WO2002074945A1 - Verfahren zur spaltung des humanen wachstumshormons gh - Google Patents

Verfahren zur spaltung des humanen wachstumshormons gh Download PDF

Info

Publication number
WO2002074945A1
WO2002074945A1 PCT/EP2002/002606 EP0202606W WO02074945A1 WO 2002074945 A1 WO2002074945 A1 WO 2002074945A1 EP 0202606 W EP0202606 W EP 0202606W WO 02074945 A1 WO02074945 A1 WO 02074945A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmp
human
growth hormone
cleavage
kda
Prior art date
Application number
PCT/EP2002/002606
Other languages
English (en)
French (fr)
Inventor
Konrad Hermann
Christoph Arkona
Original Assignee
Ibfb Gmbh Privates Institut Für Biomedizinische Forschung Und Beratung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibfb Gmbh Privates Institut Für Biomedizinische Forschung Und Beratung filed Critical Ibfb Gmbh Privates Institut Für Biomedizinische Forschung Und Beratung
Priority to CA002441503A priority Critical patent/CA2441503A1/en
Priority to US10/472,472 priority patent/US20040259192A1/en
Publication of WO2002074945A1 publication Critical patent/WO2002074945A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/64Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
    • C12N9/6421Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
    • C12N9/6489Metalloendopeptidases (3.4.24)
    • C12N9/6491Matrix metalloproteases [MMP's], e.g. interstitial collagenase (3.4.24.7); Stromelysins (3.4.24.17; 3.2.1.22); Matrilysin (3.4.24.23)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/517Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with carbocyclic ring systems, e.g. quinazoline, perimidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/54Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame
    • A61K31/549Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one sulfur as the ring hetero atoms, e.g. sulthiame having two or more nitrogen atoms in the same ring, e.g. hydrochlorothiazide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/61Growth hormone [GH], i.e. somatotropin

Definitions

  • the invention relates to the discovery of a new substrate for the human matrix metalloproteinase, which has not yet been described in the literature.
  • the knowledge of the cleavage of this substrate by an MMP should be used in processes for pharmaceutical preparations and the use of MMP inhibitors and MMP inducers as medicaments for the treatment of diseases in humans and animals,
  • the human GH is a 22 kDa peptide hormone, which is made up of a single polypeptide chain. There are two disulfide bridges between the amino acids cysteine 53 and cysteine 165 or cysteine 182 and cysteine 189.
  • GH is a member of the human somatotropin family, which shows a variety of growth-inducing, differentiating and metabolically regulating effects in a wide variety of tissues (1). Under the direct influence of the GH, the somatomedins and the insulin-like growth factors I and II are formed in the liver. In addition to the direct effect of GH, these factors are particularly responsible for the growth hormone effect in cartilage, in the e-piphyses of the bone, in the adipose tissue and in the muscles.
  • the GH is the main regulator for postnatal somatic growth (2). It is required for gender differentiation, puberty, gametogenesis and lactation (8).
  • the exact GH response depends on the respective cell type and the overall regulatory situation in which the hormone acts.
  • the hormone effect is initiated by its interaction with the GH receptor or with a receptor from the GH receptor family.
  • GH then modulates gene expression via the concentration or activity of various transcription factors (18).
  • GH stimulates bone length growth by directly influencing the chondrocytes of the epiphyses (3). It could also be shown that GH stimulates the synthesis of the collagenases MMP-9 and MMP-2 in osteoblasts (15). GH also plays a role in inducing the proliferation of preadipocytes and their differentiation to adipocytes both in vitro and in vivo (4). It supports lipolysis by directly inhibiting lipoprotein lipase (10).
  • GH also stimulates chemotaxis of monocytes (5).
  • the stimulation of the reorganization of actin in the cytoskeleton and the polymerization of the microtubules appears to be of particular importance (6,7).
  • GH-deficient rats showed a significantly reduced mRNA expression for type I collagen, type III collagen and insulin-like growth factor-1 (IGF-I) in fibroblasts compared to the healthy control group, which could be normalized again after external administration of GH ( 11). These data show that fibroblast is also an important target cell for GH's action.
  • the regulatory role of the GH is reduced during the "acute phase response" in inflammation.
  • the GH modulates the adhesion of neutrophil granulocytes during the inflammatory reaction via a thyrosine phosphorylation of intracellular targets and thus decisively on the Adhesion and extravasion of neutrophils is involved.
  • (13) Patients with GH deficiency show a significantly increased plasma level of fibrinogen, plasminogen activator inhibitor type 1, acute phase protein and the soluble adhesion molecules sE-selectin, sP- compared to the healthy control group. Selectin and slCAM-1, which normalized after GH substitution therapy (19).
  • GH has a proliferation-stimulating effect on many cell types in the human body. In addition to wound healing, this effect seems to be of crucial importance, especially in the constant regeneration of the intestinal epithelium. However, this proliferative effect could also cause the increased incidence of neoplastic polyps in patients with GH therapy (14).
  • GH as a signal stimulating angiogenesis
  • this vascular stimulating effect plays an extremely important role during organogenesis and fetal and child growth.
  • this angiogenic effect of GH is an essential prerequisite for rapid wound closure (12).
  • proliferative diabetic retinopathy which is characterized by hyperproliferation of the retinal microvascular endothelial cells. With reduced function of the pituitary gland or its surgical removal, a reduction or elimination of proliferative retinopathy was observed in these patients.
  • Struman et al. (37) recently published data that confirmed this stimulating effect of GH on endothelial cells, but also demonstrated that an approximately 16 kDa N-terminal cleavage product of human GH significantly inhibited the proliferation of microvascular endothelial cells in a dose-dependent manner.
  • the authors obtained this cleavage product by proteolytic cleavage of the native GH using plasmin, thrombin or subtilisin, or recombinantly by expression in E. coli.
  • the continuing in vitro angiogenesis assays with GH and the 16 kDa cleavage product confirmed the proliferation experiments.
  • Angiogenesis is essential for many physiological as well as pathological processes. At the forefront is the formation and reorganization of the embryonic tissue, the development of the placenta, wound healing and tumor growth. Angiogenesis is a highly regulated, controlled and balanced process consisting of pro- and antiangiogenic regulation signals and is always associated with the enzymatic action of proteases and MMPs.
  • MMPs human matrix metalloproteinases
  • the human MMPs belong to a steadily growing enzyme family with over 20 members to date.
  • the individual MMP types are structurally closely related Zn 2+ and Ca 2+ -containing neutral endopeptidases, the main substrate of which was initially collagen and related proteins of the extracellular matrix.
  • This enzyme group plays an important role in the metabolism of connective tissue such as morphogenesis, tissue resorption and tissue modeling, nerve growth, reproduction, hair follicle development, platelet aggregation, macrophage and neutrophil function, inflammation, cell migration and angiogenesis.
  • MMPs pathological processes such as rheumatoid arthritis, osteoarthritis, tumor invasion and tumor metastasis, ulceration, periodontal disease, fibrosis, atherosclerosis and aortic aneurisms are well documented (21).
  • the MMPs are expressed as inactive pre-pro-enzymes, and secreted into the extracellular space as soluble inactive pro-enzymes, or incorporated into the plasma membrane of the cell surface as membrane-bound MMPs.
  • a common characteristic of the MMPs is their modular structure from homologous domains.
  • the modular structure includes the signal peptide (approx. 20 amino acids), a propeptide (approx. 80 amino acids), a conserved zinc-binding catalytic domain (approx. 170 amino acids), a linker domain, a hemopexin ⁇ itronectin-like domain (approx. 210 amino acids ), Fibronectin type II repeats (approx.
  • membrane-bound MMPs either a transmembrane domain or a cytoplasmic domain (approx. 80-100 amino acids) or a glycophosphatidylinositol anchor in the case of the MMP-17 (22, 23).
  • the activity of the MMPs is finely balanced in vivo by different mechanisms of activation and inhibition.
  • the expression of the MMPs is induced by growth factors, cytokines, hormones and by the interaction of the cells with components of the extracellular matrix.
  • the pro-enzymes are activated in vivo via the proteolytic cleavage of the propeptide by numerous proteases (including trypsin, ⁇ -chymotrypsin, cathepsin G, plasmin, thrombin, leukocyte elastase, Kalikrein), by auto-activation or via an MMP activation cascade , at the center of which is the MMP-14.
  • Tissue Inhibitor of Matrix Metalloproteinases Tissue Inhibitor of Matrix Metalloproteinases (TIMPs), which are able to block the proteolytic activity of the MMPs very efficiently.
  • Tissue Inhibitor of Matrix Metalloproteinases Tissue Inhibitor of Matrix Metalloproteinases
  • Matrix metalloproteinase-3 (MMP-3, stromelysin-1, EC 3.4.24.17) The enzymatic activity of this enzyme was first reported in 1974 as a proteoglycan-degrading metalloproteinase from cartilage (27) or as a neutral proteinase from rabbit fibroblasts (28). The enzyme was isolated from cell culture supernatants from rabbit bone cells and presented in a biochemically pure manner and referred to as proteoglycanase (29). In 1985, Chin et al. (30) the name of this enzyme was renamed Stromelysin. Okada et al.
  • (31) purified two isoforms of the enzyme with a molecular weight of 45 kDa and 28 kDa from the culture supernatant of human synovial cells from patients with rheumatoid arthritis in 1986 and described these enzymes as MMP-3.
  • the human MMP-3 gene is located on chromosome 11 q22-q23 (32).
  • the human pro-MMP-3 consists of a propetide (82 amino acids), a catalytic domain (165 amino acids), a proline-rich linker domain (25 amino acids) and a C-terminal hemopexin / vitronectin-like domain (188 amino acids) (24).
  • the zinc-binding motif (HEXXHXXGXXH) (25) is located within the catalytic domain.
  • the enzyme has two zinc and two calcium ions.
  • the pH optimum for this MMP is pH 5.5 - 6.0 with a clear activity shoulder at pH 7.5 - 8.0. The presence of calcium is necessary to maintain the active conformation of the enzyme.
  • the MMP-3 is secreted by the following cell types: fibroblasts, chondrocytes, osteoblasts, macrophages, proliferating basal keratinocytes, lipocytes, microvascular endothelial cells, smooth muscle cells, mammary gland cells, endometrial cells in the menstrual phase and placental mesenchymal cells,.
  • MMP-3 can be detected in the following pathological tissues in greatly increased activity: osteoarthritic cartilage, synovial membrane and serum from RA patients, activated B lymphocytes in the synovial membrane in RA, connective tissue during wound healing, inflamed intervertebral discs, cholesteatoma epithelium, atheroskle- rotic plaque , epithelial cells of the respiratory tract after wounding, aortic aneurism, gastrointestinal ulcerations, Mb. Crohn, colorectal carcinoma, Squamous cell carcinoma, bronchial carcinoma and lung and esophageal carcinoma.
  • MMP-3 cannot convert its own inactive proforms into the active enzyme, but is able to activate the Pro-MMP-8, Pro-MMP-9 and the Pro-MMP-13.
  • MMP-3 cleaves different components of the extracellular matrix, but not the triple helical regions of the native interstitial collagen. In contrast to MMP-1, MMP-3 binds to interstitial type I collagen without cleaving it (26). Table 1 summarizes all of the natural human substrates known today for the MMP-3:
  • the specific cleavage of the GH by the MMP-3 has, according to the current state of knowledge, mainly its physiological importance in the opposite regulation of angiogenesis by the native hormone (proangiogenic) or by its 16 kDa fragment (antiangiogenic).
  • the repair process of the heart muscle after an infarction is a highly complex process consisting of diverse signals from the inflammatory cascade, the remodeling of the extracellular matrix, the release of multiple neuro-humoral stimuli and the adaptive response of the heart muscle cells to these signals.
  • unspecific inflammatory processes and the proteolytic breakdown of the infarcted muscle initially play the main role.
  • the proteases urokinase-type plasminogen activator (u-PA), MMP-9 and MMP-3 are of crucial importance in this process, which often leads to rupture of the heart muscle.
  • anabolic GH and its 16 kDa fragment are also integrated into the control loop of neoangiogenesis, and that inhibition or activation of MMP-3 has beneficial therapeutic effects in this important group of diseases.
  • the specific inhibition of MMP-3 by suitable inhibitors would support, among other things, the stimulating influence of the GH on the healing of the infarct area, in particular on the stimulation of the activity of the heart muscle cells and increased angiogenesis, and on the other hand would not have a decisive influence on the degradative processes (tissue breakdown, Tissue modeling).
  • the woman's menstrual cycle is closely linked to angiogenic and anti-angiogenic regulatory mechanisms.
  • Kennedy and Doktorcik (45) described that GH stimulates the proliferation of the uterus and its cellular growth. Elevated levels of GH also appear to play a causal role in the appearance of uterine tumors (46, 47).
  • MMPs also play an important role in the menstrual cycle.
  • the MMP-3 is not detectable in the proliferative phase in the epithelium and only very weakly in the stroma.
  • the enzyme is undetectable in the secretory and late secretory phases.
  • the stroma shows strong mRNA expression for MMP-3 in the menstrual phase. This expression pattern found for the MMP-3 is also useful from a physiological point of view.
  • MMP-3 The lack of or only very weak MMP-3 expression in the proliferative and secretory phase means that the GH is not cleaved and can therefore exert its anabolic regulatory effect, in particular the activation of angiogenesis.
  • MMP-3 In the menstrual phase, in which no signals that promote angiogenesis are required, MMP-3 is expressed and cleaves the GH into its 16 kDa fragment, which exerts an antiangiogenic effect. It can therefore be assumed that in the case of menstrual disorders that are not hormonal in nature, the expression of the MMP-3 is dysregulated and the GH is thereby also fragmented by MMP-3 in phases other than the menstrual one. This would disrupt the physiological regulation of angiogenesis.
  • the object of the invention is therefore to establish a connection between the degradative action of MMPs and the GH which is important for angiogenesis.
  • another object of the present invention is to find a completely new natural substrate for the MMP-3 and to present its regulative effect on the proliferation of microvascular endothelial cells and angiogenesis. It is a further object of the invention to present the physiological and pathophysiological significance of the specific cleavage of human GH by the human MMP-3 and to formulate new therapeutic starting points for the treatment of diseases on this basis.
  • the invention is based on the scientific discovery of the discovery of a new substrate for the human matrix metalloproteinase-3 (MMP-3, stromelysin-1) which has not yet been described in the literature.
  • MMP-3 human matrix metalloproteinase-3
  • stromelysin-1 human matrix metalloproteinase-3
  • the knowledge now available about the cleavage of this substrate by MMP-3 is intended to be used in processes for pharmaceutical preparations and the use of MMP inhibitors and MMP inducers as medicaments for the treatment of diseases in humans and animals in which the inhibition or activation of human MMP-3 makes a contribution to the promotion of new vascular formation or its prevention through the newly found cleavage mechanism.
  • both the recombinant catalytic domain of the human MMP-3 and the full-length enzyme bind to the human growth hormone (GH) and convert it into a stable 16 kDa fragment and an unstable 6 kDa Fragment splits.
  • GH human growth hormone
  • the cDNA of the human Pro-MMP-9 (gelatinase B; EC 3.4.24.35) was cloned into the yeast expression vector pEG 202. This construct was then transformed into the yeast strain EGY 48 / pSH 18-34. The yeast thus transfected then expresses the human MMP-9 with N-terminal fusion of the LexA protein, which is a transcription factor derived from bacteria, on suitable media.
  • GH was incubated with activated MMP-9 and subjected to PAA gel electrophoresis. Despite long incubation times and different enzyme concentrations, no cleavage of the GH by MMP-9 could be detected. Since the MMP-9 resembles the MMP-3 in its domain structure, it should be checked further whether the human MMP-3 is able to cleave the human GH.
  • Human GH (SIGMA S-4776) was incubated with the recombinant catalytic domain of MMP-3 or with the activated full-length enzyme MMP-3 (EC 3.4.24.17) in a molar ratio of 50: 1 overnight at 37 ° C.
  • 100 mM Tris-HCl pH 7.5 / 100 mM NaCI / 10 mM CaCI 2 / 0.05% (w / v) Brij 35 served as the incubation buffer.
  • the following samples served as controls:
  • GH incubated with MMP-3 in the presence of 1 mM 1, 10-phenanthroline (SIGMA P-9375), as an MMP inhibitor.
  • the reaction is carried out by adding 1 A volume of 5-fold reducing Laemmli buffer and incubating for 4 min. stopped at 90 ° C. The samples were then separated on a 15% SDS polyacrylamide gel using a method known per se. The proteins were displayed by means of Coomassie or silver staining. As can be seen in Figure 1, the 22 kDa GH is split by the MMP-3 into two 16 kDa and 6 kDa frames. GH incubated with buffer instead of MMP-3 or in the presence of the MMP inhibitor phenanthroline was not cleaved.
  • Example 2 According to the methodology shown in Example 2, other human MMPs were also tested to check the specificity of the cleavage of the GH by MMP-3. As shown in Fig. 3, only the MMP-3 cleaves the GH into the typical 16 kDa fragment, while the MMP-8, MMP-9 and MMP-14 showed no degrading effect. The results presented provide experimental evidence that of the human MMPs tested, only the MMP-3 is able to effectively split the GH into its 16 kDa and 6 kDa fragments and is therefore to be regarded as specific.
  • Example 5 Example 5
  • the 16 kDa fragment was analyzed using Edman degradation and MALDI-TOF MS.
  • the N-terminal sequence of the 16 kDa fragment was carried out on a protein sequencer 473A from Applied Biosystems according to a known protocol. Starting from the N-terminal end of the peptide chain, one amino acid after the other is cleaved using phenyl isothiocyanate. The individual amino acids were determined sequentially by means of HPLC.
  • MALDI-TOF MS matrix-assisted laser desorption ionization "time of flight” -mass spectrometry
  • MALDI-TOF MS matrix-assisted laser desorption ionization "time of flight" -mass spectrometry
  • amino acid 135 is the amino acid before which the 16 kDa fragment breaks off
  • amino acid R 134 is the C-terminal amino acid of the 16 kDa fragment.
  • the 16 kDa fragment comprises the amino acids F1-R134 of the human GH.
  • Example 6 Influence of the 22 kDa GH and the 16 kDa fragment on the proliferation of human microvascular endothelial cells
  • HUVEC Humane microvascular endothelial cells of the 3rd passage were kindly given to us by Dr. Jürgen Salvetter (University of Leipzig). These cells were prepared according to Norman and Karasek (49). HUVEC up to the 9th passage were used for the proliferation experiments. HUVEC were brought to confluence in RPMI 1640 medium with additions of 10% (vol / vol) tested low endotoxin fetal calf serum (biochrom), 2 mM L-glutamine (GIBCO), 25 ⁇ g / ml endothelial cell growth supplement (SIGMA), 50 ⁇ g / ml streptomycin plus 50 units / ml penicillin (Life Technologies) cultivated.
  • RPMI 1640 medium with additions of 10% (vol / vol) tested low endotoxin fetal calf serum (biochrom), 2 mM L-glutamine (GIBCO), 25 ⁇ g / ml endothelial cell growth supplement (S
  • the medium was changed and 20 ng / ml human recombinant bFGF (BIOCHROM) as a positive control, 40 ng / ml human GH (SIGMA ) and 40 ng / ml 16 kDA fragment of human GH (purified after cleavage of human GH by MMP-3).
  • BIOCHROM human recombinant bFGF
  • SIGMA ng / ml human GH
  • 40 ng / ml 16 kDA fragment of human GH purified after cleavage of human GH by MMP-3.
  • the cells were washed with the same medium and detached with trypsin / EDTA and the cell number was determined in a Coulter Counter. All data are given as mean values ⁇ standard deviation and represent 4-fold determinations of an experimental approach, which, however, is representative of the other 5 independent determinations.
  • bFGF is expected to stimulate the proliferation of HUVEC.
  • GH also shows a clear proliferative effect on these cells, but it does not quite reach the level of bFGF.
  • the 16 kDa fragment of human GH significantly inhibits the proliferation of HUVEC. With the help of this data it could be proven that the 16 kDa fragment has the opposite effect on HUVEC compared to the native 22kDa GH. Substances with MMP-3 activating effects
  • Friberg L Werner S, Eggertsen G, Ahnve S. (2000) Eur Heart J 21, 1547-1554 43.
  • Heymans S Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Daemen MJ, Carmeliet P. (1999) Nat Med 5, 1135-1142
  • Fig. 1 Cleavage of human growth hormone (GH) by human MMP-3 Lane 1: GH (1, 5 ⁇ g), incubated without MMP-3
  • Lane 2 GH (1.5 ⁇ g) incubated with 1 mM 1, 10-phenanthroline plus 60 ng human MMP-3
  • Lane 3 GH (1.5 ⁇ g) incubated with 60 ng human MMP-3
  • Lane 4 GH (1.5 ⁇ g) incubated with 60 ng the recombinant catalytic domain of the human MMP-3
  • Fig. 2 Evidence of the immunological affiliation of the 16 kDa fragment to human GH by Western blot analysis
  • Lane 1 GH (1.5 ⁇ g) incubated without MMP-3
  • Lane 2 GH (1.5 ⁇ g) incubated with 60 ng of the recombinant catalytic domain of the human MMP-3
  • Lane 3 GH (1.5 ⁇ g) incubated with 20 ng of the recombinant catalytic domain of the human MMP-3
  • Lane 4 GH (1.5 ⁇ g) incubated with 20 ng of the recombinant catalytic domain of the human MMP-3 plus 1 mM 1, 10-phenanthroline
  • Lane 5 GH (1.5 ⁇ g) incubated with 20 ng of the human MMP-8
  • Lane 6 GH (1.5 ⁇ g) incubated with 20 ng of human MMP-8 plus 1 mM 1, 10-phenanthroline
  • Lane 7 GH (1.5 ⁇ g) incubated with 20 ng of the MMP-9
  • Lane 8 GH (1.5 ⁇ g) incubated with 20 ng of human MMP-9 plus 1 mM 1, 10-phenanthroline
  • Lane 9 GH (1.5 ⁇ g) incubated with 20 ng of the recombinant catalytic domain of the human MMP-14 plus 1 mM 1, 10-phenanthroline
  • Lane 9 GH (1.5 ⁇ g) incubated with 20 ng of the recombinant catalytic domain of the human MMP-14 plus 1 mM 1, 10-phenanthroline
  • the peak T ⁇ 35 .u 5 represents the peptide that occurs in the 22 kDa GH, but not in the 16 kDa fragment of the human GH.
  • Fig. 5 Influence of human GH and its 16 kDa fragment on the proliferation of human microvascular endothelial cells.
  • the control represents HUVEC without the addition of stimulatory or inhibitory factors;
  • bFGF represents the incubation of the cells with 20 ng / ml human recombinant basic FGF;
  • GH represents the incubation of the cells with 40 ng / ml of human growth hormone from the pituitary gland;
  • 16 kDa represents the incubation of the cells with 40 ng / ml of the 16 kDa fragment of human GH * significant difference to the control using the Student's t-test (p ⁇ 0.001)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Zoology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • Endocrinology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Toxicology (AREA)
  • Biophysics (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Reproductive Health (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Spaltung des humanen Wachstumshormons GH durch Matrix Metalloproteinase MMP. Es wurde gefunden, dass MMP-3 das Wachstumshormon in zwei Fragmente spaltet, von denen das 16kDa-Fragment stabil ist. Die Erfindung löst die Aufgabe, Mittel zur Verfügung zu stellen, welche durch die Regulierung des humanen Wachstumshormons sowohl das Tumorwachstum, die proliferative diabestische Retinopathie und andere als auch die Angiogenese, insbesondere bei der Behandlung des Herzinfarktes, der verzögerten Wundheilung, von Störungen des Menstruationszyklus' und anderer positiv beeinflussen.

Description

Verfahren zur Spaltung des humanen Wachstumshormons GH
Die Erfindung betrifft die Aufdeckung eines neuen, bisher in der Literatur noch nicht beschriebenen Substrates für die humane Matrix Metalloproteinase. Die Kenntnis um die Spaltung dieses Substrates durch eine MMP soll Anwendung finden in Verfahren zu pharmazeutischen Zubereitungen und Einsatz von MMP-Inhibitoren und MMP- Induktoren als Arzneimittel zur Behandlung von Erkrankungen bei Mensch und Tier,
Das menschliche Wachstumshormon (GH)
Das menschliche GH ist ein 22 kDa Peptidhormon, welches aus einer einzigen Poly- peptidkette aufgebaut ist. Es existieren zwei Disulfidbrücken zwischen den Aminosäuren Cystein 53 und Cystein 165 bzw. Cystein 182 und Cystein 189. GH ist ein Mitglied der humanen Somatotropin-Familie, welches eine Vielzahl von wachstumsinduzierenden, differenzierenden und metabolisch regulativen Effekten in den unterschiedlichsten Geweben zeigt (1 ). Unter direktem Einfluss des GH werden in der Leber die Somatomedine und die Insulin-like Growth Faktoren I und II gebildet. Neben der direkten Wirkung des GH sind diese Faktoren besonders im Knorpel, in den E- piphysen des Knochens, im Fettgewebe und in der Muskulatur für die Wachstumshormonwirkung mitverantwortlich.
Darüber hinaus ist das GH der hauptsächliche Regulator für das postnatale somati- sche Wachstum (2). Es wird für die Geschlechtsdifferenzierung, die Pubertät, die Gametogenese und für die Laktation benötigt (8).
Die genaue GH Antwort ist abhängig vom jeweiligen Zelltyp und der regulativen Gesamtsituation, in der das Hormon agiert. Die Hormonwirkung wird initiiert durch seine Interaktion mit dem GH-Rezeptor bzw. mit einem Rezeptor aus der GH- Rezeptorfamilie. Im weiteren Verlaufe moduliert dann GH die Genexpression über die Konzentration bzw. Aktivität verschiedenster Transkriptionsfaktoren (18).
GH stimuliert das Längenwachstum von Knochen über eine direkte Beeinflussung der Chondrozyten der Epiphysen (3). Es konnte gleichfalls gezeigt werden, dass GH in Osteoblasten die Synthese der Kollagenasen MMP-9 und MMP-2 stimuliert (15). GH spielt weiterhin eine Rolle über eine Induktion der Proliferation von Präadipozyten und ihrer Differenzierung zu Adipozyten sowohl in vitro als auch in vivo (4). Es unterstützt die Lipolyse über eine direkte Hemmung der Lipoprotein Lipase (10).
GH stimuliert auch die Chemotaxis von Monozyten (5). In diesem Zusammenhang scheint die Stimulation der Reorganisation des Aktins im Zytoskelett und der Polymerisation der Mikrotubuli von besonderer Wichtigkeit zu sein (6,7).
GH-defiziente Ratten zeigten im Vergleich zur gesunden Kontrollgruppe eine signifikant verminderte mRNA Expression für Kollagen Typ I, Kollagen Typ III und Insulin- like Growth Factor-l (IGF-I) in Fibroblasten, die sich nach externer Gabe von GH wieder normalisieren ließ (11 ). Diese Daten belegen, dass auch der Fibroblast eine wichtige Targetzelle für die Aktion von GH ist. Im gleichen Zusammenhang scheinen die Befunde von Lal et al. (12) zu stehen, die nachweisen konnten, dass nach Gabe von GH eine signifikant reduzierte Wundheilungszeit bei Verbrennungspatienten besteht.
In den letzten Jahren belegten auch zahlreiche experimentelle Publikationen die Wichtigkeit von GH innerhalb des regulativen Netzwerkes des Zentralen Nervensystems. So konnte eine wesentliche Verbesserung der mentalen Leistungsfähigkeit, des psychologischen Profils, des Gedächtnisses, der Motivation und der Arbeitskapazität nach Gabe von GH bei Patienten mit vermindertem GH Spiegel festgestellt werden (9).
Die regulative Rolle des GH ist während der „Akuten-Phase-Antwort" bei Entzündungen vermindert. Im gleichen Zusammenhang konnte aber auch gezeigt werden, dass das GH die Adhäsion von Neutrophilen Granulozyten während der Entzündungsreaktion über eine Thyrosinphosphorylierung intrazellulärer Targets moduliert und somit maßgeblich an der Adhäsion und Extravasion von Neutrophilen beteiligt ist (13). Patienten mit GH-Defizienz zeigen im Vergleich zur gesunden Kontrollgruppe einen signifikant erhöhten Plasmaspiegel an Fibrinogen, Plasminogen-Aktivator-Inhibitor Typ 1 , Akute Phase Protein und der löslichen Adhäsionsmoleküle sE-Selektin, sP- Selektin und slCAM-1 , die sich aber nach GH-Substitutionstherapie wieder normalisierten (19). GH wirkt auf viele Zellarten des menschlichen Körpers proliferationsstimulierend. Neben der Wundheilung scheint dieser Effekt besonders bei der ständigen Regeneration des intestinalen Epithels von ausschlaggebender Bedeutung zu sein. Dieser proliferative Effekt könnte aber auch die erhöhte Inzidenz von neoplastischen Polypen bei Patienten mit GH-Therapie hervorrufen (14).
Kürzlich konnte die Arbeitsgruppe um Garcia-Ruiz an transgenen Mäusen, die das Fusionsgen des bovinen GH exprimierten, belegen, dass in den Gelenken der Tiere ähnliche histologische Veränderungen nachweisbar waren, wie sie bei der menschlichen Arthritis typisch sind. Interessanterweise wiesen diese Tiere auch Autoantikörper gegen single-strand- und double-strand-DNA und antinukleäre Antikörper (ANA) auf, die typisch für die menschliche Rheumatoid Arthritis sind (16). Denko et al. (20) fanden, dass in der Synovialflüssigkeit und im Serum von Rheumapatienten der GH- Spiegel signifikant erhöht ist, ein Befund, dem die Autoren eine tragende Rolle in der Pathophysiologie arthritischer Erkrankungen beimessen. In die gleiche Richtung der Immunmodulation durch GH weisen die Befunde von Yamashita et al. (17) die zeigen konnten, dass GH die humanen Th-Zellklone ThO und Th2 proliferativ stimuliert, währenddessen Th1 nicht beeinflusst wird.
Zum heutigen Zeitpunkt ist die Wirkung des GH als Angiogenese stimulierendes Signal gut belegt (33, 34, 35, 36). Physiologisch spielt diese gefäßstimulierende Wirkung während der Organogenese und des fetalen und kindlichen Wachstums eine äußerst wichtige Rolle. Bei der Wundheilung ist diese angiogenetische Wirkung des GH eine wesentliche Voraussetzung für einen schnellen Wundverschluss (12). Eine der ge- fürchtetsten Nebenwirkungen des schlecht eingestellten Diabetes mellitus Typ I ist die proliferative diabetische Retinopathie, die durch eine Hyperproliferation der mikrovaskulären Endothelzellen der Retina gekennzeichnet ist. Bei verminderter Funktion der Hypophyse bzw. bei deren operativer Entfernung wurde eine Verminderung bzw. Aufhebung der proliferativen Retinopathie bei diesen Patienten beobachtet. Ende der 60er Jahre wurde in Amerika bei über 900 Patienten mit einer proliferativen diabetischen Retinopathie die Hypophyse aus diesem Grund entfernt. Rymas- zewski et al. (33) wiesen experimentell nach, dass dieser beobachtete therapeutische Effekt auf einen verminderten GH-Spiegel im Organismus zurückzuführen war. Sie konnten den stimulierenden Einfluss von GH auf die Proliferation retinaler Endo- thelzellen belegen.
Struman et al. (37) veröffentlichten kürzlich Daten, die diesen stimulierenden Effekt von GH auf Endothelzellen bestätigten, aber auch nachwiesen, dass ein ca. 16 kDa N-terminales Spaltprodukt des humanen GH die Proliferation von mikrovaskulären Endothelzellen dosisabhängig signifikant hemmte. Die Autoren erhielten dieses Spaltprodukt durch proteolytische Spaltung des nativen GH mittels Plasmin, Thrombin oder Subtilisin bzw. rekombinant durch Expression in E. coli. Die weiterhin durchgeführten in vitro Angiogenese-Assays mit GH und dem 16 kDa Spaltprodukt bestätigten die Proliferationsexperimente nachdrücklich. GH induzierte die Blutgefäßbildung deutlich, und das 16 kDa Spaltprodukt des GH hemmte die Angiogenese signifikant. Schon 1993 beschrieben Warner et a. (38) mittels Westernblot-Technik das Auftreten einer 17 kDa Variante des GH im Serum, die sich Vormittags und Abends in einem Konzentrationsverhältnis zum normalen 22 kDa GH von 80 : 20 befand.
Angiogenese ist für viele physiologische aber auch pathologische Prozesse essentiell. An vorderer Stelle steht hierbei die Bildung und Reorganisation des embryonalen Gewebes, die Entwicklung der Plazenta, die Wundheilung und das Tumorwachstum. Angiogenese ist ein hochregulierter kontrollierter und balancierter Prozess aus pro- und antiangiogenen Regulationssignalen und ist immer mit der enzymatischen Aktion von Proteasen und MMPs verbunden.
Die humanen Matrix Metalloproteinasen (MMPs)
Die humanen MMPs gehören zu einer stetig wachsenden Enzymfamilie mit bis heute über 20 Mitgliedern. Die einzelnen MMP-Typen sind strukturell eng verwandte Zn2+- und Ca2+-enthaltende neutrale Endopeptidasen, deren Hauptsubstrat zunächst Kollagen und verwandte Proteine der extrazellulären Matrix waren. Diese Enzymgruppe spielt eine wichtige Rolle im Metabolismus des Bindegewebes wie Morphogenese, Geweberesorption und Geweberemodelling, Nervenwachstum, Reproduktion, Haar- follikelentwicklung, Plättchenaggregation, Makrophagen- und Neutrophilenfunktion, Entzündung, Zellmigration und Angiogenese. Die Beteiligung der MMPs in pathologischen Prozessen, wie z.B. der Rheumatoid Arthritis, Osteoarthritis, Tumorinvasion und Tumormetastasierung, Ulzerationeπ, Peridontalerkrankungen, Fibrösen, Athe- rosklerose und Aortenaneurismen, sind gut dokumentiert (21 ).
Die MMPs werden als inaktive Pre-pro-Enzyme exprimiert, und als lösliche inaktive pro-Enzyme in den Extrazellulärraum sezemiert, oder in die Plasmamembran der Zelloberfläche als membranständige MMPs eingebaut. Ein gemeinsames Charakte- ristikum der MMPs ist ihr modularer Strukturaufbau aus homologen Domänen. Die modulare Struktur beinhaltet das Signalpeptid (ca. 20 Aminosäuren), ein Propeptid (ca. 80 Aminosäuren), eine konservierte Zink-bindende katalytische Domäne (ca. 170 Aminosäuren), eine Linkerdomäne, eine HemopexinΛ itronektin-like Domäne (ca. 210 Aminosäuren), Fibronektin Typ II Repeats (ca. 75 Aminosäuren) und im Falle der membranständigen MMPs entweder eine transmembrane Domäne oder eine cy- toplasmatische Domäne (ca. 80-100 Aminosäuren) bzw. ein Glycophosphatidylinosi- tol-Anker im Falle der MMP-17 (22, 23).
In vivo ist die Aktivität der MMPs durch unterschiedliche Mechanismen der Aktivierung und Inhibierung fein ausbalanciert. Die Expression der MMPs wird durch Wachstumsfaktoren, Zytokine, Hormone und durch die Interaktion der Zellen mit Komponenten der Extrazellulären Matrix induziert. Die Aktivierung der Pro-Enzyme erfolgt in vivo über die proteolytische Abspaltung des Propeptides durch zahlreiche Proteasen (u.a. Trypsin, α-Chymotrypsin, Cathepsin G, Plasmin, Thrombin, Leukozy- ten-Elastase, Kalikrein), durch Autoaktivierung oder über eine MMP- Aktivierungskaskade, in deren Zentrum die MMP-14 steht. In vivo existieren vier natürliche proteinogene Inhibitoren, Tissue Inhibitor of Matrix Metalloproteinases (TIMPs), die sehr effizient in der Lage sind, die proteolytische Aktivität der MMPs zu blockieren. Im normalen Gewebe ist die Aktivität der MMPs sehr niedrig, weil sie zu einem Großteil als inaktive Pro-Enzyme vorliegen und erst bei Bedarf aktiviert und entsprechend den physiologischen Gegebenheiten, sehr schnell wieder inaktiviert werden. Eine Störung dieser Balance führt nach heutigen Erkenntnissen zu einer Vielzahl von Erkrankungen und pathologischen Symptomen.
Matrix Metalloproteinase-3 (MMP-3, Stromelysin-1 , EC 3.4.24.17) Über die enzymatische Aktivität dieses Enzyms wurde erstmals 1974 als eine Prote- oglycan-abbauende Metalloproteinase aus Knorpel (27) bzw. als neutrale Proteinase aus Kaninchen-Fibroblasten (28) berichtet. Das Enzym wurde aus Zellkulturüber- ständen von Knochenzellen des Kaninchens isoliert und biochemisch rein dargestellt und als Proteoglycanase bezeichnet (29). 1985 wurde von Chin et al. (30) der Name dieses Enzyms in Stromelysin umbenannt. Okada et al. (31 ) reinigten 1986 zwei Isoformen des Enzyms mit einem Molekulargewicht von 45 kDa und 28 kDa aus dem Kulturüberstand humaner Synovialzellen von Patienten mit Rheumatoid Arthritis und beschrieben diese Enzyme als MMP-3.
Das humane MMP-3 Gen ist auf dem Chromosom 11 q22-q23 lokalisiert (32).
Die humane pro-MMP-3 besteht aus einem Propetid (82 Aminosäuren), einer katalytischen Domäne (165 Aminosäuren), einer prolinreichen Linkerdomäne (25 Aminosäuren) und einer C-terminalen Hemopexin/Vitronektin-like Domäne (188 Aminosäuren) (24). Innerhalb der katalytischen Domäne befindet sich das Zink-bindende Motiv (HEXXHXXGXXH) (25). Das Enzym besitzt zwei Zink- und zwei Kalziumionen. Das pH-Optimum für diese MMP liegt bei pH 5.5 - 6.0 mit einer deutlichen Aktivitätsschulter bei pH 7.5 - 8.0. Die Anwesenheit von Kalzium ist notwendig, um die aktive Konformation des Enzyms zu erhalten.
In normalen Gewebe wird die MMP-3 durch folgende Zelltypen sezemiert: Fibroblasten, Chondrozyten, Osteoblasten, Makrophagen, proliferierende basale Ke- ratinozyten, Lipozyten, mikrovaskuläre Endothelzellen, glatte Muskelzellen, Brustdrüsenzellen, Endometriumzellen in der Menstruationsphase und plazentare Mesen- chymzellen, retinale Pigmentzellen.
MMP-3 ist in den nachfolgenden pathologischen Geweben in stark erhöhter Aktivität nachweisbar: Osteoarthritischer Knorpel, Synovialmembran und Serum von RA- Patienten, aktivierte B-Lymphozyten in der Synovialmembran bei RA, Bindegewebe bei Wundheilung, entzündete Bandscheiben, Cholesteatoma epithelium, atheroskle- rotische Plaques, epitheliale Zellen des Respirationstraktes nach Verwundung, Aor- tenaneurisma, Gastrointestinale Ulcerationen, Mb. Crohn, Kolorektales Karzinom, Plattenepithelkarzinome, Bronchialkarzinome und Lungen- und Ösophaguskarzino- me.
MMP-3 kann nicht seine eigenen inaktiven Proformen in das aktive Enzym überführen, ist jedoch fähig die Pro-MMP-8, Pro-MMP-9 und die Pro-MMP-13 zu aktivieren.
MMP-3 spaltet unterschiedliche Komponenten der Extrazellulären Matrix, jedoch nicht die trippelhelikalen Regionen des nativen interstitiellen Kollagens. MMP-3 bindet im Gegensatz zur MMP-1 an das interstitielle Kollagen Typ I ohne es zu spalten (26). In Tabelle 1 sind alle heute bekannten natürlichen humanen Substrate für die MMP-3 summarisch aufgelistet:
Tabellel : Natürliche humane Substrate der menschlichen MMP-3
Figure imgf000008_0001
Die bis heute bekannten natürlichen Substrate sind ausnahmslos in vitro gefunden und charakterisiert worden, wenig ist jedoch über die tatsächliche Funktion/Situation in vivo bekannt. Alle hier aufgeführten Substrate werden nicht allein durch die MMP-3 erkannt und prozessiert, sondern stellen auch Substrate für andere MMPs dar. Die einzige Begründung für eine angenommene Substratspezifität liegt häufig nur in unterschiedlichen Affinitäten zum Substrat und in der jeweiligen Schnittstelle.
Man geht heute übereinstimmend davon aus, dass für die gesamte Gruppe der MMPs nur ansatzweise die in vivo bedeutsamen Substrate bekannt sind. Erst die Charakterisierung von spezifischen Substraten, d.h. von Proteinen, die nur von einer MMP gespalten werden, lässt einen merklichen Erkenntniszuwachs auf diesem Gebiet erwarten. Das Erkennen neuer Substrate für die enzymatische Aktion von MMPs lässt für die Zukunft nicht nur ein tieferes Verständnis über die tatsächliche Funktion der MMPs in vivo erwarten, sondern wird darüber hinaus auch neue Targets für innovative therapeutische Strategien erbringen.
Biologische Bedeutung der spezifischen Spaltung des humanen GH durch MMP-3
Die spezifischen Spaltung des GH durch die MMP-3 hat nach heutigem Wissensstand hauptsächlich seine physiologische Bedeutung in der gegenläufigen Regulation der Angiogenese durch das native Hormon (proangiogen) bzw. durch sein 16 kDa Fragment (antiangiogen).
Am offensichtlichsten ist dieser Regulationsmechanismus bei der Wundheilung, da dort in einem engen zeitlichen Zusammenhang das Gefäßwachstum im Granulationsgewebe stimuliert und danach inhibiert werden muss.
Dass nicht alle MMPs gleichermaßen ihre Hauptfunktion in der Degradation von Matrixproteinen haben, belegen die Untersuchungen von Young und Grinnell (39), die die Konzentration von MMPs in der Wundflüssigkeit von Verbrennungspatienten im Zeitlängsschnitt bestimmten. So konnte nachgewiesen werden, dass MMP-9 schon 4-8 Stunden nach Verbrennung in der Wundflüssigkeit nachweisbar war und der Gipfel des aktivierten Enzyms zwischen Tag 0 und Tag 2 lag. Im Gegensatz dazu wurde die MMP-3 erstmals am Tag 4 nach Verwundung beobachtet, ein Befund, der belegt, dass MMP-9 hauptsächlich degradative Aufgaben (Abbau des zerstörten Bindegewebes) und MMP-3 u.a. für heute noch nicht erkannte Funktionen verantwortlich ist. Eine dieser Funktionen könnte z.B. die spezifische Spaltung des GH im Wundgebiet und die damit zusammenhängende Verminderung der Angiogenese sein. Über den Weg der gezielten Aktivierung bzw. Hemmung der MMP-3 könnte somit eine auf den individuellen Patienten angepasste Behandlungsstrategie von nichtheilenden Wunden erfolgen.
Der aktivierende Einfluss des GH auf das Herzmuskelwachstum und die Herzfunktion, insbesondere auf die Kontraktionskraft des Myocards, ist gut belegt und wurde klinisch bei Patienten mit GH-Defizienz mit Erfolg eingesetzt (40, 41 , 42). Andererseits weisen Patienten mit einer GH-Überproduktion massive cardiale Probleme wie Herzmuskelhypertrophie und insbesondere das hyperkinetische Syndrom auf (40). Versuchstiere mit experimentellem Herzinfarkt zeigten nach Gabe von GH eine Verbesserung der Herzfunktion. Infarktpatienten wiesen in den ersten 6 Stunden nach Infarkt eine ca. dreifach höhere GH-Konzentration als 12 Wochen nach Infarkt auf (42). Der Reparaturprozess des Herzmuskels nach Infarkt ist ein hochkomplexer Prozess aus vielfältigen Signalen der Entzündungskaskade, des Remodelings der Extrazellulären Matrix, der Freisetzung multipler neuro-humoraler Stimuli und der adaptativen Antwort der Herzmuskelzellen auf diese Signale. Unmittelbar nach dem Infarkt spielen unspezifische Entzündungsvorgänge und der proteolytische Abbau des infarzierten Muskels zunächst die Hauptrolle. Nach Heyman et al. (43) sind in diesem Prozess, der häufig zu einer Ruptur des Herzmuskels führt, die Proteasen Urokinase-Typ Plasminogenaktivator (u-PA), MMP-9 und MMP-3 von entscheidender Bedeutung. Bei Ausschalten des Gens für u-PA und bei Hemmung der MMPs durch TIMP-1 konnte im Tiermodell die Herzmuskelruptur als Spätfolge des experimentellen Herzinfarktes vollständig verhindert werden. Zusätzlich beobachteten die Autoren bei den u-PA und MMP-9 defizienten Tieren eine signifikante Verminderung der Angiogenese. Ähnlich, wie am Beispiel der Wundheilung demonstriert, konnte jüngst gezeigt werden, dass unmittelbar nach dem Infarkt die MMP-9 induziert und expri- miert wird, währenddessen die MMP-3 erst am zweiten Tag nach Infarkt nachweisbar war (10).
Es ist in diesem Zusammenhang ableitbar, dass auch das anabole GH und dessen 16 kDa Fragment in den Regelkreis der Neoangiogenese eingebunden sind, und dass eine Hemmung bzw. Aktivierung der MMP-3 nützliche therapeutische Effekte bei dieser wichtigen Erkrankungsgruppe bewirkt. Die spezifische Hemmung der MMP-3 durch geeignete Inhibitoren würde u.a. den stimulierenden Einfluss des GH auf die Heilung des Infarktgebietes, insbesondere auf die Stimulation der Aktivität der Herzmuskelzellen und eine verstärkte Angiogenese unterstützen, und zum anderen keinen entscheidenden Einfluss auf die degradativen Prozesse (Gewebeabbau, Ge- weberemodeling) haben.
Der Menstruationszyklus der Frau ist eng mit angiogenen und antiangiogenen Regulationsmechanismen verbunden. Schon 1988 beschrieben Kennedy und Doktorcik (45), dass GH die Proliferation des Uterus und dessen zelluläres Wachstum stimuliert. Erhöhte Konzentrationen an GH scheinen auch eine ursächliche Rolle beim Auftreten von Gebärmutter-Tumoren zu spielen (46, 47).
MMPs spielen gleichfalls für den Menstruationszyklus eine wichtige Rolle. So konnten Rodgers et al. (48) mittels in situ Hybridisierung nachweisen, dass während des Menstruationszyklus zahlreiche MMPs different reguliert werden. Die MMP-3 ist in der proliferativen Phase im Epithel überhaupt nicht und im Stroma nur sehr schwach nachweisbar. In der sekretorischen und in der späten sekretorischen Phase ist das Enzym nicht nachweisbar. Im Gegensatz dazu, weist das Stroma in der menstruellen Phase eine starke mRNA Expression für MMP-3 auf. Dieses gefundene Expressionsmuster für die MMP-3 ist auch unter physiologischen Gesichtspunkten sinnvoll. Die fehlende bzw. nur sehr schwache MMP-3 Expression in der proliferativen und sekretorischen Phase bewirkt, dass das GH nicht gespalten wird und somit seinen anabolen Regulationseffekt, insbesondere die Aktivierung der Angiogenese ausüben kann. In der menstruellen Phase, in der keine Angiogenese-fördernde Signale benötigt werden, wird MMP-3 exprimiert und spaltet das GH in sein 16 kDa Fragment, welches einen antiangiogenen Effekt ausübt. Es ist daher anzunehmen, dass bei Menstruationsstörungen, die nicht hormoneller Natur sind, die Expression der MMP-3 dysreguliert ist und dadurch das GH auch in anderen Phasen als der menstruellen durch MMP-3 fragmentiert wird. Dies hätte eine Störung der physiologischen Regulation der Angiogenese zur Folge. Eine spezifische Hemmung der MMP-3 in diesen Phasen könnte somit die physiologische Balance von GH und MMP-3 normalisieren und als ein neues therapeutisches Prinzip bei dieser Erkrankungsgruppe gelten. Die Erfindung hat deshalb die Aufgabe, einen Zusammenhang zwischen der degradativen Aktion von MMPs und dem für die Angiogenese wichtigen GH herzustellen. Andererseits ist eine weitere Aufgabe der vorliegenden Erfindung ein gänzlich neues natürliches Substrat für die MMP-3 zu finden und dessen regulative Wirkung auf die Proliferation mikrovaskulärer Endothelzellen und die Angiogenese darzustellen. Es ist weiter Aufgabe der Erfindung, die physiologische und pathophy- siologische Bedeutung der spezifischen Spaltung des humanen GH durch die humane MMP-3 darzustellen und auf dieser Grundlage neue therapeutische Ansatzpunkte für die Behandlung von Erkrankungen zu formulieren.
Der Erfindung liegt die wissenschaftliche Erkenntnis der Aufdeckung eines neuen, bisher in der Literatur noch nicht beschriebenen Substrates für die humane Matrix Metalloproteinase-3 (MMP-3, Stromelysin-1 ). Die nunmehr vorhandene Kenntnis um die Spaltung dieses Substrates durch MMP-3 soll Anwendung finden in Verfahren zu pharmazeutischen Zubereitungen und Einsatz von MMP-Inhibitoren und MMP- Induktoren als Arzneimittel zur Behandlung von Erkrankungen bei Mensch und Tier, bei denen die Hemmung bzw. Aktivierung von humaner MMP-3 einen Beitrag zur Förderung der Gefäßneubildung bzw. ihrer Verhinderung durch den neu aufgefundenen Spaltungsmechanismus leistet.
Es konnte mittels zweier unabhängiger Methoden gezeigt werden, dass sich sowohl die rekombinante katalytische Domäne der humanen MMP-3, als auch das Volllängen-Enzym an das humane Wachstumshormon (GH) bindet und dieses in ein stabiles 16 kDa Fragment und in ein instabiles 6 kDa Fragment spaltet. Mittels automatischer Proteinsequenzierung und MALDI-TOF MS konnte die Spaltstelle im GH identifiziert und die Aminosäuresequenz des 16 kDa Spaltproduktes belegt werden. Die aufgefundene Spaltung des GH ist für die MMP-3 selektiv, da andere MMPs (MMP-2, MMP-8, MMP-9, MMP-14) keinerlei bzw. nur geringe degradative Wirkungen auf das menschliche GH aufwiesen.
Die vorstehend gestellte Aufgabe wird anspruchsgemäß gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Ausführungsformen und Anwendungen der Erfindung. Die Erfindung wird durch die nachfolgenden Beispiele näher erläutert:
Beispiel 1
Auffindung der vermuteten Interaktion zwischen humaner MMP und dem menschlichen Wachstumshormon (GH) mittels des Hefe Two Hybrid Systems
Für diese Aufgabenstellung wurden Komponenten des kommerziellen LexA-Two hybrid Systems der Firma Clontech verwendet.
Die cDNA der humanen Pro-MMP-9 (Gelatinase B; EC 3.4.24.35) wurde in den Hefe- Expressionsvektor pEG 202 kloniert. Dieses Konstrukt wurde dann in den Hefestamm EGY 48/pSH 18-34 transformiert. Die so transfizierte Hefe exprimiert dann auf geeigneten Medien die humane MMP-9 mit N-terminaler Fusion des LexA-Proteins, das einen aus Bakterien stammenden Transkriptionsfaktor darstellt.
Nach Überprüfung der korrekten Expression des LexA-MMP-9 Fusionsproteins mittels bekannter Westernblot-Technik, wurde in diesen Hefeklon eine käufliche cDNA- Bank aus humaner Plazenta (Clontech HL4506AK) eintransformiert. Diese cDNA- Bank bringt die Proteine als N-terminale Fusion mit der sog. B 42 activation domain zur Expression.
Durch Selektion auf Aminosäure-Mangelmedium wurden dann solche Hefeklone se- lektioniert, die
1. zur autonomen Synthese von Leucin befähigt sind, und
2. gleichzeitig die ß-Galaktosidase exprimieren.
Beide Kriterien zusammen deuten darauf hin, dass in der Hefe ein aus der cDNA- Bank stammendes Protein exprimiert wird, das mit der MMP-9 interagiert.
Die so gewonnenen Klone wurden weiteren Testungen hinsichtlich Reproduzierbarkeit und Spezifität der gefundenen Interaktion unterworfen.
Durch DNA-Sequenzierung konnte auf diesem Weg ein Klon identifiziert werden, der folgende Aminosäuresequenz aufwies: R-K-D-M-D-K-V-E-T-F-L-R-l-V-Q-C-R-S-V-E-G-S-C-G-F
Eine Computeranalyse der Aminosäuresequenz ergab eine 100%ige Übereinstimmung mit dem C-terminus des humanen Hypophysen-Wachstumshormons.
In einem orientierenden Vorversuch wurde getestet, ob die MMP-9 in vitro in der Lage ist, das humane GH zu spalten. Hierzu wurde, wie in Beispiel 2 dargestellt, GH mit aktivierter MMP-9 inkubiert und einer PAA-Gelelektrophorese unterworfen. Trotz langer Inkubationszeiten und unterschiedlicher Enzymkonzentrationen konnte keinerlei Spaltung des GH durch MMP-9 nachgewiesen werden. Da die MMP-9 in ihrer Domänenstruktur der MMP-3 ähnelt, sollte im weiteren überprüft werden, ob die humane MMP-3 in der Lage ist, das humane GH zu spalten.
Beispiel 2
Spaltung des humanen Hypophysen-Wachstumshormon (GH) durch die rekombinan- te katalytische Domäne der MMP-3 bzw. der full-length Form der MMP-3
Humanes GH (SIGMA S-4776) wurde mit der rekombinanten katalytischen Domäne der MMP-3 bzw. mit dem aktivierten Volllängen-Enzym MMP-3 (EC 3.4.24.17) im molaren Verhältnis 50 : 1 über Nacht bei 37°C inkubiert. Als Inkubationspuffer diente 100 mM Tris-HCI pH 7,5 / 100 mM NaCI / 10 mM CaCI2 / 0,05% (w/v) Brij 35. Als Kontrolle dienten folgende Proben:
1. GH inkubiert mit dem gleichen Volumen Puffer statt MMP-3,
2. GH inkubiert mit MMP-3 in Gegenwart von 1 mM 1 ,10-Phenanthrolin (SIGMA P-9375), als MMP-Inhibitor.
Die Reaktion wird durch Zugabe von lA Volumen 5-fach reduzierenden Laemmli- Puffer und Inkubation für 4 min. bei 90°C gestoppt. Die Proben wurden anschließend auf einem 15% SDS-Polyacrylamidgel nach einer an sich bekannter Methodik getrennt. Die Darstellung der Proteine erfolgte mittels Coomassie- oder Silberfärbung. Wie aus der Abbildung 1 ersichtlich, wird das 22 kDa GH durch die MMP-3 in zwei Framente von 16 kDa und 6 kDa gespalten. GH inkubiert mit Puffer statt MMP-3 bzw. in Anwesenheit des MMP-Inhibitors Phenanthrolin wurde nicht gespalten. Wird statt des spezifischen MMP-Inhibitors Phenanthrolin der generelle Cystein- Proteaseinhibitor E-64 (Trans-Epoxysuccinyl-L-leucylamido-(4-guanidino)butane, SIGMA E-3132), der Aspartat-Proteaseinhibitor Pepstatin A (Isovaleryl-Val-Val-Sta- Ala-Sta [Sta = statine = (3S, 4S)-4-Amino-3-hydroxy-6-methylheptanoic acid], SIGMA P-4265), oder ein Cocktail aus Serin- und Cysteinproteaseinhibitoren (complete, EDTA-frei, Boehringer Mannheim) dem Versuchsansatz zugegeben, war keine Beeinflussung der Spaltung des GH durch MMP-3 zu beobachten.
Beispiel 3
Immunologischer Nachweis der Zugehörigkeit des 16 kDa Fragmentes zum humanen GH
Mit der an sich bekannten Methodik des Immunblots (Westemblot) unter Zuhilfenahme eines polyklonalen Antikörpers (Dr. J. Kratzsch, Univ. Leipzig) gegen humanes GH konnte zweifelsfrei gezeigt werden, dass die beiden Fragmente des GH aus der Hypophyse mit den Molekulargewichten von 16 kDa und 6 kDa durch den Antikörper erkannt und spezifisch angefärbt werden (Abb. 2). Durch diese Untersuchungen konnte verifiziert werden, dass die in der SDS-PAGE dargestellten Fragmente von 16 kDa und 6 kDa immunologisch identisch sind und somit vom humanen GH stammen, resp. dessen spezifische Spaltprodukte darstellen.
Beispiel 4
Nachweis der Spezifität der Spaltung des humanen GH durch MMP-3
Entsprechend der in Beispiel 2 dargestellten Methodik, wurden zur Überprüfung der Spezifität der Spaltung des GH durch MMP-3 auch andere humane MMPs getestet. Wie in Abb. 3 dargestellt, spaltet nur die MMP-3 das GH in das typische 16 kDa Fragment, während die MMP-8, MMP-9 und MMP-14 keine abbauende Wirkung zeigten. Die dargestellten Befunde geben den experimentellen Beweis dafür, dass von den getesteten humanen MMPs nur die MMP-3 in der Lage ist, das GH effektiv in seine Fragmente von 16 kDa und 6 kDa zu spalten und somit als spezifisch anzusehen ist. Beispiel 5
Bestimmung der Schnittstelle der Spaltung des humanen GH durch MMP-3
Um die Schnittstelle innerhalb des GH nach MMP-3 Spaltung zu bestimmen, wurde das 16 kDa Fragment mittels Edman-Abbau und MALDI-TOF MS analysiert.
Die N-terminale Sequenz des 16 kDa Fragmentes wurde an einem Protein Sequen- cer 473A der Firma Applied Biosystems nach bekanntem Protokoll durchgeführt. Hierbei wird vom N-terminalen Ende der Peptidkette ausgehend, eine Aminosäure nach der anderen mittels Phenylisothiocyanat abgespalten. Die sequenzielle Bestimmung der einzelnen Aminosäuren erfolgte mittels HPLC.
MALDI-TOF MS (matrix-assisted laser desorptionionisation-"time of flight"-mass spectrometry) ist in der Lage, das Molekulargewicht von Peptiden mit großer Genauigkeit (mind. 0,1 %0) zu bestimmen. Sowohl das intakte 22 kDa-GH als auch das davon abstammende 16 kDa Fragment wurden einzeln einem tryptischen Abbau unterworfen. Mittels MALDI-TOF MS wurde die genaue Molekularmasse aller tryptischen Peptide analysiert. Auf der Grundlage der bekannten Primärsequenz des GH konnten dann die im MALDI-TOF MS erhaltenen Massepeaks jeweils einem tryptischen Fragment zugeordnet werden. Der Vergleich der Ergebnisse des intakten 22 kDa-GH und des 16 kDa-Fragments zeigt ein Peptid auf (Abb. 4, T135.145), das im 22 kDa-GH auftritt, im 16 kDa-Fragment jedoch fehlt. Somit ist die Aminosäure 135 diejenige A- minosäure, vor der das 16 kDa-Fragment abbricht, d.h. die Aminosäure R 134 ist die C-terminale Aminosäure des 16 kDa-Fragments. Diese Analysen wurden am Gerät Biflex™ III der Firma Bruker Saxonia durchgeführt.
Zusammen mit den Ergebnissen des Edman-Abbaus ergab sich somit, dass das 16 kDa-Fragment die Aminosäuren F1-R134 des humanen GH umfasst.
Beispiel 6 Einfluss des 22 kDa GH und des 16 kDa Fragments auf die Proliferation humaner mikrovaskulärer Endothelzellen
Humane mikrovaskuläre Endothelzellen (HUVEC) der 3. Passage wurden uns freundlicherweise von Dr. Jürgen Salvetter (Universität Leipzig) zur Verfügung gestellt. Die Präparation dieser Zellen erfolgte nach den Angaben von Norman und Ka- rasek (49). Für die Proliferationsexperimente wurden HUVEC bis zur 9. Passage verwendet. HUVEC wurden bis zur Konfluenz in RPMI 1640 Medium mit Zusätzen von 10% (Vol/Vol) getestetem Endotoxin-armen fetalem Kälberserum (Biochrom), 2 mM L-Glutamin (GIBCO), 25 μg/ml endothelial cell growth Supplement (SIGMA), 50 μg/ml Streptomycin plus 50 Units/ml Penicillin (Life Technologies) kultiviert. Die kon- fluenten Zellen wurden mittels =,5% Trypsin/0,2% EDTA (BIOCHROM) bei 37°C für 5 min. geerntet. Eine Suspension von 10.000 Zellen in RPMI 1640 Medium plus 2% (Vol/Vol) getestetem Endotoxin-armen fetalem Kälberserum (Biochrom), 2 mM L- Glutamin (GIBCO), 50 μg/ml Streptomycin plus 50 Units/ml Penicillin (Life Technologies) wurde in 24-well Platten, die mit 30 μg/ml Kollagen Typ I aus Kalbshaut (IBFB) beschichtet waren, überführt. Die Zellen wurden für 12 Stunden bei 37°C mit 5% CO2 und 95% Luftfeuchtigkeit kultiviert, das Medium gewechselt und in jeweil 4 wells 20 ng/ml humanes rekombinantes bFGF (BIOCHROM) als Positivkontrolle, 40 ng/ml humanes GH (SIGMA) und 40 ng/ml 16 kDA Fragment des Humanen GH (gereinigt nach Spaltung des humanen GH durch MMP-3) gegeben. Die Zellen wurden nach 24 Stunden Inkubation mit gleichem Medium gewaschen und mit Trypsin/EDTA abgelöst und in einem Coulter Counter die Zellzahl bestimmt. Alle Daten sind als Mittelwerte ± Standardabweichung angegeben und repräsentieren 4-fach Bestimmungen eines Versuchsansatzes, der jedoch repräsentativ für die weiteren 5 unabhängigen Bestimmungen ist.
Wie aus Abb. 5 ersichtlich ist, stimuliert bFGF erwartungsgemäß die Proliferation der HUVEC. Auch GH zeigt einen deutlichen proliferativen Effekt auf diese Zellen, der jedoch nicht ganz das Niveau von bFGF erreicht. Im Gegensatz dazu hemmt das 16 kDa Fragment des humanen GH die Proliferation der HUVEC signifikant. Mit Hilfe dieser Daten konnte belegt werden, dass das 16 kDa Fragment die gegenläufige Wirkung auf HUVEC im Vergleich zum nativen 22kDa GH besitzt. Substanzen mit MMP-3-aktivierender Wirkung
3-(3-Mercaptopropyl)-1 -methyl-(1 H,3H)-chinazolin-2,4-dion
Figure imgf000018_0001
Aktivierung der MMP-3 um ca. 20%
-(2'-Mercaptoethylamino)-2H-1 ,2,4-benzothiadiazin-1 ,1-dioxid
H
Figure imgf000018_0002
Aktivierung der MMP-3 um ca. 20%
Substanzen mit MMP-3-hemmender Wirkung
(R,S)-8-Chlor-2-mercaptomethyl-2,3-dihydro-thiazolo[2,3-b]chinazolin-5-on
Figure imgf000019_0001
80% Hemmung bei 10 μM
(R,S)-1 -(2',3'-Dimercapto-prop-1 '-yl)chinazolin.2,4(1 H,3H)-dion
Figure imgf000019_0002
75% Hemmung bei 4,0 μM
3-(2-Mercaptopropyl)chinazolin-2,4(1 H,3H)-dion
Figure imgf000019_0003
60% Hemmung bei 10 μM (R,S)-2-Mercaptomethyi-2,3-dιhydro-thιazolo[2,3-b]chιnazolιn-5-on
Figure imgf000020_0001
50% Hemmung bei 10 μM
(R,S)-2-Mercaptomethyl-2-methyl-2,3-dιhydro-thιazolo[2,3-b]chιπazolιπ-5-on
Figure imgf000020_0002
60% Hemmung bei 10 μM
Literatur
1. Isaksson OGP, Eden S, Jansson JO. (1985) Annu Rev Physiol 47, 483-499
2. Butler AA, Ambler GR, Breier BH, LeRoith D, Roberts CT Jr., Gluckman PD. (1994) Mol Cell Endocrinol 101, 321-330
3. Ohisson C, Nilsson A, Isaksson O, Lindahl A. (1992) Proc NatI Acad Sei USA 89, 9826-9830
4. Wabitsch M, Heinze E. (1993) 40 5-9
5. Wiedermann CJ, Reinisch N, Braunsteiner H. (1993) Blood 82, 954-960
6. Goh EL, Pircher TJ, Wood TJ, Norstedt G, Graichen R, Lobie PE. (1997) En- docrinology 138, 3207-3215
7. Goh EL, Pircher TJ, Lobie PE. (1998) Endocrinology 139, 4364-4372
8. Hüll KL, Harvey S. (2000) Rev Reprod 5, 175-182
9. Nyberg F (2000) Front Neuroendocrinol 21, 330-348
10. Carrel AL, Allen DB. (2000) J Pediatr Endocrinol Metab 13, Suppl 2, 1003- 1009
11. Wilson VJ, Rattray M, Thomas CR, Moreland BH, Schulster D. (1998) Growth Horm IGF Res 8, 431-438
12. Lal SO, Wolf SE, Herndon DN. (2000) Growth Horm IGF Res 10, Suppl B, S39-43
13. Ruy H, Lee JH, Kim KS, Jeong SM, Kim PH, Chung HT. (2000) J Immunol 165. 2116-2123
14. Shulman DI. (2000) Endocrine 12, 147-152
15. Rousselle AV, Damiens C, Guicheux J, Pilet P, Padrines M, Heymann D. (2000) Rev Chir Orthop Reparatrice Appar Mot 86, 256-264
16. Ogueta S, Olazabal I, Santos I, Delgado-Baeza E, Garcia-Ruiz JP. (2000) J Endocrinol 165, 321-328
17. Yamashita N, Hashimoto Y, Honjo M, Yamashita N. (2000) Life Sei 66, 1929- 1935
18. Rastegar M, Rousseau GG, Lemaigre FP. (2000) Endocrinol 141, 1686-1692
19. Kvasnicka J, Marek J, Kvasnicka T, Weiss V, Markova M, Stepan J, Umlaufo- va A. (2000) Clin Endocrinol (Oxf) 52, 543-548
20. Denko CW, Boja B, Moskowitz RW. (1996) Osteoarthritis Cartilage 4, 245-249 21. Matrix Metalloproteinases. Eds. Parks WC, Mecham RP (1998) Academic Press; San Diego, London, Boston, New York, Sydney, Tokyo, Toronto
22. Nagase H, Woessner JF. J Biol Chem 274, 21491-21494
23. Itho Y, Kajita M, Kinoh H, Mori H, Okada A, Seiki M. (1999) 274, 34260-34266
24. Nagase H. pp. 43-84 in Matrix Metalloproteinases Eds. Parks WC, Mecham RP (1998) Academic Press; San Diego, London, Boston, New York, Sydney, Tokyo, Toronto
25. Bode W, Gomis-Rüth FX, Stöcker W. (1993) FEBS Lett 33J., 134-140
26. Murphy G, Allan JA, Willenbrock F, Cockett MI, O'Shea M, Docherty AJP. (1992) J Biol Chem 267, 9612-9618
27. Sapolsky AI, Howell DS, Woessner JF Jr. (1974) J Clin Invest 53, 1044-1053
28. Werb Z, Reynolds JJ. (1974) Biochemistry 28, 8691 -8698
29. Galloway WA, Murphy G, Sandy JD, Gavrilovic J, Cawston TE, Reynolds JJ. (1983) Biochem J 209, 741-752
30. Chin JR, Murphy G, Werb Z. (1985) J Biol Chem 260, 12367-12376
31. Okada Y, Nagase H, Harris ED Jr. (1986) J Biol Chem 26 _, 14245-14255
32. Formston CJ, Byrd OJ, Amrose HJ, Riley JH, Hemandez D, McConville CM, Taylor AM. (1993) Genomics 16, 289-291
33. Rymaszewski Z, Cohen RM, Chomezynski P. (1991 ) Proc NatI Acad Sei USA 88, 617-621
34. Gould J, Aramburo C, Capdevielle M, Scanes CG. (1995) Life Sei 56, 587-594
35. Turner HE, Nagy Z, Gatter KC, Esiri MM, Harris AL, Wass JA. (2000) J Endocrinol 165, 475-481
36. Hellstrom A, Svensson E, Carlsson B, Niklasson A, Albertsson-Wikland K. (1999) 84. 795-798
37. Struman I, Bentzien F, Lee H, Mainfroid V, D'Angelo G, Goffin V, Weiner Rl, Martial JA. (1999) Proc NatI Acad Sei USA 96, 1246-1251
38. Warner MD, Sinha YN, Peabody CA. (1993) Horm Metab Res 25, 425-429
39. Young PK, Grinnell F. (1994) J Invest Dermatol 103, 660-664
40. Sacca L, Cittadini A, Fazio S. (1994) Endocr Rev 15, 555-573
41. Volterrani M, Giustina A, Manelli F, Cicoria MA, Lo russo R, Giordano A. (2000) Ital Heart J 1, 732-738
42. Friberg L, Werner S, Eggertsen G, Ahnve S. (2000) Eur Heart J 21, 1547-1554 43. Heymans S, Luttun A, Nuyens D, Theilmeier G, Creemers E, Moons L, Dyspersin GD, Cleutjens JP, Shipley M, Angellilo A, Levi M, Nube O, Baker A, Keshet E, Lupu F, Herbert JM, Smits JF, Shapiro SD, Baes M, Borgers M, Daemen MJ, Carmeliet P. (1999) Nat Med 5, 1135-1142
44. Romanic AM, Burns-Kurtis CL, Berrebi-Bertrand I, Ohistein EH. (2001 ) Life Sei 68, 799-814
45. Kennedy TG, Doktorcik PE. (1988) Biol Reprod 39, 318-328
46. Hüll KL, Harvev S. (2001 ) 168, 1-23
47. Singtripop T, Mori T, Shiraishi K, Park MK, Kawashima S. (1993) In vivo 7, 147-150
48. Rodgers WH, Matnsian LM, Giudice LC, Dsupin B, Cannon P, Svitek C, Gorstein F, Osteen KG. (1994) J Clin Invest 94, 946-953
49. Norman J, Karasek MA. (1995) In Vitro Cell Dev Biol-Animal 31, 447-455
Legenden
Abb. 1 Spaltung des humanen Wachstumshormons (GH) durch die humane MMP-3 Lane 1 : GH (1 ,5 μg), ohne MMP-3 inkubiert
Lane 2: GH (1 ,5 μg) inkubiert mit 1 mM 1 , 10-Phenanthrolin plus 60 ng humaner MMP-3
Lane 3: GH (1 ,5 μg) inkubiert mit 60 ng humaner MMP-3 Lane 4: GH (1 ,5 μg) inkubiert mit 60 ng der rekombinanten katalytischen Domäne der humanen MMP-3
Abb. 2 Nachweis der immunologischen Zugehörigkeit des 16 kDa Fragmentes zum humanen GH mittels Westernblot-Analyse Lane 1 : GH (1 ,5μg) ohne MMP-3 inkubiert
Lane 2: GH (1 ,5 μg) inkubiert mit 60 ng der rekombinanten katalytischen Domäne der humanen MMP-3
Abb.3 Einfluss differenter humaner MMPs auf die Spaltung des humanen GH Lane 1 : Molekulargewichtsmarker Lane 2: GH (1 ,5 μg) ohne MMP inkubiert
Lane 3: GH (1 ,5 μg) inkubiert mit 20 ng der rekombinanten katalytischen Domäne der humanen MMP-3
Lane 4: GH (1 ,5 μg) inkubiert mit 20 ng der rekombinanten katalytischen Domäne der humanen MMP-3 plus 1 mM 1 , 10-Phenanthrolin Lane 5: GH (1 ,5 μg) inkubiert mit 20 ng der humanen MMP-8 Lane 6: GH (1 ,5 μg) inkubiert mit 20 ng der humanen MMP-8 plus 1 mM 1 , 10-Phenanthrolin
Lane 7: GH (1 ,5 μg) inkubiert mit 20 ng der MMP-9
Lane 8: GH (1 ,5 μg) inkubiert mit 20 ng der humanen MMP-9 plus 1 mM 1 , 10-Phenanthrolin
Lane 9: GH (1 ,5 μg) inkubiert mit 20 ng der rekombinanten katalytischen Domäne der humanen MMP-14 plus 1 mM 1 , 10-Phenanthrolin Lane 9: GH (1 ,5 μg) inkubiert mit 20 ng der rekombinanten katalytischen Domäne der humanen MMP-14 plus 1 mM 1 , 10-Phenanthrolin
Abb. 4 MALDI-TOF MS-Profil des 22 kDa - humanen GH
Der Peak Tι35.u5 repräsentiert das Peptid, welches im 22 kDa GH auftritt, jedoch nicht im 16 kDa Fragment des humanen GH.
Abb. 5 Einfluss von humanem GH und seinem 16 kDa Fragment auf die Proliferation humaner mikrovaskulärer Endothelzellen Die Kontrolle repräsentiert HUVEC ohne Zusatz von stimulatorischen bzw. hemmenden Faktoren; bFGF repräsentiert die Inkubation der Zellen mit 20 ng/ml humanem rekombinantem basischen FGF; GH repräsentiert die Inkubation der Zellen mit 40 ng/ml humanem Wachstumshormon aus der Hypophyse; 16 kDa repräsentiert die Inkubation der Zellen mit 40 ng/ml des 16 kDa Fragments des humanen GH * signifikante Differenz zur Kontrolle mittels des Student's t-Test (p<0,001 )

Claims

Patentansprüche
1. Verfahren zur Spaltung des humanen Wachstumshormons GH, dadurch gekennzeichnet, daß die humane Matrix-Metalloproteinase MMP-3 eingesetzt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß das humane Wachstumshormon GH in zwei Fragmente von 16 kDa und von 6 kDa gespaltet wird, wobei das 16 kDa-Fragment stabil und das 6-kDa-Fragment weniger stabil ist.
3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die rekombinante katalytische Domäne der humanen MMP-3 die Spaltung bewirkt.
4. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß das Volllängenenzym MMP-3 an das humane Wachstumshormon GH bindet und dessen Spaltung bewirkt.
5 Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Spaltung des humanen Wachstumshormons GH durch humane MMP-3 in vivo erfolgt.
6. Mittel zur Hemmung des Tumorwachstums durch Absenken des Levels an humanem Wachstumshormon GH in vivo, dadurch gekennzeichnet, daß das Mittel IVlMP-3-aktivierende Substanzen enthält.
7. Mittel zur Behandlung der proliferativen diabetischen Retinopathie, dadurch gekennzeichnet, daß es MMP-3-aktivierende Substanzen enthält.
8. Mittel nach den Ansprüchen 6 und 7, dadurch gekennzeichnet, daß die Verbindungen 3-(3-Mercaptopropyl)-1 -methyl-(1 H,3H)-chinazolin-2,4-dion, 3-(2'-Mercaptoethylamino)-2H-1 ,2,4-benzothiadiazin-1 ,1 -dioxid eingesetzt werden.
9 Mittel nach den Ansprüchen 6, 7 und 8, dadurch gekennzeichnet, daß es als pharmazeutische Zubereitung in Verbindung mit üblichen Hilfs- und Trägerstoffen injiziert, als Tropfen aufgebracht, oder per os mittels Tabletten bzw. Kapseln verabreicht wird.
10. Mittel zur Verhinderung der Spaltung des humanen Wachstumshormons GH durch MMP- 3 und damit zur Unterstützung der Angiogenese, insbesondere bei der Behandlung des Herzinfarktes, der Behandlung von Störungen des Menstruationszyklus und der verzögerten Wundheilung dadurch gekennzeichnet, daß
Verbindungen aus der Klasse der Mercaptoalkylchinazoline eingesetzt werden.
1 1. Mittel nach Anspruch 10, dadurch gekennzeichnet, daß
(R,S)-8-Chlor-2-mercaptomethyl-2,3-dihydro-thiazolo[2,3-b]chinazolin-5-on, (R,S)-1 -(2',3'-Dimercapto-prop-r-yl)chinazolin-2,4(1 H,3H)-dion, 3-(2-Mercaptopropyl)chinazolin-2,4(1 H,3H)-dion,
(R,S)-2-Mercaptomethyl-2-methyl-2,3-dihydro-thiazolo[2,3-b]chinazolin-5-on (R,S)-2-Mercaptomethyl-2,3-dihydro-thiazolo[2,3-b]chinazolin-5-on eingesetzt werden.
12. Mittel nach den Ansprüchen 10 und 11 , dadurch gekennzeichnet, daß diese einzeln oder in beliebiger Mischung miteinander unter Zusatz üblicher Hilfs- und Trägerstoffe durch Injizieren, als Tropfen aufgebracht oder per os mittels Tabletten bzw. Kapseln verabreicht werden.
PCT/EP2002/002606 2001-03-20 2002-03-09 Verfahren zur spaltung des humanen wachstumshormons gh WO2002074945A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA002441503A CA2441503A1 (en) 2001-03-20 2002-03-09 Method for cleaving human growth hormone gh
US10/472,472 US20040259192A1 (en) 2001-03-20 2002-03-09 Method for cleaving the human growth hormone gh

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10113604.8 2001-03-20
DE10113604A DE10113604A1 (de) 2001-03-20 2001-03-20 Verfahren zur Spaltung des humanen Wachstumshormons GH

Publications (1)

Publication Number Publication Date
WO2002074945A1 true WO2002074945A1 (de) 2002-09-26

Family

ID=7678283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/002606 WO2002074945A1 (de) 2001-03-20 2002-03-09 Verfahren zur spaltung des humanen wachstumshormons gh

Country Status (4)

Country Link
US (1) US20040259192A1 (de)
CA (1) CA2441503A1 (de)
DE (1) DE10113604A1 (de)
WO (1) WO2002074945A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454060A1 (de) * 1990-04-24 1991-10-30 ARZNEIMITTELWERK DRESDEN GmbH 3-(Mercaptoalkyl)-chinazolin-2,4(1H,3H)-dione, Verfahren zu ihrer Herstellung und pharmazeutische Zubereitungen
WO1998009940A1 (en) * 1996-09-04 1998-03-12 Warner-Lambert Company Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases
WO1998051323A1 (en) * 1997-05-13 1998-11-19 The Regents Of The University Of California Novel antiangiogenic peptide agents and their therapeutic and diagnostic use
WO1999058501A1 (en) * 1998-05-11 1999-11-18 Novo Nordisk A/S Compounds with growth hormone releasing properties
WO2001014344A2 (de) * 1999-08-26 2001-03-01 Ibfb Gmbh Privates Institut Für Biomedizinische Forschung Und Beratung Mehrcyclische pyrimidin-2,4(1h, 3h)-dione mit funktionalisierten alkylresten in 1- und/oder 3-position, verfahren zu ihrer herstellung und pharmazeutische zubereitungen
DE10046728C1 (de) * 2000-09-21 2001-09-27 Ibfb Gmbh Privates Inst Fuer B Tricyclische mercaptomethylsubstituierte 2,3-Dihydro-chinazolin-5-one und 2,3-Dihydro-benzo[1,2,4,]-thiadiazin-5,5-dioxide als Matrix Metalloproteinase (MMP) Inhibitoren
DE10101324C1 (de) * 2001-01-13 2001-12-13 Ibfb Gmbh Privates Inst Fuer B 1-Dimercaptoalkylchinazolin-2,4-(1H,3H)-dione als Matrix-Metalloproteinase(MMP)-Inhibitoren

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454060A1 (de) * 1990-04-24 1991-10-30 ARZNEIMITTELWERK DRESDEN GmbH 3-(Mercaptoalkyl)-chinazolin-2,4(1H,3H)-dione, Verfahren zu ihrer Herstellung und pharmazeutische Zubereitungen
WO1998009940A1 (en) * 1996-09-04 1998-03-12 Warner-Lambert Company Biphenyl butyric acids and their derivatives as inhibitors of matrix metalloproteinases
WO1998051323A1 (en) * 1997-05-13 1998-11-19 The Regents Of The University Of California Novel antiangiogenic peptide agents and their therapeutic and diagnostic use
WO1999058501A1 (en) * 1998-05-11 1999-11-18 Novo Nordisk A/S Compounds with growth hormone releasing properties
WO2001014344A2 (de) * 1999-08-26 2001-03-01 Ibfb Gmbh Privates Institut Für Biomedizinische Forschung Und Beratung Mehrcyclische pyrimidin-2,4(1h, 3h)-dione mit funktionalisierten alkylresten in 1- und/oder 3-position, verfahren zu ihrer herstellung und pharmazeutische zubereitungen
DE10046728C1 (de) * 2000-09-21 2001-09-27 Ibfb Gmbh Privates Inst Fuer B Tricyclische mercaptomethylsubstituierte 2,3-Dihydro-chinazolin-5-one und 2,3-Dihydro-benzo[1,2,4,]-thiadiazin-5,5-dioxide als Matrix Metalloproteinase (MMP) Inhibitoren
DE10101324C1 (de) * 2001-01-13 2001-12-13 Ibfb Gmbh Privates Inst Fuer B 1-Dimercaptoalkylchinazolin-2,4-(1H,3H)-dione als Matrix-Metalloproteinase(MMP)-Inhibitoren

Also Published As

Publication number Publication date
DE10113604A1 (de) 2002-10-24
US20040259192A1 (en) 2004-12-23
CA2441503A1 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
JP3054150B2 (ja) トロンビンから誘導されたポリペプチド、組成物およびその使用方法
US11478536B2 (en) Glaucoma treatment
Parshley et al. Early changes in matrix metalloproteinases and inhibitors after in vitro laser treatment to the trabecular meshwork
Bernstein et al. Urokinase receptor cleavage: a crucial step in fibroblast-to-myofibroblast differentiation
Mills et al. A new pro-migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor
US20080187543A1 (en) Use of Myostatin (Gdf-8) Antagonists for Improving Wound Healing and Preventing Fibrotic Disease
US8871710B2 (en) Method for inducing tissue growth, differentiation and/or regeneration by delivering a GDF-5 related precursor protein
EP2091550B1 (de) Verfahren zur förderung von herzregeneration mittels an heparinbindende sequenzen fusionierte wachstumsfaktoren
US20110059896A1 (en) Use of furin convertase inhibitors in the treatment of fibrosis and scarring
Grässel et al. Expression profile of matrix metalloproteinase-2 and-9 and their endogenous tissue inhibitors in osteonecrotic femoral heads
Clapp et al. Vasoinhibins: a family of N-terminal prolactin fragments that inhibit angiogenesis and vascular function
Zheng et al. The developmental expression in the rat CNS and peripheral tissues of proteases PC5 and PACE4 mRNAs: comparison with other proprotein processing enzymes
JP7214245B2 (ja) 骨関節炎を予防または治療するための方法および薬剤
Liu et al. The role of extracellular matrix on unfavorable maternal–fetal interface: focusing on the function of collagen in human fertility
WO2002074945A1 (de) Verfahren zur spaltung des humanen wachstumshormons gh
JP2002537268A (ja) 結合組織の軟化
KR20200049676A (ko) 분리된 미토콘드리아를 포함하는 건병증 예방 또는 치료용 약학 조성물
US6444639B2 (en) HCG and derivatives as matrix metalloproteases inhibitors
Guszczyn et al. IGF-I and IGF-binding proteins in articular exudates of children with post-traumatic knee damage and juvenile idiopathic arthritis
US20040127396A1 (en) Use of furin and furin-like protease inhibitors in the treatment of inflammatory or matrix remodelling diseases
US20200046811A1 (en) Methods and compositions for modulating fgf23 levels
Bączyk et al. IGF-I and IGF-binding proteins in synovial fluid of patients with Lyme arthritis
KR100477507B1 (ko) 은행엽 엑스를 유효성분으로하는 매트릭스메탈로프로테아제 활성 억제용 약학적 조성물
Khatib et al. Growth factors: To cleave or not to cleave
CA2312109A1 (en) Use of furin and furin-like protease inhibitors in the treatment of inflammatory or matrix remodelling diseases

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2441503

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10472472

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP