WO2002071808A1 - Heating and melting device for packaged solid lubricant and control method for the device - Google Patents

Heating and melting device for packaged solid lubricant and control method for the device Download PDF

Info

Publication number
WO2002071808A1
WO2002071808A1 PCT/JP2002/001954 JP0201954W WO02071808A1 WO 2002071808 A1 WO2002071808 A1 WO 2002071808A1 JP 0201954 W JP0201954 W JP 0201954W WO 02071808 A1 WO02071808 A1 WO 02071808A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating
oils
melting
heating means
temperature
Prior art date
Application number
PCT/JP2002/001954
Other languages
French (fr)
Japanese (ja)
Inventor
Toyoji Ikeda
Eiichi Yoshida
Seiichi Sagara
Yoshihiro Shoji
Original Assignee
Fuji Electric Co.,Ltd.
Fuji Oil Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co.,Ltd., Fuji Oil Co.,Ltd. filed Critical Fuji Electric Co.,Ltd.
Priority to JP2002570584A priority Critical patent/JP3797667B2/en
Publication of WO2002071808A1 publication Critical patent/WO2002071808A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor

Definitions

  • the present invention relates to an apparatus for heating and melting solid oils and fats in cans and a method for controlling the temperature thereof.
  • animal and vegetable oils such as coconut oil, palm oil, and lard, and their hardened oils, extremely hardened oils, and oils and fats that are mainly solid at room temperature, such as margarine, shortening, and chocolate, are stored in metal cans such as cans. It is widely stored, transported, and distributed in containers, but in many cases, its use requires melting by heating and melting to make it easy to handle.
  • the heating and melting method there is a merit that there is no problem of overheating deterioration of oils and fats because the heating temperature does not exceed 10 o ° c in the case of the force S, which is a method using a water bath, etc.
  • a direct fire such as a gas stove is usually used as a heat source for hot water so there is a danger of fire, and there is also a risk that water from the hot water may enter the oils and fats during handling.
  • a direct fire such as a gas stove is usually used as a heat source for hot water so there is a danger of fire, and there is also a risk that water from the hot water may enter the oils and fats during handling.
  • a method using a steam room but in that case, the equipment becomes large-scale.
  • a hot air chamber is used, but there is a problem in that power costs increase.
  • the heating coil for electromagnetic induction heating includes a cylindrical coil having a spirally wound winding and a spiral coil having a disk wound.
  • Cylindrical coils are used, for example, for heating coffee cans in canned beverage vending machines.
  • this cylindrical coil requires the container to be heated in and out in the axial direction of the heating coil.
  • loading and unloading the container is burdensome.
  • the weight of a dough can with food is close to 2 O kg.
  • spiral coils are disc-shaped and open on the sides, so they do not hinder the loading and unloading of containers, and are used in electromagnetic cookers that cook food by heating the pan bottom. .
  • This spiral coil is also suitable for heating a can.
  • the can can be easily heated by placing the can above a horizontally installed heating coil.
  • the present invention provides a rapid and efficient heating and melting method without deterioration of the contents. It is an object of the present invention to obtain a heating and melting apparatus for solid oils and fats in cans, which is capable of: Disclosure of the invention
  • Honkiaki is based on that knowledge.
  • the present inventors have started the development of a compact heating and melting apparatus for one dough can that employs electric heating means, It has been found that by properly controlling the installation position and the heating means, the solid fats and oils in the can can be efficiently heated and melted, and the present invention has been completed. That is, the present invention has a side surface heating means for heating at least a part of the side surface of the metal can and a bottom surface heating means for heating the bottom surface, and the bottom surface heating means is IH.
  • the solid fats and oils in a can that is heated and melted by the cans and the solid fats and oils in contact with the inner surface of the metal can heated by the heating means.
  • the main point of the method is to control the temperature of the heating and melting device for solid fats and oils in cans that stops the heating output after the products have melted to the extent that they form a continuous molten phase from the bottom to the top of the side.
  • the heating means an electric heater, IH, etc. can be adopted.
  • the metal can is made of a magnetic plate such as a tin can as represented by a can.
  • a can are preferred.
  • FIG. 1 is a longitudinal sectional view of a solidified substance melting device in a can showing a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of a canned solidified material melting apparatus according to a second embodiment of the present invention.
  • FIG. 3 is a plan view of FIG.
  • FIG. 4 is a left front view of FIG.
  • FIG. 5 is a control block diagram of the device of FIG.
  • FIG. 6 is a perspective view of a canned solidified material melting apparatus according to a third embodiment of the present invention.
  • FIG. 7 is a vertical sectional view of a tester used for determining a preset value in the present invention.
  • FIG. 8 is a top view showing the position of the resistance temperature detector in FIG.
  • FIG. 9 is a graph showing the results measured by the tester of FIG.
  • FIG. 10 is a longitudinal sectional view schematically showing a state of melting of a material to be melted when the apparatus of the present invention is used.
  • FIG. 1 shows a first embodiment of the present invention.
  • 6 is a spiral-shaped induction heating coil for a bottom surface as a means for heating the bottom surface
  • 5 is a spiral-shaped induction heating coil for a side surface as a heating means for the side surface
  • 4 is a magnetically transparent dough can mounting plate (bottom plate)
  • 3 Is a plate (side plate) made of a magnetically permeable material.
  • a small vertical hole is provided near the center of 4 and a sensor for detecting the surface temperature of the can (bottom temperature sensor) is insulated from the plate. 8) has been fixed.
  • a sensor (surface temperature sensor) 7 for detecting the surface temperature of the side surface of the can is fixed to the side plate 3.
  • the bottom and side heating means 5 and 6 are connected to a high frequency generator 9 of 20 to 25 kHz so that high frequency energy generated by the high frequency generator 9 can be supplied.
  • Reference numeral 10 denotes an energization control unit for separately controlling electric conduction to the side-surface induction heating coil 5 and the bottom-surface induction heating coil 6, and an operation panel (not shown) is provided at an upper part of the housing 11. .
  • the operation panel has operation buttons for presetting heating temperature, heating time, heating temperature by side heating means, heating time, and heat retention temperature and heat retention time according to the type of fat and oil.
  • means for instructing the start of heating is provided.
  • the preset data can be stored in a semiconductor nonvolatile memory installed in the device.
  • the side heating means 5 Stop supplying power to the power supply and switch to supplying power to bottom surface heating means 6.
  • the stop timing is determined by the preset value, and the value can be as short as about 1 minute.
  • the heated and melted bottom of the bottom surface flows to the upper part along the side of the continuous molten phase, so that even if the heating of the side surface is stopped, the continuous molten phase remains in the molten state. Will be maintained.
  • the power supplied to the bottom surface heating means 6 is PID controlled by the detection value of the bottom surface temperature sensor 8, and the surface temperature of the bottom surface of the can is maintained at a preset value.
  • the unheated solid fat After the heated and melted fat on the bottom surface flows to the upper part, the unheated solid fat is near its heated surface on its bottom surface due to its own weight. (A difference in specific gravity occurs), so that efficient heating can be performed. That is, since the unheated solid oil is always present near the heating surface, the thermal energy supplied to the bottom of the dough can be efficiently conducted to the object to be heated, and the energy loss due to unnecessary radiant heat is suppressed. Good thermal efficiency.
  • the heating by the side heating means 5 is not performed at all, or if a continuous molten phase is not formed even after the heating, the fats and oils near the bottom surface are overheated, and the quality of the fats and oils (including the deterioration of flavor) is brought about. In severe cases, there is no place for the expanded fats and oils to go out and the dough can rupture (joint breaks). There is also.
  • the heating is continued by the side surface heating means 5 even after the continuous molten phase is formed, the temperature of the oil or fat in excess of the oil or fat in contact with the side surface of the dough can, which is a heating element, has already been melted. The rise causes a decrease in thermal efficiency and deterioration of oil and fat quality. If heating by the side heating means 5 is to be continued, it should be minimized.
  • the side heating means 5 does not need to be installed so as to heat the entire periphery of the side surface of the metal can, and the object can be achieved by providing at least one part as described above. .
  • a can with a rectangular cross section such as a can
  • it is sufficient to heat one side for a short time which reduces the number of heating coils and the capacity of the high-frequency power supply.
  • the heating coil on the side is small, it will not be necessary to put the can in and out.
  • the convection of the molten phase inside the can becomes active, and the solid phase melts while being in a thermal steady state between the solid phase and the molten phase. In order to maintain such a steady state, it is important to set the amount of electric power to be supplied to the bottom surface heating means, which will be described later.
  • the heat retention temperature and the heat retention time are determined according to the preset values as described above.
  • the preset value (temperature) is set to a temperature that is higher than the melting point of the material to be melted, does not impair workability, and does not deteriorate quality.
  • FIG. 2 is a longitudinal sectional view of the melting apparatus
  • FIG. 3 is a plan view of FIG. 2
  • FIG. 4 is a left front view of FIG. 2 to 4
  • the main body 11 is made of a stainless steel plate, and is formed in an L-shaped box shape including a horizontal portion 11a and a vertical portion 11b.
  • the horizontal portion 11a serves as a platform for the can 1, and the can 1 is supported as shown so that the side surface of the can 1 contacts the vertical portion 11b.
  • Horizontal part 1 The part on which the 1a dough can 1 is placed is formed of a ceramic plate (bottom plate) 4 with a thickness of several mm, and is a spiral-shaped bottom guide with a diameter of about 300 mm close to the back surface.
  • a heating coil 6 is arranged.
  • the portion of the vertical portion 11b that contacts the can 1 is also formed of a similar ceramic plate (side plate) 3, and a similar side-surface induction heating coil 5 is arranged near the back surface thereof.
  • the level of the main body 11 is adjusted by a jack 11c.
  • a pair of left and right guide members 21 for guiding the can 1 to the illustrated position is provided on the upper surface of the horizontal portion 11a.
  • the guide member 21 is also made of a stainless steel plate, and the space at the inlet side (left side in FIG. 3) is widened so as to avoid the influence of the induction heating coil 6 for the bottom surface, and the end at the back side (right side in FIG. 3). The distance between them is determined by the width of the can 1 and this end is abutted on a vertical ceramic plate 3.
  • the can 1 is placed on the end of the placing stand 11 a as shown by a chain line in FIGS. 2 and 3, and is slid and pushed in until it hits the vertical part 11.
  • the left and right positions of the can 1 are shifted by the guide member 21 and positioned.
  • the horizontal part 11a of the main body is divided into two parts so that it can be separated vertically, and an induction heating inverter (IH impeller) that supplies a high-frequency current of 20 to 25kHz to the heating coils 5 and 6 in the lower box body High frequency generator 9 such as It is included with the energization control unit 10 (see Fig. 5).
  • the horizontal portion 11a has the upper and lower portions integrally stacked, but the lower portion can be separated and placed separately.
  • the upper surface of the main body vertical portion 11b is formed obliquely, and an operation panel 12 composed of a touch key is disposed in this portion.
  • FIG. 5 shows a control block diagram of the above device.
  • temperature sensors 7 and 8 each consisting of a thermistor for detecting the temperature of the side surface and the bottom surface of the can 1 are mounted by embedding, and the detection signals are provided. It is input to the power supply control unit 10 composed of CPU. From the operation panel 12, control data according to the type of the contents of the can 1 is set and input to the energization control unit 10, and the energization control unit 10 heats according to a predetermined program based on the control data. Control the energization of coils 5 and 6 separately.
  • Reference numeral 13 denotes a contactor for switching the energization between the side-surface induction heating coil 5 and the bottom surface induction heating coil 6.
  • the operation method in the second embodiment shown in FIGS. 2 to 5 is the same as that in the first embodiment shown in FIG. 1, and thus detailed description is omitted, but also in the second embodiment.
  • electric power is supplied to the induction heating coil 5 for the side surface, and the dough 1 heated by the induction heating coil 5 for the side surface solid oils and fats in contact with the inner surface form a continuous molten phase from the bottom to the upper side. After melting to the extent, the power supplied to the side induction heating coil 5 is stopped and switched to the power supply to the bottom induction heating coil 6 to dissolve the solid fats and oils.
  • FIGS. 2 to 5 is of a single-unit type, as shown in FIG. 6, it is also possible to adopt a configuration in which a plurality of units are arranged side by side in a row.
  • the above-described energization control based on the control block diagram shown in FIG. 5 is, of course, an example, and it is possible to perform more complicated automated control, particularly for the twin machine shown in FIG. Or manually switch between induction heating coil 5 for the side and induction heating coil 6 for the bottom for small-scale users Such a simple specification can also be configured.
  • FIGs 7 and 8 show the test machine.
  • 3 1 to 3 5 are thermometers (resistance temperature detectors). As shown in the figure, 3 1 is the upper part of the center of the can, 3 2 is the center of the can, 3 3 is the bottom of the center of the can, and 3 4 is the can of the can.
  • the middle corner (non-heated side), 35 can measure the temperature of the grease in the middle of the heated side.
  • Reference numeral 36 denotes a temperature converter for converting the resistance values of the thermometers 31 to 35 into temperature, and the measured temperature is output from the printer 38 via the CPU 37.
  • Figure 9 shows the results of using this tester to determine the steady state by varying the amount of power and time applied to the bottom and side heating means.
  • FIG. 10 schematically shows the state of melting of the material to be melted at that time.
  • FIG. 9 is a graph when extremely hardened oil is used as the material to be melted.
  • the power supply is stopped, and the power supply is switched to the bottom induction heating coil 6. Since the purpose of side heating is to form the continuous molten phase as quickly as possible, the temperature of the continuous molten phase is usually 150 to Select a preset value for side heating so that the temperature is as high as about 200 and the time is short (about 1 minute).
  • the melt that has been heated and melted at the bottom The melted material flows upward through the side surface, and after a while, a continuous molten phase is formed on all sides of the can (State 3), and the solid fat sinks down due to its large specific gravity, and is always near the heated surface.
  • the heat energy supplied to the bottom of the can can be efficiently conducted to the object to be heated and consumed as melting energy for melting fats and oils (solid phase).
  • state 4 the convection of the molten phase inside the can becomes active (state 4), and the solid phase and the molten phase become in a thermal steady state (in the graph, there is a flat portion near 100 ° C). It can be understood from its appearance).
  • the steady state depends on the amount of energy input and the melting rate of the solid phase, and the melting rate (surface area of the remaining solid phase, thermal conductivity, viscosity of the liquid phase, temperature difference from the melting phase, etc.). If more than the specified amount of melting per unit time is applied, the steady state is liable to collapse, and only the melting phase temperature rises rapidly, causing quality deterioration.
  • the steady-state temperature is set at a temperature close to the upper limit where the steady-state is maintained and the quality (including flavor) does not cause any deterioration according to the type of fat.
  • the temperature in the steady state was set at 100 ° C.
  • the preset value (temperature) of the bottom surface heating means is set so that the inside of the can becomes a steady state temperature.
  • the preset value (time) should be set by correcting the outside temperature based on the time required for the entire amount of the material to be melted. If rapid thawing is not required, the transition to the warm state can be made earlier.
  • the apparatus and the melting method of the present invention taking advantage of the features of IH, it is extremely quick (with about 20 minutes depending on the type of solid fats and oils) by safe, clean and simple operation. Melting the entire solid fats and oils in cans In addition, since overheating of the molten fat is suppressed, the quality and flavor of the fat and oil are not impaired.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

A heating and melting device for packaged solid lubricant, comprising a side surface heating means for heating at least a part of the side surface of a metal container and a bottom surface heating means for heating the bottom surface thereof, wherein the bottom surface heating means is of the IH (Electromagnetic Inductance Heating) type; a method of controlling the temperature of a heating and melting device for packaged solid lubricant, comprising the step of substantially stopping a heating output after the solid lubricant coming into contact with the inner surface of the metal container heated by the heating means is melted to such a degree, by a heating from the side surface heating means, that a continuous molten phase is formed in an area ranging from the side surface bottom part to the side surface upper part of the metal container; whereby, by utilizing the features of IH, the entire portion of the packaged solid lubricant can be molten safely, cleanly, and very rapidly (approx. 20 minutes depending on the type of solid lubricant) with a simple operation and, since the overheating of the molten lubricant can be suppressed, the quality and taste of the lubricant are not impaired.

Description

明 細 書 缶入り固形油脂類の加熱融解装置及びその制御方法 技術分野  Technical Field Apparatus for heating and melting solid oils and fats in cans and control method thereof
本発明は、 缶入り固形油脂類の加熱融解装置及びその温度制御方法に 関する。 背景技術  The present invention relates to an apparatus for heating and melting solid oils and fats in cans and a method for controlling the temperature thereof. Background art
従来より、 ヤシ油、 パーム油、 ラードなどの動植物油、 及びそれらの 硬化油、 極度硬化油あるいは、 マーガリン、 ショートニング、 チョコレ ートなど主として常温で固形の油脂類が一斗缶などの金属缶に入れられ て広く保管、 運搬、 流通しているが、 多くの場合その使用に際しては取 り扱い上容易であるように加熱融解して流動化する必要がある。 加熱融 解方法としては、湯煎などによる方法が行われている力 S、湯煎の場合は、 加熱温度が 1 0 o °cを上回らないため、 油脂類の過熱劣化の問題が無い というメリットがあるものの、 湯煎の熱源として通常、 ガスコンロ等の 直火を使用するため火気の危険がある他、 取り扱い中に誤って油脂中へ 湯煎の水が混入してしまうおそれもある。 この他、 蒸気庫を使用する方 法もあるが、 その場合は装置が大掛かりとなってしまう。 また、 温風庫 を採用する例もあるが、 電力コストがかさむという問題がある。  Conventionally, animal and vegetable oils such as coconut oil, palm oil, and lard, and their hardened oils, extremely hardened oils, and oils and fats that are mainly solid at room temperature, such as margarine, shortening, and chocolate, are stored in metal cans such as cans. It is widely stored, transported, and distributed in containers, but in many cases, its use requires melting by heating and melting to make it easy to handle. As the heating and melting method, there is a merit that there is no problem of overheating deterioration of oils and fats because the heating temperature does not exceed 10 o ° c in the case of the force S, which is a method using a water bath, etc. However, a direct fire such as a gas stove is usually used as a heat source for hot water so there is a danger of fire, and there is also a risk that water from the hot water may enter the oils and fats during handling. In addition, there is a method using a steam room, but in that case, the equipment becomes large-scale. In some cases, a hot air chamber is used, but there is a problem in that power costs increase.
更に、 これら従来型の加熱融解方法では、 内容物が完全に融解するま でに通常、 3〜 4時間程度を要するため作業性に不便があるばかりでな く、 温風庫の場合を除いて温度管理が大雑把なため、 融解後もそのまま 必要以上の加熱を続け無駄なエネルギーを消費してしまっているとい うのが実態である。 このことは、 特に、 斗缶 1個ないし数個といった少 量を使用するユーザー、 例えばレストラン、 ファーストフード店、 揚げ 物店などにおいて問題であった。 Furthermore, these conventional heating and melting methods usually require about 3 to 4 hours to completely melt the contents, which is not only inconvenient in terms of workability, but also except in the case of a hot air chamber. Because the temperature control is so rough, the actual situation is that after melting, heating is continued more than necessary and wasteful energy is consumed. This is especially true for small or one dozen cans. The problem was with users who used the quantity, such as restaurants, fast food stores, fried food stores, and the like.
一方、 鉄系容器の加熱手段として、 容器に近接させて配置した加熱コ ィルに高周波電流を流して容器に渦電流を誘導し、 そのジュール熱によ り容器を発熱させる I H (電磁誘導加熱) が知られている。 この電磁誘 導加熱は、 容器自体を発熱させるためハイスピードで加熱することがで き、 作業時間の短縮が図れる他、 熱効率が高い、 安全性が高く清潔、 制 御が容易で操作が簡単などの利点を備えている。  On the other hand, as a means for heating an iron-based container, high frequency current is applied to a heating coil placed close to the container to induce eddy currents in the container, and the container is heated by Joule heat. ) It has been known. This electromagnetic induction heating heats the container itself, so it can be heated at a high speed, shortening the work time, and has high thermal efficiency, high safety and cleanliness, easy control and easy operation, etc. It has the advantages of:
電磁誘導加熱の加熱コイルには、 巻線をらせん状に卷回した円筒状コ ィルと、 円盤状に卷回した渦卷形コイルとがある。 円筒形コイルは、 例 えば缶入り飲料自動販売機において、 コーヒー缶の加熱などに用いられ ている。 しかし、 この円筒形コイルは被加熱容器を加熱コイルの軸方向 に出し入れする必要があるため、 本発明が主として対象とする 1 8リツ トル缶 (斗缶) に適用しょうとすると、 加熱作業時の容器の出し入れに 負担が生じるという問題がある。 ちなみに、 食材の入った斗缶の重量は 2 O k g近くある。 また、 横断面が方形の缶は、 綉導電流による発熱を 均等にすることが難しく、 特に缶の角部が過熱しゃすい。  The heating coil for electromagnetic induction heating includes a cylindrical coil having a spirally wound winding and a spiral coil having a disk wound. Cylindrical coils are used, for example, for heating coffee cans in canned beverage vending machines. However, this cylindrical coil requires the container to be heated in and out in the axial direction of the heating coil. There is a problem that loading and unloading the container is burdensome. By the way, the weight of a dough can with food is close to 2 O kg. In addition, it is difficult for cans with a rectangular cross section to even out heat generated by the conductive current, especially at the corners of the can.
これに対して、 渦巻形コイルは形状が円盤状で側方が開放されている ため容器の出し入れのじゃまにならず、 なべ底を発熱させて食材を調理 する電磁調理器などに用いられている。 この渦巻形コイルは斗缶の加熱 にも好適であり、 電磁調理器と同様に、 水平に設置した加熱コイルの上 方に缶を載置することにより缶を容易に加熱することができる。  On the other hand, spiral coils are disc-shaped and open on the sides, so they do not hinder the loading and unloading of containers, and are used in electromagnetic cookers that cook food by heating the pan bottom. . This spiral coil is also suitable for heating a can. As in an electromagnetic cooker, the can can be easily heated by placing the can above a horizontally installed heating coil.
ところが、 渦卷形コイルを用いて缶の底面を誘導加熱する方法を実際 に試してみたところ、 加熱の進行に伴なつて缶が膨張し、 更に加熱を続 けると破裂してしまうということが判明した。  However, when a method of inductively heating the bottom of the can using a spiral coil was actually tried, it was found that the can expands as the heating progresses and bursts when heating is continued. found.
本発明は、 内容物の品質劣化がなく急速かつ高効率で加熱融解するこ とが可能な缶入り固形油脂類の加熱融解装置を得ることを課題とした。 発明の開示 The present invention provides a rapid and efficient heating and melting method without deterioration of the contents. It is an object of the present invention to obtain a heating and melting apparatus for solid oils and fats in cans, which is capable of: Disclosure of the invention
発明者らは加熱実験を繰り返し、 上記した缶の膨張について原因の究 明に努めた結果、 次のような現象を突き止めた。 本癸明は、 その知見に 基づいてなされたものである。  The inventors repeated heating experiments and worked to determine the cause of the above-mentioned expansion of the can. As a result, the following phenomena were found. Honkiaki is based on that knowledge.
すなわち、 固形油脂類が充填された缶の底面を加熱すると、 この底面 からの熱伝達により固化物は底部から融解を始めるが、 その際の油脂の 体膨張により底部の融解層の体積を増大させる。 加えて、 固形油脂類中 に気泡として含まれていた空気や固化物の成分の中で比較的沸点の低い 成分が気体となって膨張し、 更に体積を増大させる。 ところが、 固形油 脂類の上部は未だ固化したままであり、 融解層の上方をいわば栓をした 状態で密閉している。 そのため、 膨張した油脂及び気体は行き場がなく 缶を膨張させるとともに、ついには破裂させるに至るのである。そこで、 発明者らは、 融解の過程で膨張した油脂及ぴ気体を上方に逃がすことを 思い立ち、 以下の手段を講じたところ、 缶の膨張を解消することができ たものである。  In other words, when the bottom of a can filled with solid fats and oils is heated, the solidified material starts to melt from the bottom due to heat transfer from this bottom, but the volume of the molten layer at the bottom increases due to body expansion of the fats and oils at that time. . In addition, among the components of air and solids contained as air bubbles in solid fats and oils, components having relatively low boiling points expand as gas and expand further. However, the upper part of the solid fat is still solidified, and the upper part of the molten layer is sealed with a so-called plug. As a result, the expanded fats and oils have nowhere to go and cause the can to expand and eventually burst. Therefore, the inventors thought that the fats and oils and gases expanded during the melting process were allowed to escape upward, and by taking the following measures, the cans could be prevented from expanding.
つまり、 本発明者らは、 上記課題に鑑み鋭意研究の結果、 電気的な加 熱手段を採用した斗缶 1個用のコンパク トな加熱融解装置の開発に着手 し、 当該装置における加熱手段の設置位置及び当該加熱手段の制御をェ 夫することにより効率良く斗缶内の固形油脂類を加熱融解できるとの知 見を得、 本発明を完成するに至った。 すなわち本発明は、 金属缶の少な くとも側面の一部を加熱するための側面加熱手段及び、 底面を加熱す るための底面加熱手段を有し、 当該底面加熱手段が I Hであることを特 徴とする缶入り固形油脂類の加熱融解装置、 及び側面加熱手段による加 熱が、 当該加熱手段によって加熱される金属缶内側面に接する固形油脂 類が側面底部から側面上部に渡って連続融解相を形成する程度まで融解 した後は加熱出力を実質的に止める缶入り固形油脂類の加熱融解装置の 温度制御方法を骨子とする。 That is, as a result of intensive studies in view of the above problems, the present inventors have started the development of a compact heating and melting apparatus for one dough can that employs electric heating means, It has been found that by properly controlling the installation position and the heating means, the solid fats and oils in the can can be efficiently heated and melted, and the present invention has been completed. That is, the present invention has a side surface heating means for heating at least a part of the side surface of the metal can and a bottom surface heating means for heating the bottom surface, and the bottom surface heating means is IH. The solid fats and oils in a can that is heated and melted by the cans and the solid fats and oils in contact with the inner surface of the metal can heated by the heating means. The main point of the method is to control the temperature of the heating and melting device for solid fats and oils in cans that stops the heating output after the products have melted to the extent that they form a continuous molten phase from the bottom to the top of the side.
加熱手段は、 電熱ヒーター、 I Hなどを採用することができるが、 I Hを採用する場合は I Hの加熱効率上、 金属缶の素材としては、 斗缶に 代表されるようなブリキなどの磁性板からなるものが好ましい。 図面の簡単な説明  As the heating means, an electric heater, IH, etc. can be adopted.However, in the case of using IH, due to the heating efficiency of IH, the metal can is made of a magnetic plate such as a tin can as represented by a can. Are preferred. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1の実施の形態を示す缶入り固化物融解装置の縦 断面図である。  FIG. 1 is a longitudinal sectional view of a solidified substance melting device in a can showing a first embodiment of the present invention.
図 2は、 本発明の第 2の実施の形態を示す缶入り固化物融解装置の縦 断面図である。  FIG. 2 is a longitudinal sectional view of a canned solidified material melting apparatus according to a second embodiment of the present invention.
図 3は、 図 2の平面図である。  FIG. 3 is a plan view of FIG.
図 4は、 図 2の左正面図である。  FIG. 4 is a left front view of FIG.
図 5は、 図 2の装置の制御ブロック図である。  FIG. 5 is a control block diagram of the device of FIG.
図 6は、 本発明の第 3の実施の形態を示す缶入り固化物融解装置の斜 視図である。  FIG. 6 is a perspective view of a canned solidified material melting apparatus according to a third embodiment of the present invention.
図 7は、 本発明においてプリセット値を決定するために用いたテスト 機の縦断面図である。  FIG. 7 is a vertical sectional view of a tester used for determining a preset value in the present invention.
図 8は、 図 7における測温抵抗体の位置を示す上面図である。  FIG. 8 is a top view showing the position of the resistance temperature detector in FIG.
図 9は、 図 7のテスト機によって測定した結果を示すグラフである。 図 1 0は、 本発明の装置を用いたときの被融解物の融解の様子を模式 的に示す縦断面図である。 発明を実施するための最良の形態  FIG. 9 is a graph showing the results measured by the tester of FIG. FIG. 10 is a longitudinal sectional view schematically showing a state of melting of a material to be melted when the apparatus of the present invention is used. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の装置を用いて斗缶入りの固形油脂を融解することを例 として、 本発明を説明する。 図 1は、 本発明の第 1の実施形態を示した ものである。 6は底面加熱手段としての渦巻形の底面用誘導加熱コイル、 5は側面加熱手段としての渦卷形の側面用誘導加熱コイル、 4は磁気透 過性の斗缶載置プレート (底板) 、 3は磁気透過性素材のプレート (側 板) であり、 4の中央付近には垂直に小さな孔を設けてプレートとは熱 的に絶縁した状態で斗缶表面温度検出用のセンサー(底面用温度センサ) 8が固定されている。 同様にして側板 3にも斗缶側面の表面温度検出用 センサー (側面用温度センサ) 7が固定されている。 底面及ぴ側面加熱 手段 5 , 6は 2 0〜2 5 k H zの高周波発生装置 9と接続しており、 高 周波発生装置 9で発生する高周波エネルギーを投入することができる。 1 0は側面用誘導加熱コイル 5及び底面用誘導加熱コイル 6に対する通 電を別個に制御する通電制御部であり、 筐体 1 1の上部には操作パネル (図示せず) が設置してある。 The following is an example of melting solid fats and oils contained in a can using the apparatus of the present invention. The present invention will be described as follows. FIG. 1 shows a first embodiment of the present invention. 6 is a spiral-shaped induction heating coil for a bottom surface as a means for heating the bottom surface, 5 is a spiral-shaped induction heating coil for a side surface as a heating means for the side surface, 4 is a magnetically transparent dough can mounting plate (bottom plate), 3 Is a plate (side plate) made of a magnetically permeable material. A small vertical hole is provided near the center of 4 and a sensor for detecting the surface temperature of the can (bottom temperature sensor) is insulated from the plate. 8) has been fixed. Similarly, a sensor (surface temperature sensor) 7 for detecting the surface temperature of the side surface of the can is fixed to the side plate 3. The bottom and side heating means 5 and 6 are connected to a high frequency generator 9 of 20 to 25 kHz so that high frequency energy generated by the high frequency generator 9 can be supplied. Reference numeral 10 denotes an energization control unit for separately controlling electric conduction to the side-surface induction heating coil 5 and the bottom-surface induction heating coil 6, and an operation panel (not shown) is provided at an upper part of the housing 11. .
操作パネルには、 油脂の種類の応じ、 底面加熱手段によって加熱する 加熱温度、 加熱時間、 側面加熱手段によって加熱する加熱温度、 加熱時 間ならびに保温温度と保温時間をプリセットするための操作ボタン及ぴ 表示手段の他、 加熱開始を指示するための手段を設けてある。 尚、 プリ セットデータは、 装置に設置した半導体不揮発メモリに記憶することが できる。  The operation panel has operation buttons for presetting heating temperature, heating time, heating temperature by side heating means, heating time, and heat retention temperature and heat retention time according to the type of fat and oil. In addition to the display means, means for instructing the start of heating is provided. The preset data can be stored in a semiconductor nonvolatile memory installed in the device.
斗缶載置プレート (底板) に固形油脂 2として極度硬化菜種油約 1 8 Lを入れた斗缶 1を開栓して載置した後、 操作パネルより極度硬化菜種 油用のプリセットデータを呼び出してプリセットし、 加熱開始を指示す ると、 先ず側面加熱手段 5に 5 KWの電力 (高周波) が供給される。 側 面加熱手段 5に供給される電力は、 側面用温度センサ 8によって検出さ れた側面斗缶表面温度に応じ P I D制御されるため、 斗缶表面温度は、 短時間でプリセットされた加熱温度 (プリセット温度) に達した後、 一 定に維持されるが、 当該加熱手段 5によって加熱される斗缶内側面に接 する固形油脂類が側面底部から側面上部に渡り連続融解相を形成する程 度まで融解した後は側面加熱手段 5に供給する電力を止めて底面加熱手 段 6への電力供給へと切替える。 止めるタイミングはプリセット値で決 定され、 その値は約 1分程度と短時間でよい。 尚、 両加熱手段 5 , 6への 電力供給を両方同時に行ったり、 側面加熱手段 5に供給する電力を止め ずに微弱な電力を供給し続けることもできるが、 回路設計上、 上記のよ うに側面加熱手段 5から底面加熱手段 6への電力の切替えを行うことが 簡便である。 _ ー且当該連続融解相が形成されると、 底面の加熱されて融解したある 程度高温の油脂が当該連続融解相側面を伝って上部に流れるため側面の 加熱を止めても当該連続融解相は維持される。 Open the dough can 1 containing about 18 L of extremely hardened rapeseed oil as the solid fat 2 on the dough can mounting plate (bottom plate) and place it. Then call the preset data for extremely hardened rapeseed oil from the operation panel. After presetting and instructing to start heating, first, 5 KW of electric power (high frequency) is supplied to the side surface heating means 5. The electric power supplied to the side heating means 5 is PID controlled in accordance with the surface temperature of the side canister detected by the temperature sensor 8 for the side surface. After reaching the preset temperature) After the solid oils and fats in contact with the inner surface of the dough heated by the heating means 5 are melted to such an extent that a continuous molten phase is formed from the bottom to the top of the side, the side heating means 5 Stop supplying power to the power supply and switch to supplying power to bottom surface heating means 6. The stop timing is determined by the preset value, and the value can be as short as about 1 minute. In addition, it is possible to supply power to both heating means 5 and 6 at the same time, or to continue supplying weak power without stopping the power supply to the side heating means 5, but as described above, due to the circuit design, It is convenient to switch the electric power from the side heating means 5 to the bottom heating means 6. When the continuous molten phase is formed, the heated and melted bottom of the bottom surface flows to the upper part along the side of the continuous molten phase, so that even if the heating of the side surface is stopped, the continuous molten phase remains in the molten state. Will be maintained.
底面加熱手段 6に供給される電力は、 底面用温度センサ 8の検出値に よって P I D制御され、 斗缶底面の表面温度はプリセット値に維持され る。  The power supplied to the bottom surface heating means 6 is PID controlled by the detection value of the bottom surface temperature sensor 8, and the surface temperature of the bottom surface of the can is maintained at a preset value.
底面の加熱融解された油脂が上部へ流れた後は、 底面の加熱面付近に は未加熱の固形油脂がその自重 (一般に油脂の比重は固体の方が大きい ことに加えて温度差によつて比重差が生じる) によつて底面へ移動する ために、 効率の良い加熱が行える。 すなわち、 常に未加熱の固形油が加 熱面近傍に存在することにより、 斗缶の底面に供給された熱エネルギー が効率良く被加熱体に伝導することとなり、 無駄な輻射熱によるエネル ギー損失が抑えられて熱効率が良い。  After the heated and melted fat on the bottom surface flows to the upper part, the unheated solid fat is near its heated surface on its bottom surface due to its own weight. (A difference in specific gravity occurs), so that efficient heating can be performed. That is, since the unheated solid oil is always present near the heating surface, the thermal energy supplied to the bottom of the dough can be efficiently conducted to the object to be heated, and the energy loss due to unnecessary radiant heat is suppressed. Good thermal efficiency.
側面加熱手段 5による加熱を全く行わない場合あるいは加熱を行って も連続融解相が形成されない場合は、 底面付近の油脂が過熱されてしま い、 油脂の品質 (風味の劣化を含む) をきたすばかりか、 ひどい場合は 膨張した油脂の行き場がなくなり斗缶が破裂 (接合部が破損) すること もある。 一方、 前記連続融解相が形成された後も、 側面加熱手段 5によ つてそのまま加熱を続ける場合は発熱体となる斗缶側面に接する油脂が 既に融解しているため当該油脂の必要以上の温度上昇により熱効率の低 下及び油脂の品質劣化をきたす。 側面加熱手段 5による加熱を続ける場 合は必要最小限に抑えるべきである。 If the heating by the side heating means 5 is not performed at all, or if a continuous molten phase is not formed even after the heating, the fats and oils near the bottom surface are overheated, and the quality of the fats and oils (including the deterioration of flavor) is brought about. In severe cases, there is no place for the expanded fats and oils to go out and the dough can rupture (joint breaks). There is also. On the other hand, if the heating is continued by the side surface heating means 5 even after the continuous molten phase is formed, the temperature of the oil or fat in excess of the oil or fat in contact with the side surface of the dough can, which is a heating element, has already been melted. The rise causes a decrease in thermal efficiency and deterioration of oil and fat quality. If heating by the side heating means 5 is to be continued, it should be minimized.
側面加熱手段 5は、 意外にも金属缶側面の周囲全体を加熱するように 設置する必要はなく、 上記のように少なくとも 1部を加熱するように設 けることでその目的を達成することができる。 斗缶のように横断面方形 の缶の場合は、 1面を短時間加熱すれば足り、 これにより加熱コイルの 数が減るとともに、 高周波電源の容量が小さくて済む。 また、 側面の加 熱コィルが少なければ、 それだけ缶の出し入れのじやまにもならない。 側面に連続融解相が形成されて程なく、 斗缶内部での融解相の対流が 活発となり、 固形相と融解相との間は熱的な定常状態となりながら固形 相は融解していく。 かかる定常状態を維持するために底面加熱手段に投 入する電力量をいかなる値にするかが重要であるが、 これについては後 述する。  Surprisingly, the side heating means 5 does not need to be installed so as to heat the entire periphery of the side surface of the metal can, and the object can be achieved by providing at least one part as described above. . In the case of a can with a rectangular cross section, such as a can, it is sufficient to heat one side for a short time, which reduces the number of heating coils and the capacity of the high-frequency power supply. Also, if the heating coil on the side is small, it will not be necessary to put the can in and out. Shortly after the formation of the continuous molten phase on the side surface, the convection of the molten phase inside the can becomes active, and the solid phase melts while being in a thermal steady state between the solid phase and the molten phase. In order to maintain such a steady state, it is important to set the amount of electric power to be supplied to the bottom surface heating means, which will be described later.
全体が融解した後は、 底面加熱手段 6に供給する電力を低下させて保 温状態に遷移する。 但し、 融解をそれほど急ぐ必要がない場合は、 全体 が完全に融解するのを待たずして保温状態に遷移させて完全溶解するこ ともできる。 保温温度及ぴ保温時間は、 前記したようにプリセット値に 従って決定される。 当該プリセット値 (温度) は、 被融解物の融点以上 であって作業性に支障を生じない温度以上、 かつ品質劣化のない温度を 設定する。  After the whole is melted, the electric power supplied to the bottom surface heating means 6 is reduced, and the state is shifted to a warm state. However, if the melting does not need to be done so quickly, it is possible to make a transition to a warm state without waiting for the whole to completely melt, and to completely dissolve. The heat retention temperature and the heat retention time are determined according to the preset values as described above. The preset value (temperature) is set to a temperature that is higher than the melting point of the material to be melted, does not impair workability, and does not deteriorate quality.
なお、 空炊き防止のため、 温度センサー 7及び 8の検出値に基づいて 加熱上限値 (1 8 0 °C) 以上になると加熱手段 5及び 6に供給する電源 を切断する回路を有している。 次に、 図 2〜図 5に基づいて、 本発明の第 2の実施の形態について説 明する。 なお、 図 1及び各図において、 同一符号をつけるものはおよそ 同一機能を有し、 重複説明を省くこともある。 In addition, in order to prevent empty cooking, there is a circuit that cuts off the power supply to the heating means 5 and 6 when the temperature exceeds the heating upper limit (180 ° C) based on the detection values of the temperature sensors 7 and 8. . Next, a second embodiment of the present invention will be described with reference to FIGS. Note that, in FIG. 1 and each figure, components denoted by the same reference numerals have approximately the same functions, and redundant description may be omitted.
図 2は融解装置の縦断面図、 図 3は図 2の平面図、 図 4は図 2の左正 面図である。 図 2〜図 4において、 本体 1 1はステンレス板からなり、 水平部 1 1 aと垂直部 1 1 bとからなる L形の箱状に形成されている。 水平部 1 1 aは斗缶 1の置き台として、 斗缶 1の側面が垂直部 1 1 bに 接するように斗缶 1が図示の通り支持される。 水平部 1 1 aの斗缶 1が 置かれる部分は、 厚さが数 mmのセラミック板 (底板) 4で形成され、 その裏面に近接して直径が約 300m mの渦卷形の底面用誘導加熱コイル 6が配置されている。 また、 垂直部 1 1 bの斗缶 1と接する部分も同様 のセラミック板 (側板) 3で形成され、 その裏面に近接して同様の側面 用誘導加熱コイル 5が配置されている。 本体 1 1は、 ジャッキ 1 1 cに よりレベル調整される。  2 is a longitudinal sectional view of the melting apparatus, FIG. 3 is a plan view of FIG. 2, and FIG. 4 is a left front view of FIG. 2 to 4, the main body 11 is made of a stainless steel plate, and is formed in an L-shaped box shape including a horizontal portion 11a and a vertical portion 11b. The horizontal portion 11a serves as a platform for the can 1, and the can 1 is supported as shown so that the side surface of the can 1 contacts the vertical portion 11b. Horizontal part 1 The part on which the 1a dough can 1 is placed is formed of a ceramic plate (bottom plate) 4 with a thickness of several mm, and is a spiral-shaped bottom guide with a diameter of about 300 mm close to the back surface. A heating coil 6 is arranged. The portion of the vertical portion 11b that contacts the can 1 is also formed of a similar ceramic plate (side plate) 3, and a similar side-surface induction heating coil 5 is arranged near the back surface thereof. The level of the main body 11 is adjusted by a jack 11c.
水平部 1 1 aの上面には、 斗缶 1を図示位置に導く左右一対の案内部 材 2 1が設けられている。案内部材 2 1はやはりステンレス板からなり、 その入口側 (図 3の左側) の間隔は底面用誘導加熱コイル 6の影響を避 けるように広げられ、 奥側 (図 3の右側) の端部の間隔は、 斗缶 1の幅 に定められるとともに、 この端部は垂直なセラミック板 3に突き当てら れている。 この案内部材 2 1により、 斗缶 1を図 2及ぴ図 3に鎖線で示 すように置き台 1 1 aの端部に載せ、 これを滑らせて垂直部 1 1わに 突き当たるまで押し込むだけで、 斗缶 1の左右位置は案内部材 2 1で幅 寄せされて位置決めされる。  A pair of left and right guide members 21 for guiding the can 1 to the illustrated position is provided on the upper surface of the horizontal portion 11a. The guide member 21 is also made of a stainless steel plate, and the space at the inlet side (left side in FIG. 3) is widened so as to avoid the influence of the induction heating coil 6 for the bottom surface, and the end at the back side (right side in FIG. 3). The distance between them is determined by the width of the can 1 and this end is abutted on a vertical ceramic plate 3. With the guide member 21, the can 1 is placed on the end of the placing stand 11 a as shown by a chain line in FIGS. 2 and 3, and is slid and pushed in until it hits the vertical part 11. Thus, the left and right positions of the can 1 are shifted by the guide member 21 and positioned.
ここで、 本体水平部 1 1 aは上下に分離可能に 2分割され、 平箱状の 下部箱体内には加熱コイル 5及び 6に 20〜25kHz の高周波電流を供給 する誘導加熱インバータ ( I Hインパータ) 等の高周波発生装置 9が、 通電制御部 1 0 (図 5参照) とともに納められている。 なお、 図示では 水平部 1 1 aは上下部分が一体に重ねられているが、 下部を分離して別 置することもできる。一方、本体垂直部 1 1 bの上面は斜めに形成され、 この部分にタツチキーからなる操作パネル 1 2が配置されている。 Here, the horizontal part 11a of the main body is divided into two parts so that it can be separated vertically, and an induction heating inverter (IH impeller) that supplies a high-frequency current of 20 to 25kHz to the heating coils 5 and 6 in the lower box body High frequency generator 9 such as It is included with the energization control unit 10 (see Fig. 5). In the drawing, the horizontal portion 11a has the upper and lower portions integrally stacked, but the lower portion can be separated and placed separately. On the other hand, the upper surface of the main body vertical portion 11b is formed obliquely, and an operation panel 12 composed of a touch key is disposed in this portion.
図 5は上記装置の制御プロック図を示すものである。 図 5に示すよう に、 セラミック板 3及び 4の中心には、 斗缶 1の側面及び底面の温度を 検知するサーミスタからなる温度センサ 7及ぴ 8がそれぞれ埋め込みに より取り付けられ、 その検知信号は C P Uからなる通電制御部 1 0に入 力されている。 操作パネル 1 2からは、 斗缶 1の内容物の種類に応じた 制御データが通電制御部 1 0に設定入力され、 通電制御部 1 0はこの制 御データに基づき、 定められたプログラムに従って加熱コイル 5及ぴ 6 に対する通電を別個に制御する。 なお、 1 3は側面用誘導加熱'コイル 5 と底面用誘導加熱コイル 6との通電を切り換えるコンタクタである。 図 2〜 5に示した第 2の実施の形態における運転方法は、 図 1に示す 第 1の実施の形態と同様であるため、 詳細な説明は省略するが、 第 2の 実施の形態においても、 先ず側面用誘導加熱コイル 5に電力を供給し、 側面用誘導加熱コイル 5によつて加熱される斗缶 1内側面に接する固形 油脂類が側面底部から側面上部に渡り連続融解相を形成する程度まで融 解した後に、 側面用誘導加熱コイル 5に供給する電力を止めて底面用誘 導加熱コイル 6への電力供給へと切替えて、固形油脂類の溶解を行なう。 なお、図 2〜図 5の装置は単機式のものであるが、図 6に示すように、 複数機を横方向に並べて連装した構成とすることも可能である。 また、 図 5に示した制御プロック図に基づく上記した通電制御はいうまでもな く一つの例示であり、 特に図 6に示した連装機を対象として、 更に複雑 な自動化制御をすることが可能であり、 あるいは小規模使用者用として 側面用誘導加熱コイル 5と底面用誘導加熱コイル 6とを手動で切り換え るような簡素な仕様のものも構成可能である。 FIG. 5 shows a control block diagram of the above device. As shown in FIG. 5, at the center of the ceramic plates 3 and 4, temperature sensors 7 and 8 each consisting of a thermistor for detecting the temperature of the side surface and the bottom surface of the can 1 are mounted by embedding, and the detection signals are provided. It is input to the power supply control unit 10 composed of CPU. From the operation panel 12, control data according to the type of the contents of the can 1 is set and input to the energization control unit 10, and the energization control unit 10 heats according to a predetermined program based on the control data. Control the energization of coils 5 and 6 separately. Reference numeral 13 denotes a contactor for switching the energization between the side-surface induction heating coil 5 and the bottom surface induction heating coil 6. The operation method in the second embodiment shown in FIGS. 2 to 5 is the same as that in the first embodiment shown in FIG. 1, and thus detailed description is omitted, but also in the second embodiment. First, electric power is supplied to the induction heating coil 5 for the side surface, and the dough 1 heated by the induction heating coil 5 for the side surface solid oils and fats in contact with the inner surface form a continuous molten phase from the bottom to the upper side. After melting to the extent, the power supplied to the side induction heating coil 5 is stopped and switched to the power supply to the bottom induction heating coil 6 to dissolve the solid fats and oils. Although the apparatus shown in FIGS. 2 to 5 is of a single-unit type, as shown in FIG. 6, it is also possible to adopt a configuration in which a plurality of units are arranged side by side in a row. Also, the above-described energization control based on the control block diagram shown in FIG. 5 is, of course, an example, and it is possible to perform more complicated automated control, particularly for the twin machine shown in FIG. Or manually switch between induction heating coil 5 for the side and induction heating coil 6 for the bottom for small-scale users Such a simple specification can also be configured.
最後に、 本発明の温度制御及びプリセット値並びに本発明の装置を用 いた場合の被融解物の融解の様子について、 テスト機を用いて詳細に説 明する。  Finally, the temperature control and preset values of the present invention and the manner of melting of the material to be melted when the apparatus of the present invention is used will be described in detail using a test machine.
図 7及ぴ図 8にテスト機を示す。 3 1〜 3 5は温度計 (測温抵抗体) であり、それぞれ図示するように 3 1は斗缶中央上部、 3 2は斗缶中心、 3 3は斗缶中央底面、 3 4は斗缶中部コーナー (非加熱側面側) 、 3 5 は加熱側面中部の油脂の温度を測定することができる。 なお、 3 6は温 度計 3 1〜3 5の抵抗値を温度に変換する温度変換器であり、 測定した 温度は、 C P U 3 7を介してプリンタ 3 8で出力される。 このテスト機 を用い、 底面加熱手段及び側面加熱手段に与える電力量と時間を変化さ せて定常状態を求めた結果を図 9 (グラフ) に示す。 また、 そのときの 被融解物の融解の様子を図 1 0に模式的に示す。 図 9は、 被融解物とし て極度硬化油を用いた場合のグラフである。  Figures 7 and 8 show the test machine. 3 1 to 3 5 are thermometers (resistance temperature detectors). As shown in the figure, 3 1 is the upper part of the center of the can, 3 2 is the center of the can, 3 3 is the bottom of the center of the can, and 3 4 is the can of the can. The middle corner (non-heated side), 35 can measure the temperature of the grease in the middle of the heated side. Reference numeral 36 denotes a temperature converter for converting the resistance values of the thermometers 31 to 35 into temperature, and the measured temperature is output from the printer 38 via the CPU 37. Figure 9 (graph) shows the results of using this tester to determine the steady state by varying the amount of power and time applied to the bottom and side heating means. FIG. 10 schematically shows the state of melting of the material to be melted at that time. FIG. 9 is a graph when extremely hardened oil is used as the material to be melted.
まず、 側面用誘導加熱コイル 5に電力が投入されると (この時間をグ ラフの起点とする 0 0 : 0 0 ) 斗缶側面の加熱が開始され急速 (約 1 分) にその側面付近の油脂は融解して 1 5 0 °Cを超える (グラフにおい て温度計 3 5の値に示される) 。 この時点で、 固形油脂は側面底部から 側面上部に渡って連続融解相を形成する程度まで融解し (状態 1 ) 、 融 解物の一部は熱膨張によって固形油脂の上部へ流れる (状態 2 ) 。  First, when power is supplied to the induction heating coil 5 for the side (this time is the starting point of the graph: 0 0: 0 0), the heating of the side of the canister is started and the vicinity of the side is rapidly (approximately 1 minute). The fat melts above 150 ° C (as indicated by the thermometer 35 in the graph). At this point, the solid fat melts to the extent that a continuous molten phase is formed from the bottom to the top of the side (state 1), and a part of the melt flows to the top of the solid fat by thermal expansion (state 2). .
そこで電力投入を止め、 底面用誘導加熱コイル 6へ電力投入を切り替 える。 側面加熱の目的はできるだけ急速に当該連続融解相を形成するこ とにあるため、 被融解物の種類、 品質に与える温度の影響にもよるが通 常、連続融解相の温度として 1 5 0〜 2 0 0 程度の高温かつ短時間( 1 分程度) となるように側面加熱のプリセット値を選択する。  Therefore, the power supply is stopped, and the power supply is switched to the bottom induction heating coil 6. Since the purpose of side heating is to form the continuous molten phase as quickly as possible, the temperature of the continuous molten phase is usually 150 to Select a preset value for side heating so that the temperature is as high as about 200 and the time is short (about 1 minute).
一旦、 状態 1乃至 2の状態が形成されると、 底面で加熱融解された融 解物は側面を通って上部へ流れ、 しばらくすると斗缶側面のすべてに連 続融解相が形成されるようになり (状態 3 ) 、 固形油脂は比重が大きい ため下に沈み、 常に加熱面近傍に存在することにより、 斗缶の底面に供 給された熱エネルギーが効率良く被加熱体に伝導し油脂 (固形相) を融 解する融解エネルギーとして消費される。 程なく、 斗缶内部での融解相 の対流が活発となって (状態 4 ) 、 固形相と融解相との間は熱的な定常 状態となる (グラフにおいて 1 0 0 °C付近に平坦部が表れていることか ら理解できる) 。 Once the states 1 and 2 are formed, the melt that has been heated and melted at the bottom The melted material flows upward through the side surface, and after a while, a continuous molten phase is formed on all sides of the can (State 3), and the solid fat sinks down due to its large specific gravity, and is always near the heated surface. The heat energy supplied to the bottom of the can can be efficiently conducted to the object to be heated and consumed as melting energy for melting fats and oils (solid phase). Soon, the convection of the molten phase inside the can becomes active (state 4), and the solid phase and the molten phase become in a thermal steady state (in the graph, there is a flat portion near 100 ° C). It can be understood from its appearance).
伹し、 当該定常状態は、 投入エネルギー量と、 固形相の融解速度によ つて左右され、融解速度(残固形相の表面積、熱伝導率、液体相の粘度、 融解相との温度差等によって決る単位時間当りの融解量) を超えるエネ ルギーを投入すると定常状態が崩れやすく、 融解相の温度のみが急上昇 し品質劣化の原因となる。 定常状態の温度は、 油脂の種類に応じ、 定常 状態が維持され、 かつ、 品質 (風味を含む) 劣化の問題とならない上限 付近の温度を設定する。  However, the steady state depends on the amount of energy input and the melting rate of the solid phase, and the melting rate (surface area of the remaining solid phase, thermal conductivity, viscosity of the liquid phase, temperature difference from the melting phase, etc.). If more than the specified amount of melting per unit time is applied, the steady state is liable to collapse, and only the melting phase temperature rises rapidly, causing quality deterioration. The steady-state temperature is set at a temperature close to the upper limit where the steady-state is maintained and the quality (including flavor) does not cause any deterioration according to the type of fat.
今回の実験により極度硬化菜種油 (融点 6 1 . 5 °C) の場合、 定常状 態の温度として 1 0 0 °Cを設定した。 このように斗缶内部が定常状態の 温度となるように底面加熱手段のプリセット値 (温度) を設定する。 プ リセット値 (時間) は、 被融解物が全量融けるのに必要な時間を目安と し、 外気温による補正を行って設定するとよい。 それ程急速融解が必要 でない場合は、 早目に保温状態に遷移することもできる。 産業上の利用可能性  In this experiment, in the case of extremely hardened rapeseed oil (melting point 61.5 ° C), the temperature in the steady state was set at 100 ° C. In this way, the preset value (temperature) of the bottom surface heating means is set so that the inside of the can becomes a steady state temperature. The preset value (time) should be set by correcting the outside temperature based on the time required for the entire amount of the material to be melted. If rapid thawing is not required, the transition to the warm state can be made earlier. Industrial applicability
以上のようにして、 本発明の装置及び融解方法によれば、 I Hの特長 を生かして、 安全、 清潔で簡単な操作によりきわめて迅速に (固形油脂 類の種類にもよるが、 約 2 0分程度) 缶入り固形油脂類の全体を融解す ることができ、 しかも融解油脂への過熱が抑えられるため油脂の品質及 ぴ風味を損なうことがない。 As described above, according to the apparatus and the melting method of the present invention, taking advantage of the features of IH, it is extremely quick (with about 20 minutes depending on the type of solid fats and oils) by safe, clean and simple operation. Melting the entire solid fats and oils in cans In addition, since overheating of the molten fat is suppressed, the quality and flavor of the fat and oil are not impaired.

Claims

請求の範囲 The scope of the claims
1 .金属缶の少なくとも側面の一部を加熱するための側面加熱手段及び、 底面を加熱するための底面加熱手段を有し、当該底面加熱手段が I H (電 磁誘導加熱)であることを特徴とする缶入り固形油脂類の加熱融解装置。1. It has side heating means for heating at least a part of the side surface of the metal can and bottom heating means for heating the bottom, and the bottom heating means is IH (electromagnetic induction heating). A heating and melting device for solid fats and oils in cans.
2 . 金属缶が一斗缶である請求の範囲第 1項記載の缶入り固形油脂類の 加熱融解装置。 2. The apparatus for heating and melting solid fats and oils contained in a can according to claim 1, wherein the metal can is a single can.
3 . 側面加熱手段による加熱が、 当該加熱手段によって加熱される金属 缶内側面に接する固形油脂類が側面底部から側面上部に渡って連続融解 相を形成する程度まで融解した後は加熱出力を実質的に止める請求の範 囲第 1項記載の缶入り固形油脂類の加熱融解装置の温度制御方法。  3. The heating power is substantially reduced after the heating by the side heating means is completed until the solid fats and oils in contact with the inner surface of the metal can heated by the heating means are melted to the extent that a continuous molten phase is formed from the bottom to the top of the side. 2. The method for controlling the temperature of a heating and melting apparatus for solid oils and fats in cans according to claim 1, wherein the temperature is stopped.
4 . 側面加熱手段が I Hである請求の範囲第 1項記載の缶入り固形油脂 類の加熱融解装置。  4. The apparatus for heating and melting solid fats and oils in cans according to claim 1, wherein the side heating means is IH.
5 . 磁性板からなる横断面方形の缶に充填された固形油脂類を加熱して 融解させる缶入り固形油脂類の融解装置において、 前記缶を支持する置 き台と、 この置き台上に置かれた前記缶の底面に対面するように配設さ れた渦巻形の底面加熱コイルと、 同じく前記缶の側面に対面するように 配設された渦卷形の側面加熱コイルと、 これらの加熱コィルに通電する 高周波電源と、 前記底面加熱コイル及び側面加熱コイルに対する通電を 別個に制御する通電制御手段とを備えたことを特徴とする缶入り固形油 脂類の加熱融解装置。  5. In a melting device for solid fats and oils in a can which heats and melts solid fats and oils filled in a rectangular cross-section can made of a magnetic plate, a table for supporting the cans and a table for supporting the cans A spiral bottom heating coil disposed so as to face the bottom surface of the can, and a spiral side heating coil also disposed so as to face the side surface of the can. An apparatus for heating and melting solid oils in cans, comprising: a high-frequency power supply for energizing the coil; and energization control means for separately controlling energization of the bottom surface heating coil and the side surface heating coil.
PCT/JP2002/001954 2001-03-05 2002-03-04 Heating and melting device for packaged solid lubricant and control method for the device WO2002071808A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002570584A JP3797667B2 (en) 2001-03-05 2002-03-04 Heating and melting equipment for canned solid fats

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001060732 2001-03-05
JP2001-060385 2001-03-05
JP2001-060732 2001-03-05
JP2001060385 2001-03-05

Publications (1)

Publication Number Publication Date
WO2002071808A1 true WO2002071808A1 (en) 2002-09-12

Family

ID=26610634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001954 WO2002071808A1 (en) 2001-03-05 2002-03-04 Heating and melting device for packaged solid lubricant and control method for the device

Country Status (2)

Country Link
JP (1) JP3797667B2 (en)
WO (1) WO2002071808A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231178A (en) * 2008-03-25 2009-10-08 Panasonic Corp High-frequency induction heating device for bottomed metal cans

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658821U (en) * 1993-01-29 1994-08-16 不二製油株式会社 Insulation container for melting food
JPH11197010A (en) * 1998-01-08 1999-07-27 Tiger Vacuum Bottle Co Ltd Electric rice cooker
JP2000287575A (en) * 1999-04-02 2000-10-17 Matsumi Sano Dissolving device for honey

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658821U (en) * 1993-01-29 1994-08-16 不二製油株式会社 Insulation container for melting food
JPH11197010A (en) * 1998-01-08 1999-07-27 Tiger Vacuum Bottle Co Ltd Electric rice cooker
JP2000287575A (en) * 1999-04-02 2000-10-17 Matsumi Sano Dissolving device for honey

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009231178A (en) * 2008-03-25 2009-10-08 Panasonic Corp High-frequency induction heating device for bottomed metal cans

Also Published As

Publication number Publication date
JPWO2002071808A1 (en) 2004-07-02
JP3797667B2 (en) 2006-07-19

Similar Documents

Publication Publication Date Title
US6279463B1 (en) Cooking apparatus
WO2013148425A2 (en) Oil level detection system for deep fat fryer
WO2010096668A1 (en) Racking system for deep fryer
JP2010033981A (en) Induction heating cooker
JPH05502128A (en) Cookware control device and control method
JP2009100887A (en) Rice cooker
JP4969991B2 (en) Cooker
KR101529047B1 (en) Induction heating ramen cooker
CN111096069A (en) Multifunctional food cooking machine with water purification function
JP3797667B2 (en) Heating and melting equipment for canned solid fats
JP2011067311A (en) Cooker
JP4114484B2 (en) Cooker
EP1537808B1 (en) Coffee maker and microwave oven and method for controlling the same
JP3615382B2 (en) Cooking equipment
JP2008023134A (en) Rice cooker
JP2012048891A (en) Induction heating cooker
JP2014216275A (en) Control method of induction heating cooker and induction heating cooker
JP2004022305A (en) Electromagnetic induction heating cooking method, and induction heating cooker used for the same
JP2004207105A (en) Cooker
JP2011249187A (en) Electromagnetic cooker
JP2006012606A (en) Induction heating cooker
JP3997925B2 (en) Induction heating cooker
JP2011249188A (en) Electromagnetic cooker
JP2011249203A (en) Electromagnetic cooker
JP2932703B2 (en) Pot for induction heating cooker

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002570584

Country of ref document: JP

122 Ep: pct application non-entry in european phase