examples 4 to 9 The flame retardant of the present invention was obtained in the same manner as in Synthesis Example 3 except that the silicone compound to be added was a compound shown in Table 1 below. Table 1 also shows the silicon compounds used in Synthesis Examples 1-3.
  • the silicone conjugate having a SiH group in the molecular structure of the products obtained in Synthesis Examples 1 to 9 and the magnesium hydroxide particles treated with water glass were used for the magnesium hydroxide particles treated with water glass (K1).
  • the amount of SiH bond and the amount of non-SiH chemical bond (unit: PPH) were examined.
  • 1 g of the prepared product and 10 g of THF are stirred at room temperature for 1 hour.
  • the mixture is filtered through Millipore, and the filtrate is dried in a vacuum oven at 120 ° C for 3 hours.
  • the weight of the filtrate is measured. Since the weight of the filtrate dried product is the amount of non-chemical bond, the value obtained by subtracting that value from the charged amount is used as the amount of chemical bond.
  • Table 2 The results are shown in Table 2 below.
  • Synthesis Example 1 in which a magnesium compound not having been treated with water glass was treated with a silicone compound having a SiH group in the molecular structure was treated with magnesium hydroxide particles treated with water glass in the molecular structure.
  • Synthetic Examples 2 to 9 in which a silicone compound having a SiH group was treated, the particles of Synthetic Examples 2 to 9 had higher SiH chemical bond amounts than Synthetic Example 1. This is based on the reactivity of the H groups on the surface of the magnesium hydroxide particles with the SiH groups of the silicone compound, indicating that the OH groups on the waterglass-treated magnesium hydroxide particles and the SiH of the silicone compound were not. This is probably due to the high reactivity of the group.
  • a flame retardant resin composition was prepared by blending 100 parts by weight of a polyethylene resin with 100 parts by weight of the flame retardant prepared in Synthesis Examples 2 to 9 above, and a flame retardancy test was performed. Samples were prepared using a twin-screw kneader and a press molding machine, respectively, 15 O mmX 3 mmX 3 mm Was molded. Biaxial kneading conditions are as follows: material supply section 160 ° C, kneading section 190 ° C, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing, flame retardant Test specimens were prepared. The flame retardancy test method was measured according to JIS K 7201 for oxygen index measurement.
  • a flame-retardant resin composition was prepared by blending 100 parts by weight of a polyethylene resin with 100 parts by weight of magnesium hydroxide particles treated with water glass.
  • the sample was prepared into a 15 Omm X 3 mm X 3 mm test piece using a biaxial kneader and press molding machine.
  • Biaxial kneading conditions are as follows: material supply section 160 ° C, kneading section 190 ° C, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing for flame retardancy test Test pieces were prepared.
  • the flame retardancy test method was measured in accordance with the oxygen index measurement JIS K 7201.
  • a flame-retardant resin composition was prepared by mixing 100 parts by weight of magnesium hydroxide treated with water glass, 10 parts by weight of a silicone compound (DMS-H25 manufactured by Azmax), and 100 parts by weight of polyethylene resin.
  • the sample was prepared by using a twin-screw kneader and a press molding machine to form a test piece of 150111111 3111] 11 3111111.
  • Biaxial kneading conditions were as follows: material supply section 160, kneading section 190, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing to prepare test specimen for flame retardancy test did.
  • the flame retardancy test method was measured in accordance with the oxygen index measurement JIS K 7201.
  • Example 1 a comparison of Example 1 in which dibutyltin dilaurate was added as a catalyst for accelerating the reaction between the OH group of water glass and the SiH group of the silicone compound and Example 2 in which dibutyltin dilaurate was not added was compared.
  • Oxygen index of Example 1 with added rate was high.
  • the flame retardant of the present invention in which a silicone compound having a SiH group in its molecular structure is coated on water-glass-treated magnesium hydroxide particles and chemically bonded thereto has the following excellent effects. can get.
  • the flame retardant of the present invention which is obtained by coating a silicone compound having a SiH group in its molecular structure with water-glass-treated magnesium hydroxide particles and chemically bonding the same, comprises magnesium hydroxide particles that are not treated with water glass.
  • the figure shows a higher chemical bond amount than that obtained by treating a silicone compound having a SiH group in the molecular structure.
  • the flame retardant of the present invention in which a silicone compound having a SiH group in the molecular structure and having a low SiH equivalent is chemically bonded to magnesium hydroxide particles treated with water glass has particularly high flame retardancy.
  • the flame retardant of the present invention in which a silicone compound having a SiH group in the molecular structure is chemically bonded to magnesium hydroxide particles treated with waterglass, comprises an OH group of waterglass and a silicon compound of silicon compound. Higher flame retardancy is exhibited by adding a catalyst that promotes the reaction of the H group.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fireproofing Substances (AREA)

Abstract

A flame retardant, characterized in that it is obtainable by the surface treatment of magnesium hydroxide particles coated with water glass, with a silicone compound having a SiH group in the molecular structure thereof; and a flame-retardant resin composition comprising the flame retardant. The flame retardant exhibits excellent flame-retardant effect with a less content in a resin, compared to a conventional magnesium hydroxide flame retardant.

Description

明 細 書 難燃剤、 その製造方法および難燃性樹脂組成物 発明の詳細な説明  Description Flame retardant, method for producing the same and flame retardant resin composition Detailed description of the invention
発明の属する技術分野  Technical field to which the invention belongs
本発明は、 棚旨に混合して難燃化する目的に使用される難燃剤および該難燃剤 を樹脂に配合した難燃性樹脂組成物に関する。 より詳しくは、 家電製品の筐体、 電線、 ケーブル、 自動車車両、 船舶、 航空機、 鉄道車両、 建築材料、 電子機器や プリント基板等に使用されている高分子材料を火災などの熱による災害から保護 する目的で使用される難燃剤および難燃性樹脂組成物に関するものである。  The present invention relates to a flame retardant used for the purpose of flame retarding by mixing it with a shelf, and a flame retardant resin composition obtained by blending the flame retardant with a resin. More specifically, protect the polymer materials used in the housing of home appliances, electric wires, cables, automobile vehicles, ships, aircraft, railway vehicles, building materials, electronic devices, printed circuit boards, etc. from disasters caused by heat such as fire. The present invention relates to a flame retardant and a flame-retardant resin composition used for the purpose of carrying out.
従来の技術  Conventional technology
従来、 樹脂に混合して該棚旨を難燃化する目的に使用される難燃剤として、 ハ ロゲン系化合物、 三酸化アンチモン、 リン系化合物、 水和金属化合物などが使用 されている。 また、 近年、 シリコーン化合物を表面処理剤として用いて難燃剤の 難燃性の向上を計る技術が提案されている。 例えば、 特開昭 5 8 _ 1 8 5 6 4 5 号公報にはアルコキシシラン表面処理による三酸化アンチモン、 特開昭 5 8— 1 7 9 2 6 9号公報にはポリシロキサン表面処理によるアンチモン化合物、 特開昭 5 8 - 6 3 7 4 7号公報にはメチルハイドジエンポリシロキサン表面処理による 水酸化アルミニウム粒子、 特開平 5— 2 9 5 2 6 6号公報にはオルガノシロキサ ン表面処理による水酸化マグネシウム粒子などが開示されている。 ハロゲン化合 物や三酸ィ匕アンチモンは、 ダイォキシン等の環境問題から敬遠されつつある。 一 方、 リン系化合物はコスト単価が高いことが問題視されている。 ポリマー物性の 低下を伴う水和金属化合物とコストの高いリン系化合物を使用しているのが現状 である。  Heretofore, as a flame retardant used for the purpose of rendering the shelf flame-retardant by mixing with a resin, a halogen compound, an antimony trioxide, a phosphorus compound, a hydrated metal compound and the like have been used. In recent years, a technique for improving the flame retardancy of a flame retardant using a silicone compound as a surface treatment agent has been proposed. For example, JP-A-58-185645 discloses antimony trioxide by an alkoxysilane surface treatment, and JP-A-58-179269 discloses an antimony compound obtained by a polysiloxane surface treatment. In Japanese Patent Application Laid-Open No. 58-63747, aluminum hydroxide particles obtained by surface treatment with methylhydrdiene polysiloxane, and in Japanese Patent Application Laid-Open No. 5-295266, an organosiloxane surface treatment is used. Disclosed are magnesium hydroxide particles and the like. Halogen compounds and antimony trioxide are being shunned from environmental issues such as dioxin. On the other hand, it is considered that phosphorus-based compounds have a high cost unit price. At present, hydrated metal compounds with reduced polymer properties and expensive phosphorus compounds are used.
発明が解決しょうとする課題  Problems to be solved by the invention
難燃剤として使用されている水和金属化合物では、 その他の有機系難燃化合物 と比較して同等の難燃性を達成するためにはより多量の配合量を必要とし、 その ためポリマー物性を著しく低下させる。 また、 難燃剤として水和金属化合物と難 燃助剤としてシリコーン化合物を併用して配合したポリマ一難燃性組成物は、 該 難燃特性を若干向上させることが知られているものの、 その他の有機系難燃化合 物と比較して同等の難燃性を得るために多量の配合量を必要することには変りな く、 該配合量を減量することは難しい。 いずれも難燃剤として使用した場合、 上 記のごとき問題点は解決されていない。 本発明は、 これを防ぐために、 水和金属 化合物の低充填化を主たる目的とするものである。 The hydrated metal compound used as a flame retardant requires a larger amount to achieve the same flame retardancy as other organic flame retardant compounds. Therefore, the physical properties of the polymer are significantly reduced. Further, a polymer-flame-retardant composition blended with a hydrated metal compound as a flame retardant and a silicone compound as a flame-retardant aid is known to slightly improve the flame-retardant properties. It is still necessary to use a large amount of the compound in order to obtain the same flame retardance as that of the system-based flame retardant compound, and it is difficult to reduce the compounding amount. The problems described above have not been solved when any of them is used as a flame retardant. An object of the present invention is to mainly reduce the amount of a hydrated metal compound in order to prevent this.
課題を解決するための手段  Means for solving the problem
本発明者は、 前記課題を解決するべく鋭意研究を重ねた結果、 水ガラスで被覆 した水酸化マグネシウム粒子に分子構造内に S i H基を持つシリコーン化合物に よってさらに被覆した水酸化マグネシウム粒子をポリマーに配合した所、 該表面 処理を行わない難燃剤と比較して、 低充填でも良好な難燃性が可能であることを 見いだし、 本発明を完成させるに至った。  The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, obtained magnesium hydroxide particles further coated with a silicone compound having a SiH group in the molecular structure on magnesium hydroxide particles coated with water glass. When blended in a polymer, they found that good flame retardancy was possible even with low filling compared to a flame retardant not subjected to the surface treatment, and completed the present invention.
すなわち、本発明によれば、水ガラスにて被覆した水酸化マグネシウム粒子を、 分子構造内に S i H基を有するシリコーン化合物で表面処理したことを特徴とす る難燃剤が提供される。  That is, according to the present invention, there is provided a flame retardant characterized in that magnesium hydroxide particles coated with water glass are surface-treated with a silicone compound having a SiH group in a molecular structure.
また本発明によれば、 前記した水酸化マグネシウム粒子の表面に水ガラス層と シリコーン層の 2つの被覆層を形成させた本発明の難燃剤を、 棚旨に配合した難 燃性樹脂組成物が提供される。  Further, according to the present invention, there is provided a flame-retardant resin composition comprising a flame retardant of the present invention in which two coating layers, a water glass layer and a silicone layer, are formed on the surface of the above-mentioned magnesium hydroxide particles. Provided.
以下本発明の難燃剤、 その製造方法および難燃性榭脂組成物についてさらに具 体的に説明する。  Hereinafter, the flame retardant of the present invention, its production method and the flame-retardant resin composition will be described more specifically.
本発明における水酸化マグネシウム粒子は、 樹脂の難燃剤として使用されるも のであれば何ら制限されない。合成および天然のいずれであっても差し支えない。 水酸化マグネシウム粒子は、 結晶がよく成長したものが好ましく、 かつ凝集が 少ないものが好ましい。水酸化マグネシウム粒子の平均粒子径は、 2 0 m以下、 好ましくは 0 . 5〜5 mが適当であり、 8 £丁比表面積は2 0 1112 8以下、 好ましくは 2〜1 0 m2/ gが適当である。 The magnesium hydroxide particles in the present invention are not limited as long as they are used as a flame retardant for a resin. It can be either synthetic or natural. The magnesium hydroxide particles are preferably those in which crystals have grown well, and those with little aggregation. The average particle size of the magnesium hydroxide particles, 2 0 m or less, preferably 0. 5 to 5 m is suitable, 8 £ Ding specific surface area of 2 0 111 2 8 or less, preferably 2 to 1 0 m 2 / g is appropriate.
水酸化マグネシウム粒子の表面に被覆される水ガラスは、 1号、 2号または 3 号水ガラスの他に、 無定形シリカを N a〇Hで溶解したものが使用される。 水酸 化マグネシウム粒子を水ガラスで表面処理するに際し、 使用する溶媒は、 水もし くはアルコール系溶媒を単独もしくは混合溶媒であるのが有利である。 水酸化マ グネシゥム i子 1 0 0重量部に対する被覆された水ガラスの量は、 0 . 1〜 1 0 重量部、 好ましくは 0 . ' 5〜7重量部が適当である。 Water glass coated on the surface of magnesium hydroxide particles is No. 1, 2 or 3 In addition to water glass, amorphous silica dissolved in Na〇H is used. In treating the surface of the magnesium hydroxide particles with water glass, the solvent used is preferably water or an alcohol-based solvent alone or as a mixed solvent. The amount of the coated water glass per 100 parts by weight of magnesium hydroxide is suitably 0.1 to 10 parts by weight, preferably 0.1 to 5 to 7 parts by weight.
水ガラスで表面処理された水酸化マグネシウム粒子は、 さらにその表面にシリ コ一ン化合物によつて表面被覆される。  The magnesium hydroxide particles surface-treated with water glass are further coated on the surface with a silicon compound.
本発明で使用するシリコ一ン化合物としては、 例えば下記一般式 ( 1 ) に示す 基本構造を有し、 分子構造内に S i H基を有するポリオルガノシロキサンが挙げ られる。  Examples of the silicon compound used in the present invention include a polyorganosiloxane having a basic structure represented by the following general formula (1) and having a SiH group in the molecular structure.
R ( 1 )R (1)
Figure imgf000004_0001
一般式 ( 1 ) において、 Rは互に同一もしくは異なり、 飽和または不飽和の一 価の炭化水素基、 R ' および R" は同一もしくは異なり、 水素原子、 飽和または 不飽和の一価の炭化水素基、 nまたは mは各々 0〜1 0万の整数を表し、 それぞ れ 0〜 5万の整数が好ましい。 S 11当量が4 0〜1, 0 0 0の範囲が好ましく、 4 0〜5 0 0の範囲がさらに好ましく、 4 0〜1 0 0の範囲が最も好ましい。 好ましい Rとしては、 メチル基、 ェチル基またはフエニル基などの飽和または 不飽和の一価の炭素数 1〜 1 0の炭化水素基。好ましい R,および R"としては、 Rと同じ基、 あるいは水素原子を含む群から選ばれる飽和または不飽和の一価の 炭素数 1〜 1 0の炭化水素基等が挙げられる。
Figure imgf000004_0001
In the general formula (1), R is the same or different from each other; a saturated or unsaturated monovalent hydrocarbon group; R 'and R "are the same or different; a hydrogen atom, a saturated or unsaturated monovalent hydrocarbon; The group, n or m each represents an integer of 0 to 100,000, and each is preferably an integer of 0 to 50,000.S 11 equivalents are preferably in the range of 40 to 100, and 40 to 5 The value of R is more preferably in the range of 100 and most preferably in the range of 40 to 100. Preferred R is a saturated or unsaturated monovalent carbon atom having 1 to 10 carbon atoms such as a methyl group, an ethyl group or a phenyl group. Hydrocarbon group. Preferred R and R "include the same group as R, or a saturated or unsaturated monovalent hydrocarbon group having 1 to 10 carbon atoms selected from the group including a hydrogen atom.
本発明で使用する分子構造内に S i H基を有するシリコーン化合物とは、 反応 性シリコーン、 シリコーンゴムの架橋剤などが挙げられる。 例えば、 東レ *ダウ コ一ニング 'シリコーン社、 信越化学工業社、 東芝シリコ一ン社、 ヮッカーケミ —社、 パイエル社やローヌプーラン社製の室温 2液硬化型のゴム架橋剤、 信越化 学株式会社の撥水処理用シリコーンオイル等が挙げられる。  The silicone compound having a SiH group in the molecular structure used in the present invention includes a reactive silicone, a crosslinking agent for silicone rubber, and the like. For example, Toray * Dow Corning 'Silicone, Shin-Etsu Chemical, Toshiba Silicon, Pecker-Chemie, Peyer and Rhone-Poulin Co., Ltd. And silicone oil for water repellent treatment.
シリコーン化合物の被覆量は、 水酸化マグネシウム粒子 1 0 0重量部に対して 0 . 1〜5 0重量部、 好ましくは 0 . 5〜 2 0重量部が適当である。 The coating amount of the silicone compound is 100 parts by weight of the magnesium hydroxide particles. 0.1 to 50 parts by weight, preferably 0.5 to 20 parts by weight, is suitable.
本発明で使用する水酸化マグネシウム粒子を、 水ガラスで表面処理した後にさ らに水ガラス表面の OH基とシリコーン化合物の S i H基を反応させる際、 必要 に応じて触媒を使用することは好ましい。 かかる触媒としては、 ジブチルスズジ ラウリレート、 ジブチルスズジアセテートなどの錫系触媒;テトラブチルチタネ —トなどのチタン系触媒;鉄ォクトエートなど鉄系触媒;塩化白金酸などの白金 系; この他に亜鉛系;およびモリブデン系触媒などが挙げられる。 これらのうち 特に好ましいのは錫触媒である。  When the OH group on the surface of water glass and the SiH group of the silicone compound are further reacted after the surface treatment of the magnesium hydroxide particles used in the present invention with water glass, a catalyst may be used if necessary. preferable. Such catalysts include tin catalysts such as dibutyltin dilaurate and dibutyltin diacetate; titanium catalysts such as tetrabutyl titanate; iron catalysts such as iron octoate; platinum catalysts such as chloroplatinic acid; And molybdenum-based catalysts. Particularly preferred among these are tin catalysts.
該触媒の添加量は、 分子構造内に S i H基を有するシリコーン化合物 1 0 0重 量部に対して、 0 . 1〜3 0重量部を用いることが好ましく、 さらに好ましくは 5〜1 0重量部用いる。  The catalyst is preferably added in an amount of 0.1 to 30 parts by weight, more preferably 5 to 10 parts by weight, based on 100 parts by weight of the silicone compound having a SiH group in the molecular structure. Use parts by weight.
本発明で使用する水ガラスにて被覆した水酸化マグネシウム粒子に、 分子構造 内に S i H結合を有するシリコーン化合物を被覆する方法としては、 例えば、 有 機溶媒中で湿式処理後乾燥するかもしくは、 シリコーン化合物を噴霧する、 また は噴霧乾燥することをが挙げられ、 その被覆する際の温度は、 好ましくは 0〜1 0 0 °C、 より好ましくは室温から 6 0 、 特に好ましくは室温である。  The method for coating the magnesium hydroxide particles coated with water glass used in the present invention with a silicone compound having a SiH bond in the molecular structure includes, for example, a wet treatment in an organic solvent followed by drying or Spraying or spray-drying a silicone compound. The coating temperature is preferably 0 to 100 ° C., more preferably room temperature to 60, and particularly preferably room temperature. .
本発明で使用する水ガラスにて被覆した水酸化マグネシウム粒子に、 分子構造 内に S i H結合を持つシリコーン化合物を被覆する際の反応雰囲気は、 空気中も しくは不活性ガス雰囲気下どちらでもよいが、 不活性ガス雰囲気下で行うことが 望ましい。  The reaction atmosphere for coating the magnesium hydroxide particles coated with water glass used in the present invention with a silicone compound having a SiH bond in the molecular structure can be either air or an inert gas atmosphere. Good, but desirably under an inert gas atmosphere.
上記例示の被覆方法において、 本発明で使用する水酸化マグネシウム粒子を、 水ガラスで表面処理した後にさらに分子構造内に S i H基を有するシリコ一ン化 合物で表面処理する際の有機溶媒としては、 例えば、 メタノール、 ェタノ一ル、 シクロへキサノール、 n—ブ夕ノール、 n—へキサノール、 イソプロピルアルコ ール、 n—ァミルアルコール、 エチレングリコールなどのアルコール系化合物; テトラヒドロフラン、 ジェチルエーテルなどのエーテル化合物;ェチルホルムァ ミド、ジメチルホルムアミド、グリセロールホルムアミドなどのアミド系化合物; ベンゼン、 トルエン、 キシレン、 ェチルベンゼン、 ァニリン、 ピリジン、 ベンゾ 二トリルなどの芳香族系化合物;アセトン、 メチルェチルケ卜ン、 ジェチルケト ン、 メチルェチルケトン、 メチルプロピルケトン、 メチルイソピロピルケトンな どのケ卜ン系化合物;酢酸ェチル、 酢酸プチル、 酢酸イソプチル、 酢酸イソプロ ピルなどのエステル系化合物; n—オクタン、 n—ヘプタン、 シクロへキサンな どの炭化水素系化合物;メチルァミン、 ジェチルアミンなどのアミン系化合物; 四塩化炭素、 クロ口ホルム、 イソブチルクロリド、 トリクロロエチレン、 塩化メ チレンなどのハロゲン系有機化合物、 その他にニトロメタン、 アクリル酸、 ァセ トニトリル、 ジメチルスルホキシド等が挙げられる。 上記例示の有機溶媒は単独 もしくは 2種類以上の混 溶媒として用いられる。 In the above exemplified coating method, the organic solvent used when the magnesium hydroxide particles used in the present invention are surface-treated with water glass and then surface-treated with a silicon compound having a SiH group in the molecular structure. Examples thereof include alcohol compounds such as methanol, ethanol, cyclohexanol, n-butanol, n-hexanol, isopropyl alcohol, n-amyl alcohol, and ethylene glycol; tetrahydrofuran, getyl ether Amide compounds such as ethylformamide, dimethylformamide, and glycerolformamide; benzene, toluene, xylene, ethylbenzene, aniline, pyridine, benzol Aromatic compounds such as nitrile; ketone compounds such as acetone, methyl ethyl ketone, getyl ketone, methyl ethyl ketone, methyl propyl ketone, methyl isopropyl pyr ketone; ethyl acetate, butyl acetate, isoptyl acetate, acetic acid Ester compounds such as isopropyl; hydrocarbon compounds such as n-octane, n-heptane, and cyclohexane; amine compounds such as methylamine and getylamine; carbon tetrachloride, carbon form, isobutyl chloride, trichloroethylene, methyl chloride Examples include halogen-based organic compounds such as styrene, and nitromethane, acrylic acid, acetonitrile, dimethyl sulfoxide, and the like. The organic solvents exemplified above are used alone or as a mixed solvent of two or more kinds.
本発明で使用する水酸化マグネシウム粒子を、 水ガラスで表面処理した後にさ らに分子構造内に S i H基を有するシリコーン化合物で表面処理する際の熱処理 温度は 0〜2 0 0 °C、 好ましくは 8 0から 1 2 0 °C、 特に好ましくは 1 0 0〜1 2 0 °Cである。  After the magnesium hydroxide particles used in the present invention are surface-treated with water glass, and further subjected to a surface treatment with a silicone compound having a SiH group in the molecular structure, the heat treatment temperature is 0 to 200 ° C. It is preferably from 80 to 120 ° C, particularly preferably from 100 to 120 ° C.
本発明で使用する水酸化マグネシウム粒子を、 水ガラスで表面処理した後にさ らに分子構造内に S i H基を有するシリコーン化合物で表面処理する際の熱処理 雰囲気は、 空気中または不活性ガス中どちらでもよい。  After the magnesium hydroxide particles used in the present invention are surface-treated with water glass and then surface-treated with a silicone compound having a SiH group in the molecular structure, the heat treatment atmosphere is air or inert gas. either will do.
前述した水ガラス層およびシリコーン化合物層により被覆された水酸化マグネ シゥム粒子は、 樹脂の難燃剤として優れている。  The magnesium hydroxide particles coated with the water glass layer and the silicone compound layer described above are excellent as flame retardants for resins.
本発明の難燃樹脂組成物の樹脂とは、 成型加工可能な任意の熱可塑性樹脂や熱 硬化性樹脂である。 このような樹脂の例としては、 ポリエチレン、 ポリプロピレ ン、ポリブテン一 1、ポリ 4—メチルペンテン、エチレン一プロピレン共重合体、 エチレンーブテン一 1共重合体、 エチレン一 4ーメチルペンテン共重合体、 プロ ピレン—ブテン一 1共重合体、 プロピレン一 4ーメチルぺンテン共重合体、 ェチ レン一ァクリル酸エステル共重合体、 エチレン一酢酸ビエル共重合体などのォレ フィン系の重合体または共重合体;ポリスチレン、 アクリロニトリルーブ夕ジェ ンースチレン共重合体、 アクリロニトリル一スチレン共重合体、 ァクリロ二トリ ルースチレン一ァクリル酸エステル共重合体などのスチレン系の重合体または共 重合体;塩化ビニル樹脂、 酢酸ビニル樹脂、 塩化ビニリデン樹脂、 エチレン一塩 化ビニル共重合体などのビニル系の重合体または共重合体;フエノキシ樹脂、 ブ 夕ジェン樹脂、 フッ素樹脂、 ポリアセタール樹脂、 ポリアミド樹脂、 ポリウレタ ン樹脂、 ポリエステル樹脂、 ポリカーボネート樹 J3旨、 ポリケトン樹 B旨、 メタクリ ル樹脂、 ジァリルフタレート樹脂、 フエノール樹脂、 エポキシ樹脂、 メラミン樹 脂、 ユリア樹脂;その他に、 エチレン—プロピレン—ジェン共重合体、 ブ夕ジェ ンゴム、 スチレン一ブタジエンゴム、 クロロプレンゴム、 塩素化ポリエチレン、 クロロスルホン化ポリエチレン、 二トリルゴム、 イソプレンゴム、 ブチルゴム、 フッ素ゴムなどのゴム類が例示できる。 The resin of the flame-retardant resin composition of the present invention is any moldable thermoplastic resin or thermosetting resin. Examples of such resins include polyethylene, polypropylene, polybutene-11, poly4-methylpentene, ethylene-propylene copolymer, ethylene-butene-11 copolymer, ethylene-4-methylpentene copolymer, propylene-butene Olefin-based polymers or copolymers such as 11-copolymer, propylene-14-methylpentene copolymer, ethylene-acrylic acid ester copolymer, ethylene-monoacetate biel copolymer; polystyrene; Styrene-based polymers or copolymers such as acrylonitrile lube styrene-styrene copolymer, acrylonitrile-styrene copolymer, acrylonitrile-styrene-acrylic acid ester copolymer; vinyl chloride resin, vinyl acetate resin, chloride Vinylidene resin, ethylene monosalt Vinyl polymers or copolymers such as vinyl chloride copolymers; phenoxy resin, butyl resin, fluororesin, polyacetal resin, polyamide resin, polyurethane resin, polyester resin, polycarbonate resin J3, polyketone B , Methacrylic resin, diaryl phthalate resin, phenolic resin, epoxy resin, melamine resin, urea resin; others, ethylene-propylene-gen copolymer, butane rubber, styrene-butadiene rubber, chloroprene rubber, chlorine Rubbers such as fluorinated polyethylene, chlorosulfonated polyethylene, nitrile rubber, isoprene rubber, butyl rubber, and fluoro rubber.
これらの中で、 ポリエチレン、 ポリプロピレン、 エチレン一酢酸ビニル共重合 体、 エチレン一アクリル酸エステル共重合体等のォレフィン系の重合体または共 重合体が好ましい。  Among these, preferred are olefin-based polymers or copolymers such as polyethylene, polypropylene, ethylene-vinyl acetate copolymer and ethylene-acrylate copolymer.
本発明において、 樹脂に配合される難燃剤の配合比としては、 樹脂 1 0 0重量 部当り、 例えば、 0 . 1〜2 0 0重量部であるが、 好ましくは 3 0〜1 5 0重量 部、 'さらに好ましくは、 5 0〜1 2 0重量部が最も好ましい。 0. 1重量部未満 では、 難燃性に劣り、 2 0 0重量部を超えると機械的特性を低下させるので好ま しくない。  In the present invention, the blending ratio of the flame retardant blended with the resin is, for example, 0.1 to 200 parts by weight, preferably 30 to 150 parts by weight, per 100 parts by weight of the resin. More preferably, 50 to 120 parts by weight is most preferable. If the amount is less than 0.1 part by weight, the flame retardancy is inferior. If the amount exceeds 200 parts by weight, the mechanical properties deteriorate, which is not preferable.
本発明の難燃性樹脂組成物は、 J I S K 7 2 0 1で規定する酸素指数が 2 5以上であり、 好適条件下では 2 6以上が、 最も好ましくは 2 7以上が達成され る。  The flame retardant resin composition of the present invention has an oxygen index defined by JISK 7201 of 25 or more, and achieves 26 or more and most preferably 27 or more under suitable conditions.
本発明の難燃樹脂組成物は、 上記本発明による難燃剤が樹脂中に配合されてい る。 しかし本発明の難燃性樹脂組成物には、 必要に応じて、 他の難燃性物質がさ らに併用して含まれてもよい。例えば、ホウ酸亜鉛水和物、メタホウ酸バリウム、 ほう砂などのホウ酸を含有する化合物;リン酸アンモニゥム、 ポリリン酸アンモ 二ゥム、 リン酸メラミン、 赤燐、 リン酸エステル、 トリス (クロロェチル) ホス フェート、 トリス (モノクロ口プロピル) ホスフェート、 トリス (ジクロ口プロ ピル) ホスフェート、 トリアリルフォスフェート、 トリス (3—ヒドロキシプロ ピル) ホスフェート、 トリス (トリブロモフエニル) ホスフエ一ト、 トリス ·)3 一クロ口プロピルホスフエ一ト、 トリス (ジブロモフエニル) ホスフェート、 ト リス (トリプロモネオペンチル)ホスフェート、 テトラキス (2—クロロェチル) エチレン ·ジフォスフェート、 ジメチルメチルフォスフエ一ト、 トリス (2—ク ロロェチル) オルトリン酸エステル、 芳香族縮合リン酸エステル、 含ハロゲン縮 合有機リン酸エステル、 エチレン'ビス ' トリス (2—シァノエチル) ホスフォ ニゥム ·プロミド、 ポリリン酸アンモニゥム、 i3—クロ口ェチルアツシドフォス フェート、 ブチルピロフォスフェート、 ブチルアツシドフォスフェート、 ブトキ メラミンリン酸塩、 含ハロゲンフォスソネート、 フエニル'フォスフォン酸など のリンを含有する化合物;硫酸アンモニゥムなどのアンモン系難燃化合物、 フエ 口センなどの酸化鉄系燃焼触媒、 硝酸銅などの硝酸金属化合物、 酸化チタンなど のチタンを含有する化合物、 スルファミン酸グァニジンなどのグァニジン系化合 物、 その他、 ジルコニウム系化合物、 モリブデン系化合物、 錫系化合物、 炭酸力 リウムなどの炭酸塩化合物、 水酸化アルミニウム、 水酸化マグネシウムなどの水 酸和金属およびその変性物などの無機系難燃化合物; トリアジン環を有するシァ ヌレート化合物などのチッソを含有する難燃性化合物;塩素化パラフィン、 パー クロロシクロペン夕デカン、 へキサブロモベンゼン、 デカブ口モジフエ二ルォキ シド、 ビス (トリプロモフエノキシ) ェタン、 エチレンビス ·ジブ口モノルポル ナンジカルポキシイミド、 エチレンビス ·テトラブロモフタルイミド、 ジブロモ ェチル ·ジブ口モシクロへキサン、 ジブロモネオペンチルダリコール、 2 , 4, 6—トリプロモフエノール、 トリブロモフエニルァリルエーテル、テトラブロモ' ビスフエノール A誘導体、 テトラブロモ 'ビスフエノール S誘導体、 テトラデカ ブロモ .ジフエノキシベンゼン、 トリス一 (2, 3—ジブロモプロピル一 1一) —イソシァヌレート、 2, 2 _ビス (4—ヒドロキシー 3, 5—ジブロモフエ二 ;! ) プロパン、 2, 2—ビス (4—ヒドロキシエトキシー 3 , 5—ジブロモフエ ニル) プロパン、 ポリ (ペン夕ブロモベンジル ·ァクリレー卜)、 トリブロモスチ レン、 トリブロモフエニルマレイニド、 トリプロモネオペンチル ·アルコール、 ンタブロモフエノール、 ペン夕ブロモトルエン、 ペンタブロモジフエニルォキシ ド、 へキサブ口モシクロドデカン、 へキサブロモジフエ二ルェ一テル、 ォクタブ ロモフエノーレエ一テル、 ォク夕ジブロモジフエ二ルェ一テレ、 ォクタブロモジ フエ二ルォキシド、 ジブロモネオペンチルダリコ一ルテトラカルボナ一ト、 ビスIn the flame retardant resin composition of the present invention, the flame retardant of the present invention is blended in the resin. However, the flame-retardant resin composition of the present invention may further contain other flame-retardant substances, if necessary. For example, boric acid-containing compounds such as zinc borate hydrate, barium metaborate, and borax; ammonium phosphate, ammonium polyphosphate, melamine phosphate, red phosphorus, phosphate ester, tris (chloroethyl) Phosphate, Tris (monochloropropyl propyl) phosphate, Tris (dichrolic propyl) phosphate, triallyl phosphate, tris (3-hydroxypropyl) phosphate, tris (tribromophenyl) phosphate, tris3) Monopropyl propyl phosphate, tris (dibromophenyl) phosphate, Lis (tripromoneopentyl) phosphate, tetrakis (2-chloroethyl) ethylene diphosphate, dimethyl methyl phosphate, tris (2-chloroethyl) orthophosphate, aromatic condensed phosphate, halogen-containing condensate Organophosphates, Ethylene 'bis' tris (2-cyanoethyl) phosphonium-promide, Ammonium polyphosphate, i3-Chloroethyl acetic acid phosphate, Butyl pyrophosphate, Butyl acetic acid phosphate, Butoxy melamine phosphate Phosphorus-containing compounds such as salts, halogen-containing phossonates, and phenyl'phosphonic acid; ammonium-based flame-retardant compounds such as ammonium sulfate; iron oxide-based combustion catalysts such as fuecopene; Such as titanium oxide Tan-containing compounds, guanidine compounds such as guanidine sulfamate, and others, zirconium compounds, molybdenum compounds, tin compounds, carbonate compounds such as potassium carbonate, and hydroxides such as aluminum hydroxide and magnesium hydroxide Inorganic flame-retardant compounds such as Japanese metal and its modified products; Flame-retardant compounds containing nitrogen, such as cyanurate compounds having a triazine ring; chlorinated paraffin, perchlorocyclopenedecane, hexabromobenzene, dekabu mouth Modifeniroxyside, bis (triplomophenoxy) ethane, ethylenebis dibu-mouth monolpropanedicarboxyimide, ethylenebis-tetrabromophthalimide, dibromoethyl dibu-mocyclohexane, dibromoneopentyldaricol, 2,4 , 6— Promophenol, tribromophenylaryl ether, tetrabromo'bisphenol A derivative, tetrabromo'bisphenol S derivative, tetradecabromo.diphenoxybenzene, tris- (2,3-dibromopropyl-111) -isocyanurate, 2 , 2_bis (4-hydroxy-3,5-dibromophenyl;!) Propane, 2,2-bis (4-hydroxyethoxy-3,5-dibromophenyl) propane, poly (benzoyl bromobenzyl acrylate), Tribromostyrene, tribromophenylmaleinide, tripromoneopentyl alcohol, n-bromophenol, pen-bromotoluene, pentabromodiphenyloxy M, cyclohexide mouth cyclododecan, hexabromodiphenyl ether, octabolofenolenetel, octane dibromodiphenyl ether, octabromodiphenyloxide, dibromoneopentyldaricoltetracarbonate, bis
(トリブロモフエニル) フマルアミド、 N—メチルへキサブロ乇ジフエニルアミ ン、 臭化スチレン、 ジァリルクロレンデートなどのハロゲンを含有する難燃化合 物;その他に無水クロレンド酸、 無水フタル酸、 ビスフエノール Aを含有する化 合物、 グリシジルエーテルなどのグリシジル化合物、 ジエチレングリコール、 ぺ ン夕エリスリトールなどの多価アルコール、 変性カルパミドなどが挙げられる。 これらは、 単独もしくは 2つ以上で複合して用いられる。 (Tribromophenyl) Flame-retardant compounds containing halogens, such as fumaramide, N-methylhexabrodiphenylamine, styrene bromide, and diarylchlorendate; chlorendic anhydride, phthalic anhydride, and bisphenol Examples include compounds containing A, glycidyl compounds such as glycidyl ether, polyhydric alcohols such as diethylene glycol and erythritol, and modified carpamide. These are used alone or in combination of two or more.
本発明の難燃性樹脂組成物には、 必要に応じて他の添加剤が含まれてもよい。 例えば、 橋掛け剤、 橋掛け促進剤、 橋掛け促進助剤、 活性剤、 橋掛け抑制剤、 老 化防止剤、 酸化防止剤、 オゾン劣化防止剤、 紫外線吸収剤、 光安定剤、 粘着付与 剤、 可塑剤、 軟化剤、 補強剤、 強化剤、 発砲剤、 発泡助剤、 安定剤、 滑剤、 離型 剤、帯電防止剤、変性剤、着色剤、 カップリング剤、防腐剤、 防カピ剤、改質剤、 接着剤、付香剤、重合触媒、重合開始剤、重合禁止剤、重合抑制剤、重合調整剤、 重合開始剤、結晶核剤、相溶化剤、分散剤、消泡剤などが挙げられる。 これらは、 単独もしくは 2つ以上で複合して使用して用いられる。  The flame-retardant resin composition of the present invention may contain other additives as necessary. For example, crosslinking agents, crosslinking accelerators, crosslinking accelerators, activators, crosslinking inhibitors, antioxidants, antioxidants, ozone deterioration inhibitors, ultraviolet absorbers, light stabilizers, tackifiers , Plasticizers, softeners, reinforcing agents, reinforcing agents, foaming agents, foaming aids, stabilizers, lubricants, release agents, antistatic agents, denaturing agents, coloring agents, coupling agents, preservatives, anti-capi agents, Modifiers, adhesives, fragrances, polymerization catalysts, polymerization initiators, polymerization inhibitors, polymerization inhibitors, polymerization regulators, polymerization initiators, crystal nucleating agents, compatibilizers, dispersants, defoamers, etc. No. These are used alone or in combination of two or more.
本発明の難燃性樹脂組成物は、樹脂、難燃剤および必要によりその他の成分を、 例えばロール、二一ダー、バンバリ一ミキサー、インターミックス、 1軸押出機、 2軸押出機の群より選ばれる 1種以上の混練機で混練することによって調製され、 さらに、該難燃性樹脂組成物は、例えばプレス成型機、ィンジェクション成型機、 モールド成型機、 ブロー成型機、 押出成型機、 紡糸成型機の群より選ばれる 1種 以上の成型機で成型することができる。  The flame-retardant resin composition of the present invention comprises a resin, a flame retardant and, if necessary, other components selected from the group of, for example, a roll, a bider, a Banbury mixer, an intermix, a single-screw extruder, and a twin-screw extruder. The flame-retardant resin composition is prepared by kneading with one or more kneaders, for example, a press molding machine, an injection molding machine, a mold molding machine, a blow molding machine, an extrusion molding machine, and a spinning machine. It can be molded by one or more molding machines selected from the group of molding machines.
本発明の難燃性樹脂組成物は、 電気、 ガス、 石油、 石炭、 原子力などの加熱源 になりえる機械および装置のプラスチック部分、 建築物のプラスチック部分、 お よび車両のプラスチック部分などに使用される。 例えば、 エアコン、 ラジオ、 テ レビ、 ファン、 皿洗機、 電子レンジ、 ジユーサ'ミキサー、 調理器、 洗濯機、 音 響機器、 ビデオなどの電化製品、 スナップ ·スィッチ、 コード ·ワイヤ、 プラグ- リセプ夕クル、 プリント基板、 コードセット ·電源コード、 温度表示制御盤、 ト ランスなどの電子部品、 電線、 コネクタ製品、 力一テン、 壁紙、 壁、 梁、 床、 力 一ペットなどの建築材料、 座席、 パネル、 床、 絶縁材などの車両材料などが挙げ られる。 INDUSTRIAL APPLICABILITY The flame-retardant resin composition of the present invention is used for plastic parts of machinery and equipment, plastic parts of buildings, and plastic parts of vehicles, which can be a heat source such as electricity, gas, petroleum, coal, and nuclear power. You. For example, air conditioners, radios, televisions, fans, dishwashers, microwave ovens, mixers, cookers, washing machines, sound equipment, video and other appliances, snap switches, cord wires, plugs Receptacles, printed circuit boards, cord sets, power cords, temperature display control panels, electronic components such as transformers, electric wires, connector products, power cables, wallpaper, walls, beams, floors, power materials and other building materials, Examples include vehicle materials such as seats, panels, floors, and insulating materials.
実施例 Example
以下に本発明について実施例により具体的に説明する。 ただし、 本発明は以下 の実施例に限定されるものではない。  Hereinafter, the present invention will be described specifically with reference to Examples. However, the present invention is not limited to the following examples.
難燃剤合成例 1〜9 Flame retardant synthesis examples 1-9
合成例 1 (参考例) Synthesis Example 1 (Reference example)
水酸化マグネシウム粒子 (協和化学製キスマ 5) 100 gに分子構造内に S i H結合を有するシリコーン化合物 (ァズマックス製 DMS—H25 :表 1) 10 gをテトラヒドロフラン 30 OmL中で室温、 1時間攪拌させ、 その後口一タリ 一エバポレーターにてテトラヒドロフラン (THF) を除去した。 次に、 溶媒を 除去した物を乾燥機にて 12 で 12時間熱処理し、 難燃剤を得た。  100 g of magnesium hydroxide particles (Kisuma 5 manufactured by Kyowa Chemical Co., Ltd.) and 10 g of a silicone compound having a SiH bond in the molecular structure (DMS-H25 manufactured by Azmax: Table 1) were stirred at room temperature for 1 hour in 30 OmL of tetrahydrofuran. Then, tetrahydrofuran (THF) was removed by a single evaporator. Next, the material from which the solvent had been removed was heat-treated with a dryer at 12 to 12 hours to obtain a flame retardant.
合成例 2 Synthesis example 2
水 90 OmLに水酸化マグネシウム粒子 (協和化学製キスマ 5) 100 gを攪 拌し、水ガラス ((株) トクャマ製ケィ酸ソーダ #31) を水酸化マグネシウム粒 子に対し S i02換算で 1 gを添加し、 30分攪拌後、 脱水し、 乾燥させる。 得 られた水ガラス処理水酸化マグネシウム粒子 100 gに分子構造内に S i H結合 を有するシリコーン化合物 (ァズマックス製 DMS—H25) 10 g、 およびジ プチルスズジラウリレート l gをテトラヒドロフラン 300 mL中で室温、 1時 間攪拌させ、その後口一タリ一エバポレーターにてテトラヒドロフラン(THF) を除去した。次に、溶媒を除去した物を乾燥機にて 120°Cで 12時間熱処理し、 本発明の難燃剤を得た。 Water 90 OML magnesium hydroxide particles (manufactured by Kyowa Chemical Kisuma 5) 1 100 g was攪拌, water glass (Co. Tokuyama Ltd. Kei sodium # 31) with respect to the magnesium hydroxide particles member at S i0 2 terms g, and after stirring for 30 minutes, dehydrate and dry. 100 g of the obtained water-glass-treated magnesium hydroxide particles were mixed with 10 g of a silicone compound having a SiH bond (DMS-H25 manufactured by Azmax) and dibutyltin dilaurate lg in 300 mL of tetrahydrofuran at room temperature. After stirring for 1 hour, tetrahydrofuran (THF) was removed with a single evaporator. Next, the material from which the solvent had been removed was subjected to a heat treatment at 120 ° C. for 12 hours in a dryer to obtain a flame retardant of the present invention.
合成例 3 Synthesis example 3
ジブチルスズジラウリレートを添加しない以外は合成例 2と同じ方法で本発明 の難燃剤を得た。  A flame retardant of the present invention was obtained in the same manner as in Synthesis Example 2 except that dibutyltin dilaurate was not added.
合成例 4〜 9 添加するシリコーン化合物を下記表 1の化合物を使用する以外は合成例 3と同 じ方法で本発明の難燃剤を得た。 なお表 1には合成例 1〜3で使用したシリコ一 ン化合物も併記した。 Synthesis Examples 4 to 9 The flame retardant of the present invention was obtained in the same manner as in Synthesis Example 3 except that the silicone compound to be added was a compound shown in Table 1 below. Table 1 also shows the silicon compounds used in Synthesis Examples 1-3.
SiH結合を有するシリコーン化合物の種類 Types of silicone compounds with SiH bonds
Figure imgf000011_0001
合成例 1〜9で得られた生成物の分子構造内に S i H基を有するシリコーンィ匕 合物と水ガラス処理した水酸化マグネシウム粒子の水ガラス処理水酸化マグネシ ゥム粒子 (K1) に対する S iH結合量および非 S iH化学結合量 (単位: PP H) を調べた。 30mlビ一カー中に作製した生成物 1 gと THF 10 gを 1時 間常温にて攪拌する。 その混合液をミリポアにてろ過し、 ろ液を 120°CX 3時 間真空オーブンで乾燥する。 そのろ液乾固物の重量を測定する。 ろ液乾固物の重 量は、 非化学結合量であることから、 その値を仕込み量から差し引いた値を化学 結合量とした。 その結果を下記表 2に示した。
Figure imgf000011_0001
The silicone conjugate having a SiH group in the molecular structure of the products obtained in Synthesis Examples 1 to 9 and the magnesium hydroxide particles treated with water glass were used for the magnesium hydroxide particles treated with water glass (K1). The amount of SiH bond and the amount of non-SiH chemical bond (unit: PPH) were examined. In a 30 ml beaker, 1 g of the prepared product and 10 g of THF are stirred at room temperature for 1 hour. The mixture is filtered through Millipore, and the filtrate is dried in a vacuum oven at 120 ° C for 3 hours. The weight of the filtrate is measured. Since the weight of the filtrate dried product is the amount of non-chemical bond, the value obtained by subtracting that value from the charged amount is used as the amount of chemical bond. The results are shown in Table 2 below.
表 2 Table 2
Figure imgf000012_0001
上記表 2より、 水ガラスによる処理を施していない水酸化マグネシウム粒子に 分子構造内に S i H基を有するシリコーン化合物を処理した合成例 1と水ガラス 処理した水酸化マグネシウム粒子に分子構造内に S i H基を有するシリコーン化 合物を処理した合成例 2〜 9を比較すると、 合成例 2〜 9の粒子は、 S i H化学 結合量が合成例 1と比べて高かった。 このことは水酸化マグネシウム粒子表面の 〇H基とシリコーン化合物の S i H基の反応性より、 水ガラス処理した水酸化マ グネシゥムぉ [子の水ガラス表面の OH基とシリコーン化合物の S i H基の反応性 が高いためであると考えられる。
Figure imgf000012_0001
According to Table 2 above, Synthesis Example 1 in which a magnesium compound not having been treated with water glass was treated with a silicone compound having a SiH group in the molecular structure was treated with magnesium hydroxide particles treated with water glass in the molecular structure. Comparing Synthetic Examples 2 to 9 in which a silicone compound having a SiH group was treated, the particles of Synthetic Examples 2 to 9 had higher SiH chemical bond amounts than Synthetic Example 1. This is based on the reactivity of the H groups on the surface of the magnesium hydroxide particles with the SiH groups of the silicone compound, indicating that the OH groups on the waterglass-treated magnesium hydroxide particles and the SiH of the silicone compound were not. This is probably due to the high reactivity of the group.
実施例 1〜 8 Examples 1 to 8
上記合成例 2〜 9で作製した難燃剤 1 0 0重量部に対し、 ポリエチレン樹脂 1 0 0重量部を配合した難燃性樹脂組成物を調製し難燃性試験を行った。 試料の調 製は、 それぞれ 2軸混練機とプレス成形機を用いて 1 5 O mmX 3 mmX 3 mm の試験片に成形加工した。 2軸混練条件は、材料供給部 160°C、混練部 190°C、 排出部 170°Cで行い、 プレス成形は 180°CX 10分の後水冷 10分でァニ一 ルし、 難燃性試験用試験片を作製した。 難燃性試験方法は、 酸素指数測定 J I S K 7201に準じて測定を行った。 A flame retardant resin composition was prepared by blending 100 parts by weight of a polyethylene resin with 100 parts by weight of the flame retardant prepared in Synthesis Examples 2 to 9 above, and a flame retardancy test was performed. Samples were prepared using a twin-screw kneader and a press molding machine, respectively, 15 O mmX 3 mmX 3 mm Was molded. Biaxial kneading conditions are as follows: material supply section 160 ° C, kneading section 190 ° C, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing, flame retardant Test specimens were prepared. The flame retardancy test method was measured according to JIS K 7201 for oxygen index measurement.
比較例 1 Comparative Example 1
水ガラス処理した水酸ィ匕マグネシウム粒子 100重量部に対し、 ポリエチレン 樹脂 100重量部を配合した難燃性樹脂組成物を調製し難燃性試験を行った。 試 料の調製は、 2軸混練機とプレス成形機を用いて 15 Omm X 3mm X 3 mmの 試験片に成形加工した。 2軸混練条件は、材料供給部 160°C、混練部 190°C, 排出部 170 °Cで行い、 プレス成形は 180 °C X 10分の後水冷 10分でァニー ルし、 難燃性試験用試験片を作製した。 難燃性試験方法は、 酸素指数測定 J I S K 7201に準じて測定を行った。  A flame-retardant resin composition was prepared by blending 100 parts by weight of a polyethylene resin with 100 parts by weight of magnesium hydroxide particles treated with water glass. The sample was prepared into a 15 Omm X 3 mm X 3 mm test piece using a biaxial kneader and press molding machine. Biaxial kneading conditions are as follows: material supply section 160 ° C, kneading section 190 ° C, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing for flame retardancy test Test pieces were prepared. The flame retardancy test method was measured in accordance with the oxygen index measurement JIS K 7201.
比較例 2 Comparative Example 2
水ガラス処理した水酸化マグネシウム 100粒子重量部、シリコーン化合物 (ァ ズマックス製 DMS— H25) 10重量部、 およびポリエチレン樹脂 100重 量部を配合した難燃性樹脂組成物を調製し難燃性試験を行った。 試料の調製は、 2軸混練機とプレス成形機を用いて 150111111ズ 3111]11ズ 3111111の試験片に成 形加工した。 2軸混練条件は、 材料供給部 160 、 混練部 190 、 排出部 1 70°Cで行い、 プレス成形は 180°CX 10分の後水冷 10分でァニールし、 難 燃性試験用試験片を作製した。 難燃性試験方法は、 酸素指数測定 J I S K 7 201に準じて測定を行った。  A flame-retardant resin composition was prepared by mixing 100 parts by weight of magnesium hydroxide treated with water glass, 10 parts by weight of a silicone compound (DMS-H25 manufactured by Azmax), and 100 parts by weight of polyethylene resin. Was done. The sample was prepared by using a twin-screw kneader and a press molding machine to form a test piece of 150111111 3111] 11 3111111. Biaxial kneading conditions were as follows: material supply section 160, kneading section 190, discharge section 170 ° C, press molding 180 ° C X 10 minutes, water cooling 10 minutes, annealing to prepare test specimen for flame retardancy test did. The flame retardancy test method was measured in accordance with the oxygen index measurement JIS K 7201.
実施例 1〜 8および比較例 1〜 2の結果をまとめて下記表 3に示した。 表 3 The results of Examples 1 to 8 and Comparative Examples 1 and 2 are summarized in Table 3 below. Table 3
Figure imgf000014_0001
Figure imgf000014_0001
Figure imgf000014_0002
上記表 3の結果から下記 (a ) 〜 (d ) のことが理解される。
Figure imgf000014_0002
From the results in Table 3 above, the following (a) to (d) are understood.
( a ) ポリエチレン樹脂 1 0 0重量部に水ガラス処理のみした水酸化マグネシ ゥム粒子 1 0 0重量部の比較例 1とポリエチレン樹脂 1 0 0重量部に水ガラス処 理のみの水酸化マグネシウム粒子 1 0 0重量部と分子構造内に S i H基を持つシ リコーン化合物をその水酸化マグネシウム粒子に化学結合を伴わないで別々に混 練した比較例 2は、 酸素指数が若干向上した (ポリエチレン樹脂の酸素指数は約 1 7である)。  (a) Magnesium hydroxide particles with only 100 parts by weight of polyethylene resin treated with water glass Comparative Example 1 with 100 parts by weight of polyethylene resin and magnesium hydroxide particles with only 100 parts by weight of polyethylene resin treated with water glass In Comparative Example 2 in which 100 parts by weight and a silicone compound having a SiH group in the molecular structure were separately kneaded to the magnesium hydroxide particles without a chemical bond, the oxygen index was slightly improved. The oxygen index of the resin is about 17).
( b ) さらに、 水ガラス処理した水酸化マグネシウム粒子に分子構造内に S i H基を持つシリコーン化合物を被覆した実施例:!〜 8は、 水ガラス処理した水酸 化マグネシウム粒子に分子構造内に S i H基を持つシリコーン化合物を結合させ ない比較例 2と比べて酸素指数が一様に高かった。 .  (b) Examples in which a water-glass-treated magnesium hydroxide particle is coated with a silicone compound having a SiH group in the molecular structure:! to 8 show that the water-glass-treated magnesium hydroxide particle has an intramolecular structure. The oxygen index was uniformly higher than that of Comparative Example 2 in which no silicone compound having a SiH group was bonded. .
( c ) 次に、 水ガラスの OH基とシリコーン化合物の S i H基の反応を促進さ せる触媒としてジブチルスズジラウリレートを添加した実施例 1と添加しない実 施例 2を比較するとジブチルスズジラウリレ一トを添加した実施例 1の酸素指数 が高かった。 (c) Next, a comparison of Example 1 in which dibutyltin dilaurate was added as a catalyst for accelerating the reaction between the OH group of water glass and the SiH group of the silicone compound and Example 2 in which dibutyltin dilaurate was not added was compared. Oxygen index of Example 1 with added rate Was high.
( d) 分子構造内に S i H基を持つシリコーン化合物の分子構造の異なる物質 を水ガラス処理した水酸化マグネシウム粒子に化学結合させた実施例 1〜 8の中 で特に分子構造内に S i H基を持つシリコ一ン化合物中の S i H当量が 6 5の実 施例 6は高い酸素指数を示した。 このように S i H当量の低いシリコーン化合物 を結合させた水ガラス処理水酸化マグネシウム粒子を配合した難燃樹脂組成物の 難燃特性が非常に良好なことは、 予想外の結果であつた。  (d) In Examples 1 to 8, in which a substance having a different molecular structure of a silicone compound having a SiH group in the molecular structure was chemically bonded to magnesium hydroxide particles treated with water glass, in particular, Si was included in the molecular structure. Example 6 having a SiH equivalent of 65 in the silicon compound having an H group showed a high oxygen index. It was an unexpected result that the flame retardant properties of the flame retardant resin composition containing the water glass-treated magnesium hydroxide particles bonded with the silicone compound having a low SiH equivalent were very good.
発明の効果  The invention's effect
本発明によれば、 分子構造内に S i H基を持つシリコーン化合物を水ガラス処 理した水酸化マグネシウム粒子に被覆して化学結合させた本発明の難燃剤は、 以 下の優れた効果が得られる。  According to the present invention, the flame retardant of the present invention in which a silicone compound having a SiH group in its molecular structure is coated on water-glass-treated magnesium hydroxide particles and chemically bonded thereto has the following excellent effects. can get.
( 1 ) 分子構造内に S i H基を持つシリコーン化合物を水ガラス処理した水酸ィ匕 マグネシウム粒子に被覆し化学結合させた本発明の難燃剤は、 水ガラス処理しな い水酸化マグネシウム粒子に分子構造内に S i H基を持つシリコーン化合物を処 理したものと比較して高い化学結合量を示す。  (1) The flame retardant of the present invention, which is obtained by coating a silicone compound having a SiH group in its molecular structure with water-glass-treated magnesium hydroxide particles and chemically bonding the same, comprises magnesium hydroxide particles that are not treated with water glass. The figure shows a higher chemical bond amount than that obtained by treating a silicone compound having a SiH group in the molecular structure.
( 2 ) 分子構造内に S i H基を持つシリコーン化合物を水ガラス処理した水酸ィ匕 マグネシウム粒子に化学結合させた本発明の難燃剤は、 その化学結合性を持たせ ないものと比較して高い難燃性を示す。  (2) The flame retardant of the present invention in which a silicone compound having a SiH group in the molecular structure is chemically bonded to magnesium hydroxide particles treated with water glass is compared with a flame retardant not having the chemical bonding property. High flame retardancy.
( 3 ) 分子構造内に S i H基を持ち S i H当量の低いシリコーン化合物を水ガラ ス処理した水酸化マグネシウム粒子に化学結合させた本発明の難燃剤は、 特に高 い難燃性を示す。  (3) The flame retardant of the present invention in which a silicone compound having a SiH group in the molecular structure and having a low SiH equivalent is chemically bonded to magnesium hydroxide particles treated with water glass has particularly high flame retardancy. Show.
( 4) 分子構造内に S i H基を持つシリコーン化合物を水ガラス処理した水酸ィ匕 マグネシウム粒子に化学結合させた本発明の難燃剤は、 水ガラスの OH基とシリ コーン化合物の S i H基の反応を促進させる触媒を添加することによりさらに高 い難燃性を示す。  (4) The flame retardant of the present invention, in which a silicone compound having a SiH group in the molecular structure is chemically bonded to magnesium hydroxide particles treated with waterglass, comprises an OH group of waterglass and a silicon compound of silicon compound. Higher flame retardancy is exhibited by adding a catalyst that promotes the reaction of the H group.

Claims

請求の範囲 The scope of the claims
1. 水ガラスにて被覆した水酸化マグネシウム粒子を、 分子構造内に S i H基を 有するシリコーン化合物で表面処理したことを特徴とする難燃剤。 1. A flame retardant characterized in that magnesium hydroxide particles coated with water glass are surface-treated with a silicone compound having a SiH group in the molecular structure.
2. 分子構造内に S iH基を有するシリコーン化合物は、 下記一般式 (1) で表 されかつ S i H基を末端もしくは分子間に含有するポリオルガノシロキサンであ る請求項 1記載の難燃剤。 2. The flame retardant according to claim 1, wherein the silicone compound having a SiH group in the molecular structure is a polyorganosiloxane represented by the following general formula (1) and containing a SiH group at a terminal or between molecules. .
R  R
R" ~ Si— 0 ' (1)  R "~ Si— 0 '(1)
R
Figure imgf000016_0001
R
Figure imgf000016_0001
(ただし、式中 Rは飽和または不飽和の一価の炭ィ匕水素基を示し、 R'および R" は同一もしくは異なり、 水素原子、 飽和もしくは不飽和の一価の炭化水素基を示 し、 nおよび mはそれぞれ 0〜 10万の整数を示す) (Wherein, R represents a saturated or unsaturated monovalent hydrocarbon group, and R 'and R "are the same or different and represent a hydrogen atom, a saturated or unsaturated monovalent hydrocarbon group. , N and m each represent an integer from 0 to 100,000)
3. 水酸ィ匕マグネシウム粒子 100重量部に対する水ガラスの被覆量が 0. 1〜 10重量部である請求項 1記載の難燃剤。 3. The flame retardant according to claim 1, wherein the coating amount of the water glass is 0.1 to 10 parts by weight based on 100 parts by weight of the magnesium hydroxide particles.
4. 分子構造内に S iH基を有するシリコーン化合物は、 S iH基を末端もしく は分子間に含有するポリオルガノシロキサンでありかつ S 1^1当量が40〜1,4. The silicone compound having a SiH group in the molecular structure is a polyorganosiloxane containing a SiH group at a terminal or between molecules and having an S1 ^ 1 equivalent of 40 to 1,
000である請求項 1記載の難燃剤。 2. The flame retardant according to claim 1, which is 000.
5. 分子構造内に S iH基を有するシリコーン化合物の被覆量が、 水酸化マグネ シゥム粒子 100重量部に対し、 0. 1〜 50重量部である請求項 1記載の難燃 剤。 5. The flame retardant according to claim 1, wherein the coating amount of the silicone compound having a SiH group in the molecular structure is 0.1 to 50 parts by weight based on 100 parts by weight of the magnesium hydroxide particles.
6. 分子構造内に S iH基を有するシリコーン化合物を水ガラスで被覆した水酸 化マグネシウム粒子にさらに被覆をする際に、 水ガラスの〇H基とシリコーン化 合物の S i H基の反応を促進させる触媒を用いた請求項 1記載の難燃剤。 6. When the magnesium hydroxide particles coated with water glass with a silicone compound having a SiH group in the molecular structure are further coated, 2. The flame retardant according to claim 1, wherein the catalyst promotes the reaction of the SiH group of the compound.
7 . 水ガラスにて被覆した水酸化マグネシウム粒子に、 分子構造内に S i H基を 有するシリコーン化合物を被覆する際に有機溶媒中で湿式処理後乾燥もしくは、 シリコーン化合物を噴霧乾燥することを特徴とする難燃剤の製造方法。 7. When coating magnesium hydroxide particles coated with water glass with a silicone compound having a SiH group in the molecular structure, they are wet-treated in an organic solvent and then dried or spray-dried. Method for producing a flame retardant.
8 . 請求項 1に記載の難燃剤を樹脂に配合してなることを特徴とする難燃性樹脂 組成物。 8. A flame-retardant resin composition comprising the flame retardant according to claim 1 blended in a resin.
9 . 請求項 1に記載の難燃剤を棚旨 1 0 0重量部当り 0 . 1〜 2 0 0重量部含ん でなる請求項 8記載の難燃性樹脂組成物。 9. The flame-retardant resin composition according to claim 8, comprising 0.1 to 200 parts by weight per 100 parts by weight of the flame retardant according to claim 1.
1 0. 樹脂は、 ォレフィン系の重合体または共重合体である請求項 8記載の難燃 性樹脂組成物。 10. The flame-retardant resin composition according to claim 8, wherein the resin is an olefin-based polymer or copolymer.
1 1 . J I S K 7 2 0 1で規定する酸素指数が 2 5以上である請求項 8記載 の難燃性樹脂組成物。 9. The flame-retardant resin composition according to claim 8, wherein the oxygen index defined by 111. JIS 7201 is 25 or more.
1 2. 請求項 8に記載の樹脂組成物より形成された成型品。 1 2. A molded article formed from the resin composition according to claim 8.
PCT/JP2002/002557 2001-03-27 2002-03-18 Flame retardant, method for preparation thereof and flame-retardant resin composition WO2002077121A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001090615A JP3803557B2 (en) 2001-03-27 2001-03-27 Flame retardant, method for producing the same, and flame retardant resin composition
JP2001-090615 2001-03-27

Publications (1)

Publication Number Publication Date
WO2002077121A1 true WO2002077121A1 (en) 2002-10-03

Family

ID=18945378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002557 WO2002077121A1 (en) 2001-03-27 2002-03-18 Flame retardant, method for preparation thereof and flame-retardant resin composition

Country Status (2)

Country Link
JP (1) JP3803557B2 (en)
WO (1) WO2002077121A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006592A1 (en) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing and electronic component device
CN102076783A (en) * 2008-07-02 2011-05-25 矢崎总业株式会社 Silicone surface-treated magnesium hydroxide
CN102532948A (en) * 2011-12-30 2012-07-04 大连亚泰科技新材料有限公司 Preparation method and application of modified magnesium hydroxide flame retardant for copper clad plate
CN113493673A (en) * 2020-03-19 2021-10-12 佛山市顺德区天采有机硅有限公司 Flame-retardant silicone sealant and preparation method thereof
WO2024082521A1 (en) * 2022-10-20 2024-04-25 金发科技股份有限公司 Polycarbonate alloy material, preparation method therefor and use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4997704B2 (en) 2005-02-24 2012-08-08 富士ゼロックス株式会社 Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof
JP4997705B2 (en) * 2005-02-24 2012-08-08 富士ゼロックス株式会社 Surface-coated flame-retardant particles and production method thereof, and flame-retardant resin composition and production method thereof
JP4935082B2 (en) 2006-01-23 2012-05-23 富士ゼロックス株式会社 Flame retardant resin composition and flame retardant resin molded product
KR101131802B1 (en) 2010-10-15 2012-03-30 주식회사 젠트로 Functional paint composition, manufacturing method for the same and coating method using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160042A (en) * 1979-05-30 1980-12-12 Sumitomo Chem Co Ltd Thermoplastic resin composition
JPH01234493A (en) * 1988-03-14 1989-09-19 Kounoshima Kagaku Kogyo Kk Inorganic flame retardant for thermoplastic resin
JPH01320219A (en) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd Magnesium hydroxide coated with silica and its production
EP0352699A1 (en) * 1988-07-29 1990-01-31 Nippon Unicar Company Limited Flame retardant composition
JPH0892484A (en) * 1994-09-19 1996-04-09 Shiseido Co Ltd Production of treated powder
JP2001226676A (en) * 2000-02-14 2001-08-21 Kansai Research Institute Flame retardant, method of producing the flame retardant, and flame-retarding resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55160042A (en) * 1979-05-30 1980-12-12 Sumitomo Chem Co Ltd Thermoplastic resin composition
JPH01234493A (en) * 1988-03-14 1989-09-19 Kounoshima Kagaku Kogyo Kk Inorganic flame retardant for thermoplastic resin
JPH01320219A (en) * 1988-06-23 1989-12-26 Nippon Chem Ind Co Ltd Magnesium hydroxide coated with silica and its production
EP0352699A1 (en) * 1988-07-29 1990-01-31 Nippon Unicar Company Limited Flame retardant composition
JPH0892484A (en) * 1994-09-19 1996-04-09 Shiseido Co Ltd Production of treated powder
JP2001226676A (en) * 2000-02-14 2001-08-21 Kansai Research Institute Flame retardant, method of producing the flame retardant, and flame-retarding resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006006592A1 (en) * 2004-07-13 2006-01-19 Hitachi Chemical Co., Ltd. Epoxy resin molding material for sealing and electronic component device
CN102076783A (en) * 2008-07-02 2011-05-25 矢崎总业株式会社 Silicone surface-treated magnesium hydroxide
CN102532948A (en) * 2011-12-30 2012-07-04 大连亚泰科技新材料有限公司 Preparation method and application of modified magnesium hydroxide flame retardant for copper clad plate
CN113493673A (en) * 2020-03-19 2021-10-12 佛山市顺德区天采有机硅有限公司 Flame-retardant silicone sealant and preparation method thereof
WO2024082521A1 (en) * 2022-10-20 2024-04-25 金发科技股份有限公司 Polycarbonate alloy material, preparation method therefor and use thereof

Also Published As

Publication number Publication date
JP2002285162A (en) 2002-10-03
JP3803557B2 (en) 2006-08-02

Similar Documents

Publication Publication Date Title
JP4475811B2 (en) Crosslinked phenoxyphosphazene compound, process for producing the same, flame retardant, flame retardant resin composition, and flame retardant resin molded article
CN110218436B (en) Low dielectric resin composition and preparation method thereof
CN101353458B (en) Halogen-free expansion type flame-retardant and preparation thereof
JP3364679B2 (en) Powdered flame retardant
JP2001316396A (en) Method for modifying phenoxyphosphazene-based compound, flame-retarded resin composition and flame- retarded resin molding
WO1999019383A1 (en) Crosslinked phenoxyphosphazene compounds, flame retardant, flame-retardant resin compositions, and moldings of flame-retardant resins
TWI614263B (en) Mixtures of diphosphinic acids and dialkylphosphinic acids, a process for preparation thereof and use thereof
JPH11181429A (en) Flame-retardant, flame-retardant resin composition and flame-retardant resin molded product
WO2004085537A1 (en) Flame resistant synthetic resin composition
TWI634122B (en) Mixtures of diphosphinic acids and alkylphosphinic acids, a process for preparation thereof and use thereof
TWI629281B (en) Mixtures of diphosphinic acids and alkylphosphonic acids, a process for preparation thereof and use thereof
TW201335171A (en) Mixtures of at least one dialkylphosphinic acid with at least one other, different dialkylphosphinic acid, process for preparation thereof and use thereof
TW200904877A (en) Composite material of modified expansible graphite /modified thermoplastic polymer
JP3122818B1 (en) Flame retardant aromatic polyamide resin composition
WO2002077121A1 (en) Flame retardant, method for preparation thereof and flame-retardant resin composition
WO2001014499A1 (en) Flame retardant and flame-retardant resin composition containing the same
CN103923395A (en) Halogen-free flame retardant and heat resistant PP (polypropylene) plastic for automotive interior trim parts and preparation method thereof
JP5716666B2 (en) Flame retardant, method for producing the same, and flame retardant thermoplastic resin composition containing the same
JP2010077333A (en) Flame-retardant resin composition
JP2019163404A (en) Flame-retardant resin composition
JP2004115815A (en) Flame-retardant, flame-retardant resin composition, and flame-retardant resin molding
JP2007277473A (en) Flame retardant, flame retardant resin composition and flame retardant resin processed article
JP2001271070A (en) Flame retardant
JP2002114981A (en) Flame-retardant, flame-retardant resin composition and flame-retardant resin molded product
JP2012214672A (en) Diallyl phthalate resin forming material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase