WO2002071474A2 - Method for broadening active semiconductor areas - Google Patents

Method for broadening active semiconductor areas Download PDF

Info

Publication number
WO2002071474A2
WO2002071474A2 PCT/EP2002/001786 EP0201786W WO02071474A2 WO 2002071474 A2 WO2002071474 A2 WO 2002071474A2 EP 0201786 W EP0201786 W EP 0201786W WO 02071474 A2 WO02071474 A2 WO 02071474A2
Authority
WO
WIPO (PCT)
Prior art keywords
pad
layer
semiconductor substrate
oxide layer
semiconductor
Prior art date
Application number
PCT/EP2002/001786
Other languages
German (de)
French (fr)
Other versions
WO2002071474A3 (en
Inventor
Dietmar Temmler
Andreas Wich-Glasen
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2002071474A2 publication Critical patent/WO2002071474A2/en
Publication of WO2002071474A3 publication Critical patent/WO2002071474A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76232Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls
    • H01L21/76235Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials of trenches having a shape other than rectangular or V-shape, e.g. rounded corners, oblique or rounded trench walls trench shape altered by a local oxidation of silicon process step, e.g. trench corner rounding by LOCOS

Definitions

  • the invention relates to a method for modifying active semiconductor regions of a semiconductor component and, in particular, for widening edge zones of these regions which represent electronic elements after the semiconductor component has been completed.
  • a method for widening active semiconductor regions on a semiconductor substrate which has at least one trench isolation (STI) comprises the steps of depositing a pad oxide layer on a surface of the semiconductor substrate; Depositing a pad nitride layer on the pad oxide layer; Patterning the pad nitride layer to create at least one opening in the pad nitride layer; Etching a first trench in the pad oxide layer and in the semiconductor substrate.
  • STI trench isolation
  • AA increasingly difficult.
  • the necessary high packing densities require the introduction of 1: 1 pitches with regard to the final dimensions, which places high demands on the lithography (resolution).
  • etch reserve etch bias
  • the lithography must produce correspondingly wider resist structures with the same width of active area and isolation trench (1: 1 pitch) (in order to form short circuits, so-called . Bridging faults to avoid).
  • the etch reserve in STI structuring has a stronger impact on the structure widths for scaled technologies in absolute terms. Subsequent process steps (oxidations) are also becoming more critical for scaled technologies with regard to the minimal structures (critical dimension, CD).
  • the object of the present invention is to specify a method with which the structure widths of active semiconductor regions can be set in a simple and inexpensive manner, essentially independently of other process steps in the production of the component.
  • the active semiconductor regions are covered with an epitaxial layer.
  • the epitaxial layer on the one hand allows the semiconductor structure to become thicker in the vertical direction, on the other hand the trenches of the semiconductor structure grow in the horizontal direction, its clear width between adjacent structures of the semiconductor structure (projecting on the structure surface) becomes smaller.
  • This epitaxial layer also changes the area ratio between the active and passive region of the semiconductor.
  • the method according to the invention for widening active semiconductor regions on a semiconductor substrate which has at least one trench isolation comprises; Depositing a pad nitride layer on the pad oxide layer; Structuring the pad nitride layer to produce at least one opening in the pad nitride layer and etching the at least one trench isolation in the pad oxide layer and in the semiconductor substrate according to the invention, selectively depositing an epitaxial layer with a predetermined thickness and oxidizing the surface of the semiconductor substrate Creation of a thin oxide layer for passivation.
  • the thin epitaxial layer has a predetermined doping.
  • the thickness of the epitaxial layer is preferably less than 0.3 times a critical structural dimension and is in particular of the order of 50 nm.
  • the selective deposition according to the invention of a thin epitaxial semiconductor layer after the STI structuring makes it possible for all STI-applying technologies to expose narrower active structures (active area or AA structures), the exposure in the less critical, "relaxed" area of lithography -Process window to perform.
  • the CD loss that occurs can be compensated for by epitaxy and even a CD gain can be achieved. Characterized in that the exposure in the less critical area of the lithographic process window is performed, the Ri ⁇ siko is lowered a short-circuiting.
  • Another advantage is the epitaxial pre-rounding of the edge of the active area, which is associated with a reduction of the so-called divot, which reduces its effect on the threshold voltage of the semiconductor element (array V ⁇ ) and the reliability of the gate oxide (GOX reliability) ) is improved.
  • FIG. 1 shows a cross section through a semiconductor structure with an active region and STI trench according to the prior art.
  • FIG. 2 shows a cross section through a semiconductor structure with an active region and an STI trench after a first step of the method according to the invention.
  • FIG. 3 shows a cross section through a semiconductor structure with an active region and an STI trench after a second step of the method according to the invention.
  • 4 shows an electron micrograph of a structure which was produced using the method according to the invention.
  • an active region 2 is located on a semiconductor substrate 1 and is separated from adjacent active regions by at least one trench isolation 2.
  • the corresponding method steps for the production of the active region 2 and the at least one trench insulation 3 comprise, as a first step, the deposition of a pad oxide layer 5 on a surface 4 of the semiconductor substrate 1.
  • a pad nitride layer 6 is then placed on the pad oxide layer 5 deposited.
  • the thickness of the pad oxide layer 5 is of the order of 10 to 100 nm, the thickness of the pad nitride layer 6 is between 100 and 200 nm.
  • the pad nitride layer 6 is structured in order to create at least one opening in the pad nitride layer 6.
  • the pad oxide layer 5 and partially the semiconductor substrate 1 are removed by etching in the opening in the pad nitride layer 6, so that at least one trench insulation 3 is produced.
  • the edge zones of the active semiconductor region are subsequently modified according to the invention. This is done by additional selective deposition of an epitaxial layer 7 on the
  • FIG. 2 The structure after the epitaxial layer 7 has been deposited according to the invention is shown in FIG. 2.
  • selectively deposited epitaxial semiconductor layer 7 only modifies the edge zones of the active regions 2.
  • the epitaxial layer 7 is preferably very thin and no complete electronic functions are implemented therein. In particular, their thickness is less than 0.3F, where F is the critical structural dimension of the technology under consideration.
  • the active region 2 in FIG. 2 is widened overall by the selective deposition of the epitaxial layer 7 with a predetermined thickness.
  • the situation after the epitaxial deposition on the side of the active region 2 at an edge 8, at which the pad nitride layer 6, the pad oxide layer 5 and the epitaxial layer 7 meet, is shown in an enlarged representation as an insert in FIG. 2.
  • the structure is passivated.
  • FIG. 3 shows a cross section through the structure after its oxidation.
  • a thin oxide layer 9 is generated, which serves to passivate the structure.
  • the critical area of the edge 8 of the active area 2 is shown in an enlarged representation as an insert in FIG. 3.
  • the deformation at the edge 8, which was caused by the epitaxial growth of the semiconductor layer 7, is further increased by the subsequent oxidation.
  • the deformation can, however, be eliminated using known method steps, which is explained further below. 2 and 3, the possibility of changing the horizontal extent of an active area 2 after the lithography permits a "more relaxed" structuring of active area 2 and STI trench isolation 3.
  • the thin epitaxial layer 7 can be produced with pure Si.
  • the epitaxial layer 7 can be deposited in-situ with a doping that is advantageous for the electrical function of the active components. For example, field threshold voltages can be set and the narrow channel effects of scaled MOS transistors can be counteracted.
  • FIG. 4 shows an electron micrograph of an active, STI-insulated semiconductor region that is broadened by means of selective Si epitaxy in a 140 nm DRAM process based on a one-transistor trench memory cell.
  • the remaining lacquer was removed, and this was followed by an etching process in the HF field and the cleaning of the structure.
  • This surface treatment was followed by the selective epitaxial growth according to the invention with a thickness of approximately 25 nm. As can be seen in FIG. 4, the thickness of the epitaxial layer is approximately the same on both sides of the active region and is 28.2 nm and 26.7 nm.

Abstract

The invention relates to a method for broadening active semiconductor areas (2) on a semiconductor substrate (1) that has at least one trench isolation (3). The method is composed of the following steps: deposition of a pad-oxide layer (5) on a surface (4) of the semiconductor substrate (1); deposition of a pad-nitride layer (6) on the pad-oxide layer (5); structuring of the pad-nitride layer (6) to create at least one opening in the pad-nitride layer (6) and etching of the trench isolation(s) (3) in the pad-oxide layer (5) and the semiconductor substrate (1). The aim of the invention is to adjust the broadening of the structures of active semiconductor areas in a simple and cost-effective manner that is substantially independent of other process steps during the production of the component. To achieve this, the inventive method is characterised by the selective deposition of an epitaxy layer (7) with a predetermined thickness and by the oxidation of the surface (4) of the semiconductor substrate (1), to create a thin oxide layer (9) for passivation.

Description

Beschreibungdescription
Verfahren zum Verbreitern aktiver HalbleitergebieteProcess for widening active semiconductor areas
Die Erfindung betrifft ein Verfahren zum Modifizieren aktiver Halbleitergebiete eines Halbleiterbauelements und insbesondere zum Verbreitern von Randzonen dieser Gebiete, die nach der Fertigstellung des Halbleiterbauelements elektronische Elemente darstellen. Ein solches Verfahren zum Verbreitern akti- ver Halbleitergebiete auf einem Halbleitersubstrat, das wenigstens eine Grabenisolation (STI) aufweist, umfasst die Schritte Abscheiden einer Padoxid-Schicht auf einer Oberfläche des Halbleitersubstrats; Abscheiden einer Pad-Nitrid- Schicht auf der Padoxid-Schicht; Strukturieren der Pad- Nitrid-Schicht zum Erzeugen wenigstens einer Öffnung in der Pad-Nitrid-Schicht; Ätzen eines ersten Grabens in der Padoxid-Schicht und in dem Halbleitersubstrat.The invention relates to a method for modifying active semiconductor regions of a semiconductor component and, in particular, for widening edge zones of these regions which represent electronic elements after the semiconductor component has been completed. Such a method for widening active semiconductor regions on a semiconductor substrate which has at least one trench isolation (STI) comprises the steps of depositing a pad oxide layer on a surface of the semiconductor substrate; Depositing a pad nitride layer on the pad oxide layer; Patterning the pad nitride layer to create at least one opening in the pad nitride layer; Etching a first trench in the pad oxide layer and in the semiconductor substrate.
Bei weiterer Verkleinerung von Halbleiterfunktionselementen wird die Strukturierung von aktiven Gebieten (active area,When semiconductor functional elements are further reduced, the structuring of active areas (active area,
AA) immer schwieriger. Die notwendigen hohen Packungsdichten erfordern die Einführung von 1:1 Pitches bezüglich der Endmaße, was hohe Anforderungen an die Lithographie stellt (Auflösung) . Um für die nachfolgende Strukturierungsätzung einer Grabenisolation (shallow trench isolation, STI) einen ausreichend großen Ätzvorhalt (Ätzbias) zu realisieren, muss die Lithographie bei gleicher Breite von aktivem Gebiet und Isolationsgraben (1:1 Pitch) entsprechend breitere Lackstrukturen herstellen (um Kurzschlussbildung, sog. Bridging Faults, zu vermeiden) . Zudem wirkt sich der Ätzvorhalt bei der STI- Strukturierung auf die Strukturbreiten für skalierte Technologien absolut gesehen stärker aus. Nachfolgende Prozessschritte (Oxidationen) werden für skalierte Technologien e- benfalls kritischer im Hinblick auf die Minimalstrukturen (critical dimension, CD) . Während z.B. 15nm Oxidationen bei 0,2μm Technologien nur einen CD- Verlust von ca. 7,5% bedeuten, wären es bei 0,lμm Technologien schon 15%. Ein weiteres Problem bei STI-Grabenisolation ist die Beeinträchtigung z.B. des Gate-Oxids an den Kanten des Grabens (trench corner degradation) . In IEEE, IEDM 96, Seite 747 bis 750 wird von Tai-su Park et al. unter dem Titel "Correlation between Gate Oxide Reliability and the Profile of the Trench Top Corner in Shallow Trench Isolation" die Abrundung der Grabenkanten und die Verwendung eines Si02-Spacers beschrieben, wodurch sich die Beeinträchtigung der Kante des Gate- Oxids bei einem STI- Bauelement reduzieren lassen.AA) increasingly difficult. The necessary high packing densities require the introduction of 1: 1 pitches with regard to the final dimensions, which places high demands on the lithography (resolution). In order to achieve a sufficiently large etch reserve (etch bias) for the subsequent structuring etching of a trench isolation (shallow trench isolation, STI), the lithography must produce correspondingly wider resist structures with the same width of active area and isolation trench (1: 1 pitch) (in order to form short circuits, so-called . Bridging faults to avoid). In addition, the etch reserve in STI structuring has a stronger impact on the structure widths for scaled technologies in absolute terms. Subsequent process steps (oxidations) are also becoming more critical for scaled technologies with regard to the minimal structures (critical dimension, CD). For example, while 15 nm oxidations with 0.2 μm technologies only mean a CD loss of approx. 7.5%, with 0.1 μm technologies it would already be 15%. Another problem with STI trench isolation is the impairment of, for example, the gate oxide at the edges of the trench (trench corner degradation). In IEEE, IEDM 96, pages 747 to 750, Tai-su Park et al. titled "Correlation between Gate Oxide Reliability and the Profile of the Trench Top Corner in Shallow Trench Isolation" describes the rounding of the trench edges and the use of an Si0 2 spacer, which has the effect of impairing the edge of the gate oxide in an STI Have the component reduced.
Die beschriebene Problematik von Strukturbreiten und geätzten Oberflächen für aktive, STI-isolierte Halbleitergebiete, ihre negativen Auswirkungen auf elektrische und Prozesseigenschaf- ten wurde bisher unter großem Aufwand durch Entwicklung derThe described problem of structure widths and etched surfaces for active, STI-insulated semiconductor areas, their negative effects on electrical and process properties has so far been developed with great effort by the
Einzelverfahren Lithografie und Plasmaätzen sowie Entwicklung nachfolgender Prozessschritte (Reinigung, Oxidation) gelöst.Single process lithography and plasma etching as well as development of subsequent process steps (cleaning, oxidation) solved.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren an- zugeben, mit dem die Strukturbreiten aktiver Halbleitergebiete auf einfache und kostengünstige Art im wesentlichen unabhängig von anderen Prozessschritten bei der Herstellung des Bauelements eingestellt werden können.The object of the present invention is to specify a method with which the structure widths of active semiconductor regions can be set in a simple and inexpensive manner, essentially independently of other process steps in the production of the component.
Diese Aufgabe wird gelöst durch das Verfahren nach AnspruchThis object is achieved by the method according to claim
1. Bevorzugte Ausführungsformen der Erfindung sind Gegenstand der Unteransprüche.1. Preferred embodiments of the invention are the subject of the dependent claims.
Erfindungsgemäß werden die aktiven Halbleitergebiete mit ei- ner Epitaxieschicht bedeckt. Die Epitaxieschicht lässt einerseits die Halbleiterstruktur in der vertikalen Richtung dicker werden, andererseits wachsen in horizontaler Richtung die Gräben der Halbleiterstruktur zu, ihre lichte Weite zwischen benachbarten (auf der Strukturoberfläche vorstehenden) Strukturen der Halbleiterstruktur wird kleiner. Durch diese Epitaxieschicht wird also auch das Flächenverhältnis zwischen aktivem und passivem Bereich des Halbleiters verändert. Das erfindungsgemäße Verfahren zum Verbreitern aktiver Halbleitergebiete auf einem Halbleitersubstrat, das wenigstens eine Grabenisolation aufweist, umfasst neben den Schritten Abscheiden einer Padoxid-Schicht auf einer Oberfläche des Halbleitersubstrats; Abscheiden einer Padnitrid-Schicht auf der Padoxid-Schicht; Strukturieren der Padnitrid-Schicht zum Erzeugen wenigstens einer Öffnung in der Padnitrid-Schicht und Ätzen der wenigstens einen Grabenisolation in der Pado- xid-Schicht und in dem Halbleitersubstrat erfindungsgemäß das selektive Abscheiden einer Epitaxieschicht mit einer vorgegebenen Dicke und das Oxidieren der Oberfläche des Halbleitersubstrats zum Erzeugen einer dünnen Oxidschicht für eine Pas- sivierung.According to the invention, the active semiconductor regions are covered with an epitaxial layer. The epitaxial layer on the one hand allows the semiconductor structure to become thicker in the vertical direction, on the other hand the trenches of the semiconductor structure grow in the horizontal direction, its clear width between adjacent structures of the semiconductor structure (projecting on the structure surface) becomes smaller. This epitaxial layer also changes the area ratio between the active and passive region of the semiconductor. In addition to the steps of depositing a pad oxide layer on a surface of the semiconductor substrate, the method according to the invention for widening active semiconductor regions on a semiconductor substrate which has at least one trench isolation comprises; Depositing a pad nitride layer on the pad oxide layer; Structuring the pad nitride layer to produce at least one opening in the pad nitride layer and etching the at least one trench isolation in the pad oxide layer and in the semiconductor substrate according to the invention, selectively depositing an epitaxial layer with a predetermined thickness and oxidizing the surface of the semiconductor substrate Creation of a thin oxide layer for passivation.
Dabei weist bei einer bevorzugten Ausführungsform der Erfindung die dünne Epitaxieschicht eine vorgegebene Dotierung auf.In a preferred embodiment of the invention, the thin epitaxial layer has a predetermined doping.
Die Dicke der Epitaxieschicht ist vorzugsweise kleiner als das 0,3fache eines kritischen Strukturmaßes und liegt insbesondere in- der Größenordnung von 50nm.The thickness of the epitaxial layer is preferably less than 0.3 times a critical structural dimension and is in particular of the order of 50 nm.
Durch das erfindungsgemäße selektive Abscheiden einer dünnen epitaktischen Halbleiterschicht nach der STI-Strukturierung ist es für alle STI-applizierenden Technologien möglich, schmalere aktive Strukturen (active area- oder AA-Strukturen) zu belichten, die Belichtung im unkritischeren, "entspannten" Bereich des Lithographie-Prozessfensters durchzuführen. Dar- über hinaus kann der eintretende CD- Verlust durch Epitaxie ausgeglichen werden und sogar ein CD-Gewinn erzielt werden. Dadurch, dass die Belichtung im unkritischeren Bereich des Lithographie-Prozessfensters durchgeführt wird, wird das Ri¬ siko einer Kurzschlussbildung gesenkt.The selective deposition according to the invention of a thin epitaxial semiconductor layer after the STI structuring makes it possible for all STI-applying technologies to expose narrower active structures (active area or AA structures), the exposure in the less critical, "relaxed" area of lithography -Process window to perform. In addition, the CD loss that occurs can be compensated for by epitaxy and even a CD gain can be achieved. Characterized in that the exposure in the less critical area of the lithographic process window is performed, the Ri ¬ siko is lowered a short-circuiting.
Weitere Vorteile der Erfindung sind die Reduzierung der An¬ forderungen an die Maskenherstellung (Verzicht auf Maskenbi- as) und der Wegfall bzw. das Minimieren des ungewollten Wegätzens des Padnitrid (Padnitrid Pull Back) . Außerdem weisen epitaktisch gewachsene Oberflächen gegenüber geätzten Oberflächen aufgrund der dortigen Ätzschäden deutlich weniger De- fekte auf. Damit verbunden ist eine Reduzierung von Leckströmen in diesem Bereich. Die durch die Strukturierungsätzung entstandenen Schäden (damages, striations) die gewöhnlich mit folgender Reinigung und Oxidation eliminiert werden, werden erfindungsgemäß epitaktisch überwachsen. Die bisher für die Eliminierung von Defekten notwendige Mindestdicke des Oxids auf dem aktiven Gebiet (AAOX) kann reduziert werden. Dies bedeutet einen CD-Gewinn sowie zugleich auch eine vorteilhafte Verringerung des thermischen Budgets.Further advantages of the invention are the reduction of at ¬ demands on the mask manufacturing (waiving Maskenbi- as) and the elimination or minimization of the unwanted etching away of the pad nitride (Padnitrid Pull Back). In addition, epitaxially grown surfaces have significantly fewer defects than etched surfaces due to the etching damage there. This is associated with a reduction in leakage currents in this area. The damage caused by the structuring etching (damages, striations), which are usually eliminated with the following cleaning and oxidation, are epitaxially overgrown according to the invention. The minimum thickness of the oxide on the active area (AAOX), which was previously necessary for eliminating defects, can be reduced. This means a CD gain as well as an advantageous reduction in the thermal budget.
Ein weiterer Vorteil ist die epitaktische Vorverrundung der Kante des aktiven Gebiets, die mit einer Reduktion des sog. Divots verbunden ist, wodurch dessen Wirkung auf die Einsatzspannung des Halbleiterelements (Array Vτ) verringert wird und die Zuverlässigkeit des Gate-Oxids (GOX-Reliability) ver- bessert wird.Another advantage is the epitaxial pre-rounding of the edge of the active area, which is associated with a reduction of the so-called divot, which reduces its effect on the threshold voltage of the semiconductor element (array V τ ) and the reliability of the gate oxide (GOX reliability) ) is improved.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung von bevorzugten Ausführungsbei- spielen.Further features and advantages of the invention result from the following description of preferred exemplary embodiments.
Fig. 1 zeigt einen Querschnitt durch eine Halbleiterstruktur mit aktivem Gebiet und STI-Graben nach Stand der Technik.1 shows a cross section through a semiconductor structure with an active region and STI trench according to the prior art.
Fig. 2 zeigt einen Querschnitt durch eine Halbleiterstruktur mit aktivem Gebiet und STI-Graben nach einem ersten Schritt des erfindungsgemäßen Verfahrens.2 shows a cross section through a semiconductor structure with an active region and an STI trench after a first step of the method according to the invention.
Fig. 3 zeigt einen Querschnitt durch eine Halbleiterstruktur mit aktivem Gebiet und STI-Graben nach einem zweiten Schritt des erfindungsgemäßen Verfahrens. Fig. 4 zeigt eine elektronenmikroskopische Aufnahme einer Struktur, die mit dem erfindungsgemäßen Verfahren hergestellt wurde .3 shows a cross section through a semiconductor structure with an active region and an STI trench after a second step of the method according to the invention. 4 shows an electron micrograph of a structure which was produced using the method according to the invention.
In Fig. 1 ist schematisch und nicht maßstäblich ein Querschnitt durch eine Halbleiterstruktur nach dem Stand der Technik gezeigt. Auf einem Halbleitersubstrat 1 befindet sich nach vorangehenden Prozessschritten ein aktives Gebiet 2, das von benachbarten aktiven Gebieten durch wenigstens eine Gra- benisolation 2 getrennt wird. Die entsprechenden Verfahrensschritte für die Herstellung des aktiven Gebiets 2 und der wenigstens einen Grabenisolierung 3 umfassen als ersten Schritt das Abscheiden einer Padoxid-Schicht 5 auf einer 0- berflache 4 des Halbleitersubstrats 1. Auf der Padoxid- Schicht 5 wird anschließend eine Padnitrid-Schicht 6 abgeschieden. Die Dicke der Padoxid-Schicht 5 beträgt in der Größenordnung 10 bis lOOnm, die Dicke der Padnitrid-Schicht 6 beträgt zwischen 100 und 200nm. Die Padnitrid-Schicht 6 wird strukturiert, um wenigstens eine Öffnung in der Padnitrid- Schicht 6 zu erzeugen. Durch Ätzen in der Öffnung in der Padnitrid-Schicht 6 wird die Padoxid-Schicht 5 und teilweise das Halbleitersubstrat 1 entfernt, so dass wenigstens eine Grabenisolation 3 erzeugt wird.1 shows a cross section through a semiconductor structure according to the prior art, schematically and not to scale. After preceding process steps, an active region 2 is located on a semiconductor substrate 1 and is separated from adjacent active regions by at least one trench isolation 2. The corresponding method steps for the production of the active region 2 and the at least one trench insulation 3 comprise, as a first step, the deposition of a pad oxide layer 5 on a surface 4 of the semiconductor substrate 1. A pad nitride layer 6 is then placed on the pad oxide layer 5 deposited. The thickness of the pad oxide layer 5 is of the order of 10 to 100 nm, the thickness of the pad nitride layer 6 is between 100 and 200 nm. The pad nitride layer 6 is structured in order to create at least one opening in the pad nitride layer 6. The pad oxide layer 5 and partially the semiconductor substrate 1 are removed by etching in the opening in the pad nitride layer 6, so that at least one trench insulation 3 is produced.
Um die Strukturbreite des aktiven Halbleitergebiets auf einfache und kostengünstige Art und im wesentlichen unabhängig von anderen Prozessschritten einstellen zu können, werden erfindungsgemäß nachträglich die Randzonen des aktiven Halbleitergebiets modifiziert. Dies geschieht durch zusätzliches se- lektives Abscheiden einer epitaktischen Schicht 7 auf derIn order to be able to adjust the structure width of the active semiconductor region in a simple and inexpensive manner and essentially independently of other process steps, the edge zones of the active semiconductor region are subsequently modified according to the invention. This is done by additional selective deposition of an epitaxial layer 7 on the
Halbleiterstruktur nach den oben beschriebenen Schritten, an deren Ende die Struktur in Fig. 1 vorliegt.Semiconductor structure according to the steps described above, at the end of which the structure in FIG. 1 is present.
Die Struktur nach dem erfindungsgemäßen Abscheiden der Epita- xieschicht 7 ist in Fig. 2 dargestellt. Im Unterschied zu den bekannten Anwendungen der selektiven Epitaxie in der Halblei¬ terherstellung werden durch die erfindungsgemäße, selektiv abgeschiedene epitaktische Halbleiterschicht 7 ausschließlich die Randzonen der aktiven Gebiete 2 modifiziert. Die Epitaxieschicht 7 ist vorzugsweise sehr dünn, und es werden darin keine vollständigen elektronischen Funktionen realisiert. Insbesondere beträgt ihre Dicke weniger als 0,3F, wobei F das kritische Strukturmaß der betrachteten Technologie ist.The structure after the epitaxial layer 7 has been deposited according to the invention is shown in FIG. 2. In contrast to the known applications of selective epitaxy in the semiconducting ¬ terherstellung be the invention, selectively deposited epitaxial semiconductor layer 7 only modifies the edge zones of the active regions 2. The epitaxial layer 7 is preferably very thin and no complete electronic functions are implemented therein. In particular, their thickness is less than 0.3F, where F is the critical structural dimension of the technology under consideration.
Durch das selektive Abscheiden der Epitaxieschicht 7 mit einer vorgegebenen Dicke wird das aktive Gebiet 2 in Fig. 2 insgesamt verbreitert. Die Situation nach der epitaktischen Abscheidung seitlich an dem aktiven Gebiet 2 an einer Kante 8, an der die Padnitrid-Schicht 6, die Padoxid-Schicht 5 und die Epitaxieschicht 7 zusammentreffen, ist in vergrößerter Darstellung als Einschub in Fig. 2 gezeigt.The active region 2 in FIG. 2 is widened overall by the selective deposition of the epitaxial layer 7 with a predetermined thickness. The situation after the epitaxial deposition on the side of the active region 2 at an edge 8, at which the pad nitride layer 6, the pad oxide layer 5 and the epitaxial layer 7 meet, is shown in an enlarged representation as an insert in FIG. 2.
Nachdem in Fig. 2 die Epitaxieschicht 7 aufgebracht wurde, wird die Struktur passiviert.After the epitaxial layer 7 has been applied in FIG. 2, the structure is passivated.
In Fig. 3 ist ein Querschnitt durch die Struktur nach ihrer Oxidation gezeigt. Durch das Oxidieren der Struktur nach Fig. 2 wird eine dünne Oxidschicht 9 erzeugt, die zur Passivierung der Struktur dient. Auch hier ist der kritische Bereich der Kante 8 des aktiven Gebietes 2 in vergrößerter Darstellung als Einschub in Fig. 3 gezeigt.3 shows a cross section through the structure after its oxidation. By oxidizing the structure according to FIG. 2, a thin oxide layer 9 is generated, which serves to passivate the structure. Here, too, the critical area of the edge 8 of the active area 2 is shown in an enlarged representation as an insert in FIG. 3.
Die Verformung an der Kante 8, die durch das epitaxiale Aufwachsen der Halbleiterschicht 7 entstanden war, wird durch das anschließende Oxidieren noch vergrößert. Die Verformung kann jedoch mit bekannten Verfahrensschritten beseitigt wer- den, was weiter unten erläutert wird. Trotz dieser eventuell notwendigen zusätzlichen Schritte zur Beseitigung der Verformung in Fig. 2 und 3 lässt die Möglichkeit der Veränderung der horizontalen Ausdehnung eines aktiven Gebiets 2 nach der Lithographie eine "entspanntere" Strukturierung von aktivem Gebiet 2 und STI- Grabenisolierung 3 zu. Die dünne Epitaxieschicht 7 kann mit reinem Si hergestellt werden. Insbesondere kann jedoch die Epitaxieschicht 7 mit einer für die elektrische Funktion der aktiven Bauelemente vorteilhaften Dotierung in-situ abgeschieden werden. So las- sen sich z.B. Feldeinsatzspannungen einstellen und man kann den Schmalkanaleffekten skalierter MOS-Transistoren entgegenwirken.The deformation at the edge 8, which was caused by the epitaxial growth of the semiconductor layer 7, is further increased by the subsequent oxidation. The deformation can, however, be eliminated using known method steps, which is explained further below. 2 and 3, the possibility of changing the horizontal extent of an active area 2 after the lithography permits a "more relaxed" structuring of active area 2 and STI trench isolation 3. The thin epitaxial layer 7 can be produced with pure Si. In particular, however, the epitaxial layer 7 can be deposited in-situ with a doping that is advantageous for the electrical function of the active components. For example, field threshold voltages can be set and the narrow channel effects of scaled MOS transistors can be counteracted.
In Fig. 4 ist eine elektronenmikroskopische Aufnahme eines durch selektive Si-Epitaxie bei einem 140nm-DRAM-Prozess auf Basis einer Ein-Transistor-Trench- Speicherzelle stegverbreiterten aktiven, STI- isolierten Halbleitergebietes gezeigt. Nach der STI-Ätzung wurde der restliche Lack entfernt, und es folgte ein Ätzvorgang im HF-Feld und die Reinigung der Struk- tur. Daran schloss sich ein Backvorgang in H2-Atmosphäre in der Epitaxieanlage an. Mit diesem ist es möglich, die natürliche Oxidschicht zu entfernen, die Oberfläche zu glätten und Ätzschäden auszuheilen. Nach dieser Oberflächenbehandlung folgte das erfindungsgemäße selektive Epitaxiewachstum mit einer Dicke von etwa 25nm. Wie in Fig. 4 ersichtlich ist die Dicke der Epitaxieschicht auf beiden Seiten des aktiven Gebietes in etwa gleich und beträgt 28,2nm bzw. 26,7nm. FIG. 4 shows an electron micrograph of an active, STI-insulated semiconductor region that is broadened by means of selective Si epitaxy in a 140 nm DRAM process based on a one-transistor trench memory cell. After the STI etching, the remaining lacquer was removed, and this was followed by an etching process in the HF field and the cleaning of the structure. This was followed by a baking process in an H 2 atmosphere in the epitaxial system. With this it is possible to remove the natural oxide layer, smooth the surface and heal etching damage. This surface treatment was followed by the selective epitaxial growth according to the invention with a thickness of approximately 25 nm. As can be seen in FIG. 4, the thickness of the epitaxial layer is approximately the same on both sides of the active region and is 28.2 nm and 26.7 nm.
Bezugszeichenreference numeral
1 Halbleitersubstrat1 semiconductor substrate
2 aktiver Halbleiterbereich (AA) 3 STI-Graben2 active semiconductor area (AA) 3 STI trenches
4 Oberfläche des Halbleitersubstrats4 surface of the semiconductor substrate
5 Padoxid-Schicht5 pad oxide layer
6 Padnitrid-Schicht6 pad nitride layer
7 Epitaxieschicht 8 Kante des aktiven Halbleiterbereichs (AA)7 epitaxial layer 8 edge of the active semiconductor region (AA)
9 Oxidschicht 9 oxide layer

Claims

Patentansprüche claims
1. Verfahren zum Verbreitern aktiver Halbleitergebiete (2) auf einem Halbleitersubstrat (1), das wenigstens eine Graben- isolation (3) aufweist, mit den Schritten1. A method for widening active semiconductor regions (2) on a semiconductor substrate (1) which has at least one trench isolation (3), with the steps
Abscheiden einer Padoxid-Schicht (5) auf einer Oberfläche (4) des Halbleitersubstrats (1) ;Depositing a pad oxide layer (5) on a surface (4) of the semiconductor substrate (1);
Abscheiden einer Padnitrid-Schicht (6) auf der Padoxid- Schicht (5) ; Strukturieren der Padnitrid-Schicht (6) zum Erzeugen wenigstens einer Öffnung in der Padnitrid-Schicht (6) und Ätzen der wenigstens einen Grabenisolation (3) in der Padoxid-Schicht (5) und in dem Halbleitersubstrat (1); g e k e n n z e i c h n e t d u r c h selektives Abscheiden einer Epitaxieschicht (7) mit einer vorgegebenen Dicke undDepositing a pad nitride layer (6) on the pad oxide layer (5); Structuring the pad nitride layer (6) to create at least one opening in the pad nitride layer (6) and etching the at least one trench insulation (3) in the pad oxide layer (5) and in the semiconductor substrate (1); selective deposition of an epitaxial layer (7) with a predetermined thickness and
Oxidieren der Oberfläche (4) des Halbleitersubstrats (1) zum Erzeugen einer dünnen Oxidschicht (9) für eine Passivierung.Oxidizing the surface (4) of the semiconductor substrate (1) to produce a thin oxide layer (9) for passivation.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die dünne Epitaxieschicht (7) eine vorgegebene Dotierung aufweist.2. The method according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the thin epitaxial layer (7) has a predetermined doping.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass die vorgegebene Dicke der Epitaxieschicht (7) kleiner als das3. The method of claim 1 or 2, d a d u r c h g e k e n n z e i c h n e t that the predetermined thickness of the epitaxial layer (7) smaller than that
0,3fache eines kritischen Strukturmaßes ist.Is 0.3 times a critical structural dimension.
4. Verfahren nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass die Epitaxieschicht (7) eine vorgegebene Dicke in der Größenordnung von 15 bis 50nm hat. 4. The method according to any one of the preceding claims, that the epitaxial layer (7) has a predetermined thickness of the order of 15 to 50 nm.
PCT/EP2002/001786 2001-03-07 2002-02-20 Method for broadening active semiconductor areas WO2002071474A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10110974.1 2001-03-07
DE2001110974 DE10110974C2 (en) 2001-03-07 2001-03-07 Method for widening an active semiconductor region on a semiconductor substrate

Publications (2)

Publication Number Publication Date
WO2002071474A2 true WO2002071474A2 (en) 2002-09-12
WO2002071474A3 WO2002071474A3 (en) 2002-11-28

Family

ID=7676613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001786 WO2002071474A2 (en) 2001-03-07 2002-02-20 Method for broadening active semiconductor areas

Country Status (3)

Country Link
DE (1) DE10110974C2 (en)
TW (1) TW527645B (en)
WO (1) WO2002071474A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103035481A (en) * 2012-08-09 2013-04-10 上海华虹Nec电子有限公司 Formation method of groove

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980306A (en) * 1987-11-11 1990-12-25 Seiko Instruments Inc. Method of making a CMOS device with trench isolation device
EP0736897A2 (en) * 1995-04-04 1996-10-09 Motorola, Inc. Method for forming a trench isolation structure in an integrated circuit
US5897360A (en) * 1996-10-21 1999-04-27 Nec Corporation Manufacturing method of semiconductor integrated circuit
US6063691A (en) * 1997-12-29 2000-05-16 Lg Semicon Co., Ltd. Shallow trench isolation (STI) fabrication method for semiconductor device
US6184108B1 (en) * 1996-01-31 2001-02-06 Advanced Micro Devices, Inc. Method of making trench isolation structures with oxidized silicon regions
US6200881B1 (en) * 1999-07-23 2001-03-13 Worldwide Semiconductor Manufacturing Corp. Method of forming a shallow trench isolation
JP2001284445A (en) * 2000-03-29 2001-10-12 Toshiba Corp Semiconductor device and manufacturing method therefor
US20020001918A1 (en) * 2000-06-30 2002-01-03 Park Myoung Kyu Method for forming a field oxide film on a semiconductor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4745081A (en) * 1985-10-31 1988-05-17 International Business Machines Corporation Method of trench filling
US4900692A (en) * 1989-04-24 1990-02-13 Motorola, Inc. Method of forming an oxide liner and active area mask for selective epitaxial growth in an isolation trench
JPH0621214A (en) * 1992-07-03 1994-01-28 Seiko Epson Corp Manufacture of semiconductor device
JPH1174522A (en) * 1996-12-19 1999-03-16 Texas Instr Inc <Ti> Method and device for forming planar field effect transistor with source and drain on insulator
US5879998A (en) * 1997-07-09 1999-03-09 Advanced Micro Devices, Inc. Adaptively controlled, self-aligned, short channel device and method for manufacturing same
US5970363A (en) * 1997-12-18 1999-10-19 Advanced Micro Devices, Inc. Shallow trench isolation formation with improved trench edge oxide
US6274455B1 (en) * 1997-12-29 2001-08-14 Hyundai Electronics Industries Co., Ltd. Method for isolating semiconductor device
KR100251280B1 (en) * 1998-03-25 2000-04-15 윤종용 Sti method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980306A (en) * 1987-11-11 1990-12-25 Seiko Instruments Inc. Method of making a CMOS device with trench isolation device
EP0736897A2 (en) * 1995-04-04 1996-10-09 Motorola, Inc. Method for forming a trench isolation structure in an integrated circuit
US6184108B1 (en) * 1996-01-31 2001-02-06 Advanced Micro Devices, Inc. Method of making trench isolation structures with oxidized silicon regions
US5897360A (en) * 1996-10-21 1999-04-27 Nec Corporation Manufacturing method of semiconductor integrated circuit
US6063691A (en) * 1997-12-29 2000-05-16 Lg Semicon Co., Ltd. Shallow trench isolation (STI) fabrication method for semiconductor device
US6200881B1 (en) * 1999-07-23 2001-03-13 Worldwide Semiconductor Manufacturing Corp. Method of forming a shallow trench isolation
JP2001284445A (en) * 2000-03-29 2001-10-12 Toshiba Corp Semiconductor device and manufacturing method therefor
US20020001918A1 (en) * 2000-06-30 2002-01-03 Park Myoung Kyu Method for forming a field oxide film on a semiconductor device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 225 (E-1541), 22. April 1994 (1994-04-22) -& JP 06 021214 A (SEIKO EPSON CORP), 28. Januar 1994 (1994-01-28) *
PATENT ABSTRACTS OF JAPAN vol. 2002, no. 02, 2. April 2002 (2002-04-02) -& JP 2001 284445 A (TOSHIBA CORP), 12. Oktober 2001 (2001-10-12) -& US 6 399 992 B1 (IGARASHI HIROFUMI ET AL) 4. Juni 2002 (2002-06-04) *

Also Published As

Publication number Publication date
TW527645B (en) 2003-04-11
DE10110974C2 (en) 2003-07-24
DE10110974A1 (en) 2002-09-26
WO2002071474A3 (en) 2002-11-28

Similar Documents

Publication Publication Date Title
DE10101568B4 (en) Semiconductor device and method of making the same
DE4235534C2 (en) Method of isolating field effect transistors
DE102005029313B4 (en) Method for producing a semiconductor component and semiconductor component
DE102005002739B4 (en) Method for producing a field effect transistor, tunnel field effect transistor and integrated circuit arrangement with at least one field effect transistor
DE2923995A1 (en) METHOD FOR PRODUCING INTEGRATED MOS CIRCUITS WITH AND WITHOUT MNOS STORAGE TRANSISTORS IN SILICON GATE TECHNOLOGY
DE10050357A1 (en) Trench insulating structure used in the production of a semiconductor device comprises a trench formed in the non-active zones of a semiconductor substrate, an inner wall oxide film
DE4208537C2 (en) MOS-FET structure and process for its manufacture
DE10259745A1 (en) Semiconductor device and method of manufacturing the same
WO2009016134A9 (en) Production of isolation trenches with different sidewall dopings
DE4413815A1 (en) Production method for a semiconductor device
DE69627975T2 (en) MOS transistor and method for its manufacture
DE4232820B4 (en) Method for producing a MOSFET
DE10134444A1 (en) Semiconductor device for reducing junction leakage current and narrow width effect comprises channel stop impurity region self-aligned by spacer and locally formed only at lower portion of isolation region
DE10131237A1 (en) Field effect transistor and method for its production
DE60034265T2 (en) Semiconductor device with SOI structure and its manufacturing method
EP1540712A2 (en) Method for production of a semiconductor structure
DE19853432A1 (en) Semiconductor device and method of manufacturing the same
DE10250899B4 (en) A method of removing sidewall spacers of a semiconductor device using an improved etch process
DE10029036C1 (en) Process for increasing the trench capacity
WO2006108827A2 (en) Production of vdmos-transistors having optimised gate contact
WO2002071474A2 (en) Method for broadening active semiconductor areas
DE10213082B4 (en) MOS transistor and method for its production
DE19742397C2 (en) Method for producing a semiconductor structure with a plurality of trenches
DE10250872B4 (en) Method for producing a semiconductor structure with a plurality of gate stacks
DE102004035108A1 (en) Method for self-aligning a U-shaped transistor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP