WO2002070406A1 - Device and method for manufacture of carbonaceous material - Google Patents

Device and method for manufacture of carbonaceous material Download PDF

Info

Publication number
WO2002070406A1
WO2002070406A1 PCT/JP2002/001648 JP0201648W WO02070406A1 WO 2002070406 A1 WO2002070406 A1 WO 2002070406A1 JP 0201648 W JP0201648 W JP 0201648W WO 02070406 A1 WO02070406 A1 WO 02070406A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
catalyst
carbonaceous material
reaction tube
anode
Prior art date
Application number
PCT/JP2002/001648
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Kajiura
Mitsuaki Miyakoshi
Shigemitsu Tsutsui
Yoshiyuki Hirano
Original Assignee
Sony Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corporation filed Critical Sony Corporation
Publication of WO2002070406A1 publication Critical patent/WO2002070406A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes

Definitions

  • the present invention relates to a method and an apparatus for producing a carbonaceous material, and more particularly to a method and an apparatus for producing a carbonaceous material for producing a carbonaceous material such as a single-walled carbon nanotube using arc discharge.
  • Carbon nanotubes are a new material first reported by Iijima in 1991 in S. Iijima, Nature, Vol. 354 (1991) 56.
  • SWNTs single-walled carbon nanotubes
  • It is promising as a next-generation electronic material, and is considered to be applied to nanoelectronics materials, field emission emitters, highly directional radiation sources, soft X-ray sources, one-dimensional conductive materials, high thermal conductive materials, hydrogen storage materials, etc. It has been.
  • functionalization of the surface, metal coating, and inclusion of foreign substances are expected to further expand the application range of carbon nanotubes.
  • FIG. 1 As an apparatus for producing carbonaceous materials such as single-walled carbon nanotubes, an apparatus as shown in FIG. 1 has been conventionally known.
  • This device is provided with a power source 114 and an anode 113, and by generating an arc discharge between the anode 113 and the cathode 114, the carbonaceous material is generated. The production of the material takes place.
  • a reaction tube 1 11 is provided in the carbonaceous material production apparatus 101.
  • An anode 113 and a force sword 114 are arranged inside the reaction tube 111 with a slight gap therebetween.
  • the anode 113 is electrically connected to the current introduction terminal 1442 on the positive electrode side
  • the power source 114 is electrically connected to the current introduction terminal 141 on the negative electrode side.
  • These two current introduction terminals 14 1 and 14 2 are electrically connected to a current supply unit (not shown) provided outside the reaction tube 11 1, and It is configured so that a voltage can be applied to the force sword 114.
  • An arc discharge part is defined between the tips of the anodes 113 and the force sword 114 facing each other.
  • the arc discharge section is located substantially at the center of the reaction tube 111 in the axial direction.
  • the anode 113 is constituted by a carbon containing a catalyst.
  • the catalyst is, specifically, Fe, Ni, or the like, and is used when producing a carbonaceous material such as a single-walled carbon nanotube by generating an arc discharge.
  • the force sword 114 consists of a pure carbon rod containing no catalyst.
  • the anode 113 is consumed because it is used as a raw material when producing a carbonaceous material such as single-walled carbon nanotubes in the arc discharge part.
  • the gap between cathode 114 and anode 113 is prevented. Is designed to be kept constant at all times. That is, the other end opposite to one end of the anode 113 facing the force sword 114 is a linear motion introducing mechanism 111 that enables the anode 113 to move in the longitudinal direction of the anode 113. Supported by 6.
  • a through-hole (not shown) is formed in the reaction tube 111, and an inert gas injector (not shown) is connected to the through-hole (not shown).
  • the inside of the reaction tube 111 can be filled with an inert gas such as He or Ar by an inert gas injector (not shown).
  • the through holes (not shown) are configured to be openable and closable. After the inert gas is supplied into the reaction tube 111, it is closed during arc discharge.
  • the anode 1 13 is made by pulverizing carbon powder into powder, mixing powdered carbon with powder of catalytic metal such as Fe, Ni, etc., forming it into a rod shape, and then firing and processing.
  • Manufactured by The force sword 114 is manufactured by forming a force-bon lump as it is into a rod shape.
  • the anode 113 and the force sword 114 are set inside the carbonaceous material manufacturing apparatus 101, and the inside of the reaction tube 111 is evacuated once. Thereafter, the inside of the reaction tube 111 is filled with an inert gas by an inert gas injector (not shown), a through hole (not shown) is closed, and the inside of the reaction tube 111 is isolated from the atmosphere. Then, arc discharge is performed.
  • Carbonaceous materials such as single-walled carbon nanotubes are produced from the carbon constituting the anode 113 by the catalytic action of the catalytic metal.
  • the anode 113 containing the catalytic metal. That is, when the anode 113 is composed of a carbon rod, as described above, first, carbon is pulverized into a powder, and a powder obtained by mixing a powder of a catalyst metal with a powdered carbon is used as the anode. It had to be formed into a shape, then fired and processed. For this reason, there is a serious problem that hinders efficient production and cost reduction of the carbonaceous material production apparatus 101, and as a result, the efficient production of carbonaceous materials such as single-walled carbon nanotubes Production and cost reduction were hindered.
  • an object of the present invention is to provide a method and an apparatus for producing a carbonaceous material that can produce a carbonaceous material at low cost. Disclosure of the invention
  • the present invention defines a carbonaceous material production chamber.
  • An anode made of a carbon-based material and a force source made of a carbon-based material facing the anode and defining an arc discharge part are arranged in the reaction tube, and the anode and the cathode are arranged.
  • a method of producing a carbonaceous material in which arc is discharged by supplying a voltage between the electrodes and a carbonaceous material is generated in the arc discharge portion, wherein a catalyst is contained toward the arc discharge portion during the arc discharge.
  • a method for producing a carbonaceous material for supplying gas is provided.
  • the gas containing the catalyst is preferably a mixed gas of an organic gas and a catalyst gas.
  • the gas containing the catalyst is preferably a mixed gas of an inert gas and a catalyst gas.
  • the gas containing the catalyst is preferably a mixed gas of an inert gas, an organic gas, and a catalyst gas.
  • the anode is preferably made of a carbon-based material that does not contain a catalyst.
  • the gas containing the catalyst in the reaction tube is flowed in a predetermined direction.
  • the present invention further provides a reaction tube defining a carbonaceous material generation chamber, an anode disposed in the reaction tube and made of a carbon-based material, and provided in the reaction tube to face the anode.
  • a power source made of a carbon-based material defining an arc discharge portion between the anode and the anode; and an anode and the cathode for generating an arc discharge between the anode and the power source.
  • a catalyst-containing gas supply section for supplying a gas containing a catalyst toward the arc discharge section is provided in the reaction tube.
  • an apparatus for producing a carbonaceous material is provided in the reaction tube.
  • the anode is preferably made of a carbon-based material that does not contain a catalyst.
  • the gas containing the catalyst is preferably a mixed gas of an organic gas and a catalyst gas.
  • the gas containing the catalyst is preferably a mixed gas of an inert gas and a catalyst gas.
  • the gas containing the catalyst is preferably a mixed gas of an inert gas, an organic gas, and a catalyst gas.
  • flow rate control means for flowing the gas containing the catalyst in the reaction tube in a predetermined direction is provided so as to be connected to the reaction tube, and the catalyst-containing gas supply unit is provided at least upstream of the arc discharge unit.
  • bRIEF dESCRIPTION oF is preferably c drawings which are located on the side
  • FIG. 1 is a schematic diagram showing a conventional apparatus for producing a carbonaceous material
  • FIG. 2 is a schematic view showing an apparatus for producing a carbonaceous material according to an embodiment of the present invention
  • FIG. FIG. 4 is a schematic view showing a portion of a reaction tube of a carbonaceous material manufacturing apparatus according to the embodiment, in which a supply pipe is provided.
  • FIG. FIG. 5 is a schematic view showing a diameter portion
  • FIG. 5 is a TEM photograph of the carbonaceous material obtained by the method and apparatus for manufacturing a carbonaceous material according to the present invention
  • FIG. 6 is a modification of the embodiment of the present invention.
  • FIG. 7 is a schematic diagram showing a portion of a reaction tube according to a modification of the embodiment of the present invention, in which a supply tube is provided.
  • the carbonaceous material production apparatus 1 mainly produces single-walled carbon nanotubes.
  • the carbonaceous material manufacturing apparatus 1 has a substantially cylindrical shape.
  • the reaction tube 11 has a substantially tubular left reaction tube 11A and a right reaction tube 11B. Therefore, the reaction tube 11 is configured to be separable into the left reaction tube 11A and the right reaction tube 11B, and has a structure that makes it easy to take out the single-walled carbon nanotube from the trap 23 described later. Has become.
  • the reaction tube 11 is made of quartz, has excellent heat resistance, and has chemically stable properties.
  • a rod-shaped anode 13 and a cathode 14 are provided inside the left reaction tube 11 A.
  • the anode 13 and the cathode 14 are made of pure carbon.
  • the diameters of the anode 13 and the force sword 14 are 10 mm and 15 mm, respectively.
  • the anode 13 and the force sword 14 are arranged on the same line, and one end 13 A of the anode 13 and one end 14 A of the force sword 14 are arranged to face each other with a slight gap therebetween. I have.
  • the other end 13 B of the anode 13 is electrically connected to the positive electrode of the current supply unit 12, and the other end 14 B of the cathode 14 is electrically connected to the negative electrode of the current supply unit 12.
  • the polarity of the electrode can be reversed by a switching switch (not shown), and arc discharge can be generated by reversing the position of the anode 13 and the position of the force source 14. It is configured to be able to.
  • An arc discharge portion is defined between the tips of the anode 13 and the force sword 14 facing each other. The arc discharge part is located at approximately the center of the left reaction tube 11A in the axial direction.
  • the anode 13 is consumed because it is used as a raw material of the carbonaceous material when producing a carbonaceous material such as a single-walled carbon nanotube. In order to prevent the gap from being widened between the anode 13 and the force sword 14 due to this consumption, arc discharge does not occur.
  • the gap between the sword 14 and the sword 14 is configured to be always kept constant. That is, the other end 13 B of the anode 13 is supported by a linear motion introducing mechanism 16 and the anode 1 3 is movable in the longitudinal direction of the anode 13.
  • the other end 14 B of the force sword 14 is supported by a support member 15 that supports the force sword 14 immovably.
  • lids 11 C and 1 ID are provided to cover the end of the reaction tube 11, respectively, and the inside of the reaction tube 11 is shut off from the atmosphere. Since both ends of the reaction tube 11 are circular, the lids 11 C and 11 D covering both ends of the reaction tube 11 are also circular.
  • the supply pipe 17 is provided to extend tangentially to the peripheral surface of the left reaction pipe 11A. Therefore, the gas supplied into the left reaction tube 11 A is also supplied from the tangential direction of the reaction tube 11. For this reason, the supplied gas becomes a spiral flow in the reaction tube 11 as shown by an arrow in FIG. 3, and is supplied to the arc discharge portion as the spiral flow. .
  • a part of the supply pipe 17 is provided with a supply pipe flow meter 18 (FIG. 2) as a flow control means, and is provided at one end of the supply pipe 17 connected to the reaction pipe 11 with respect to the other end.
  • the gas supply unit (not shown) is configured to selectively supply an inert gas or a mixed gas of a catalyst gas and an organic gas.
  • the catalyst gas specifically, a sublimated Hue Sen is used.
  • Helium gas is used as the inert gas.
  • the organic gas forms a raw material for the carbonaceous material such as single-walled carbon nanotubes that are generated, together with the gas that forms the anode. Gas alone is used.
  • the supply pipe flow meter 18 is configured so that the flow rate of the mixed gas flowing through the supply pipe 17 and supplied into the reaction pipe 11 can be adjusted.
  • the maximum flow rate of the gas in the reaction tube 11 is 5 L / min.
  • the organic gas which is the raw material of the carbonaceous material to be generated
  • the ratio of the anode used as the raw material for the carbonaceous material is reduced, and the consumption of the anode is reduced.
  • the catalyst gas is supplied to the arc discharge section in the reaction tube 11, there is no need to mix the catalyst and carbon to form the anode, which reduces the time and cost of anode production.
  • carbonaceous materials such as single-walled carbon nanotubes can be easily manufactured at low cost.
  • a discharge pipe 19 for discharging gas from the inside of the reaction tube is provided at a position that is a part of the right reaction tube 11B and slightly away from the lid 11D toward the arc discharge part.
  • the inside of the discharge pipe 19 communicates with the inside of the reaction pipe 11 .
  • a part of the discharge pipe 19 is provided with a discharge pipe flowmeter 20, which is connected to the reaction pipe 11.
  • a pump 21 is provided at the other end of the discharge pipe 19 with respect to one end.
  • the pump 21 is configured so that the gas inside the reaction tube 11 can be discharged from the inside of the reaction tube 11 by sucking the gas inside the reaction tube 11 by negative pressure.
  • the discharge pipe flow meter 20 is configured so that the suction force by the pump 21 can be adjusted.
  • a rod-shaped catcher support member 22 extending in the axial direction of the reaction tube 11, that is, toward the arc discharge portion is provided.
  • the other end of one end of the capturer support member 22 connected to the lid 1 1D includes a single-walled carbon nanotube or the like generated in the arc discharge part.
  • a capture device 23 for capturing the carbonaceous material is provided.
  • the trap 23 is made of a graphite rod, has a cylindrical shape, and has one end in the longitudinal direction connected to the trap support member 22.
  • the trap 23 is located inside the right reaction tube 11B and at a position from the substantially center in the axial direction of the right reaction tube 11B to a predetermined position near the arc discharge part.
  • the carbonaceous material generated in the arc discharge section includes a web-like sample, amorphous carbon, graphite, and a catalyst, and the density increases in this order. Focusing on this difference in density, by setting the gas flow rate to an appropriate value, it is configured so that only the web-like sample can be selectively obtained by the trap 23 provided on the downstream side. I have.
  • the outer periphery of the right reaction tube 11 B is wound around the position where the trap 23 is provided.
  • An RF heater 24 is provided to perform the operation. Since the captured carbonaceous material can be heated by the RF heater 24 while being captured by the trap 23, the resulting carbonaceous material can be purified without being exposed to the atmosphere. be able to. Therefore, it is possible to remove without oxidizing impurities such as F e contained in the catalyst, and a rearranging bad SWNTs crystallinity good crystallinity monolayer force Ichipo nanotubes The ratio of the single-walled carbon nanotubes in the carbonaceous material can be efficiently increased.
  • the diameter of the reaction tube 11 In this case, it is not uniform, and has a reduced diameter portion 11E having a small diameter in part.
  • a large-diameter portion 11F having a large diameter continues with the same diameter. From this position, the reduced diameter portion 11E becomes a small diameter portion, reaches the arc discharge portion, and the reduced diameter portion 11E continues until immediately before the trap 23 on the downstream side in the gas flow direction is provided.
  • the reduced diameter portion 11E has the same diameter in that section.
  • the large-diameter portion 11G which is the same as the left end of the reaction tube 11 again, reaches the right end of the reaction tube 11 past the position where the discharge tube 19 is provided. .
  • This large diameter portion 11G also has the same diameter in the section.
  • the diameter of the reduced diameter portion 11E is 30 mm, and the diameter of the large diameter portion 11F11G is 50 mm.
  • the large-diameter portions 11F and 11G and the reduced-diameter portion 11E are configured to be small enough to prevent convection of the atmospheric gas in the reaction tube.
  • the diameter of the reaction tube 11 is a small diameter part 11 E
  • the cross-sectional area of the diameter reduction part 11 E is the large diameter part where the supply pipe 17 is provided. Since the cross-sectional area is smaller than 11 F, the organic gas, which is the source gas, can be efficiently converged to the arc discharge section as shown by the arrow in Fig. 4, and the source gas can be supplied stably. Can be. For this reason, it is possible to prevent the organic gas from being diluted in the arc discharge part, and it is possible to perform stable discharge and to stably generate a carbonaceous material.
  • the diameter of the reduced diameter portion 11E extends from the arc discharge portion to just before the trap 23, so that the gas flow rate flowing in the reaction tube 11 can be increased, and the arc discharge portion and the trap
  • the generated carbonaceous material can be prevented from adhering to the inner peripheral surface of the reaction tube 1 1 between 2 and 3 as much as possible, and the capture device 2 3 can efficiently capture the carbonaceous material. Can be.
  • the large diameter portion 11 G at the position immediately before the trap 23 is Since the flow velocity of the gas flowing around the trap 23 can be reduced, the generated carbonaceous material can be prevented from passing through the trap 23 without being captured.
  • the anode 13 Prior to the production of the carbonaceous material, first, the anode 13 is produced. That is, the lump is cut into a rod shape, and the shapes of the anode 13 and the force sword 14 are respectively obtained.
  • an inert gas is supplied into the reaction tube 11 from a gas supply unit (not shown) via a supply tube to make the inside of the reaction tube 11 approximately 66.7 kPa (5 OOT orr).
  • the supply of the inert gas is stopped, an arc discharge is generated in the arc discharge section, a mixed gas of the catalyst gas and the organic gas is supplied from a gas supply section (not shown), and at the same time, the pump 21 is operated.
  • the gas in the reaction tube 11 is discharged to generate a gas flow in the reaction tube 11.
  • the ratio of the catalyst gas in the mixed gas is 50 wt% for the catalyst gas.
  • the pressure inside the reaction tube 11 is maintained at about 66.7 kPa, and the arc discharge time is 30 minutes.
  • the gas is supplied from the supply pipe 17 in a tangential direction to the inner peripheral surface of the left reaction tube 11A, and thus, the gas forms a helical flow inside the reaction tube 11 and particularly in the arc discharge portion.
  • the diameter of the reaction tube 11 is a small diameter part 11E, so that the mixed gas of the organic gas and the catalyst gas, which is the raw material gas, is efficiently discharged by the arc discharge. Section. In this state, a carbonaceous material including single-walled carbon nanotubes and the like is generated in the arc discharge section, and is conveyed to the trap 23 by the flow of the mixed gas of the organic gas and the catalyst gas.
  • the recovered amount of the carbonaceous material is as low as 0.9 g.
  • the recovery amount of the carbonaceous material increases to 1.8 g and 2.0 g. Only However, even if the catalyst ratio was increased to 50% or 55%, the recovered amount did not increase more than 2.lg.
  • the content of the impurity Fe in the recovered carbonaceous material increases as the ratio of the catalyst increases. Therefore, when the ratio of the catalyst increases to 50% or 55%, the ratio of the single-walled carbon nanotubes in the collected carbonaceous material decreases. From the above, it can be seen that the appropriate ratio of the catalyst gas in the mixed gas is 4 to 50%.
  • the carbonaceous material was manufactured within this range, and the collected carbonaceous material was observed by TEM.As shown in Fig. 5, it was observed that a large amount of high-purity single-walled carbon nanotubes was contained in the carbonaceous material. Was done.
  • a mixed gas of a catalyst gas and an organic gas is used.
  • a mixed gas of an inert gas such as He and Ar and a catalyst gas is used.
  • Hue sen instead of Hue sen, other meta sens other than Hue sen, i.e., Nikkerocene having Ni instead of Fe in Hue sen or Fe Cono riretocene having Bi (Bis (eyelopentadienylcoba 1 t)) or the like may be used, or a mixture of these, for example, a mixture of fue mouth and Ecke mouth may be used. Good.
  • the anode 13 and the power sword 14 are made of pure carbon, the anode 13 is manufactured using a material containing a catalyst such as Fe, Ni, and Co in advance. It is not necessary to remove these catalysts from the carbon rod, and they may be used as they are.
  • alkane gas such as methane, ethane, butane, etc. was used alone or mixed. It may be a thing. These are particularly preferred, but instead of these, simple substances or mixtures of organic gases such as alkenes, alkynes and aromatics can be used.
  • inert gas argon gas, neon gas or the like may be used instead of helium gas.
  • the ratio of the mixed gas is set at 50 wt% for the catalyst gas, but may be within the range of 4 to 50%.
  • reaction tube 11 is made of quartz, it may be made of SUS304, SUS316, tantalum, molybdenum, or the like. That is, any material that can be welded, has high heat resistance, is chemically stable, and is not affected by high frequency may be used. Further, only a part of the reaction tube 11 and around the arc discharge part may be made of these substances.
  • an electric furnace or an infrared furnace may be provided instead of the RF heater 24 to heat the carbonaceous material including the single-walled carbon nanotubes captured by the capture device 23.
  • the heating by the RF heater 24 was performed after the arc discharge was completed, the heating may be performed simultaneously with the arc discharge. By doing so, a carbonaceous material such as a single-walled carbon nanotube can be manufactured in a short time.
  • the pressure in the reaction tube 11 during arc discharge was set to 66.7 kPa (500 Torr), but about 13.3 to 33.3 kPa ( It should be within the range of 100 to 250 0 To rr).
  • the reaction pipe 11 Although only one supply pipe 17 for supplying gas is provided in the reaction pipe 11, it may be provided in a plurality of tangential directions as shown in FIG. Even in this case, the supply pipe is provided at a position upstream of the arc discharge part in the gas flow direction.
  • multiple types of different gases can be separately and independently Alternatively, a plurality of gases may be mixed in the reaction tube.
  • the spiral of the mixed gas generated in the reaction pipe Since the flow can be strengthened and the first gas can flow through the first pipe and the second gas can flow through the second pipe, not only is it easy to control the blending of both, The trouble of mixing the first gas and the second gas before introducing the gas into the reaction tube can be omitted. Further, the first gas and the second gas are easily mixed, and the homogeneity of the mixed gas can be improved.
  • the supply pipe 17 for supplying gas is provided to extend in a tangential direction on the peripheral surface of the reaction pipe 17.
  • the supply pipe 17 is provided. It may be configured to extend at an acute angle to be connected to the reaction tube. In this way, the flow velocity of the spiral flow of the mixed gas generated in the reaction tube in the downstream direction can be increased.
  • an inner tube having a smaller diameter than the reaction tube may be arranged coaxially with the reaction tube in the reaction tube.
  • the inner pipe is provided at least at a position where the supply pipe is provided.
  • the reduced diameter portion 11E of the reaction tube 11 is set to the position from the position of the arc discharge portion to immediately before the trap 23, only the position of the arc discharge portion may be set to the reduced diameter portion.
  • the large-diameter portion 11 G is a part of the reaction tube 11 and around the trap 23, but this portion is also a reduced-diameter portion, and the reduced-diameter portion 11 E is used as the right-side reaction tube 11 B.
  • the shape may be extended to the whole.
  • the heating of the carbonaceous material captured by the capturing device 23 was performed under vacuum, but it may be performed under reduced pressure, or may be performed under vacuum or in a state other than under reduced pressure. Further, a window for monitoring the state of the arc discharge may be provided near the arc discharge part of the reaction tube 11.
  • the supply pipe 17 for supplying gas is provided to extend in a tangential direction on the peripheral surface of the reaction pipe 17, but may extend in any direction.
  • the reduced diameter portion 11E is provided in the reaction tube 11, the reduced diameter portion may not be provided.
  • the apparatus for manufacturing a carbonaceous material has the RF heater 24, but the cooling mechanism may be provided in the trap and the trap supporting member without the RF heater 24. Good.
  • the cooling mechanism By providing the cooling mechanism, the carbonaceous material captured by the trap can be cooled in a short time, so that the carbonaceous material can be taken out of the reaction tube immediately after the carbonaceous material is generated.
  • a through-hole penetrating the reaction tube 11 in the axial direction is formed in the lid 11 D ′ provided at the other end of the reaction tube 11.
  • a catcher support member 25 forming a double tube is provided in a state penetrating therethrough. Therefore, a part of the trap support member 25 is located inside the reaction tube 11.
  • a capture device 26 is provided at one end of the capture device support member 25 on the side located inside the reaction tube 11.
  • the inside of the catcher 26 has a space communicating with a space defined by the inner periphery of the outer tube and the outer periphery of the inner tube of the catcher support member 25, and the inner periphery of the inner tube of the catcher support member 25. And a space communicating with the space defined by. These two spaces communicate with each other.
  • the cooling water when the cooling water is injected into the space defined by the inner circumference of the inner pipe from the end of the capturing device supporting member 25 on the side where the capturing device 26 is not provided, the cooling water Passes through the space defined by the inner circumference of the inner tube, reaches the trap 26, cools the trap, cools the trap, supports the inner circumference of the outer pipe of the trap support member 25, and the outer circumference of the inner pipe. It is configured to flow into the space defined by, and to be discharged from the other end of the trap support member 25. According to the method for producing a carbonaceous material according to claim 1, since a gas containing a catalyst is supplied toward an arc discharge portion during arc discharge, the anode can be produced without containing a catalyst. .
  • the labor of mixing, molding, calcining, and processing the powdered catalyst and the powdered catalyst as in the conventional method to produce the anode is greatly reduced, and the production thereof is simplified.
  • the gas containing the catalyst is a mixed gas of the organic gas and the catalyst gas
  • the consumption of carbon by arc discharge is supplemented by the organic gas. Therefore, the arc discharge can be performed for a long period of time, and the anode can be manufactured without containing a catalyst.
  • the gas containing the catalyst is a mixed gas of the inert gas and the catalyst gas, the anode can be produced without containing the catalyst.
  • the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas
  • carbon consumption by arc discharge is reduced by the organic gas.
  • the consumption of the anode is reduced, the arc discharge can be performed for a long time, and the anode can be produced without containing a catalyst.
  • the anode is made of a carbon-based material that does not contain a catalyst, the anode is made of only a carbonaceous material that does not contain a catalyst, for example, a graphite rod or the like. can do.
  • the gas containing the catalyst in the reaction tube flows in a predetermined direction, so that a positive gas flow is generated in the reaction tube. Therefore, the carbonaceous material generated by the arc discharge flows in a predetermined direction without adhering to the inner wall surface of any reaction tube, It can be gathered or aggregated at a predetermined location in the tube, which facilitates collection.
  • the apparatus for producing a carbonaceous material according to claim 7 since the anode is configured without containing a catalyst, a pulverizing force is mixed with a powdery metal catalyst as in a conventional apparatus, The labor of forming, firing, and processing the anode to produce is greatly reduced, and the production is simplified.
  • the anode is made of a carbon-based material that does not contain a catalyst, the anode is made of only a carbonaceous material that does not contain a catalyst, such as a graphite rod. can do.
  • the gas containing the catalyst is a mixed gas of the organic gas and the catalyst gas, the carbon consumption by the arc discharge is supplemented by the organic gas. Therefore, the arc discharge can be performed for a long period of time, and the anode can be manufactured without containing a catalyst.
  • the gas containing the catalyst is a mixed gas of the inert gas and the catalyst gas, the anode can be manufactured without containing the catalyst. Can be.
  • the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas, consumption of carbon by arc discharge is reduced. Since the gas is supplemented by the organic gas, the consumption of the anode is reduced, a long-term arc discharge is possible, and
  • the apparatus for producing a carbonaceous material since the gas containing the catalyst is caused to flow in the predetermined direction by the flow control means, an aggressive gas flow is generated in the reaction tube. Therefore, the carbonaceous material generated by the arc discharge flows in a predetermined direction without adhering to the inner wall surface of any reaction tube. Thus, it can be collected or aggregated at a predetermined location in the reaction tube, and the collection thereof can be facilitated.
  • the catalyst-containing gas supply section is located at least on the upstream side of the arc discharge section, it always passes through the arc discharge section and can efficiently generate a carbonaceous material.

Abstract

A device and a method for manufacture of a carbonaceous material; the device, comprising a reaction tube and a gas feed part, the reaction tube further comprising an anode and a cathode for defining an arc discharge part installed therein, wherein the anode and the cathode are pure carbon electrodes formed of carbon only and the gas feed part is so formed that can selectively feed organic gas and catalyst gas into the reaction tube; the method, comprising the steps of forming a carbon lump in the forms of the anode and the cathode, producing an arc discharge at the arc discharge part in the reaction tube, feeding the mixed gas of the organic gas and the catalyst gas to the arc discharge part to produce the carbonaceous material, using the organic gas as the material, at the arc discharge part by a catalyst action, whereby, when the carbonaceous material such as a monolayer carbon nanotube is produced by arc discharge, a labor and a cost for manufacture of the anode can be reduced remarkably.

Description

炭素質材料の製造方法及び製造装置 技術分野  Method and apparatus for producing carbonaceous material
本発明は炭素質材料の製造方法及び製造装置に関し、 特にアーク放電 を利用して単層力一ボンナノチューブ等の炭素質材料を製造する炭素質 材料の製造方法及び製造装置に明関する。  The present invention relates to a method and an apparatus for producing a carbonaceous material, and more particularly to a method and an apparatus for producing a carbonaceous material for producing a carbonaceous material such as a single-walled carbon nanotube using arc discharge.
 Thread
背景技術 Background art
カーボンナノチューブは、 1 9 9 1年に、 S. I i j i m a , N a t u r e, Vo l . 3 54 ( 1 9 9 1 ) 5 6において、 飯島により初めて 報告された新しい材料である。 特に、 単層カーボンナノチューブ (SW NT) は、 いわゆるカイラリティ (c h i r a 1 i t y) と呼ばれる螺 旋の巻き方に因り、 電子物性が金属的性質から半導体的性質まで変化す ることが理論的に分かっており、 次世代の電子材料として有望視され、 ナノエレクトロニクス材、 電界電子放出ェミッタ、 高指向性放射源、 軟 X線源、 一次元伝導材、 高熱伝導材、 水素貯蔵材等への応用が考えられ ている。 又、 表面の官能基化、 金属被覆、 異物質内包により、 カーボン ナノチューブの応用範囲は更に広がると思われる。  Carbon nanotubes are a new material first reported by Iijima in 1991 in S. Iijima, Nature, Vol. 354 (1991) 56. In particular, single-walled carbon nanotubes (SWNTs) have been theoretically found to have electronic properties that change from metallic to semiconducting properties due to the spiraling of the so-called chiraity. It is promising as a next-generation electronic material, and is considered to be applied to nanoelectronics materials, field emission emitters, highly directional radiation sources, soft X-ray sources, one-dimensional conductive materials, high thermal conductive materials, hydrogen storage materials, etc. It has been. In addition, functionalization of the surface, metal coating, and inclusion of foreign substances are expected to further expand the application range of carbon nanotubes.
単層力一ボンナノチューブをはじめとする炭素質材料を製造する装置 としては、 第 1図に示されるような装置が従来より知られている。 この 装置には、 力ソード 1 1 4とアノード 1 1 3とが設けられており、 これ らアノード 1 1 3とカゾード 1 1 4との間にァ一ク放電を発生させるこ とによって、 炭素質材料の製造が行われる。  As an apparatus for producing carbonaceous materials such as single-walled carbon nanotubes, an apparatus as shown in FIG. 1 has been conventionally known. This device is provided with a power source 114 and an anode 113, and by generating an arc discharge between the anode 113 and the cathode 114, the carbonaceous material is generated. The production of the material takes place.
具体的には、 炭素質材料の製造装置 1 0 1には反応管 1 1 1が設けら れており、 反応管 1 1 1の内部には、 アノード 1 1 3と力ソード 1 1 4 とが僅かな隙間を隔てて対向配置されている。 アノード 1 1 3は正極側 の電流導入端子 1 4 2に電気的に接続されており、 力ソード 1 1 4は負 極側の電流導入端子 1 4 1に電気的に接続されている。 これら 2つの電 流導入端子 1 4 1、 1 4 2は、 反応管 1 1 1の外部に設けられた図示せ ぬ電流供給部に電気的に接続されており、 ァノ一ド 1 1 3、 力ソード 1 1 4に電圧を印加可能に構成されている。 アノード 1 1 3と力ソード 1 1 4とが互いに対向する先端間でアーク放電部が規定される。 アーク放 電部は、 反応管 1 1 1の軸方向の略中央に位置している。 Specifically, a reaction tube 1 11 is provided in the carbonaceous material production apparatus 101. An anode 113 and a force sword 114 are arranged inside the reaction tube 111 with a slight gap therebetween. The anode 113 is electrically connected to the current introduction terminal 1442 on the positive electrode side, and the power source 114 is electrically connected to the current introduction terminal 141 on the negative electrode side. These two current introduction terminals 14 1 and 14 2 are electrically connected to a current supply unit (not shown) provided outside the reaction tube 11 1, and It is configured so that a voltage can be applied to the force sword 114. An arc discharge part is defined between the tips of the anodes 113 and the force sword 114 facing each other. The arc discharge section is located substantially at the center of the reaction tube 111 in the axial direction.
アノード 1 1 3は、 触媒を含有する力一ボンにより構成されている。 触媒は、 具体的には、 F e、 N i等であり、 アーク放電を発生すること によって単層カーボンナノチューブ等の炭素質材料を製造する際に用い られる。 力ソード 1 1 4は、 触媒を含有しない純粋な力一ボンのロッド により構成されている。 アノード 1 1 3は、 アーク放電部において単層 カーボンナノチューブ等の炭素質材料を製造するときに原料として用い られるため消耗する。 この消耗により、 アノード 1 1 3と力ソード 1 1 4との間の隙間が広がりアーク放電が生じなくなってしまうことを防止 するため、 カソ一ド 1 1 4とアノード 1 1 3との間の隙間は、 常に一定 に保たれるように構成されている。 即ち、 力ソード 1 1 4と対向してい るアノード 1 1 3の一端に対する反対側の他端は、 アノード 1 1 3をァ ノード 1 1 3の長手方向に移動可能とする直線運動導入機構 1 1 6によ つて支持されている。  The anode 113 is constituted by a carbon containing a catalyst. The catalyst is, specifically, Fe, Ni, or the like, and is used when producing a carbonaceous material such as a single-walled carbon nanotube by generating an arc discharge. The force sword 114 consists of a pure carbon rod containing no catalyst. The anode 113 is consumed because it is used as a raw material when producing a carbonaceous material such as single-walled carbon nanotubes in the arc discharge part. In order to prevent the gap between anode 113 and force sword 114 from expanding due to this wear and prevent arc discharge from occurring, the gap between cathode 114 and anode 113 is prevented. Is designed to be kept constant at all times. That is, the other end opposite to one end of the anode 113 facing the force sword 114 is a linear motion introducing mechanism 111 that enables the anode 113 to move in the longitudinal direction of the anode 113. Supported by 6.
反応管 1 1 1には図示せぬ貫通孔が形成されており、 図示せぬ貫通孔 には、 図示せぬ不活性ガス注入器が接続されている。 図示せぬ不活性ガ ス注入器によって、 反応管 1 1 1内部を H eや A r等の不活性ガスで充 満可能に構成されている。 図示せぬ貫通孔は、 開閉可能に構成されてお り、 不活性ガスが反応管 1 1 1内に供給された後、 アーク放電時に閉じ られる。 A through-hole (not shown) is formed in the reaction tube 111, and an inert gas injector (not shown) is connected to the through-hole (not shown). The inside of the reaction tube 111 can be filled with an inert gas such as He or Ar by an inert gas injector (not shown). The through holes (not shown) are configured to be openable and closable. After the inert gas is supplied into the reaction tube 111, it is closed during arc discharge.
アノード 1 1 3は、 力一ボンを粉状に粉砕し、 粉状のカーボンに F e , N i等の触媒金属の粉体を混ぜたものを、 棒状に成形し、 更に、 焼成、 加工することによって製造される。 力ソード 1 1 4は、 力一ボン塊がそ のまま棒状に成形されて製造される。 次に、 アノード 1 1 3と力ソード 1 1 4とを、 炭素質材料の製造装置 1 0 1内部にセットし、 一旦、 反応 管 1 1 1内部を真空引きする。 その後に、 図示せぬ不活性ガス注入器に よって反応管 1 1 1内部を不活性ガスで充満し、 図示せぬ貫通孔を閉じ て、 反応管 1 1 1内部と大気とを遮断する。 そして、 アーク放電を行い. 触媒金属の触媒作用よりアノード 1 1 3を構成するカーボンを原料とし て単層カーボンナノチューブ等の炭素質材料の製造を行う。  The anode 1 13 is made by pulverizing carbon powder into powder, mixing powdered carbon with powder of catalytic metal such as Fe, Ni, etc., forming it into a rod shape, and then firing and processing. Manufactured by The force sword 114 is manufactured by forming a force-bon lump as it is into a rod shape. Next, the anode 113 and the force sword 114 are set inside the carbonaceous material manufacturing apparatus 101, and the inside of the reaction tube 111 is evacuated once. Thereafter, the inside of the reaction tube 111 is filled with an inert gas by an inert gas injector (not shown), a through hole (not shown) is closed, and the inside of the reaction tube 111 is isolated from the atmosphere. Then, arc discharge is performed. Carbonaceous materials such as single-walled carbon nanotubes are produced from the carbon constituting the anode 113 by the catalytic action of the catalytic metal.
しかし、 従来の炭素質材料の製造方法及び製造装置 1 0 1では、 上述 のように、 触媒金属を含有するアノード 1 1 3を製造するのに多大な手 間と費用を要していた。 即ち、 カーボンロッドでアノード 1 1 3を構成 する場合には、 上述のように、 先ずカーボンを粉状に粉砕し、 粉状の力 —ボンに触媒金属の粉体を混ぜたものを、 アノードの形状に成形し、 更 に、 焼成、 加工しなければならなかった。 このため、 炭素質材料の製造 装置 1 0 1の効率的な製造とコストダウンとを妨げるという重大な問題 が生じており、 結果的に、 単層力一ボンナノチューブ等の炭素質材料の 効率的な製造とコストダウンとを妨げていた。  However, in the conventional method and apparatus 101 for producing a carbonaceous material, as described above, a great deal of labor and cost were required to produce the anode 113 containing the catalytic metal. That is, when the anode 113 is composed of a carbon rod, as described above, first, carbon is pulverized into a powder, and a powder obtained by mixing a powder of a catalyst metal with a powdered carbon is used as the anode. It had to be formed into a shape, then fired and processed. For this reason, there is a serious problem that hinders efficient production and cost reduction of the carbonaceous material production apparatus 101, and as a result, the efficient production of carbonaceous materials such as single-walled carbon nanotubes Production and cost reduction were hindered.
そこで本発明は、 低いコストで炭素質材料を製造することができる炭 素質材料の製造方法及び製造装置を提供することを目的とする。 発明の開示  Therefore, an object of the present invention is to provide a method and an apparatus for producing a carbonaceous material that can produce a carbonaceous material at low cost. Disclosure of the invention
上記目的を達成するために、 本発明は、 炭素質材料生成室を画成する 反応管内に、 炭素系材料で構成されたアノードと、 該アノードと対向し 該アノードとの間でアーク放電部を規定する炭素系材料で構成された力 ソードとを配置し、 該アノード及びカソ一ド間に電圧を供給してアーク 放電がなされ、 該アーク放電部で炭素質材料が生成される炭素質材料の 製造方法において、 アーク放電の際に、 該アーク放電部に向って触媒を 含有したガスを供給する炭素質材料の製造方法を提供している。 In order to achieve the above object, the present invention defines a carbonaceous material production chamber. An anode made of a carbon-based material and a force source made of a carbon-based material facing the anode and defining an arc discharge part are arranged in the reaction tube, and the anode and the cathode are arranged. A method of producing a carbonaceous material in which arc is discharged by supplying a voltage between the electrodes and a carbonaceous material is generated in the arc discharge portion, wherein a catalyst is contained toward the arc discharge portion during the arc discharge. A method for producing a carbonaceous material for supplying gas is provided.
ここで、 該触媒を含有したガスは、 有機ガスと触媒ガスとの混合ガス であることが好ましい。  Here, the gas containing the catalyst is preferably a mixed gas of an organic gas and a catalyst gas.
又、 該触媒を含有したガスは、 不活性ガスと触媒ガスとの混合ガスで あることが好ましい。  Further, the gas containing the catalyst is preferably a mixed gas of an inert gas and a catalyst gas.
又、 該触媒を含有したガスは、 不活性ガスと有機ガスと触媒ガスとの 混合ガスであることが好ましい。  Further, the gas containing the catalyst is preferably a mixed gas of an inert gas, an organic gas, and a catalyst gas.
又、 該アノードは、 触媒を含有しない炭素系材料で構成されているこ とが好ましい。  The anode is preferably made of a carbon-based material that does not contain a catalyst.
又、 該反応管内の該触媒を含有したガスは、 所定方向に流されること が好ましい。  Further, it is preferable that the gas containing the catalyst in the reaction tube is flowed in a predetermined direction.
本発明は、 更に、 炭素質材料生成室を画成する反応管と、 該反応管内 に配置され炭素系材料で構成されたアノードと、 該反応管内に該ァノ一 ドと対向して設けられ、 該アノードとの間でアーク放電部を規定する炭 素系材料で構成された力ソードと、 該アノード及び力ソード間にァ一ク 放電を発生させるために、 該ァノード及び該カソ一ドに接続された電流 供給部とを備えた炭素質材料の製造装置において、 該反応管には該ァー ク放電部に向って触媒を含有したガスを供給するための触媒含有ガス供 給部が設けられている炭素質材料の製造装置を提供している。  The present invention further provides a reaction tube defining a carbonaceous material generation chamber, an anode disposed in the reaction tube and made of a carbon-based material, and provided in the reaction tube to face the anode. A power source made of a carbon-based material defining an arc discharge portion between the anode and the anode; and an anode and the cathode for generating an arc discharge between the anode and the power source. In the apparatus for producing a carbonaceous material having a connected current supply section, a catalyst-containing gas supply section for supplying a gas containing a catalyst toward the arc discharge section is provided in the reaction tube. And an apparatus for producing a carbonaceous material.
ここで、 該アノードは、 触媒を含有しない炭素系材料で構成されてい ることが好ましい。 又、 該触媒を含有したガスは、 有機ガスと触媒ガスとの混合ガスであ ることが好ましい。 Here, the anode is preferably made of a carbon-based material that does not contain a catalyst. Further, the gas containing the catalyst is preferably a mixed gas of an organic gas and a catalyst gas.
又、 該触媒を含有したガスは、 不活性ガスと触媒ガスとの混合ガスで あることが好ましい。  Further, the gas containing the catalyst is preferably a mixed gas of an inert gas and a catalyst gas.
又、 該触媒を含有したガスは、 不活性ガスと有機ガスと触媒ガスとの 混合ガスであることが好ましい。  Further, the gas containing the catalyst is preferably a mixed gas of an inert gas, an organic gas, and a catalyst gas.
又、 該反応管内の該触媒を含有したガスを所定方向に流すための流量 制御手段が該反応管に接続して設けられており、 該触媒含有ガス供給部 は、 該アーク放電部の少なくとも上流側に位置していることが好ましい c 図面の簡単な説明 Further, flow rate control means for flowing the gas containing the catalyst in the reaction tube in a predetermined direction is provided so as to be connected to the reaction tube, and the catalyst-containing gas supply unit is provided at least upstream of the arc discharge unit. bRIEF dESCRIPTION oF is preferably c drawings which are located on the side
第 1図は、 従来の炭素質材料の製造装置を示す概略図、 第 2図は、 本 発明の実施の形態による炭素質材料の製造装置を示す概略図、 第 3図は、 本発明の実施の形態による炭素質材料の製造装置の反応管の、 供給管が 設けられた部分を示す概略図、 第 4図は、 本発明の実施の形態による炭 素質材料の製造装置の反応管の、 縮径部を示す概略図、 第 5図は、 本発 明による炭素質材料の製造方法及び製造装置により得られた炭素質材料 の T E M写真、 第 6図は、 本発明の実施の形態の変形例を示す概略図、 第 7図は、 本発明の実施の形態の変形例の反応管の、 供給管が設けられ た部分を示す概略図である。 発明を実施するための最良の形態  FIG. 1 is a schematic diagram showing a conventional apparatus for producing a carbonaceous material, FIG. 2 is a schematic view showing an apparatus for producing a carbonaceous material according to an embodiment of the present invention, and FIG. FIG. 4 is a schematic view showing a portion of a reaction tube of a carbonaceous material manufacturing apparatus according to the embodiment, in which a supply pipe is provided. FIG. FIG. 5 is a schematic view showing a diameter portion, FIG. 5 is a TEM photograph of the carbonaceous material obtained by the method and apparatus for manufacturing a carbonaceous material according to the present invention, and FIG. 6 is a modification of the embodiment of the present invention. FIG. 7 is a schematic diagram showing a portion of a reaction tube according to a modification of the embodiment of the present invention, in which a supply tube is provided. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施の形態による炭素質材料の製造方法及び製造装置につい て第 2図乃至第 4図に基づき説明する。  A method and an apparatus for manufacturing a carbonaceous material according to an embodiment of the present invention will be described with reference to FIGS.
炭素質材料の製造装置 1は、 主として単層カーボンナノチューブを製 造する。 第 2図に示されるように、 炭素質材料の製造装置 1は、 略筒状 の反応管 1 1及び電流供給部 1 2を有し、 反応管 1 1は、 略筒状をした 左側反応管 1 1 Aと右側反応管 1 1 Bとの 2つの部分から構成されてい る。 従って、 反応管 1 1は、 左側反応管 1 1 Aと右側反応管 1 1 Bとに 分離可能に構成されており、 後述の捕獲器 2 3から単層カーボンナノチ ュ一ブを取出しやすい構造となっている。 反応管 1 1は石英からなり、 耐熱性に優れ、 化学的に安定な性質を持つ。 The carbonaceous material production apparatus 1 mainly produces single-walled carbon nanotubes. As shown in FIG. 2, the carbonaceous material manufacturing apparatus 1 has a substantially cylindrical shape. The reaction tube 11 has a substantially tubular left reaction tube 11A and a right reaction tube 11B. Therefore, the reaction tube 11 is configured to be separable into the left reaction tube 11A and the right reaction tube 11B, and has a structure that makes it easy to take out the single-walled carbon nanotube from the trap 23 described later. Has become. The reaction tube 11 is made of quartz, has excellent heat resistance, and has chemically stable properties.
左側反応管 1 1 Aの内部には、 棒状のアノード 1 3とカソード 1 4と が設けられている。 アノード 1 3及びカゾード 1 4は、 純粋なカーボン により構成されている。 アノード 1 3、 力ソード 1 4の直径は、 それぞ れ 1 0 mm、 1 5 mmである。 アノード 1 3と力ソード 1 4とは同一線 上に配置されており、 アノード 1 3の一端 1 3 Aと力ソード 1 4の一端 1 4 Aとは、 僅かな隙間を隔てて対向配置されている。 アノード 1 3の 他端 1 3 Bは、 電流供給部 1 2の正極に電気的に接続されており、 カソ ード 1 4の他端 1 4 Bは、 電流供給部 1 2の負極に電気的に接続されて おり、 アノード 1 3、 力ソード 1 4に電流を供給することによって、 ァ ノード 1 3の一端 1 3 Aと力ソード 1 4の一端 1 4 Aとの間にアーク放 電を発生可能に構成されている。 図示せぬ切換スィッチにより、 電極の 極性を逆にすることもできるように構成されており、 アノード 1 3の位 置と力ソード 1 4の位置とを逆にしてアーク放電を発生させることもで きるように構成されている。 アノード 1 3と力ソード 1 4とが互いに対 向する先端間でアーク放電部が規定される。 アーク放電部は、 '左側反応 管 1 1 Aの軸方向の略中央に位置している。  Inside the left reaction tube 11 A, a rod-shaped anode 13 and a cathode 14 are provided. The anode 13 and the cathode 14 are made of pure carbon. The diameters of the anode 13 and the force sword 14 are 10 mm and 15 mm, respectively. The anode 13 and the force sword 14 are arranged on the same line, and one end 13 A of the anode 13 and one end 14 A of the force sword 14 are arranged to face each other with a slight gap therebetween. I have. The other end 13 B of the anode 13 is electrically connected to the positive electrode of the current supply unit 12, and the other end 14 B of the cathode 14 is electrically connected to the negative electrode of the current supply unit 12. To supply current to the anode 13 and the force sword 14 to generate an arc discharge between the end 13 A of the anode 13 and the end 14 A of the force sword 14 It is configured to be possible. The polarity of the electrode can be reversed by a switching switch (not shown), and arc discharge can be generated by reversing the position of the anode 13 and the position of the force source 14. It is configured to be able to. An arc discharge portion is defined between the tips of the anode 13 and the force sword 14 facing each other. The arc discharge part is located at approximately the center of the left reaction tube 11A in the axial direction.
アノード 1 3は、 単層カーボンナノチューブ等の炭素質材料を製造す る際に炭素質材料の原料として用いられるため消耗する。 この消耗によ り、 アノード 1 3と力ソード 1 4との間の隙間が広がることによりァー ク放電が生じなくなってしまうことを防止するため、 アノード 1 3と力 ソード 1 4との間の隙間は、 常に一定に保たれるように構成されている 即ち、 アノード 1 3の他端 1 3 Bは、 直線運動導入機構 1 6によって支 持されており、 アノード 1 3をアノード 1 3の長手方向に移動可能とし ている。 力ソード 1 4の他端 1 4 Bは、 力ソード 1 4を移動不能に支持 する支持部材 1 5によって支持されている。 The anode 13 is consumed because it is used as a raw material of the carbonaceous material when producing a carbonaceous material such as a single-walled carbon nanotube. In order to prevent the gap from being widened between the anode 13 and the force sword 14 due to this consumption, arc discharge does not occur. The gap between the sword 14 and the sword 14 is configured to be always kept constant. That is, the other end 13 B of the anode 13 is supported by a linear motion introducing mechanism 16 and the anode 1 3 is movable in the longitudinal direction of the anode 13. The other end 14 B of the force sword 14 is supported by a support member 15 that supports the force sword 14 immovably.
反応管 1 1の両端は、 反応管 1 1の端部を覆う蓋体 1 1 C、 1 I Dが それぞれ設けられており、 反応管 1 1内を大気から遮断する。 反応管 1 1の両端は円形をしているため、 反応管 1 1の両端を覆う蓋体 1 1 C、 1 1 Dの形状も円形をしている。 反応管 1 1の一部であって、 蓋体 1 1 Cからアーク放電部の方へ少し寄った位置には、 ガスを反応管内に供給 するための供給管 1 7が設けられており、 供給管 1 7の内部は反応管 1 1の内部に連通している。  At both ends of the reaction tube 11, lids 11 C and 1 ID are provided to cover the end of the reaction tube 11, respectively, and the inside of the reaction tube 11 is shut off from the atmosphere. Since both ends of the reaction tube 11 are circular, the lids 11 C and 11 D covering both ends of the reaction tube 11 are also circular. A supply pipe 17 for supplying gas into the reaction tube, which is a part of the reaction tube 11 and is slightly shifted from the lid 11 C toward the arc discharge section, is provided. The inside of the tube 17 communicates with the inside of the reaction tube 11.
供給管 1 7は、 第 3図に示されるように、 左側反応管 1 1 Aの周面の 接線方向に延出して設けられている。 従って、 左側反応管 1 1 A内に供 給されるガスも、 反応管 1 1の接線方向から供給される。 このため、 供 給されたガスは、 第 3図に矢印で示されるように、 反応管 1 1内で螺旋 流となり、 螺旋流のままァ一ク放電部に供給されるように構成されてい る。  As shown in FIG. 3, the supply pipe 17 is provided to extend tangentially to the peripheral surface of the left reaction pipe 11A. Therefore, the gas supplied into the left reaction tube 11 A is also supplied from the tangential direction of the reaction tube 11. For this reason, the supplied gas becomes a spiral flow in the reaction tube 11 as shown by an arrow in FIG. 3, and is supplied to the arc discharge portion as the spiral flow. .
供給管 1 7の一部には、 流量制御手段たる供給管フローメータ 1 8 (第 2図) が設けられており、 反応管 1 1と接続されている供給管 1 7 の一端に対する他端には、 図示せぬガス供給部が設けられている。 図示 せぬガス供給部は、 不活性ガス、 又は触媒ガスと有機ガスとの混合ガス を選択的に供給可能に構成されている。 触媒ガスとしては、 具体的には 昇華した状態のフエ口センが使用される。 不活性ガスとしては、 へリウ ムガスが使用される。 有機ガスは、 アノードをなす力一ボンと共に、 生 成される単層カーボンナノチューブ等の炭素質材料の原料をなし、 メタ ンガス単体が使用される。 供給管フローメ一夕 1 8は、 供給管 1 7内を 流れ反応管 1 1内に供給される混合ガスの流速を調節可能に構成されて いる。 反応管 1 1内のガスの最大流量は 5 L /m i nである。 A part of the supply pipe 17 is provided with a supply pipe flow meter 18 (FIG. 2) as a flow control means, and is provided at one end of the supply pipe 17 connected to the reaction pipe 11 with respect to the other end. Is provided with a gas supply unit (not shown). The gas supply unit (not shown) is configured to selectively supply an inert gas or a mixed gas of a catalyst gas and an organic gas. As the catalyst gas, specifically, a sublimated Hue Sen is used. Helium gas is used as the inert gas. The organic gas forms a raw material for the carbonaceous material such as single-walled carbon nanotubes that are generated, together with the gas that forms the anode. Gas alone is used. The supply pipe flow meter 18 is configured so that the flow rate of the mixed gas flowing through the supply pipe 17 and supplied into the reaction pipe 11 can be adjusted. The maximum flow rate of the gas in the reaction tube 11 is 5 L / min.
左側反応管 1 1 A内のアーク放電部に、 生成される炭素質材料の原料 たる有機ガスが供給されるため、 アノードが炭素質材料の原料として用 いられる比率が低くなり、 アノードの消耗を大幅に減じることができる, 又、 反応管 1 1内のアーク放電部に触媒ガスが供給されるため、 触媒と カーボンとを混合してアノードを構成する必要がなくなり、 アノード製 造の手間とコス卜とを低減することができ、 単層カーボンナノチューブ 等の炭素質材料を安価で容易に製造することができる。  Since the organic gas, which is the raw material of the carbonaceous material to be generated, is supplied to the arc discharge part in the left reaction tube 11A, the ratio of the anode used as the raw material for the carbonaceous material is reduced, and the consumption of the anode is reduced. Since the catalyst gas is supplied to the arc discharge section in the reaction tube 11, there is no need to mix the catalyst and carbon to form the anode, which reduces the time and cost of anode production. And carbonaceous materials such as single-walled carbon nanotubes can be easily manufactured at low cost.
又、 螺旋流のままアーク放電部にガスが供給されるため、 アーク放電 部において触媒ガスや有機ガスが均一に供給され、 均一な放電を得るこ とができ、 安定した質の炭素質材料の生成を確保することができる。 右側反応管 1 1 Bの一部であって蓋体 1 1 Dからアーク放電部の方へ 少し寄った位置には、 反応管内からガスを排出するための排出管 1 9が 設けられており、 排出管 1 9の内部は反応管 1 1の内部に連通している 排出管 1 9の一部には、 排出管フローメ一夕 2 0が設けられており、 反 応管 1 1と接続されている排出管 1 9の一端に対する他端には、 ポンプ 2 1が設けられている。 ポンプ 2 1は、 負圧によって反応管 1 1内部の ガスを吸引することによって、 反応管 1 1内部のガスを反応管 1 1内部 から排出可能に構成されている。 排出管フローメータ 2 0は、 ポンプ 2 1による吸引力を調節可能に構成されている。  In addition, since the gas is supplied to the arc discharge part in a spiral flow, the catalyst gas and the organic gas are uniformly supplied in the arc discharge part, so that a uniform discharge can be obtained, and a stable quality carbonaceous material can be obtained. Generation can be ensured. A discharge pipe 19 for discharging gas from the inside of the reaction tube is provided at a position that is a part of the right reaction tube 11B and slightly away from the lid 11D toward the arc discharge part. The inside of the discharge pipe 19 communicates with the inside of the reaction pipe 11 .A part of the discharge pipe 19 is provided with a discharge pipe flowmeter 20, which is connected to the reaction pipe 11. A pump 21 is provided at the other end of the discharge pipe 19 with respect to one end. The pump 21 is configured so that the gas inside the reaction tube 11 can be discharged from the inside of the reaction tube 11 by sucking the gas inside the reaction tube 11 by negative pressure. The discharge pipe flow meter 20 is configured so that the suction force by the pump 21 can be adjusted.
円形をした蓋体 1 1 Dの中央には、 反応管 1 1の軸方向、 即ち、 ァ一 ク放電部に向かって延出する棒状の捕獲器支持部材 2 2が設けられてい る。 蓋体 1 1 Dと接続されている捕獲器支持部材 2 2の一端に対する他 端には、 アーク放電部で生成された単層力一ボンナノチューブ等を含む 炭素質材料を捕獲するための捕獲器 2 3が設けられている。 捕獲器 2 3 は、 黒鉛ロッドからなり、 円柱形状をし、 その長手方向の一端が捕獲器 支持部材 2 2に接続されている。 捕獲器 2 3は、 右側反応管 1 1 B内部 であって右側反応管 1 1 Bの軸方向の略中央からアーク放電部寄りの所 定の位置までの部分に位置している。 この位置は、 供給管 1 7から供給 されるガスの流れに着目すれば、 アーク放電部よりも下流側であり、 こ れに対して供給管 1 7の設けられている位置は、 アーク放電部よりも上 流側である。 アーク放電部で生成される炭素質材料には、 W e b状サン プル、 アモルファス状カーボン、 黒鉛、 触媒が含まれるが、 この順に密 度が大きくなる。 この密度の違いに着目し、 ガスの流量を適当な値とす ることにより、 下流側に設けられた捕獲器 2 3で W e b状サンプルのみ を選択的に得ることができるように構成されている。 捕獲器 2 3に捕獲 された単層力一ボンナノチューブを取出す際には、 左側反応管 1 1 Aと 右側反応管 1 1 Bとを分割して取り出すことができるように構成されて いる。 At the center of the circular lid 11D, a rod-shaped catcher support member 22 extending in the axial direction of the reaction tube 11, that is, toward the arc discharge portion is provided. The other end of one end of the capturer support member 22 connected to the lid 1 1D includes a single-walled carbon nanotube or the like generated in the arc discharge part. A capture device 23 for capturing the carbonaceous material is provided. The trap 23 is made of a graphite rod, has a cylindrical shape, and has one end in the longitudinal direction connected to the trap support member 22. The trap 23 is located inside the right reaction tube 11B and at a position from the substantially center in the axial direction of the right reaction tube 11B to a predetermined position near the arc discharge part. This position is located downstream of the arc discharge part when focusing on the flow of the gas supplied from the supply pipe 17, whereas the position where the supply pipe 17 is provided is the arc discharge part More upstream. The carbonaceous material generated in the arc discharge section includes a web-like sample, amorphous carbon, graphite, and a catalyst, and the density increases in this order. Focusing on this difference in density, by setting the gas flow rate to an appropriate value, it is configured so that only the web-like sample can be selectively obtained by the trap 23 provided on the downstream side. I have. When the single-walled carbon nanotubes captured by the capture device 23 are taken out, the left reaction tube 11A and the right reaction tube 11B are configured to be separated and taken out.
右側反応管 1 I B内部の捕獲器 2 3に捕獲された炭素質材料を加熱す るために、 捕獲器 2 3が設けられている位置に対して、 右側反応管 1 1 Bの外周を巻回するように R Fヒーター 2 4が設けられている。 捕獲さ れた炭素質材料を、 捕獲器 2 3に捕獲されたままの状態で、 R Fヒータ — 2 4により加熱することができるため、 得られた炭素質材料を大気に 曝すことなく精製処理することができる。 このため、 触媒に含まれる F e等の不純物を酸化することなく除去することことができ、 且つ、 結晶 性の悪い単層カーボンナノチューブを再配列し結晶性の良い単層力一ポ ンナノチューブとすることができ、 炭素質材料中の単層カーボンナノチ ユーブの比率を、 効率よく高めることができる。 In order to heat the carbonaceous material captured by the trap 23 inside the right reaction tube 1 IB, the outer periphery of the right reaction tube 11 B is wound around the position where the trap 23 is provided. An RF heater 24 is provided to perform the operation. Since the captured carbonaceous material can be heated by the RF heater 24 while being captured by the trap 23, the resulting carbonaceous material can be purified without being exposed to the atmosphere. be able to. Therefore, it is possible to remove without oxidizing impurities such as F e contained in the catalyst, and a rearranging bad SWNTs crystallinity good crystallinity monolayer force Ichipo nanotubes The ratio of the single-walled carbon nanotubes in the carbonaceous material can be efficiently increased.
反応管 1 1の径は、 第 2図及び第 4図に示されるように、 全ての部分 において均一となってはおらず、 部分的に径の小さい縮径部 1 1 Eを有 している。 即ち、 反応管 1 1の左端部からアーク放電部に向かって供給 管 1 7の設けられている位置を過ぎた辺りまでは、 径の大きい大径部 1 1 Fが同一径で続いているが、 この位置から、 径の小さな縮径部 1 1 E となりアーク放電部に至り、 ガスの流れ方向下流側の捕獲器 2 3が設け られている直前まで縮径部 1 1 Eは続く。 縮径部 1 1 Eとなっている部 分はその区間内で同一径である。 捕獲器 2 3の直前から再び反応管 1 1 の左端部と同一の大径部 1 1 Gとなり、 排出管 1 9の設けられている位 置を過ぎて反応管 1 1の右端部へと至る。 この大径部 1 1 Gも区間内で は同一径である。 縮径部 1 1 Eの径は、 3 0 mmであり、 大径部 1 1 F 1 1 Gの径は 5 0 mmである。 このように、 大径部 1 1 F、 1 1 G、 縮 径部 1 1 Eは、 反応管内の雰囲気ガスの対流を防止できる程度に小さく 構成されている。 As shown in FIGS. 2 and 4, the diameter of the reaction tube 11 In this case, it is not uniform, and has a reduced diameter portion 11E having a small diameter in part. In other words, from the left end of the reaction tube 11 toward the arc discharge portion, past the position where the supply tube 17 is provided, a large-diameter portion 11F having a large diameter continues with the same diameter. From this position, the reduced diameter portion 11E becomes a small diameter portion, reaches the arc discharge portion, and the reduced diameter portion 11E continues until immediately before the trap 23 on the downstream side in the gas flow direction is provided. The reduced diameter portion 11E has the same diameter in that section. Immediately before the trap 23, the large-diameter portion 11G, which is the same as the left end of the reaction tube 11 again, reaches the right end of the reaction tube 11 past the position where the discharge tube 19 is provided. . This large diameter portion 11G also has the same diameter in the section. The diameter of the reduced diameter portion 11E is 30 mm, and the diameter of the large diameter portion 11F11G is 50 mm. As described above, the large-diameter portions 11F and 11G and the reduced-diameter portion 11E are configured to be small enough to prevent convection of the atmospheric gas in the reaction tube.
又、 アーク放電部の位置において反応管 1 1の径が細い縮径部 1 1 E となっており、 縮径部 1 1 Eの断面積が、 供給管 1 7の設けられている 大径部 1 1 Fの断面積よりも小さいため、 原料ガスたる有機ガスを第 4 図の矢印に示されるように、 効率的にアーク放電部に収束させることが でき、 安定した原料ガスの供給を行うことができる。 このため、 アーク 放電部で有機ガスが希薄になることを防ぐことができ、 安定した放電が 可能となり、 安定して炭素質材料を生成することができる。  Also, at the position of the arc discharge part, the diameter of the reaction tube 11 is a small diameter part 11 E, and the cross-sectional area of the diameter reduction part 11 E is the large diameter part where the supply pipe 17 is provided. Since the cross-sectional area is smaller than 11 F, the organic gas, which is the source gas, can be efficiently converged to the arc discharge section as shown by the arrow in Fig. 4, and the source gas can be supplied stably. Can be. For this reason, it is possible to prevent the organic gas from being diluted in the arc discharge part, and it is possible to perform stable discharge and to stably generate a carbonaceous material.
又、 アーク放電部を過ぎて捕獲器 2 3の直前まで縮径部 1 1 Eとなつ ているため、 反応管 1 1内を流れるガス流速を高めることができ、 ァー ク放電部と捕獲器 2 3との間の反応管 1 1の内周面部分に、 生成した炭 素質材料が付着してしまうのを極力防ぐことができ、 効率よく捕獲器 2 3にて炭素質材料を捕獲することができる。  In addition, the diameter of the reduced diameter portion 11E extends from the arc discharge portion to just before the trap 23, so that the gas flow rate flowing in the reaction tube 11 can be increased, and the arc discharge portion and the trap The generated carbonaceous material can be prevented from adhering to the inner peripheral surface of the reaction tube 1 1 between 2 and 3 as much as possible, and the capture device 2 3 can efficiently capture the carbonaceous material. Can be.
又、 捕獲器 2 3の直前の位置において大径部 1 1 Gとなっており、 捕 獲器 2 3の周囲を流れるガスの流速を低下させることができるため、 生 成した炭素質材料が捕獲器 2 3に捕獲されずに通過してしまうのを極力 防ぐことができる。 In addition, the large diameter portion 11 G at the position immediately before the trap 23 is Since the flow velocity of the gas flowing around the trap 23 can be reduced, the generated carbonaceous material can be prevented from passing through the trap 23 without being captured.
次に、 単層力一ボンナノチューブ等の炭素質材料の製造方法について 説明する。 炭素質材料の製造に先立ち、 先ず、 アノード 1 3が製造され る。 即ち、 力一ボン塊を棒状に削り、 アノード 1 3、 力ソード 1 4のそ れぞれの形状とする。  Next, a method for producing a carbonaceous material such as a single-walled carbon nanotube will be described. Prior to the production of the carbonaceous material, first, the anode 13 is produced. That is, the lump is cut into a rod shape, and the shapes of the anode 13 and the force sword 14 are respectively obtained.
次に、 アノード 1 3、 カゾード 1 4を直線運動導入機構 1 6、 支持部 材 1 5にそれぞれセットし、 一旦、 反応管 1 1内を 1 0 1 P a以下に真 空引きする。 そして、 反応管 1 1内部に、 図示せぬガス供給部から供給 管を介して不活性ガスを供給し、 反応管 1 1内を約 6 6 . 7 k P a ( 5 O O T o r r ) にする。 その後、 不活性ガスの供給を止め、 アーク放電 部においてアーク放電を発生させ、 図示せぬガス供給部から触媒ガスと 有機ガスとの混合ガスを供給し、 これと同時に、 ポンプ 2 1を動作させ て反応管 1 1内のガスを排出し、 反応管 1 1内にガスの流れを生じさせ る。 混合ガス中の触媒ガスの比率は、 触媒ガスが 5 0 w t %である。 こ の間、 反応管 1 1内の気圧は約 6 6 . 7 k P aに保たれ、 アーク放電を 行う時間は 3 0分間である。 このときガスは、 供給管 1 7から左側反応 管 1 1 Aの内周面接線方向に供給されるため、 反応管 1 1内部、 特にァ ーク放電部において螺旋流となっている。 又、 アーク放電部の位置にお いては反応管 1 1の径が小さい縮径部 1 1 Eとなっているため、 原料ガ スたる有機ガスと触媒ガスとの混合ガスを効率的にアーク放電部に収束 させている。 この状態で、 単層カーボンナノチューブ等を含む炭素質材 料がアーク放電部において生成され、 有機ガスと触媒ガスとの混合ガス の流れによって捕獲器 2 3へと搬送される。 Next, the anode 1 3, Kazodo 1 4 linear movement introducing mechanism 1 6, set respectively in the supporting member (1) 5, once to vacuum pulling the reaction tube 1 1 below 1 0 1 P a. Then, an inert gas is supplied into the reaction tube 11 from a gas supply unit (not shown) via a supply tube to make the inside of the reaction tube 11 approximately 66.7 kPa (5 OOT orr). Thereafter, the supply of the inert gas is stopped, an arc discharge is generated in the arc discharge section, a mixed gas of the catalyst gas and the organic gas is supplied from a gas supply section (not shown), and at the same time, the pump 21 is operated. Then, the gas in the reaction tube 11 is discharged to generate a gas flow in the reaction tube 11. The ratio of the catalyst gas in the mixed gas is 50 wt% for the catalyst gas. During this time, the pressure inside the reaction tube 11 is maintained at about 66.7 kPa, and the arc discharge time is 30 minutes. At this time, the gas is supplied from the supply pipe 17 in a tangential direction to the inner peripheral surface of the left reaction tube 11A, and thus, the gas forms a helical flow inside the reaction tube 11 and particularly in the arc discharge portion. At the position of the arc discharge part, the diameter of the reaction tube 11 is a small diameter part 11E, so that the mixed gas of the organic gas and the catalyst gas, which is the raw material gas, is efficiently discharged by the arc discharge. Section. In this state, a carbonaceous material including single-walled carbon nanotubes and the like is generated in the arc discharge section, and is conveyed to the trap 23 by the flow of the mixed gas of the organic gas and the catalyst gas.
アーク放電が終了した後に、 反応管 1 1内を 1 0—1 P a以下に真空引 きし、 この状態で、 捕獲器 2 3によって捕獲された炭素質材料を、 R F ヒー夕一 2 4によって加熱する。 加熱温度、 時間は、 1 1 0 0 °Cで 3 0 分間である。 以上の製造工程によって、 純度の高い単層カーボンナノチ ユーブが、 高効率で製造される。 After the arc discharge is completed, vacuum pull the reaction tube 1 1 below 1 0- 1 P a In this state, the carbonaceous material captured by the trap 23 is heated by the RF heater 24. The heating temperature and time were 110 ° C for 30 minutes. Through the above manufacturing process, high-purity single-walled carbon nanotubes can be manufactured with high efficiency.
次に、 本発明による炭素質材料の製造方法及び装置について実験を行 つた。 実験では、 本実施の形態における炭素質材料の製造装置 1を用い て、 反応管 1 1内に供給される混合ガス中の触媒ガス (フエ口セン) の 比率の変化に対する炭素質材料の回収量と、 回収された炭素質材料中に 含まれる F eの含有量とを調べることにより行った。 この F eは、 触媒 ガスたるフエ口セン中に含まれていた F eであり、 生成された単層力一 ボンナノチューブに含まれる不純物である。 この実験では、 触媒ガスの 比率に対する不純物 F eの量を明らかにするため、 捕獲器 2 3に捕獲さ れた炭素質材料に対して R Fヒーター 2 4による加熱は行わなかった。  Next, an experiment was conducted on a method and an apparatus for producing a carbonaceous material according to the present invention. In the experiment, using the carbonaceous material manufacturing apparatus 1 according to the present embodiment, the amount of the carbonaceous material recovered with respect to the change in the ratio of the catalyst gas (Hueguchisen) in the mixed gas supplied into the reaction tube 11 And the content of Fe contained in the recovered carbonaceous material. This Fe is Fe contained in the catalyst gas Hue Mouth Sen, and is an impurity contained in the generated single-walled carbon nanotube. In this experiment, the carbonaceous material captured by the trap 23 was not heated by the RF heater 24 in order to clarify the amount of the impurity Fe relative to the ratio of the catalyst gas.
Figure imgf000014_0001
表 1に示されるように、 触媒の比率が 2 %と低いときには、 炭素質材 料の回収量は 0 . 9 gと少ない。 触媒の比率を 4 %、 2 0 %と高めてゆ くにつれて炭素質材料の回収量は 1 . 8 g 、 2 . 0 gと多くなる。 しか し、 触媒の比率を 5 0 %、 5 5 %と高めても、 回収量は 2. l gより増 加しない。 一方、 回収された炭素質材料中の不純物 F eの含有量は、 触 媒の比率が高くなるに従い多くなる。 従って、 触媒の比率が 5 0 %、 5 5 %と高くなると、 回収された炭素質材料中の単層カーボンナノチュー ブの比率が低くなつてしまうことになる。 以上より、 混合ガス中の触媒 ガスの比率は 4〜 5 0 %が適当であることが分かる。 この範囲内で炭素 質材料を製造し、 回収した炭素質材料について TEM観察を行った結果, 第 5図に示されるように、 純度の高い単層カーボンナノチューブが多量 に含まれているのが観察された。
Figure imgf000014_0001
As shown in Table 1, when the catalyst ratio is as low as 2%, the recovered amount of the carbonaceous material is as low as 0.9 g. As the ratio of the catalyst is increased to 4% and 20%, the recovery amount of the carbonaceous material increases to 1.8 g and 2.0 g. Only However, even if the catalyst ratio was increased to 50% or 55%, the recovered amount did not increase more than 2.lg. On the other hand, the content of the impurity Fe in the recovered carbonaceous material increases as the ratio of the catalyst increases. Therefore, when the ratio of the catalyst increases to 50% or 55%, the ratio of the single-walled carbon nanotubes in the collected carbonaceous material decreases. From the above, it can be seen that the appropriate ratio of the catalyst gas in the mixed gas is 4 to 50%. The carbonaceous material was manufactured within this range, and the collected carbonaceous material was observed by TEM.As shown in Fig. 5, it was observed that a large amount of high-purity single-walled carbon nanotubes was contained in the carbonaceous material. Was done.
本発明による炭素質材料の製造方法及び製造装置は上述した実施の形 態に限定されず、 特許請求の範囲に記載した範囲で種々の変形や改良が 可能である。 例えば、 本実施の形態では、 触媒ガスと有機ガスとの混合 ガスとしたが、 H e、 A r等の不活性ガスと触媒ガスとの混合ガスとし 又、 触媒ガスとして、 フエ口センを昇華させたものを用いたが、 フエ 口センに代えてフエ口セン以外の他のメタ口セン、 即ち、 フエ口セン中 の F eに代えて N iを有する二ッケロセンや、 F eに代えて C oを有す るコノ リレトセン (B i s (e y e l o p e n t a d i e n y l c o b a 1 t ) 等を用いてもよく、 又、 これらを混合したもの、 例えば、 フエ 口センとエッケ口センとを混合したもの等を用いてもよい。  The method and apparatus for producing a carbonaceous material according to the present invention are not limited to the above-described embodiments, and various modifications and improvements can be made within the scope described in the claims. For example, in the present embodiment, a mixed gas of a catalyst gas and an organic gas is used. However, a mixed gas of an inert gas such as He and Ar and a catalyst gas is used. However, instead of Hue sen, other meta sens other than Hue sen, i.e., Nikkerocene having Ni instead of Fe in Hue sen or Fe Cono riretocene having Bi (Bis (eyelopentadienylcoba 1 t)) or the like may be used, or a mixture of these, for example, a mixture of fue mouth and Ecke mouth may be used. Good.
又、 アノード 1 3、 力ソード 14は純粋な力一ボンにより構成された が、 予め F e、 N i、 C o等の触媒を含有しているような材料を用いて アノードを製造する場合には、 これらの触媒をカーボンロッドからわざ わざ除去する必要はなく、 そのまま使用してよい。  Although the anode 13 and the power sword 14 are made of pure carbon, the anode 13 is manufactured using a material containing a catalyst such as Fe, Ni, and Co in advance. It is not necessary to remove these catalysts from the carbon rod, and they may be used as they are.
又、 反応管内に供給される有機ガスとしては、 メタンガス単体を用い たが、 メタン、 ェタン、 ブタン等のアルカン類のガスの単体または混合 物でもよい。 これらが特に好ましいが、 これらに代えて、 アルケン類、 アルキン類、 芳香族等の有機ガスの単体又は混合物を用いることができ る。 As the organic gas supplied into the reaction tube, methane gas alone was used, but alkane gas such as methane, ethane, butane, etc. was used alone or mixed. It may be a thing. These are particularly preferred, but instead of these, simple substances or mixtures of organic gases such as alkenes, alkynes and aromatics can be used.
又、 不活性ガスとしては、 ヘリウムガスに代えてアルゴンガス、 ネオ ンガス等を用いてもよい。  Further, as the inert gas, argon gas, neon gas or the like may be used instead of helium gas.
又、 混合ガスの比率は、 触媒ガスを 5 0w t %としたが、 4〜5 0 % の範囲内であればよい。  The ratio of the mixed gas is set at 50 wt% for the catalyst gas, but may be within the range of 4 to 50%.
又、 反応管 1 1は石英により構成されたが、 SUS 3 04、 SUS 3 1 6、 タンタル、 モリブデン等により構成されてもよい。 即ち、 溶接可 能であり、 耐熱性が高く、 化学的に安定であり、 高周波の影響を受けな い物質であればよい。 又、 反応管 1 1の一部であってアーク放電部周辺 の位置のみをこれらの物質で構成するようにしてもよい。  Although the reaction tube 11 is made of quartz, it may be made of SUS304, SUS316, tantalum, molybdenum, or the like. That is, any material that can be welded, has high heat resistance, is chemically stable, and is not affected by high frequency may be used. Further, only a part of the reaction tube 11 and around the arc discharge part may be made of these substances.
又、 RFヒ一ター 24に代えて電気炉又は赤外炉を設けて、 捕獲器 2 3に捕獲された単層カーボンナノチューブを含む炭素質材料の加熱を行 つてもよい。  In addition, an electric furnace or an infrared furnace may be provided instead of the RF heater 24 to heat the carbonaceous material including the single-walled carbon nanotubes captured by the capture device 23.
又、 RFヒ一夕一 24による加熱をアーク放電が終了してから行った が、 アーク放電を行うのと同時に加熱してもよい。 このようにすること によって、 単層カーボンナノチューブ等の炭素質材料を短時間で製造す ることができる。  In addition, although the heating by the RF heater 24 was performed after the arc discharge was completed, the heating may be performed simultaneously with the arc discharge. By doing so, a carbonaceous material such as a single-walled carbon nanotube can be manufactured in a short time.
又、 アーク放電が行われているときの反応管 1 1内の気圧を 66. 7 k P a ( 50 0 T o r r ) としたが、 約 1 3. 3〜3 3 3. 3 k P a ( 1 00〜2 50 0 To r r) の範囲内であればよい。  The pressure in the reaction tube 11 during arc discharge was set to 66.7 kPa (500 Torr), but about 13.3 to 33.3 kPa ( It should be within the range of 100 to 250 0 To rr).
又、 ガスを供給する供給管 1 7を反応管 1 1に 1つだけ設けたが、 第 7図に示されるように、 複数接線方向に設けてもよい。 この場合でも、 供給管を、 アーク放電部よりもガスの流れ方向上流側の位置に設ける。 さらに、 複数の種類の異なるガスを、 それぞれ別個に独立して各供給管 から反応管内に供給するようにして、 反応管内で複数のガスを混合する ようにしてもよい。 又、 各供給管にはそれぞれフローメータを設けて、 各供給管から供給されるガスの流速をそれぞれ速度 V 1、 速度 V 2とし て異なるようにすれば、 反応管内で発生する混合ガスの螺旋流を強力に することができ、 第 1の管で第 1のガスを、 第 2管で第 2のガスを流す といったことが可能となるので、 両者の配合の制御が容易となるばかり か、 反応管にガスを導入する前に第 1のガスと第 2のガスとを混合させ ておくという手間を省略できる。 更に、 第 1のガスと第 2のガスとが混 ざり易くなり、 混合ガスの均質性を高めることができる。 Although only one supply pipe 17 for supplying gas is provided in the reaction pipe 11, it may be provided in a plurality of tangential directions as shown in FIG. Even in this case, the supply pipe is provided at a position upstream of the arc discharge part in the gas flow direction. In addition, multiple types of different gases can be separately and independently Alternatively, a plurality of gases may be mixed in the reaction tube. If a flow meter is provided in each supply pipe and the flow rates of the gases supplied from the supply pipes are made different as velocity V 1 and velocity V 2 respectively, the spiral of the mixed gas generated in the reaction pipe Since the flow can be strengthened and the first gas can flow through the first pipe and the second gas can flow through the second pipe, not only is it easy to control the blending of both, The trouble of mixing the first gas and the second gas before introducing the gas into the reaction tube can be omitted. Further, the first gas and the second gas are easily mixed, and the homogeneity of the mixed gas can be improved.
又、 ガスを供給する供給管 1 7は、 反応管 1 7の周面の接線方向に延 出して設けられていたが、 このことに加えて、 アーク放電部から捕獲器 へと向かう方向に対して鋭角に延びて反応管に接続されるようにしても よい。 このようにすれば、 反応管内で発生する混合ガスの螺旋流の、 下 流方向への流速を速くすることができる。  Further, the supply pipe 17 for supplying gas is provided to extend in a tangential direction on the peripheral surface of the reaction pipe 17. In addition to this, in addition to the direction from the arc discharge part to the trap, the supply pipe 17 is provided. It may be configured to extend at an acute angle to be connected to the reaction tube. In this way, the flow velocity of the spiral flow of the mixed gas generated in the reaction tube in the downstream direction can be increased.
又、 上述した混合ガスの螺旋流をより良好に形成するために、 反応管 よりも径の小さい内管が、 反応管内に反応管と同軸的に配置されていて もよい。 この内管は、 少なくとも供給管が設けられている位置に設けら れる。  Further, in order to form the above-mentioned spiral flow of the mixed gas better, an inner tube having a smaller diameter than the reaction tube may be arranged coaxially with the reaction tube in the reaction tube. The inner pipe is provided at least at a position where the supply pipe is provided.
又、 反応管 1 1の縮径部 1 1 Eを、 アーク放電部の位置から捕獲器 2 3の直前までの位置としたが、 アーク放電部の位置のみを縮径部として もよい。  Further, although the reduced diameter portion 11E of the reaction tube 11 is set to the position from the position of the arc discharge portion to immediately before the trap 23, only the position of the arc discharge portion may be set to the reduced diameter portion.
又、 反応管 1 1の一部であって捕獲器 2 3の周辺を大径部 1 1 Gとし たが、 この部分も縮径部として、 縮径部 1 1 Eを右側反応管 1 1 B全体 に延長するような形状にしてもよい。  The large-diameter portion 11 G is a part of the reaction tube 11 and around the trap 23, but this portion is also a reduced-diameter portion, and the reduced-diameter portion 11 E is used as the right-side reaction tube 11 B. The shape may be extended to the whole.
又、 捕獲器 2 3に捕獲された炭素質材料の加熱を真空下で行ったが、 減圧下で行ってもよく、 又、 真空下、 減圧下以外の状態で行ってもよい, 又、 反応管 1 1のアーク放電部近傍には、 アーク放電の状態を監視す るための窓を設けてもよい。 In addition, the heating of the carbonaceous material captured by the capturing device 23 was performed under vacuum, but it may be performed under reduced pressure, or may be performed under vacuum or in a state other than under reduced pressure. Further, a window for monitoring the state of the arc discharge may be provided near the arc discharge part of the reaction tube 11.
又、 ガスを供給する供給管 1 7は、 反応管 1 7の周面の接線方向に延 出して設けられていたが、 どの様な方向に延出するようにしてもよい。 又、 反応管 1 1に縮径部 1 1 Eを設けたが、 縮径部を設けなくてもよ い。  Further, the supply pipe 17 for supplying gas is provided to extend in a tangential direction on the peripheral surface of the reaction pipe 17, but may extend in any direction. Although the reduced diameter portion 11E is provided in the reaction tube 11, the reduced diameter portion may not be provided.
又、 本実施の形態による炭素質材料の製造装置は、 R Fヒーター 2 4 を有していたが、 R Fヒータ一 2 4を設けずに、 捕獲器及び捕獲器支持 部材に冷却機構を設けてもよい。 冷却機構を設けることにより、 捕獲器 に捕獲された炭素質材料を短時間で冷却することができるため、 炭素質 材料の生成後、 直ぐに炭素質材料を反応管内から取出すことができる。 具体的には、 第 6図に示されるように、 反応管 1 1の他端に設けられ た蓋体 1 1 D ' には、 反応管 1 1の軸方向に貫通する貫通孔が形成され ており、 貫通孔には、 二重管をなす捕獲器支持部材 2 5が貫通した状態 で設けられている。 従って、 捕獲器支持部材 2 5の一部は、 反応管 1 1 内部に位置している。 捕獲器支持部材 2 5の一端であって反応管 1 1内 に位置している側の端部には、 捕獲器 2 6が設けられている。 捕獲器 2 6の内部は、 捕獲器支持部材 2 5の外管の内周と内管の外周とで画成さ れる空間に連通する空間と、 捕獲器支持部材 2 5の内管の内周により画 成される空間に連通する空間とが形成されている。 これら 2つの空間は 互いに連通している。 この構成により、 捕獲器支持部材 2 5の端部であ つて捕獲器 2 6が設けられていない側から、 内管の内周により画成させ る空間に冷却水が注入されると、 冷却水は、 内管の内周により画成され る空間を通過して捕獲器 2 6内に到達し、 捕獲器を冷却し、 捕獲器支持 部材 2 5の外管の内周と内管の外周とで画成される空間へ流込み、 捕獲 器支持部材 2 5の他端から排出されるように構成される。 請求の範囲 1記載の炭素質材料の製造方法によれば、 アーク放電の際 にアーク放電部に向って触媒を含有したガスを供給するので、 アノード を触媒を含有させずに製造することができる。 よって、 従来のように粉 碎カ一ボンと粉体状の触媒とを混合、 成形、 焼成、 加工してアノードを 製造するという手間が大幅に縮減され、 これらの製造が簡単となる。 請求の範囲 2記載の炭素質材料の製造方法によれば、 触媒を含有した ガスが有機ガスと触媒ガスとの混合ガスであるため、 アーク放電による 炭素の消費が有機ガスによって補われるので、 アノードの消費量が減り 長期に亘つてのアーク放電が可能となり、 且つ、 アノードを触媒を含有 させずに製造することができる。 Further, the apparatus for manufacturing a carbonaceous material according to the present embodiment has the RF heater 24, but the cooling mechanism may be provided in the trap and the trap supporting member without the RF heater 24. Good. By providing the cooling mechanism, the carbonaceous material captured by the trap can be cooled in a short time, so that the carbonaceous material can be taken out of the reaction tube immediately after the carbonaceous material is generated. Specifically, as shown in FIG. 6, a through-hole penetrating the reaction tube 11 in the axial direction is formed in the lid 11 D ′ provided at the other end of the reaction tube 11. In the through hole, a catcher support member 25 forming a double tube is provided in a state penetrating therethrough. Therefore, a part of the trap support member 25 is located inside the reaction tube 11. A capture device 26 is provided at one end of the capture device support member 25 on the side located inside the reaction tube 11. The inside of the catcher 26 has a space communicating with a space defined by the inner periphery of the outer tube and the outer periphery of the inner tube of the catcher support member 25, and the inner periphery of the inner tube of the catcher support member 25. And a space communicating with the space defined by. These two spaces communicate with each other. With this configuration, when the cooling water is injected into the space defined by the inner circumference of the inner pipe from the end of the capturing device supporting member 25 on the side where the capturing device 26 is not provided, the cooling water Passes through the space defined by the inner circumference of the inner tube, reaches the trap 26, cools the trap, cools the trap, supports the inner circumference of the outer pipe of the trap support member 25, and the outer circumference of the inner pipe. It is configured to flow into the space defined by, and to be discharged from the other end of the trap support member 25. According to the method for producing a carbonaceous material according to claim 1, since a gas containing a catalyst is supplied toward an arc discharge portion during arc discharge, the anode can be produced without containing a catalyst. . Therefore, the labor of mixing, molding, calcining, and processing the powdered catalyst and the powdered catalyst as in the conventional method to produce the anode is greatly reduced, and the production thereof is simplified. According to the method for producing a carbonaceous material according to claim 2, since the gas containing the catalyst is a mixed gas of the organic gas and the catalyst gas, the consumption of carbon by arc discharge is supplemented by the organic gas. Therefore, the arc discharge can be performed for a long period of time, and the anode can be manufactured without containing a catalyst.
請求の範囲 3記載の炭素質材料の製造方法によれば、 触媒を含有した ガスは不活性ガスと触媒ガスとの混合ガスであるため、 アノードを触媒 を含有させずに製造することができる。  According to the method for producing a carbonaceous material according to claim 3, since the gas containing the catalyst is a mixed gas of the inert gas and the catalyst gas, the anode can be produced without containing the catalyst.
請求の範囲 4記載の炭素質材料の製造方法によれば、 触媒を含有した ガスが不活性ガスと有機ガスと触媒ガスとの混合ガスであるため、 ァー ク放電による炭素の消費が有機ガスによって補われるので、 アノードの 消費量が減り、 長期に亘つてのアーク放電が可能となり、 且つ、 ァノ一 ドを触媒を含有させずに製造することができる。  According to the method for producing a carbonaceous material according to claim 4, since the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas, carbon consumption by arc discharge is reduced by the organic gas. Thus, the consumption of the anode is reduced, the arc discharge can be performed for a long time, and the anode can be produced without containing a catalyst.
請求の範囲 5記載の炭素質材料の製造方法によれば、 アノードは触媒 を含有しない炭素系材料で構成されているので、 アノードを触媒を含有 しない炭素質材料のみ、 例えばグラフアイト棒等で製造することができ る。  According to the method for producing a carbonaceous material according to claim 5, since the anode is made of a carbon-based material that does not contain a catalyst, the anode is made of only a carbonaceous material that does not contain a catalyst, for example, a graphite rod or the like. can do.
請求の範囲 6記載の炭素質材料の製造方法によれば、 反応管内の触媒 を含有したガスは、 所定方向に流されるので、 反応管内で積極的なガス 流が発生する。 そのため、 アーク放電により生成された炭素質材料は、 任意の反応管の内壁面に付着することなく、 所定の方向に流され、 反応 管内の所定箇所に集合又は凝集することができ、 回収が容易となる。 請求の範囲 7記載の炭素質材料の製造装置によれば、 アノードは触媒 を含有させずに構成されているので、 従来装置のように粉砕力一ボンと 粉体状の金属触媒とを混合、 成形、 焼成、 加工してアノードを製造する という手間が大幅に縮減され、 製造が簡単となる。 According to the method for producing a carbonaceous material according to claim 6, the gas containing the catalyst in the reaction tube flows in a predetermined direction, so that a positive gas flow is generated in the reaction tube. Therefore, the carbonaceous material generated by the arc discharge flows in a predetermined direction without adhering to the inner wall surface of any reaction tube, It can be gathered or aggregated at a predetermined location in the tube, which facilitates collection. According to the apparatus for producing a carbonaceous material according to claim 7, since the anode is configured without containing a catalyst, a pulverizing force is mixed with a powdery metal catalyst as in a conventional apparatus, The labor of forming, firing, and processing the anode to produce is greatly reduced, and the production is simplified.
請求の範囲 8記載の炭素質材料の製造装置によれば、 アノードは触媒 を含有しない炭素系材料で構成されているので、 アノードを触媒を含有 しない炭素質材料のみ、 例えばグラフアイト棒等で構成することができ る。  According to the apparatus for producing a carbonaceous material described in claim 8, since the anode is made of a carbon-based material that does not contain a catalyst, the anode is made of only a carbonaceous material that does not contain a catalyst, such as a graphite rod. can do.
請求の範囲 9記載の炭素質材料の製造装置によれば、 触媒を含有した ガスが有機ガスと触媒ガスとの混合ガスであるため、 アーク放電による 炭素の消費が有機ガスによって補われるので、 アノードの消費量が減り 長期に亘つてのアーク放電が可能となり、 且つ、 アノードを触媒を含有 させずに製造することができる。  According to the apparatus for manufacturing a carbonaceous material according to claim 9, since the gas containing the catalyst is a mixed gas of the organic gas and the catalyst gas, the carbon consumption by the arc discharge is supplemented by the organic gas. Therefore, the arc discharge can be performed for a long period of time, and the anode can be manufactured without containing a catalyst.
請求の範囲 1 0記載の炭素質材料の製造装置によれば、 触媒を含有し たガスは不活性ガスと触媒ガスとの混合ガスであるため、 アノードを触 媒を含有させずに製造することができる。  According to the apparatus for manufacturing a carbonaceous material described in claim 10, since the gas containing the catalyst is a mixed gas of the inert gas and the catalyst gas, the anode can be manufactured without containing the catalyst. Can be.
請求の範囲 1 1記載の炭素質材料の製造装置によれば、 触媒を含有し たガスが不活性ガスと有機ガスと触媒ガスとの混合ガスであるため、 ァ —ク放電による炭素の消費が有機ガスによって補われるので、 アノード の消費量が減り、 長期に亘つてのアーク放電が可能となり、 且つ、 ァノ According to the apparatus for manufacturing a carbonaceous material described in claim 11, since the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas, consumption of carbon by arc discharge is reduced. Since the gas is supplemented by the organic gas, the consumption of the anode is reduced, a long-term arc discharge is possible, and
―ドを触媒を含有させずに製造することができる。 -Can be produced without containing a catalyst.
請求の範囲 1 2記載の炭素質材料の製造装置によれば、 流量制御手段 によって触媒を含有したガスが所定方向に流されるため、 反応管内で積 極的なガス流が発生する。 そのため、 アーク放電により生成された炭素 質材料は、 任意の反応管の内壁面に付着することなく、 所定の方向に流 され、 反応管内の所定箇所に集合又は凝集することができ、 その回収が 容易となる。 また、 触媒含有ガス供給部は、 アーク放電部の少なくとも 上流側に位置しているので、 必ずアーク放電部を通過し、 炭素質材料を 効率的に生成することができる。 According to the apparatus for producing a carbonaceous material according to claim 12, since the gas containing the catalyst is caused to flow in the predetermined direction by the flow control means, an aggressive gas flow is generated in the reaction tube. Therefore, the carbonaceous material generated by the arc discharge flows in a predetermined direction without adhering to the inner wall surface of any reaction tube. Thus, it can be collected or aggregated at a predetermined location in the reaction tube, and the collection thereof can be facilitated. In addition, since the catalyst-containing gas supply section is located at least on the upstream side of the arc discharge section, it always passes through the arc discharge section and can efficiently generate a carbonaceous material.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素質材料生成室を画成する反応管内に、 炭素系材料で構成された アノードと、 該アノードと対向し該アノードとの間でアーク放電部を規 定する炭素系材料で構成されたカソードとを配置し、 1. An anode made of a carbon-based material and a carbon-based material that opposes the anode and defines an arc discharge part between the anode and a reaction tube that defines a carbonaceous material generation chamber. Place the cathode and
該アノード及びカソ一ド間に電圧を供給してアーク放電がなされ、 該 アーク放電部で炭素質材料が生成される炭素質材料の製造方法において. アーク放電の際に、 該アーク放電部に向って触媒を含有したガスを供 給することを特徴とする炭素質材料の製造方法。  In a method for producing a carbonaceous material, a voltage is supplied between the anode and the cathode to cause arc discharge, and a carbonaceous material is generated in the arc discharge part. A method for producing a carbonaceous material, comprising supplying a gas containing a catalyst by heating.
2 . 該触媒を含有したガスは、 有機ガスと触媒ガスとの混合ガスである ことを特徴とする請求の範囲 1記載の炭素質材料の製造方法。 2. The method for producing a carbonaceous material according to claim 1, wherein the gas containing the catalyst is a mixed gas of an organic gas and a catalyst gas.
3 . 該触媒を含有したガスは、 不活性ガスと触媒ガスとの混合ガスであ ることを特徴とする請求の範囲 1記載の炭素質材料の製造方法。  3. The method for producing a carbonaceous material according to claim 1, wherein the gas containing the catalyst is a mixed gas of an inert gas and a catalyst gas.
4 . 該触媒を含有したガスは、 不活性ガスと有機ガスと触媒ガスとの混 合ガスであることを特徴とする請求の範囲 1記載の炭素質材料の製造方 法。  4. The method for producing a carbonaceous material according to claim 1, wherein the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas.
5 . 該アノードは、 触媒を含有しない炭素系材料で構成されていること を特徴とする請求の範囲 1記載の炭素質材料の製造方法。  5. The method for producing a carbonaceous material according to claim 1, wherein the anode is made of a carbon-based material that does not contain a catalyst.
6 . 該反応管内の該触媒を含有したガスは、 所定方向に流されることを 特徴とする請求の範囲 1記載の炭素質材料の製造方法。  6. The method for producing a carbonaceous material according to claim 1, wherein the gas containing the catalyst in the reaction tube is flowed in a predetermined direction.
7 . 炭素質材料生成室を画成する反応管と、  7. A reaction tube defining a carbonaceous material production chamber;
該反応管内に配置され炭素系材料で構成されたアノードと、  An anode arranged in the reaction tube and made of a carbon-based material;
該反応管内に該アノードと対向して設けられ、 該アノードとの間でァ ーク放電部を規定する炭素系材料で構成された力ソードと、  A force sword provided in the reaction tube so as to face the anode, the force sword being made of a carbon-based material defining an arc discharge portion with the anode;
該アノード及ぴカソード間にアーク放電を発生させるために、 該ァノ 一ド及び該カソードに接続された電流供給部とを備えた炭素質材料の製 造装置において、 To generate an arc discharge between the anode and the cathode, a carbonaceous material provided with the anode and a current supply connected to the cathode. Manufacturing equipment,
該反応管には該アーク放電部に向って触媒を含有したガスを供給する ための触媒含有ガス供給部が設けられていることを特徴とする炭素質材 料の製造装置。  An apparatus for producing a carbonaceous material, characterized in that the reaction tube is provided with a catalyst-containing gas supply unit for supplying a gas containing a catalyst toward the arc discharge unit.
8 . 該アノードは、 触媒を含有しない炭素系材料で構成されていること を特徴とする請求の範囲 7記載の炭素質材料の製造装置。  8. The apparatus for producing a carbonaceous material according to claim 7, wherein the anode is made of a carbon-based material containing no catalyst.
9 . 該触媒を含有したガスは、 有機ガスと触媒ガスとの混合ガスである ことを特徴とする請求の範囲 7記載の炭素質材料の製造装置。  9. The apparatus for producing a carbonaceous material according to claim 7, wherein the gas containing the catalyst is a mixed gas of an organic gas and a catalyst gas.
1 0 . 該触媒を含有したガスは、 不活性ガスと触媒ガスとの混合ガスで あることを特徴とする請求の範囲 7記載の炭素質材料の製造装置。 10. The apparatus for producing a carbonaceous material according to claim 7, wherein the gas containing the catalyst is a mixed gas of an inert gas and a catalyst gas.
1 1 . 該触媒を含有したガスは、 不活性ガスと有機ガスと触媒ガスとの 混合ガスであることを特徴とする請求の範囲 7記載の炭素質材料の製造 11. The production of a carbonaceous material according to claim 7, wherein the gas containing the catalyst is a mixed gas of an inert gas, an organic gas, and a catalyst gas.
1 2 . 該反応管内の該触媒を含有したガスを所定方向に流すための流量 制御手段が該反応管に接続して設けられており、 該触媒含有ガス供給部 は、 該アーク放電部の少なくとも上流側に位置していることを特徴とす る請求の範囲 7記載の炭素質材料の製造装置。 12. A flow rate control means for flowing the gas containing the catalyst in the reaction tube in a predetermined direction is provided in connection with the reaction tube, and the catalyst-containing gas supply unit is at least one of the arc discharge unit. 8. The apparatus for producing a carbonaceous material according to claim 7, wherein the apparatus is located on an upstream side.
PCT/JP2002/001648 2001-03-01 2002-02-25 Device and method for manufacture of carbonaceous material WO2002070406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-56327 2001-03-01
JP2001056327A JP4724929B2 (en) 2001-03-01 2001-03-01 Method and apparatus for producing carbonaceous material

Publications (1)

Publication Number Publication Date
WO2002070406A1 true WO2002070406A1 (en) 2002-09-12

Family

ID=18916369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001648 WO2002070406A1 (en) 2001-03-01 2002-02-25 Device and method for manufacture of carbonaceous material

Country Status (2)

Country Link
JP (1) JP4724929B2 (en)
WO (1) WO2002070406A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2841233B1 (en) * 2002-06-24 2004-07-30 Commissariat Energie Atomique METHOD AND DEVICE FOR PYROLYSIS DEPOSITION OF CARBON NANOTUBES
CN110217777B (en) * 2019-06-19 2023-05-09 江西铜业技术研究院有限公司 Carbon nano tube preparation device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201715A (en) * 1992-01-28 1993-08-10 Hitachi Ltd Metal containing carbon cluster and production thereof
JPH07187631A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of carbon cluster
JPH07189040A (en) * 1993-12-27 1995-07-25 Nec Corp Production of cylindrical graphite fiber
JPH07197325A (en) * 1993-12-28 1995-08-01 Nec Corp Production of single-layer carbon nanotube
US5493094A (en) * 1993-01-14 1996-02-20 Simmons; Walter N. Preparation of fullerenes and apparatus therefor
JP2001348215A (en) * 2000-05-31 2001-12-18 Fuji Xerox Co Ltd Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002030816A1 (en) * 2000-10-06 2002-04-18 Fullerene International Corporation Double-walled carbon nanotubes and methods for production and application
JP2002234715A (en) * 2001-02-07 2002-08-23 Sony Corp Method for producing fullerenes and apparatus therefor
JP2002249306A (en) * 2001-02-19 2002-09-06 Sony Corp Method and apparatus for manufacturing carbon nanotube
JP2002255523A (en) * 2001-03-01 2002-09-11 Sony Corp Apparatus for producing carbonaceous material
JP2002255522A (en) * 2001-03-01 2002-09-11 Sony Corp Method and apparatus for producing carbonaceous material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05201715A (en) * 1992-01-28 1993-08-10 Hitachi Ltd Metal containing carbon cluster and production thereof
US5493094A (en) * 1993-01-14 1996-02-20 Simmons; Walter N. Preparation of fullerenes and apparatus therefor
JPH07187631A (en) * 1993-12-22 1995-07-25 Ryoda Sato Production of carbon cluster
JPH07189040A (en) * 1993-12-27 1995-07-25 Nec Corp Production of cylindrical graphite fiber
JPH07197325A (en) * 1993-12-28 1995-08-01 Nec Corp Production of single-layer carbon nanotube
JP2001348215A (en) * 2000-05-31 2001-12-18 Fuji Xerox Co Ltd Manufacturing method of carbon nanotube and/or fullerene and manufacturing device therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. KOPRINAROV ET AL.: "Fullerene structure synthesis by DC arc discharge in ferrocene vapours", VACUUM, vol. 58, 2000, pages 208 - 214, XP002951550 *

Also Published As

Publication number Publication date
JP4724929B2 (en) 2011-07-13
JP2002255521A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
CA2424969C (en) Double-walled carbon nanotubes and methods for production and application
JPH09188509A (en) Production of monolayer carbon manotube
JP2009196873A (en) Method and apparatus for manufacturing carbon nanotube
WO2002070405A1 (en) Device and method for manufacture of carbonaceous material
Ahmad et al. Gas phase synthesis of metallic and bimetallic catalyst nanoparticles by rod-to-tube type spark discharge generator
JPH06322615A (en) Carbon fiber and its production
Harbec et al. Carbon nanotubes from the dissociation of C2Cl4 using a dc thermal plasma torch
Kim et al. Preparation of carbon nanotubes by DC arc discharge process under reduced pressure in an air atmosphere
WO2002070406A1 (en) Device and method for manufacture of carbonaceous material
JP2007536189A (en) Production of carbon nanotubes
JP2002255522A (en) Method and apparatus for producing carbonaceous material
JP2002255523A (en) Apparatus for producing carbonaceous material
KR20160118835A (en) Apparatus and method of fabricating boron nitride nanotube
JP4665113B2 (en) Fine particle production method and fine particle production apparatus
JP3810756B2 (en) Method and apparatus for producing single-walled carbon nanotubes
WO1998012548A1 (en) Gas sensor
JP2003183011A (en) Carbonaceous material catcher and method and apparatus for producing carbonaceous material
Bellucci et al. Comparative field emission from vertically aligned few-layer graphene and carbon nanotubes
JP3952478B2 (en) Boron-containing carbon nanostructure and manufacturing method thereof
JP3815421B2 (en) Method for producing carbon nanotube
CN100577560C (en) Carbon nanotube and its manufacture method and the equipment of making carbon nanotube
JP2000344505A (en) Production of carbon nanotube and producing device therefor
JP2006124225A (en) Carbon nanotube, method for producing carbon nanotube, and electron emission material
JP2005350285A (en) Carbon nanotube, carbon nanowire, and carbon nanoonion
JP3998258B2 (en) Carbon nanotube recovery body

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase