WO2002074849A2 - Composition de resine durcissable liquide - Google Patents

Composition de resine durcissable liquide Download PDF

Info

Publication number
WO2002074849A2
WO2002074849A2 PCT/NL2002/000182 NL0200182W WO02074849A2 WO 2002074849 A2 WO2002074849 A2 WO 2002074849A2 NL 0200182 W NL0200182 W NL 0200182W WO 02074849 A2 WO02074849 A2 WO 02074849A2
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
copolymer
average molecular
molecular weight
Prior art date
Application number
PCT/NL2002/000182
Other languages
English (en)
Other versions
WO2002074849A3 (fr
Inventor
Masanobu Sugimoto
Hideki Sugimoto
Hiroshi Miyazawa
Zen Komiya
Takashi Ukachi
Original Assignee
Dsm N.V.
Jsr Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001094974A external-priority patent/JP2002293852A/ja
Priority claimed from JP2001159805A external-priority patent/JP2002348337A/ja
Application filed by Dsm N.V., Jsr Corporation filed Critical Dsm N.V.
Priority to AU2002241395A priority Critical patent/AU2002241395A1/en
Publication of WO2002074849A2 publication Critical patent/WO2002074849A2/fr
Publication of WO2002074849A3 publication Critical patent/WO2002074849A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/104Coating to obtain optical fibres
    • C03C25/1065Multiple coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/67Unsaturated compounds having active hydrogen
    • C08G18/671Unsaturated compounds having only one group containing active hydrogen
    • C08G18/672Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen

Definitions

  • the present invention relates to a liquid curable resin composition. More particularly, the present invention relates to a liquid curable resin composition suitable as a coating material for a secondary material, a ribbon matrix material or an encapsulating matrix material for optical fibers.
  • a resin coating is applied for protection and reinforcement immediately after spinning molten glass fibers.
  • a resin coating having a structure in which a flexible primary coating layer is formed on the surface of optical fiber and a rigid secondary coating layer is formed over the primary coating layer is known.
  • a number of optical fibers for example four or eight, are arranged side by side, e.g. on a plane, and secured using a bundling material, thereby forming a ribbon structure which may have a rectangular cross section.
  • Several ribbons may be encapsulated within a radiation cured encapsulating matrix material to form optical fiber ribbon assembly.
  • a resin composition for forming the primary coating layer is called a primary material
  • a resin composition for forming the secondary coating layer is called a secondary material
  • a material for binding several optical fibers is called a ribbon matrix material.
  • a material for encapsulating several ribbons is called an encapsulating matrix material.
  • the secondary material and the ribbon matrix material form strong protective films in order to protect the primary material in the lower layer and quartz fibers. Since these materials and encapsulating matrix materials are located in the outer layer of fibers, these materials tend to be affected by heat and humidity under various environments. Therefore, these materials are required to exhibit only a small change in characteristics over time.
  • an object of the present invention is to provide a liquid curable resin composition suitable for a secondary material, a ribbon matrix material or an encapsulating matrix material and capable of producing cured products exhibiting an improved resistance to heat and humidity.
  • the present inventors have found that a liquid curable resin composition suitable for a secondary material, a ribbon matrix material or an encapsulating matrix material which are affected by heat and humidity to only a small degree can be obtained by using a urethane (meth)acrylate obtained using a specific diol as a diol component. This finding has led to the completion of the present invention.
  • the present invention provides a liquid curable resin composition
  • a liquid curable resin composition comprising an urethane (meth)acrylate which comprises at least one diol component (A1) selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000, a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 and a copolymer of ethylene oxide and butylene oxide with a number average molecular weight of 300- 5000.
  • A1 diol component selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000, a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 and a copolymer of ethylene oxide and butylene oxide with a number average molecular weight of 300- 5000.
  • the composition after cure results in a material having a Youngs modulus higher than 50 MPa.
  • Youngs modulus, after cure, of the composition according to the invention if used as a secondary material is between about 100 and about 1000 MPa. If the composition after cure is used as a matrix material, a preferred range for the Youngs modulus is between about 50 and about 1500 MPa. If the composition after cure is used as a soft ribbon matrix material, the Youngs modulus preferably has a value in the range of between about 50 and about 200 MPa, and if it is used as a hard ribbon matrix material it preferably has a Youngs modulus in the range of about 200 to about 1500 MPa. In the examples it is described how the Youngs modulus was determined.
  • the glass transition temperature (Tg) measured as the peak tan-delta determined by dynamic mechanical analysis (DMA), can be optimized depending on the use of the composition.
  • the composition according to the invention after cure, has a Tg of at least 10°C, more preferably the Tg has a value between 10 and 120°C, even more preferred between 20 and 100°C, particularly preferred between 23 and 80°C.
  • a urethane (meth)acrylate used in the liquid curable resin composition of the present invention is that the urethane (meth)acrylate is obtained by using at least one diol component (A1) selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000, a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 or a copolymer of ethylene oxide and butylene oxide with a number average molecular weight of 300-5000.
  • diol component (A1) selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000, a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 or a copolymer of ethylene oxide and butylene oxide with a number average molecular weight of 300-5000.
  • the urethane (meth)acrylate used in the present invention is produced by reacting the diol (A1), the diisocyanate (B), and the (meth)acrylate (C) containing a hydroxyl group. Specifically, the urethane (meth)acrylate is produced by reacting isocyanate groups of the diisocyanate with hydroxyl groups of the diol and the (meth)acrylate containing a hydroxyl group.
  • a method of reacting these compounds a method of reacting a diol, diisocyanate, and (meth)acrylate containing a hydroxyl group all together; a method of reacting a diol with a diisocyanate, and reacting the resulting product with a (meth)acrylate containing a hydroxyl group; a method of reacting a diisocyanate with a (meth)acrylate containing a hydroxyl group, and reacting the resulting product with a diol; a method of reacting a diisocyanate with a (meth)acrylate containing a hydroxyl group, reacting the resulting product with a diol, and further reacting the resulting product with a (meth)acrylate containing a hydroxyl group; and the like can be given.
  • the proportion of the diol, diisocyanate, and (meth)acrylate containing a hydroxyl group is preferably determined so that isocyanate groups included in the diisocyanate and hydroxyl groups included in the (meth)acrylate containing a hydroxyl group are respectively 1.1-3 equivalents and 0.2-1.5 equivalents for one equivalent of hydroxyl groups included in the diol.
  • a urethanization catalyst such as copper naphthenate, cobalt naphthenate, zinc naphthenate, di-n-butyltin dilaurate, triethylamine, 1 ,4-diazabicyclo[2.2.2]octane, or 2,6J-trimethyl-1 ,4-diazabicyclo[2.2.2]octane in an amount of 0.01-1 part by weight for 100 parts by weight of the total reactant.
  • the reaction is carried out preferably at 10- 90°C, and particularly preferably at 30-80°C.
  • the diol used as the component (A1) is polypropylene glycol or a copolymer of propylene oxide and ethylene oxide.
  • the number average molecular weight of polypropylene glycol or a copolymer of propylene oxide and ethylene oxide used as the component (A1) is 300- 5000, and preferably 400-4000, more preferred 500-3000 and most preferred 700- 2,500.
  • Examples of commercially available polypropylene glycol suitable for the preparation of a urethane(meth)acrylate as used in the composition according to the invention are PPG400, PPG1000, PPG2000, PPG3000, EXCENOL 720, 1020, 2020 (manufactured by Asahi Glass Urethane Co., Ltd.), and the like.
  • liquid curable resin compositions according to the invention comprise an urethane (meth)acrylate which comprises at least one diol component selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000 and a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 said compositions after having been suitably cured having a relatively short stress relaxation time.
  • the stress relaxation time is defined as the period of time in which the stress is reduced to 37% of the initial stress. In the examples it is described how the stress relaxation time is determined.
  • the liquid curable resin composition according to the invention comprises an urethane (meth)acrylate which comprises at least one diol component selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000 and a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000, and the composition after cure exhibits a stress relaxation time of 30 minutes or less when subjected to a tensile strain of 5% at 23°C and 50% relative humidity (RH). More preferably, the composition after cure exhibits a stress relaxation time of less than 20, and most preferably of less than 10 minutes.
  • urethane (meth)acrylate which comprises at least one diol component selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000 and a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000
  • the composition after cure exhibits a stress relaxation time of 30 minutes or less
  • a short stress relaxation time is advantageous because it is undesirable that the secondary material, the ribbon matrix material or the encapsulating matrix material cause an external load to the primary material in the lower layer and quartz fibers. Therefore, secondary materials, ribbon matrix materials and encapsulating matrix materials are often designed so as to have a glass transition temperature of more than room temperature and a high modulus of rigidity.
  • a residual stress may occur in the cured film due to cooling or cure shrinkage which results in a load being applied to the primary material in the lower layer.
  • One of the phenomena caused by the load is occurrence of voids due to damage to the primary material. This is considered to be one of the causes for transmission loss.
  • the diol (A1) is a copolymer of ethylene oxide and butylene oxide.
  • the number average molecular weight of the copolymer diol (A1) of ethylene oxide and butylene oxide is 300-5000, and preferably 400-4000, more preferred 500-3000 and most preferred 700-2,500..
  • the copolymerization ratio (weight ratio) of ethylene oxide to butylene oxide which make up the copolymer is 5:95-50:50, preferably 7:93-40:60, and still more preferably 10:90- 35:65. If the amount of ethylene oxide exceeds 50 wt%, viscosity of the liquid curable resin composition may be increased.
  • copolymer diols of ethylene oxide and butylene oxide examples include EO/BO500, EO/BO1000, EO/BO2000,
  • EO/BO3000 EO/BO4000 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the like.
  • breaking strength as defined under the test method section
  • one diol is selected from the group consisting of polypropylene glycol with a number average molecular weight of 300-5,000
  • a copolymer of propylene oxide and ethylene oxide with a number average molecular weight of 300-5,000 is used copolymer of ethylene oxide and butylene oxide with a number average molecular weight of 300-5000 is used to prepare a urethane (meth)acrylate in accordance with the invention
  • the other di- or polyol components are regarded as (A2) polyols.
  • polys used as the component (A2) a polyether polyol, polyester polyol, polycarbonate polyol, polycaprolactone polyol, and the like can be given.
  • a polyether polyol polyester polyol, polycarbonate polyol, polycaprolactone polyol, and the like can be given.
  • the manner of polymerization of the structural units of these polyols which may be any of random polymerization, block polymerization, or graft polymerization.
  • polyether polyols polyethylene glycol, polypropylene glycol, polytetramethylene glycol, polyhexamethylene glycol, polyheptamethylene glycol, polydecamethylene glycol, polyether diols obtained by ring- opening copolymerization of two or more ion-polymerizable cyclic compounds, and the like can be given.
  • Polyether diols obtained by the ring-opening copolymerization of these ion-polymerizable cyclic compounds and cyclic imines such as ethyleneimine, cyclic lactonic acids such as ⁇ -propyolactone and glycolic acid lactide, or dimethylcyclopolysiloxanes may be used.
  • ion-polymerizable cyclic compounds examples include combinations of tetrahydrofuran and propylene oxide, tetrahydrofuran and 2-methyltetrahydrofuran, tetrahydrofuran and 3-methyltetrahydrofuran, tetrahydrofuran and ethylene oxide, propylene oxide and ethylene oxide, a ternary copolymer of tetrahydrofuran, butene-1 - oxide, and ethylene oxide, and the like can be given.
  • the ring-opening copolymer of these ion-polymerizable cyclic compounds may be either a random copolymer or a block copolymer.
  • the above polyether polyols are commercially available as PTMG650, PTMG1000, PTMG2000 (manufactured by Mitsubishi Chemical Corp.),
  • PEG1000 Unisafe DC1100, DC1800 (manufactured by Nippon Oil and Fats Co., Ltd.), PPTG2000, PPTG1000, PTG400, PTGL2000 (manufactured by Hodogaya Chemical Co., Ltd.), Z-3001-4, Z-3001-5, PBG2000A, PBG2000B (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and the like.
  • alkylene oxide addition diol of bisphenol A alkylene oxide addition diol of bisphenol F, hydrogenated bisphenol A, hydrogenated bisphenol F, alkylene oxide addition diol of hydrogenated bisphenol A, alkylene oxide addition diol of hydrogenated bisphenol F, alkylene oxide addition diol of hydroquinone, alkylene oxide addition diol of naphthohydroquinone, alkylene oxide addition diol of anthrahydroquinone, 1 ,4- cyclohexanediol and alkylene oxide addition diol thereof, tricyclodecanediol, tricyclodecanedimethanol, pentacyclopentadecanediol, pentacyclopentadecanedimethanol, and the like can be given.
  • alkylene oxide addition diol of bisphenol A and tricyclodecanedimethanol are preferable.
  • These polyols are commercially available as Uniol DA400, DA700, DA1000, DB400 (manufactured by Nippon Oil and Fats Co., Ltd.), tricyclodecanedimethanol (manufactured by Mitsubishi Chemical Corp.), and the like.
  • polyester polyols polyester polyols obtained by reacting a polyhydric alcohol and a polybasic acid and the like can be given.
  • polyhydric alcohols ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1,6-hexanediol, neopentyl glycol, 1 ,4-cyclohexanedimethanol, 3-methyl-1 ,5-pentanediol, 1 ,9- nonanediol, 2-methyl-1 ,8-octanediol, and the like can be given.
  • polyester polyols are commercially available as Kurapol P-2010, PMIPA, PKA-A, PKA-A2, PNA-2000 (manufactured by Kuraray Co., Ltd.), and the like.
  • polycarbonate polyols polycarbonate of polytetrahydrofuran, polycarbonate of 1 ,6-hexanediol, and the like can be given.
  • commercially available products of polycarbonate polyols DN-980, 981 , 982, 983
  • PC-8000 manufactured by PPG
  • PC-THF-CD manufactured by BASF
  • polycaprolactone polyols polycaprolactonediols obtained by reacting ⁇ -caprolactone with a diol such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1 ,2-polybutylene glycol, 1 ,6-hexanediol, neopentyl glycol, 1 ,4-cyclohexanedimethanol, or 1 ,4-butanediol, and the like can be given.
  • a diol such as ethylene glycol, polyethylene glycol, propylene glycol, polypropylene glycol, tetramethylene glycol, polytetramethylene glycol, 1 ,2-polybutylene glycol, 1 ,6-hexanediol, neopentyl glycol, 1 ,4-cyclohexanedimethanol, or 1
  • diols are commercially available as PLACCEL 205, 205AL, 212, 212AL, 220, 220AL (manufactured by Daicel Chemical Industries, Ltd.), and the like. Polyols other than those illustrated above may be used.
  • Diamines may be used in combination with the above polyols.
  • diamines ethylenediamine, tetramethylenediamine, hexamethylenediamine, p-phenylenediamine, 4,4'-diaminodiphenylmethane, diamines containing a hetero atom, polyether diamine, and the like can be given.
  • polyether polyols and alkylene oxide addition diol of bisphenol A are preferable.
  • These polyols are commercially available as PTMG650, PTMG1000, PTMG2000 (manufactured by Mitsubishi Chemical Corp.), Uniol DA400, DA700, DA1000, and DB400 (manufactured by Nippon Oil and Fats Co., Ltd.).
  • diisocyanate (B) 2,4-tolylene diisocyanate, 2,6- tolylene diisocyanate, 1 ,3-xylylene diisocyanate, 1 ,4-xylylene diisocyanate, 1 ,5- naphthalene diisocyanate, m-phenylene diisocyanate, p-phenylene diisocyanate, 3,3'- dimethyl-4,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 3,3'- dimethylphenylene diisocyanate, 4,4'-biphenylene diisocyanate, 1 ,6-hexane diisocyanate, isophorone diisocyanate, methylenebis(4-cyclohexylisocyanate), 2,2,4- trimethylhexamethylene diisocyanate, bis(2-isocyanate ethyl)fumarate,
  • diisocyanates can be used either individually or in combinations of two or more.
  • (meth)acrylate (C) containing a hydroxyl group 2- hydroxyethyl(meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 2-hydroxy-3-phenyloxypropyl (meth)acrylate, 1 ,4-butanediol mono(meth)acrylate, 2-hydroxyalkyl(meth)acryloyl phosphate, 4-hydroxycyclohexyl (meth)acrylate, 1 ,6-hexanediol mono(meth)acrylate, neopentyl glycol mono(meth)acrylate, trimethylolpropane di(meth)acrylate, trimethylolethane di(meth)acrylate, pentaerythritol tri(meth)acrylate, dipentaerythritol penta(meth)acrylate, and (meth)acrylates shown by the following formulas (1) and (2) can be given: CH 2
  • R 1 represents a hydrogen atom or a methyl group and n is an integer from 1 to 15.
  • Compounds obtained by the addition reaction of (meth)acrylic acid and a compound containing a glycidyl group such as alkyl glycidyl ether, allyl glycidyl ether, and glycidyl (meth)acrylate may be used.
  • a compound containing a glycidyl group such as alkyl glycidyl ether, allyl glycidyl ether, and glycidyl (meth)acrylate
  • these (meth)acrylates containing a hydroxyl group 2-hydroxyethyl (meth)acrylate and 2-hydroxypropyl (meth)acrylate are particularly preferable.
  • a urethane (meth)acrylate obtained by reacting 1 mol of diisocyanate with 2 mols of (meth)acrylate containing a hydroxyl group may be added to the liquid curable resin composition of the present invention.
  • a urethane (meth)acrylate a reaction product of hydroxyethyl (meth)acrylate and 2,4-tolylene diisocyanate, a reaction product of hydroxyethyl (meth)acrylate and 2,5(or 6)- bis(isocyanatemethyl)-bicyclo[2.2.1]heptane, a reaction product of hydroxyethyl (meth)acrylate and isophorone diisocyanate, a reaction product of hydroxypropyl (meth)acrylate and 2,4-tolylene diisocyanate, and a reaction product of hydroxypropyl (meth)acrylate and isophorone diisocyanate can be given.
  • the urethane (meth)acrylate obtained using the specific diol (A1 is added in an amount of preferably 1-95 wt%, and still more preferably 5-80 wt% of the composition. Even more preferred amounts are between 10-70 wt%. If the amount is less than 1 wt% or exceeds 95 wt%, applicability may be impaired.
  • the proportion of (A1) - diol according to the present invention to (A2) - diol in the urethane (meth)acrylate [(A1):(A2)] preferably is ranging from 95:5 to 50:50, preferably from 90:10 to 40:60, even more preferred from 85:15 to 35:65.
  • a polymerizable monofunctional_compound or a polymerizable polyfunctional compound may be added to the liquid curable resin composition of the present invention.
  • a polymerizable monofunctional compound is defined herein as a compound that has one functional group capable of polymerization and a polymerizable polyfunctional compound is defined herein as a compound that has more than one functional group capable of polymerization.
  • vinyl group-containing lactams such as N-vinylpyrrolidone and N- vinylcaprolactam
  • (meth)acrylates having an alicyclic structure such as isobornyl (meth)acrylate, bornyl (meth)acrylate, tricyclodecanyl (meth)acrylate, and dicyclopentanyl (meth)acrylate, benzyl (meth)acrylate, 4-butylcyclohexyl (meth)acrylate, acryloylmorpholine, vinylimidazole, vinylpyridine, and the like can be given.
  • Further examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, isopropyl (meth)acrylate, butyl (meth)acrylate, amyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, isoamyl (meth)acrylate, hexyl (meth)acrylate, heptyl (meth)acrylate, octyl (meth)acrylate, isooctyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, nonyl
  • R 2 represents a hydrogen atom or a methyl group
  • R 3 represents an alkylene group having 2-6, and preferably 2-4 carbon atoms
  • R 4 represents a hydrogen atom or an alkyl group having 1-12, and preferably 1-9 carbon atoms
  • m is an integer from 0 to 12, and preferably from 1 to 8;
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents an alkylene group having 2-8, and preferably 2-5 carbon atoms
  • R 7 represents a hydrogen atom or a methyl group
  • p is preferably an integer from 1 to 4;
  • R 8 , R 9 , R 10 , and R 11 individually represent a hydrogen atom or a methyl group, and q is an integer from 1 to 5.
  • N-vinylpyrrolidone lactams containing a vinyl group such as N-vinylcaprolactam, isobomyl (meth)acrylate, and lauryl acrylate are prefeable.
  • IBXA manufactured by Osaka Organic Chemical Industry
  • trimethylolpropane tri(meth)acrylate trimethylolpropanetrioxyethyl (meth)acrylate, pentaerythritol tri(meth)acrylate, ethylene glycol di(meth)acrylate, triethylene glycol diacrylate, tetraethylene glycol di(meth)acrylate, tricyclodecanediyldimethylene di(meth)acrylate, polyethylene glycol di(meth)acrylate, 1 ,4-butanediol di(meth)acrylate, 1 ,6-hexanediol di(meth)acrylate, neopentyl glycol di(meth)acrylate, tripropylene glycol di(meth)acrylate, neopentyl glycol di(meth)acrylate, both terminal (meth)acrylic acid addition compound of bisphenol A diglycidyl ether, pentaerythritol tri(meth)acrylate
  • tricyclodecanediyldimethylene di(meth)acrylate di(meth)acrylate of ethylene oxide addition product of bisphenol A
  • tris(2-hydroxyethyl)isocyanurate tri(meth)acrylate are preferable.
  • Yupimer UV, SA1002 manufactured by Mitsubishi Chemical Corp.
  • Aronix M-215, M-315, M-325, TO-1210 manufactured by Toagosei Co., Ltd.
  • TO-1210 manufactured by Toagosei Co., Ltd.
  • These polymerizable compounds are added to the composition in an amount of preferably 5-90 wt%, and particularly preferably 10-80 wt%. If the amount is less than 5 wt% or exceeds 90 wt%, application may become uneven due to changes in the application form.
  • the liquid curable resin composition of the present invention may comprise a polymerization initiator.
  • a polymerization initiator a heat polymerization initiator or a photoinitiator may be used.
  • a heat polymerization initiator such as peroxides or azo compounds is used.
  • peroxides or azo compounds include benzoyl peroxide, t-butyloxybenzoate, azobisisobutyronitrile, and the like.
  • a photoinitiator In the case of curing the liquid curable resin composition of the present invention using light, a photoinitiator is used. In addition, a photosensitizer is preferably added as required.
  • photoinitiators 1-hydroxycyclohexyl phenyl ketone, 2,2-dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole, 3- methylacetophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4,4'- diaminobenzophenone, Michler's ketone, benzoin propyl ether, benzoin ethyl ether, benzyl methyl ketal, 1-(4-isopropylphenyl)-2-hydroxy-2- methylpropan-1-one, 2- hydroxy-2-methyl-1-phenylpropan-1
  • photosensitizers triethylamine, diethylamine, N- methyldiethanoleamine, ethanolamine, 4-dimethylaminobenzoic acid, methyl 4- dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, isoamyl 4- dimethylaminobenzoate; Ubecryl P102, 103, 104, 105 (manufactured by UCB); and the like can be given.
  • the heat polymerization initiator and the photoinitiator may be used in combination.
  • the polymerization initiators are added to the composition in an amount of preferably between 0.1-10 wt%, and more preferably between 0.5-8 wt%, even more preferably between 1-7 wt% and most preferably between 2-5 wt%.
  • additives such as antioxidants, coloring agents, UV absorbers, light stabilizers, silane coupling agents, heat polymerization inhibitors, leveling agents, surfactants, preservatives, plasticizers, lubricants, solvents, fillers, aging preventives, wettability importers, and coating surface improvers may be optionally added to the liquid curable resin composition of the present invention insofar as the characteristics of the composition are not adversely affected.
  • the liquid curable resin composition of the present invention is cured using heat and/or radiation.
  • Radiation used herein includes infrared rays, visible rays, ultraviolet rays, X-rays, electron beams, ⁇ -rays, ⁇ -rays, ⁇ -rays, and the like.
  • a cured product of the liquid curable resin composition of the present invention is affected by heat and humidity to only a small degree. Therefore, the cured product is useful as a coating material for optical fibers, in particular, as a secondary material, a ribbon matrix material or an encapsulating matrix material for optical fibers.
  • the composition of the present invention is used as a secondary material, the composition is applied to optical fiber provided with a primary coating in an appropriate amount and cured.
  • the composition is used as a ribbon matrix material, the composition is applied over several bundled optical fibers provided with a secondary coating and cured.
  • the composition is used as an encapsulating matrix material, the composition is applied over several bundled ribbons provided with a matrix material and cured.
  • part(s) refers to “part(s) by weight”.
  • Example 1 Preparation of a composition comprising urethane (meth)acrylate prepared from polypropylene glycol
  • a reaction vessel equipped with a stirrer was charged with 16.98 g of 2,4-tolylene diisocyanate, 0.015 g of 2,6-di-t-butyl-p-cresol, 0.05 g of dibutyltin dilaurate, and 0.005 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 11.32 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • Example 2 Preparation of a composition comprising urethane (meth)acrylate prepared from polypropylene glycol
  • a reaction vessel equipped with a stirrer was charged with 16.49 g of 2,4-tolylene diisocyanate, 0.015 g of 2,6-di-t-butyl-p-cresol, 0.05 g of dibutyltin dilaurate, and 0.005 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 14.59 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • 30.64 g of polypropylene glycol with a number average molecular weight of 1000 the mixture was stirred at 70-75°C for three hours.
  • the reaction was terminated when the residual isocyanate concentration was 0.1 wt% or less.
  • the mixture was then cooled to 50-60°C.
  • a reaction vessel equipped with a stirrer was charged with 16.98 g of 2,4-tolylene diisocyanate, 0.015 g of 2,6-di-t-butyl-p-cresol, 0.05 g of dibutyltin dilaurate, and 0.005 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 11.32 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • a reaction vessel equipped with a stirrer was charged with 16.49 g of 2,4-tolylene diisocyanate, 0.015 g of 2,6-di-t-butyl-p-cresol, 0.05 g of dibutyltin dilaurate, and 0.005 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 14.59 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • 30.64 g of polytetramethylene glycol with a number average molecular weight of 1000 the mixture was stirred at 70-75°C for three hours.
  • the reaction was terminated when the residual isocyanate concentration was 0.1 wt% or less.
  • the mixture was then cooled to 50-60°C.
  • the liquid curable resin composition was applied to a glass plate using an applicator bar for a thickness of 250 Dm.
  • the composition was cured by irradiation of ultraviolet rays at a dose of 1 J/cm 2 in air to obtain a test film.
  • the above film was cut into a sample in the shape of a strip with a width of 6 mm and a length of 25 mm (portion to be tensed).
  • the sample was subjected to a tensile test at a temperature of 23°C and a humidity of 50%.
  • the Young's modulus was calculated from the tensile strength at a strain of 2.5% and a tensile rate of 1 mm/min.
  • the above film was cut into a sample in the shape of a strip with a width of 6 mm and a length of 25 mm.
  • a strain of 5% was applied to the sample at a rate of 1000 mm/minute at a temperature of 23°C and a humidity of 50%. Changes in the stress was monitored with a cross head of a tensile tester being suspended. A period of time in which the stress was reduced to 37% of the initial stress was determined as the stress relaxation time.
  • a reaction vessel equipped with a stirrer was charged with 6.6 parts of 2,4-tolylene diisocyanate, 0.015 part of 2,6-di-t-butyl-p-cresol, 0.48 part of dibutyltin dilaurate, 0.005 part of phenothiazine, and 16.2 parts of IBXA (manufactured by Osaka Organic Chemical Industry, Ltd.).
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 2.9 parts of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • 50.0 parts of polytetramethylene glycol with a number average molecular weight of 2000 manufactured by Mitsubishi Chemical
  • the mixture was stirred at 50-60°C for four hours. The reaction was terminated when the residual isocyanate concentration was 0.1 wt% or less.
  • the mixture was stirred at 40-50°C for 30 minutes.
  • the mixture was stirred for 30 minutes.
  • the primary material was applied to a metal wire and cured using an optical fiber drawing equipment (manufactured by Yoshida Kogyo Co., Ltd.).
  • the compositions of the Examples and Comparative Examples were applied to the cured primary material.
  • the drawing conditions for the wire were as follows.
  • the diameter of the metal wire was 125 ⁇ m.
  • the diameter of the coated wire was adjusted to 200 ⁇ m after the primary coating material was cured.
  • the composition of the Example or Comparative Example was applied to the primary material thus formed so that the diameter was 250 ⁇ m after curing.
  • a UV lamp (“SMX 3.5 kW" manufactured by ORC Manufacturing Co., Ltd.) was used as a UV irradiation equipment. Applicability was evaluated at a wire drawing rate of 1000 m/min.
  • Example 3 Preparation of a composition comprising urethane (meth)acrylate prepared from a copolymer of ethylene oxide and butylenes oxide
  • a reaction vessel equipped with a stirrer was charged with 11.835 g of 2,4-tolylene diisocyanate, 0.011 g of 2,6-di-t-butyl-p-cresol, 0.036 g of dibutyltin dilaurate, and 0.004 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 10.709 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • Example 4 Preparation of a composition comprising urethane (meth)acrylate prepared from a copolymer of ethylene oxide and butylene oxide
  • a reaction vessel equipped with a stirrer was charged with 11.835 g of 2,4-tolylene diisocyanate, 0.011 g of 2,6-di-t-butyl-p-cresol, 0.036 g of dibutyltin dilaurate, and 0.004 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 10.709 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • Example 5 Preparation of a composition comprising urethane (meth)acrylate prepared from a copolymer of ethylene oxide and butylene oxide
  • a reaction vessel equipped with a stirrer was charged with 9.9 g of tricyclodecanediyldimethyl diacrylate, 15.4 g of 2,4-tolylene diisocyanate, 0.013 g of 2,6-di-t-butyl-p-cresol, 0.044 g of dibutylin dilaurate, and 0.004 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or below while stirring. After the addition of 13.1 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less, the mixture was allowed to react for one hour while stirring.
  • Example 6 Preparation of a composition comprising urethane (meth)acrylate prepared from a copolymer of ethylene oxide and butylene oxide
  • a reaction vessel equipped with a stirrer was charged with 14.5 g of 2,4-tolylene diisocyanate, 0.012 g of 2,6-di-t-butyl-p-cresol, 0.040 g of dibutyltindilaurate, and 0.004 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or below while stirring.
  • a reaction vessel equipped with a stirrer was charged with 11.835 g of 2,4-tolylene diisocyanate, 0.011 g of 2,6-di-t-butyl-p-cresol, 0.036 g of dibutyltin dilaurate, and 0.004 g of phenothiazine.
  • the mixture was cooled with ice to 10°C or less while stirring.
  • 10.709 g of hydroxyethyl acrylate dropwise while controlling the temperature at 20°C or less the mixture was allowed to react for one hour while stirring.
  • the liquid curable resin composition was applied to a glass plate using an applicator bar for a thickness of 250 ⁇ m.
  • the composition was cured by irradiation of ultraviolet rays at a dose of 1 J/cm 2 in air to obtain a test film.
  • the above film was allowed to stand at a temperature of 120°C and in hot water at 80°C for 30 days.
  • the cured film was cut into a sample in the shape of a strip with a width of 6 mm and a length of 25 mm.
  • the sample was subjected to a tensile test at a temperature of 23°C and a humidity of 50%.
  • the Young's modulus was calculated from the tensile strength at 2.5% strain and a tensile rate of 1 mm/min.
  • the cured film was cut into a sample in the shape of a strip with a width of 6 mm and a length of 25 mm.
  • the sample was subjected to a tensile test at a temperature of 23°C and a humidity of 50% to measure the stress at the time of breaking.
  • the tensile rate was 50 mm/min. 4. Evaluation of change in breaking strength over time as a result of exposure to heat and humidity:
  • a change in breaking strength before and after the durability test was calculated according to the equation given below. A sample which showed a change of -5 or more was judged as good.
  • each cured product shown in the tables had a Young's modulus before the test within the range of 700-1500 MPa, which is acceptable as a secondary material, a ribbon matrix material or an encapsulating matrix material.
  • the cured products in the Examples 3-6 were stable for a long period of time, under the different aging/durability conditions used due to a small change in the breaking strength over time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

L'invention concerne une composition de résine durcissable liquide comprenant un uréthane (méth)acrylate renfermant au moins un composant diol choisi dans le groupe constitué par un polypropylène glycol présentant un poids moléculaire moyen en nombre compris entre 300 et 5000, un copolymère d'oxyde de propylène et d'oxyde d'éthylène présentant un poids moléculaire moyen en nombre compris entre 300 et 5000, ainsi qu'un copolymère d'oxyde d'éthylène et d'oxyde de butylène présentant un poids moléculaire moyen en nombre compris entre 300 et 5000. La composition de résine durcissable liquide de la présente invention permet d'obtenir un produit durci présentant une stabilité améliorée à la chaleur et à l'humidité. Elle peut être utilisée comme matière secondaire, comme matière de matrice de ruban et comme matière de matrice d'enrobage.
PCT/NL2002/000182 2001-03-21 2002-03-21 Composition de resine durcissable liquide WO2002074849A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002241395A AU2002241395A1 (en) 2001-03-21 2002-03-21 Liquid curable resin composition

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-080214 2001-03-21
JP2001080214 2001-03-21
JP2001094974A JP2002293852A (ja) 2001-03-29 2001-03-29 液状硬化性樹脂組成物
JP2001-094974 2001-03-29
JP2001-159805 2001-05-29
JP2001159805A JP2002348337A (ja) 2001-03-21 2001-05-29 液状硬化性樹脂組成物

Publications (2)

Publication Number Publication Date
WO2002074849A2 true WO2002074849A2 (fr) 2002-09-26
WO2002074849A3 WO2002074849A3 (fr) 2002-11-21

Family

ID=27346300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/NL2002/000182 WO2002074849A2 (fr) 2001-03-21 2002-03-21 Composition de resine durcissable liquide

Country Status (2)

Country Link
AU (1) AU2002241395A1 (fr)
WO (1) WO2002074849A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120983A2 (fr) * 2007-03-29 2008-10-09 Dsm Ip Assets B.V. Matériau de matrice de ruban pour fibre optique présentant une excellente résistance à la flexion
WO2017103655A1 (fr) 2015-12-16 2017-06-22 Prysmian S.P.A. Fibre optique à résistance accrue aux hautes températures

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006846A1 (fr) * 1990-10-19 1992-04-30 Dsm Desotech, Inc. Composition de resine liquide durcissable
WO2000059972A1 (fr) * 1999-04-05 2000-10-12 Dsm N.V. Composition de resine pour photofabrication d'objets tridimensionnels
WO2000075211A1 (fr) * 1999-06-03 2000-12-14 Dsm N.V. Composition de resine photodurcissable et elements optiques
EP1081179A2 (fr) * 1999-08-31 2001-03-07 Dainippon Ink And Chemicals, Inc. Composition de résine photodurcissable et méthode pour son durcissement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992006846A1 (fr) * 1990-10-19 1992-04-30 Dsm Desotech, Inc. Composition de resine liquide durcissable
WO2000059972A1 (fr) * 1999-04-05 2000-10-12 Dsm N.V. Composition de resine pour photofabrication d'objets tridimensionnels
WO2000075211A1 (fr) * 1999-06-03 2000-12-14 Dsm N.V. Composition de resine photodurcissable et elements optiques
EP1081179A2 (fr) * 1999-08-31 2001-03-07 Dainippon Ink And Chemicals, Inc. Composition de résine photodurcissable et méthode pour son durcissement

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAI ET AL: "STUDIES OF STRUCTURE AND PROPERTIES OF PHOTOCROSSLINKED POLYURETHANE ACRYLATES" DIE MAKROMOLEKULAIRE CHEMIE, vol. 192, no. 1, 1991, pages 177-184, XP000209135 BASEL,CH *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120983A2 (fr) * 2007-03-29 2008-10-09 Dsm Ip Assets B.V. Matériau de matrice de ruban pour fibre optique présentant une excellente résistance à la flexion
WO2008120983A3 (fr) * 2007-03-29 2008-11-20 Dsm Ip Assets Bv Matériau de matrice de ruban pour fibre optique présentant une excellente résistance à la flexion
WO2017103655A1 (fr) 2015-12-16 2017-06-22 Prysmian S.P.A. Fibre optique à résistance accrue aux hautes températures
US10598881B2 (en) 2015-12-16 2020-03-24 Prysmian S.P.A Optical fibre with enhanced high temperature resistance

Also Published As

Publication number Publication date
AU2002241395A1 (en) 2002-10-03
WO2002074849A3 (fr) 2002-11-21

Similar Documents

Publication Publication Date Title
EP1809681B1 (fr) Composition de résine liquide durcissable pour enveloppe externe de fibre optique
EP1797149B1 (fr) Composition de resine liquide durcissable pour gaine superieure a fibres optiques
US20080045623A1 (en) Radiation-Curable Liquid Resin Optical Fiber Upjacket Composition
US20070246687A1 (en) Curable Liquid Resin Optical Fiber Up Jacket Composition
US8242202B2 (en) Curable liquid resin composition
EP1727867A1 (fr) Composition de resine liquide durcissable
EP1095085A1 (fr) Composition de resine photodurcissable
EP1268678B1 (fr) Composition de resine durcissable liquide et film double couche
EP1725606A1 (fr) Composition de resine liquide durcissante
JP4197216B2 (ja) 液状硬化性樹脂組成物およびその硬化物
WO2001083393A2 (fr) Composition de resine liquide durcissable pour fibres optiques
EP1476487B1 (fr) Composition de resine liquide durcissable
JP4763244B2 (ja) 液状硬化性樹脂組成物
JP3991472B2 (ja) 液状硬化性樹脂組成物
JP4147145B2 (ja) 液状硬化性樹脂組成物
WO2002074849A2 (fr) Composition de resine durcissable liquide
JP3324710B2 (ja) 液状硬化性樹脂組成物
JP2002348337A (ja) 液状硬化性樹脂組成物

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase