WO2002068920A1 - Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif - Google Patents

Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif Download PDF

Info

Publication number
WO2002068920A1
WO2002068920A1 PCT/FR2002/000610 FR0200610W WO02068920A1 WO 2002068920 A1 WO2002068920 A1 WO 2002068920A1 FR 0200610 W FR0200610 W FR 0200610W WO 02068920 A1 WO02068920 A1 WO 02068920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
enclosure
diaphragm
wall
peripheral ring
Prior art date
Application number
PCT/FR2002/000610
Other languages
English (en)
Inventor
Benoit Linglin
Didier Anthoine-Milhomme
Original Assignee
Seb S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seb S.A. filed Critical Seb S.A.
Publication of WO2002068920A1 publication Critical patent/WO2002068920A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0041Transmitting or indicating the displacement of flexible diaphragms
    • G01L9/0051Transmitting or indicating the displacement of flexible diaphragms using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Definitions

  • the present invention relates to a pressure measuring device of the type comprising at least one electrical element sensitive to a pressure difference and it also relates to a measuring method using such a device.
  • This type of device is used more particularly to measure the pressure of a fluid contained in an enclosure.
  • the measurement of the pressure consists of the measurement of a force exerted on a determined surface of a wall dividing two media, one of which contains the fluid whose pressure is to be measured.
  • the measurement of the deformation of the surface subjected to the action of pressure gives information on the value of this pressure.
  • a pressure sensor converting the input signal, pressure, into an electrical output signal representative of the value of the pressure and / or of its variation over time.
  • a pressure sensor can be a resistant metal diaphragm by means of strain gauges glued or distributed on said diaphragm, showing its deformation. This diaphragm is exposed to the fluid transmitting the pressure, on one of its faces, and, on its other face, to the reference pressure at the place where the measurement is made.
  • the pressure sensor comprises a circular diaphragm elastically deformable by pressure, reinforced with a peripheral ring, on the deformable part of the diaphragm being fixed four strain gauges mounted as a Wheatstone bridge .
  • the strain gauges are arranged at different distances from the peripheral ring and their surface varies with their distance from the ring so as to equalize the heat transfers in the gauges.
  • the gauges of stress undergo changes in their dimensions in the same way as the diaphragm and which are translated into variations in their electrical resistance. These values are then measured to determine the corresponding pressure variations.
  • the solutions described in these documents call for a measurement through a pressure tap constituted by an orifice of circular section drilled in the wall, taken connected to a measuring instrument, such as the diaphragms described.
  • the problem posed by the invention is to measure the pressure inside a container in a simple and precise manner, without resorting to a pressure tapping through an orifice drilled in the wall of the container.
  • a method is also known for measuring the pressure of a fluid contained in a pressurized enclosure by fixing on the wall of the latter a sensor comprising strain gauges and by directly measuring their deformation as a function of the pressure applied.
  • the object of the present invention is to remedy at least in part the aforementioned drawbacks and to provide a device for precise measurement of the pressure for which it is possible to know reliably the law of variation of the pressure as a function of the values measured by the device and this for any type of material surface.
  • a further object of the invention is a pressure measuring device which can be adapted to any type of enclosure or tank containing a fluid which is at a pressure different from that of measurement, without taking account of the shape, dimensions or manufacturing tolerances of its surface.
  • Another object of the invention is to provide a pressure measuring device which is reliable in operation while being of a simplified construction, which can be mass produced at a lower cost.
  • a device for measuring the pressure within an enclosure by converting a mechanical stress due to a pressure difference prevailing in the enclosure and its exterior into an electrical signal, this device comprising an applied sensor.
  • said sensor on the wall of said enclosure liable to deform elastically under the effect of said stress, said sensor comprising at least one electrical element sensitive to deformations, owing to the fact that it comprises at least one rigid peripheral ring delimiting in the surface of the wall of said enclosure a diaphragm supporting said sensor.
  • the pressure of an enclosure containing a fluid is measured by directly measuring the elastic deformations of the wall of the enclosure subjected to a pressure differential.
  • enclosure any partition wall between two media which have different pressures, in particular any open or closed container comprising a wall deformable under the effect of this difference in pressures, for example a reservoir of pressurized fluid, a carcass in which a depression was created, a tube in communication with said deformable wall, etc.
  • a sensor is applied to the wall comprising an electrical element sensitive to deformations of said wall.
  • the deformations of the wall differ from one point to another being dependent on multiple factors, it is necessary to choose a measurement zone whose deformations are representative of the state of the pressure acting on the wall.
  • the solution provided by the invention consists in delimiting, by a rigid ring, a measurement zone in the surface of the wall of said enclosure.
  • said peripheral ring being rigid enough to bring a stiffness in the plane of the wall of said enclosure, the deformable zone contained inside said ring behaves in the manner of a recessed diaphragm.
  • the rigid peripheral ring thus makes it possible, by its mechanical inertia, to eliminate edge effects due to the shape and dimensions of the surface of the wall and to reduce the measurement of the pressure of a complex surface to the problem of deformation of an embedded diaphragm and this from any material shell.
  • This diaphragm supports a sensor transforming the deformation of the diaphragm into an electric variable which gives reliable information on the value of the pressure acting on the wall.
  • the inner surface of said ring is circular in shape.
  • said rigid peripheral ring is secured to the outer face, placed at atmospheric pressure, of the wall of said enclosure.
  • said diaphragm is made of a metallic material.
  • Such a material is suitable both from the point of view of the permissible pressure constraints as well as from a constructive point of view for the manufacture of the enclosures containing a fluid at a pressure different from atmospheric pressure.
  • such an enclosure made of steel could contain a fluid having a relative pressure of between -1 bar and 20 bars.
  • the ratio between the thickness of said diaphragm and the radius of the internal surface of said peripheral ring is less than 1: 30.
  • the thickness of said diaphragm is obtained by a thinning of the wall of said enclosure.
  • the surface of said diaphragm is substantially planar.
  • Such a flat surface on which a sensor is applied transmits to the latter the state of its deformations better than a left surface.
  • said peripheral ring forms an integral part of the wall of the enclosure.
  • peripheral ring and the diaphragm at the same time and / or in the same piece as the wall of the enclosure, for example by stamping, which makes it possible to eliminate assembly and machining times. , this solution being very suitable for a large volume of manufacture.
  • said peripheral ring is attached to the wall of said enclosure.
  • the device of the invention to be produced by assembling the enclosure with a separate part, which has the consequence of reducing the cost of the tools and of the manufacturing process.
  • a ring made of a material other than that of the enclosure is made of a metallic material.
  • peripheral ring made of different materials with sufficient rigidity, such as glass, ceramic material, etc.
  • metal ring it is preferred to use a metal ring because it is rigid enough to isolate a diaphragm in the wall of the enclosure, while being easy to produce and assemble on the wall of the enclosure, either in a removable manner, for example at the '' using a screw fixing, either removable, for example by welding, gluing, etc.
  • said electrical element sensitive to deformations is a strain gauge.
  • said strain gauge is a resistance strain gauge.
  • strain strain gauges for example piezoresistive, but the strain strain gauges give more precise information of the deformation, while being of a lower cost.
  • said resistance strain gauge is a resistive element in thick film technology deposited on an insulating base.
  • Such a resistive element produced in thick layer technology for example, by depositing a resistive paste by screen printing on an alumina substrate, has good properties of response to diaphragm elongations and of reliability, while being small in size and of reduced cost.
  • said resistive element is fixed by bonding to said diaphragm.
  • Such a fixing ensures good contact between the flat face of the substrate and that of the diaphragm, while allowing the two components to be produced separately.
  • the device according to the present invention can be advantageously used with a household electrical appliance.
  • Such an appliance can be, for example, a pressure cooker, a steam generator for an iron, a vacuum cleaner, or other household appliance operating at pressures of the same order of magnitude. It has been observed during tests carried out on these devices that the device of the invention gives very precise and reliable information in the range of operating pressures of these devices.
  • the device of the invention can advantageously be used with a structural element for a motor vehicle comprising at least one wall which can be deformed under the effect of a pressure difference.
  • the invention also relates to a method for measuring the pressure of a fluid contained in an enclosure, comprising a wall intended to be exposed to a pressure different from atmospheric pressure, characterized in that it consists in: - delimiting in the wall a diaphragm constituting the measurement area by forming a rigid peripheral ring therein, the diaphragm being deformable under the effect of pressure;
  • a pressure sensor to said diaphragm, said sensor comprising at least one electrical element sensitive to deformations of the diaphragm and being connected to an electrical supply circuit and for measuring the values of said electrical element;
  • FIG. 1 shows an exploded perspective view of the measurement area and the device of the invention
  • FIG. 2 shows a perspective view of the device of the invention applied to the measurement area
  • - Figure 3 is an axial section of the device of Figure 2 before the application of pressure on the measurement area;
  • - Figure 4 is a view similar to that of Figure 3 with a pressure applied to the measurement area;
  • FIG. 5 is a schematic view of the device of the invention showing the various constructive parameters and deformation
  • FIG. 7 shows an embodiment of a sensor used with the device of the invention.
  • Figures 1 and 2 show the device of the invention mounted on the surface 6 of a wall 3 of an enclosure, only part of which has been shown in the figures.
  • the enclosure can advantageously be made of a metallic material, for example by a stamping process.
  • the device comprises a rigid peripheral ring 2 mounted on the external face 6 placed at atmospheric pressure of the wall 3.
  • the peripheral ring 2 delimits on the wall 3 a diaphragm 5 stiffened on its periphery by the peripheral ring 2.
  • a sensor pressure 1 is applied to the diaphragm 5 in order to measure its deformations when the latter is subjected to a pressure P.
  • the peripheral ring 2 is usefully made of a metallic material, for example steel, aluminum, etc., by cutting a washer from a metallic tube, or by stamping, by stamping, by molding, etc.
  • this peripheral ring 2 is attached to the wall 3 by a continuous fixing of the bonding or welding type. It is also possible to envisage fixing of the type by fixing screw or rivets, however providing a continuous complementary attachment, such as a circular stud penetrating a corresponding groove.
  • the peripheral ring 2 is produced in one piece with the wall 3 of the enclosure by a stamping or molding process or by any other machining technique.
  • the peripheral ring 2 has an inner surface 4 of circular shape, its outer surface 4 'may have a shape also circular, or square or any other desired shape.
  • the dimensions of the cross section of the wall of the peripheral ring, the radius R of its internal surface 4 are chosen as a function of the thickness e of the wall 3 and of the characteristics of the material of the latter, in particular its heat treatment, its hardness, etc.
  • the radius R is greater than 30 times the thickness e.
  • the height of the peripheral ring 2 is between 1 and 20 times the thickness e and its radial width is between 1 and 20 times the thickness e of the wall 3, depending on different parameters, by example, of the type of material of the wall of the enclosure, of the pressure range applied to said enclosure, etc. These values ensure sufficient mechanical isolation of the diaphragm so that a pressure measurement can be validly carried out there.
  • FIG. 3 represents the wall 3 supporting the peripheral ring 2, the enclosure not being subjected to any pressure, the wall 3 therefore not being deformed.
  • a pressure P causing the wall 3 to deform and have an arrow f in its center.
  • the peripheral ring is rigid enough to bring a stiffness to the plane of the wall 3.
  • the surface of the wall 3 included inside the peripheral ring 2, delimited by its surface interior 4 deforms in a manner comparable to a recessed membrane.
  • Figure 5 is shown schematically the device of the invention with its constructive and deformation parameters, parameters which can be calculated as for the case of a recessed diaphragm, as will be explained later, the diaphragm being in this case used to convert the pressure applied to it uniformly into a force, measurement means being used thereafter to determine this force.
  • the means for measuring this force are strain gauges 10 mounted in a Wheatstone bridge in a circuit 12 comprising electrical supply terminals 8, as best seen in FIG. 6.
  • FIG. 7 shows a sensor 1 comprising four strain gauges 10 connected in a bridge arrangement.
  • the strain gauges 10 are produced, for example, by depositing a resistive paste in a thick layer, in particular a resistive layer screen-printed on an alumina substrate.
  • the gauges 10 have resistors R1, R2, R3, R4 which are mounted in a Wheatstone bridge, connected together by conductive bars, for example in silver, and connected to the supply circuit by the terminals 8, according to the diagram of Figure 6.
  • the gauges 10 are positioned along the longitudinal axis of the sensor 1, which itself is mounted by gluing at the center of the diaphragm 5.
  • two of these resistors for example R2 and R4 are subjected to compression, while the other two, in particular R1 and R3 are in extension.
  • the values of the resistances R1 to R4 change according to the applied stress and this results in an imbalance of the Wheatstone bridge and the creation, at the measurement terminals 7 of the circuit 12, of a signal proportional to the deformation of the resistive layers of each resistance.
  • K r represents the coefficient of radial gauge of the resistive paste used for the sensor 1.
  • S / u is the signal from the full bridge measured at measurement terminals 7 of circuit 12.
  • the device of the invention can be used to determine the pressure applied to a very complex surface, by delimiting a diaphragm embedded 5 inside a rigid peripheral ring.
  • the peripheral ring 2 thus allows, by its mechanical inertia to create a diaphragm from any shell of material.
  • the pressure measurement device can be adaptable to any device comprising a body having a pressure differential with the place where the measurement is made.
  • the device can simply be applied to the exterior of the bodywork without damaging its walls. Thus, it can be used to measure the pressure inside a pressure cooker, a steam generator for an iron, a vacuum cleaner, etc.
  • a pressure measurement device suitable for its use in the automotive industry, for example for measuring the pressure of an LPG tank, or the engine oil pressure, or even measuring the pressure that applies to all or part of an automobile body.
  • the pressure measuring device of the invention can be used both for measuring the pressure of a gas or that of a liquid, by dimensioning it according to its specific application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

Dispositif de mesure de la pression au sein d'une enceinte par transformation en un signal électrique d'une contrainte mécanique due à une différence de pressions régnant dans l'enceinte et son extérieur, ce dispositif comportant un capteur (1) appliqué sur la paroi (3) de ladite enceinte susceptible de se déformer de manière élastique sous l'effet de ladite contrainte, ledit capteur (1) comprenant au moins un élément électrique (9) sensible aux déformations. Plus particulièrement selon l'invention, il comporte au moins un anneau périphérique (2) rigide délimitant dans la surface de la paroi (3) de ladite enceinte un diaphragme (5) supportant ledit capteur (1).

Description

DISPOSITIF DE MESURE DE LA PRESSION AU SEIN D'UNE ENCEINTE ET PROCEDE UTILISANT CE DISPOSITIF
La présente invention concerne un dispositif de mesure de la pression du type comportant au moins un élément électrique sensible à une différence de pression et elle concerne également un procédé de mesure utilisant un tel dispositif. Ce type de dispositif est utilisé plus particulièrement pour mesurer la pression d'un fluide contenu dans une enceinte.
Généralement, la mesure de la pression est constituée par la mesure d'une force s'exerçant sur une surface déterminée d'une paroi de séparation de deux milieux dont l'un contient le fluide dont on veut mesurer la pression. La mesure de la déformation de la surface soumise à l'action de la pression donne des informations sur la valeur de cette pression.
On connaît dans l'état de la technique des dispositifs pour mesurer la pression des fluides au moyen d'un capteur de pression convertissant le signal d'entrée, pression, en un signal de sortie électrique représentatif de la valeur de la pression et/ou de sa variation dans le temps. Un tel capteur de pression peut être un diaphragme métallique résistant par l'intermédiaire de jauges de contrainte collées ou réparties sur ledit diaphragme témoignant de sa déformation. Ce diaphragme est exposé au fluide transmettant la pression, sur l'une de ses faces, et, sur son autre face, à la pression de référence à l'endroit où s'effectue la mesure.
Un tel dispositif est connu du document US 4 116 075 où le capteur de pression comporte un diaphragme circulaire élastiquement déformable par la pression, renforcé d'un anneau périphérique, sur la partie déformable du diaphragme étant fixées quatre jauges de contrainte montées en pont de Wheatstone. Les jauges de contrainte sont disposées à différentes distances de l'anneau périphérique et leur surface varie avec leur distance à la bague de manière à égaliser les transferts thermiques dans les jauges. Les jauges de contrainte subissent des modifications de leurs dimensions de la même manière que le diaphragme et qui sont traduites en variations de leur résistance électrique. Ces valeurs sont ensuite mesurées pour déterminer les variations de pression correspondantes. L'inconvénient d'un tel dispositif est que l'une des faces dudit diaphragme doit être en communication avec le fluide dont on mesure la pression et que ce dispositif doit par conséquent être assemblé dans un support avec le récipient contenant le fluide. De telles constructions s'avèrent parfois complexes et d'entretien difficile, pouvant engendrer des erreurs de mesure. De surcroît, la membrane doit comporter un bord très rigide pour se comporter comme une membrane encastrée, afin d'éliminer les erreurs dues aux effets de bords.
Un autre dispositif de mesure de la pression d'un fluide est présenté dans le document GB 2 307 556 où le diaphragme supportant les jauges de contrainte est renforcé sur son pourtour en étant disposé entre deux anneaux périphériques rigides qui limitent ses déformations sous l'effet de la pression. Cette solution assure une meilleure fiabilité de la mesure en s'affranchissant des effets parasites dus à la fixation du diaphragme en son bord, mais elle nécessite des systèmes de fixation lui assurant la mise en communication du dispositif de mesure avec le fluide dont on veut mesurer la pression. Cette mise en communication se fait soit en disposant le diaphragme entre deux chambres dont on mesure la différence de pression, soit dans une chambre annexe comprenant un orifice qui communique avec le réservoir de fluide et avec un côté du diaphragme, l'autre côté de cette dernière étant exposé à la pression atmosphérique ou maintenu sous vide. Cette construction fait appel à des systèmes d'assemblage parfois complexes et onéreux.
Les solutions décrites dans ces documents font appel à une mesure à travers une prise de pression constituée par un orifice de section circulaire percé dans la paroi, prise reliée à un instrument de mesure, tels les diaphragmes décrits. Le problème posé par l'invention est de mesurer de manière simple et précise la pression à l'intérieur d'un récipient, sans avoir recours à une prise de pression à travers un orifice percé dans la paroi du récipient. On connaît par ailleurs une méthode de mesure de la pression d'un fluide renfermé dans une enceinte sous pression en fixant sur la paroi de cette dernière un capteur comportant des jauges de contrainte et en mesurant directement leur déformation en fonction de la pression appliquée. Mais, il est très difficile d'établir une relation théorique entre la déformation du capteur et la pression utilisée au cas où le capteur est appliqué sur une cuve ayant une surface complexe, ce qui nécessite un étalonnage très précis de chaque capteur. Un tel capteur étant très sensible à la forme et aux dimensions de la surface sur laquelle il est appliqué, ainsi qu'aux tolérances de fabrication de cette surface, peut, de surcroît, induire des erreurs de mesure difficiles à évaluer.
Le but de la présente invention est de remédier au moins en partie aux inconvénients précités et de fournir un dispositif de mesure précise de la pression pour lequel il est possible de connaître de manière fiable la loi de variation de la pression en fonction des valeurs mesurées par le dispositif et ceci pour n'importe quel type de surface matérielle.
Un but supplémentaire de l'invention est un dispositif de mesure de la pression qui soit adaptable sur tout type d'enceinte ou de réservoir contenant un fluide qui se trouve à une pression différente de celle de mesure, sans tenir compte de la forme, des dimensions ou des tolérances de fabrication de sa surface.
Un autre but de l'invention est de proposer un dispositif de mesure de la pression qui soit fiable en fonctionnement tout en étant d'une construction simplifiée, qui puisse être fabriqué en grande série pour un moindre coût.
Ces buts sont atteints avec un dispositif de mesure de la pression au sein d'une enceinte par transformation en un signal électrique d'une contrainte mécanique due à une différence de pressions régnant dans l'enceinte et son extérieur, ce dispositif comportant un capteur appliqué sur la paroi de ladite enceinte susceptible de se déformer de manière élastique sous l'effet de ladite contrainte, ledit capteur comprenant au moins un élément électrique sensible aux déformations, du fait qu'il comporte au moins un anneau périphérique rigide délimitant dans la surface de la paroi de ladite enceinte un diaphragme supportant ledit capteur.
Selon l'invention, on mesure la pression d'une enceinte renfermant un fluide en mesurant directement les déformations élastiques de la paroi de l'enceinte soumise à un différentiel de pressions. Par enceinte on comprend toute paroi de séparation entre deux milieux qui possèdent des pressions différentes, notamment tout récipient ouvert ou fermé comportant une paroi déformable sous l'effet de cette différence des pressions, par exemple un réservoir de fluide sous pression, une carcasse dans laquelle il a été créé une dépression, un tube en communication avec ladite paroi déformable, etc.
Pour mesurer la pression, on applique sur la paroi un capteur comportant un élément électrique sensible aux déformations de ladite paroi. Or, comme les déformations de la paroi diffèrent d'un point à l'autre en étant dépendantes de multiples facteurs, il faut choisir une zone de mesure dont les déformations soient représentatives de l'état de la pression agissant sur la paroi. La solution apportée par l'invention consiste à délimiter par un anneau rigide une zone de mesure dans la surface de la paroi de ladite enceinte.
Ainsi, ledit anneau périphérique étant suffisamment rigide pour amener une raideur dans le plan de la paroi de ladite enceinte, la zone déformable contenue à l'intérieur dudit anneau se comporte de la manière d'un diaphragme encastré. L'anneau périphérique rigide permet ainsi, par son inertie mécanique, d'éliminer les effets de bord dus à la forme et aux dimensions de la surface de la paroi et de ramener la mesure de la pression d'une surface complexe au problème de la déformation d'un diaphragme encastré et ceci à partir de n'importe quelle coque de matière. Ce diaphragme supporte un capteur transformant la déformation du diaphragme en une variable électrique qui donne des informations fiables sur la valeur de la pression agissant sur la paroi. Utilement, la surface intérieure dudit anneau est de forme circulaire.
Ainsi, on peut déterminer les valeurs de la pression en fonction des déformations mesurées, notamment les déformations radiales et tangentielles en un point ou la flèche centrale du diaphragme, en utilisant des relations connues pour le calcul d'un corps d'épreuve du type diaphragme circulaire encastré.
De préférence, ledit anneau périphérique rigide est solidaire de la face extérieure, placée à la pression atmosphérique, de la paroi de ladite enceinte.
On pourrait, certes, délimiter une zone de mesure dans la paroi de l'enceinte de fluide en formant un anneau périphérique à l'intérieur de l'enceinte ou d'une part et d'autre de la paroi. On préfère cependant, pour des critères pratiques et de simplicité constructive, appliquer un anneau périphérique suffisamment rigide uniquement sur la face extérieure de la paroi, qui est placée à la pression atmosphérique qui est donc la pression de référence dans ce cas.
Avantageusement, ledit diaphragme est réalisé en un matériau métallique.
Un tel matériau convient aussi bien du point de vue des contraintes admissibles en pression ainsi que d'un point de vue constructif pour la fabrication des enceintes renfermant un fluide à une pression différente de la pression atmosphérique. A titre d'exemple, une telle enceinte réalisée en acier pourrait contenir un fluide ayant une pression relative comprise entre -1 bar et 20bars.
De î préférence, le rapport entre l'épaisseur dudit diaphragme et le rayon de la su rface intérieure dudit anneau périphérique est inférieur à 1 :30.
On connaît le fait que la déformation d'un diaphragme encastré est directement proportionnel au rayon et inversement proportionnel à l'épaisseur de ce dernier pour une même valeur de la pression agissant sur le diaphragme. Il a été établi, lors de test effectués, qu'un tel rapport assure une bonne sensibilité de la mesure sans déclencher des phénomènes d'hystérésis dus aux déformations non élastiques du diaphragme, notamment pour un diaphragme réalisé en un matériau métallique.
Utilement, l'épaisseur dudit diaphragme est obtenue par un amincissement de la paroi de ladite enceinte.
On connaît le fait que la sensibilité de la mesure augmente avec l'accroissement de la déformation, ainsi on peut obtenir qu'une partie seulement de la paroi de l'enceinte se déforme de manière sensible sous l'effet de la pression, et que l'on puisse ainsi mesurer, alors que le reste de la surface puisse garder considérablement sa forme.
Avantageusement, la surface dudit diaphragme est sensiblement plane.
Une telle surface plane sur laquelle on applique un capteur transmet à ce dernier l'état de ses déformations mieux qu'une surface gauche.
Dans une variante de réalisation de l'invention, ledit anneau périphérique fait partie intégrante de la paroi de l'enceinte.
Ainsi, on peut réaliser l'anneau périphérique et le diaphragme en même temps et/ou en une même pièce que la paroi de l'enceinte, par exemple par emboutissage, ce qui permet d'éliminer les temps d'assemblage et d'usinage, cette solution étant très adaptée à un volume important de fabrication.
Dans une autre variante de fabrication de l'invention, ledit anneau périphérique est rapporté sur la paroi de ladite enceinte.
Ceci permet de réaliser le dispositif de l'invention par l'assemblage de l'enceinte avec une pièce séparée, ce qui a pour conséquence de réduire le coût des outillages et du processus de fabrication. De surcroît, on peut utiliser un anneau en un matériau autre que celui de l'enceinte. Utilement, ledit anneau périphérique est réalisé en un matériau métallique.
On pourrait, certes, envisager d'utiliser un anneau périphérique réalisé dans différents matériaux ayant une rigidité suffisante, tels le verre, un matériau céramique, etc. On préfère cependant utiliser un anneau métallique car il est suffisamment rigide pour isoler un diaphragme dans la paroi de l'enceinte, tout en étant facile à réaliser et à assembler sur la paroi de l'enceinte, soit de manière démontable, par exemple à l'aide d'une fixation à vis, soit indémontable, par exemple par soudure, collage, etc.
De préférence, ledit élément électrique sensible aux déformations est une jauge de contrainte.
On pourrait envisager l'utilisation d'un tel dispositif avec des transducteurs capacitifs ou inductifs, mais on préfère utiliser un capteur à jauges de contraintes appliquées sur le diaphragme, car elles suivent de manière plus fidèle les déformations de ce diaphragme en un point déterminé de sa surface.
Avantageusement, ladite jauge de contrainte est une jauge de contrainte à résistance.
Ce dispositif peut être également imaginé avec d'autres jauges de contrainte, par exemple piézorésistives, mais les jauges de contrainte à résistance donnent des informations plus précises de la déformation, tout en étant d'un coût plus réduit.
De préférence, ladite jauge de contrainte à résistance est un élément résistif en technologie couche épaisse déposé sur une base isolante.
Un tel élément résistif réalisé en technologie couche épaisse, par exemple, en déposant une pâte résistive par sérigraphie sur un substrat alumine, présente de bonnes propriétés de réponse aux élongations du diaphragme et de fiabilité, tout en étant de faibles dimensions et de coût réduit. Avantageusement, ledit élément résistif est fixé par collage sur ledit diaphragme.
Une telle fixation assure un bon contact entre la face plane du substrat et celle du diaphragme, tout en permettant de réaliser séparément les deux composants.
Le dispositif selon la présente invention peut être utilisé de manière avantageuse avec un appareil électrodomestique.
Un tel appareil peut être, par exemple, un autocuiseur, un générateur de vapeur pour un fer à repasser, un aspirateur, ou autre appareil électroménager fonctionnant à des pressions du même ordre de grandeur. On a constaté lors de tests effectués sur ces appareils que le dispositif de l'invention donne des informations très précises et fiables dans la gamme de pressions de fonctionnement de ces appareils.
Le dispositif de l'invention peut avantageusement être utilisé avec un élément de structure pour véhicule automobile comprenant au moins une paroi déformable sous l'effet d'une différence de pressions.
L'invention concerne également un procédé de mesure de la pression d'un fluide renfermé dans une enceinte, comportant une paroi destinée à être exposée à une pression différente de la pression atmosphérique, caractérisé en ce qu'il consiste à : - délimiter dans la paroi un diaphragme constituant la zone de mesure en y formant un anneau périphérique rigide, le diaphragme étant déformable sous l'effet de la pression;
- appliquer un capteur de pression sur ledit diaphragme, ledit capteur comportant au moins un élément électrique sensible aux déformations du diaphragme et étant relié à un circuit électrique d'alimentation et de mesure des valeurs dudit élément électrique;
- soumettre ladite enceinte à une pression;
- appliquer une tension d'alimentation aux bornes dudit circuit de mesure; - mesurer aux bornes de mesure les variations des valeurs électriques dudit élément et les convertir en valeurs de la pression régnant à l'intérieur de ladite enceinte.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement au cours de la description explicative du dispositif de mesure de la pression de l'invention et du procédé de mesure utilisant ce dispositif, à l'appui de figures annexées dans lesquelles :
- la figure 1 représente une vue en perspective explosée de la zone de mesure et du dispositif de l'invention;
- la figure 2 représente une vue en perspective du dispositif de l'invention appliqué sur la zone de mesure;
- la figure 3 est une section axiale du dispositif de la figure 2 avant l'application d'une pression sur la zone de mesure; - la figure 4 est une vue similaire à celle de la figure 3 avec une pression appliquée sur la zone de mesure;
- la figure 5 est une vue schématique du dispositif de l'invention en mettant en évidence les divers paramètres constructifs et de déformation;
- la figure 6 montre un exemple de montage des jauges de contrainte du capteur utilisé avec le dispositif;
- la figure 7 montre un exemple de réalisation d'un capteur utilisé avec le dispositif de l'invention.
Les figures 1 et 2 représentent le dispositif de l'invention monté sur la surface 6 d'une paroi 3 d'une enceinte, dont seulement une partie a été représentée aux figures. L'enceinte peut avantageusement être réalisée en un matériau métallique, par exemple par un procédé d'emboutissage.
Le dispositif comprend un anneau périphérique 2 rigide monté sur la face extérieure 6 placée à la pression atmosphérique de la paroi 3. L'anneau périphérique 2 délimite sur la paroi 3 un diaphragme 5 rigidifié sur son pourtour par l'anneau périphérique 2. Un capteur de pression 1 est appliqué sur le diaphragme 5 afin de mesurer ses déformations lorsque ce dernier est soumis à une pression P.
L'anneau périphérique 2 est utilement réalisé en un matériau métallique, par exemple en acier, en aluminium, etc., en découpant une rondelle d'un tube métallique, ou par matriçage, par emboutissage, par moulage, etc.
Dans une variante de l'invention cet anneau périphérique 2 est rapporté sur la paroi 3 par une fixation continue du type collage ou soudure. On peut également envisager une fixation du type par vis de fixation ou rivets en ménageant toutefois un accrochage complémentaire continu tel qu'un tenon circulaire pénétrant dans une rainure en correspondance.
Dans une autre variante de l'invention, l'anneau périphérique 2 est réalisé en une seule pièce avec la paroi 3 de l'enceinte par un procédé d'emboutissage, de moulage ou par toute autre technique d'usinage.
Tel que mieux visible aux figures 3 et 4, l'anneau périphérique 2 comporte une surface intérieure 4 de forme circulaire, sa surface extérieure 4' pouvant avoir une forme également circulaire, ou carrée ou toute autre forme souhaitée.
Les dimensions de la section transversale de la paroi de l'anneau périphérique, le rayon R de sa surface intérieure 4 sont choisis en fonction de l'épaisseur e de la paroi 3 et des caractéristiques du matériau de cette dernière, notamment son traitement thermique, sa dureté, etc.
A titre d'exemple, pour une épaisseur e de la paroi 3, le rayon R est supérieur à 30 fois l'épaisseur e. Alors, la hauteur de l'anneau périphérique 2 est comprise entre 1 fois et 20 fois l'épaisseur e et sa largeur radiale est comprise entre 1 fois et 20 fois l'épaisseur e de la paroi 3, en fonction de différents paramètres, par exemple, du type du matériau de la paroi de l'enceinte, de la plage de pressions appliquées à ladite enceinte, etc. Ces valeurs assurent une isolation mécanique suffisante du diaphragme pour qu'une mesure de pression puisse y être valablement effectuée. La figure 3 représente la paroi 3 supportant l'anneau périphérique 2, l'enceinte n'étant soumise à aucune pression, la paroi 3 n'étant donc pas déformée.
Dans la figure 4, sur la paroi 3 est appliquée une pression P faisant que la paroi 3 se déforme et présente une flèche f dans son centre. Tel que visible dans la figure 4, l'anneau périphérique est suffisamment rigide pour amener une raideur au plan de la paroi 3. Ainsi, la surface de la paroi 3 comprise à l'intérieur de l'anneau périphérique 2, délimitée par sa surface intérieure 4, se déforme d'une manière comparable à une membrane encastrée.
A la figure 5 est représenté schématiquement le dispositif de l'invention avec ses paramètres constructifs et de déformation, paramètres qui peuvent être calculés comme pour le cas d'un diaphragme encastré, tel qu'il sera expliqué plus loin, le diaphragme étant dans ce cas utilisé pour convertir la pression qui lui est appliquée de manière uniforme en une force, des moyens de mesure étant utilisés par la suite pour déterminer cette force.
Avantageusement selon l'invention, les moyens de mesure de cette force sont des jauges de contrainte 10 montées en un pont de Wheatstone dans un circuit 12 comportant des bornes 8 d'alimentation électrique, tel que mieux visible à la figure 6.
La figure 7 montre un capteur 1 comportant quatre jauges de contrainte 10 reliées en un montage en pont. Les jauges de contrainte 10 sont réalisées, par exemple, par un dépôt de pâte résistive en couche épaisse, notamment une couche résistive sérigraphiée sur un substrat en alumine. Les jauges 10 ont des résistances R1 , R2, R3, R4 qui sont montées en pont de Wheatstone, reliées entre elles par des barres conductrices, par exemple en argent, et reliées au circuit d'alimentation par les bornes 8, selon le schéma de la figure 6.
Les jauges 10 sont positionnées au long de l'axe longitudinal du capteur 1 , qui lui même est monté par collage au centre du diaphragme 5. Ainsi, au cours d'une mesure de pression, deux de ces résistances, par exemple R2 et R4 sont soumises à une compression, alors que les deux autres, notamment R1 et R3 sont en extension. Lors de la déformation du diaphragme 5, les valeurs des résistances R1 à R4 se modifient en fonction de la contrainte appliquée et il en résulte un déséquilibre du pont de Wheatstone et la création, aux bornes de mesure 7 du circuit 12, d'un signal proportionnel à la déformation des couches résistives de chaque résistance.
Ainsi, en mesurant le signal électrique résultant aux bornes de mesure 7, par exemple un signal de tension, et en le transformant en valeurs de la pression, on peut connaître de manière fiable les valeurs de la pression appliquée à la paroi 3.
Afin de connaître les relations entre les déformations mesurées et la pression appliquée à la paroi 3, on peut utiliser les formules suivantes. Ainsi, les relations de calcul de la déformation du diaphragme 5 en un point considéré x, et tel que spécifié dans l'ouvrage "Les capteurs en instrumentation industrielle" de George ASCH, sont : - la flèche centrale du diaphragme (en x=0) est donnée par :
Figure imgf000014_0001
la déformation radiale εr est donnée par la relation
3 „ , P R2 - 3x2 εr = -.(\ - vλ).-. r 8 E e
la déformation tangentielle εt est donnée par la relation
Figure imgf000014_0002
- la fréquence propre du système est donnée par :
Figure imgf000014_0003
où les variables utilisées dans le calcul analytique sont :
E Module de Young du diaphragme Pa v Coefficient de Poisson du diaphragme
P Pression uniforme appliquée sur diaphragme Pa e Epaisseur du diaphragme mm f Flèche centrale ( en x =0 ) mm x Distance O - point de déformation considérée, mm
R Rayon du diaphragme. mm
Déformation radiale en x m/m εt Déformation tangentielle en x m/m p Masse volumique du diaphragme kg/dm3 f Fréquence propre du diaphragme Hz
Par ailleurs, on calcule la variation de résistance ΔR/R, d'une jauge R, placée à une distance x, du centre O du diaphragme 5 avec la relation suivante :
ΔR.
- = K..ε.
R
où Kr représente le coefficient de jauge radial de la pâte résistive utilisée pour le capteur 1.
Alors, pour deux ensembles de 2 jauges R1 et R2 placées à des distances Xi et x2 du centre du diaphragme, où Xι≠x2, et montées en pont complet, le signal pleine échelle obtenu sera donné par la relation suivante :
Figure imgf000015_0001
où : S/u est le signal issu du pont complet mesuré au bornes de mesure 7 du circuit 12.
Avec ces relations on peut obtenir par la suite la formule reliant le signal mesuré S/u aux bornes de mesure 7 du circuit 12 de la pression P subie par le diaphragme 5 :
— - ^ .(l - υ2)- 1 ~ *2 D u 16 ' E.e2 où le signal S/u est en V/V et la pression P en Pascal. Par conséquent, on peut déterminer la valeur de la pression P avec les valeurs du signal mesuré, la pression étant proportionnelle à ce signal. Lors de tests effectués en laboratoire avec un dispositif du type décrit appliqué sur une enceinte sous pression, on a suivi l'évolution du signal du capteur en fonction de la pression interne du générateur, et on a constaté la bonne linéarité du signal, le bon retour à zéro et la fidélité du capteur, les valeurs mesurées correspondant parfaitement aux valeurs théoriques calculées auparavant.
Ainsi, le calcul théorique, validé par les tests effectués, a permis de conclure que le dispositif de l'invention peut être utilisé pour déterminer la pression appliquée sur une surface même complexe, en délimitant un diaphragme encastré 5 à l'intérieur d'un anneau périphérique rigide. L'anneau périphérique 2 permet ainsi, par son inertie mécanique de créer un diaphragme à partir de n'importe quelle coque de matière.
Le dispositif de mesure de la pression peut être adaptable à tout appareil comportant une carrosserie présentant un différentiel de pression avec l'endroit où l'on effectue la mesure. Le dispositif peut tout simplement être appliqué à l'extérieur de la carrosserie sans détériorer ses parois. Ainsi, il peut être utilisé pour mesurer la pression à l'intérieur d'un autocuiseur, d'un générateur de vapeur pour un fer à repasser, d'un aspirateur, etc.
D'autres variantes de réalisation du dispositif de l'invention ainsi que de nombreuses utilisations peuvent être envisagées sans sortir du cadre de ses revendications.
Ainsi, on peut envisager de réaliser un dispositif de mesure de la pression adapté pour son utilisation dans l'industrie automobile, par exemple pour mesurer la pression d'un réservoir à GPL, ou la pression d'huile du moteur, ou encore mesurer la pression qui s'applique sur tout ou une partie d'une carrosserie automobile. Le dispositif de mesure de la pression de l'invention peut être utilisé aussi bien pour mesurer la pression d'un gaz ou celle d'un liquide, en le dimensionnant en fonction de son application spécifique.

Claims

REVENDICATIONS
1. Dispositif de mesure de la pression au sein d'une enceinte par transformation en un signal électrique d'une contrainte mécanique due à une différence de pressions régnant dans l'enceinte et son extérieur, ce dispositif comportant un capteur (1 ) appliqué sur la paroi (3) de ladite enceinte susceptible de se déformer de manière élastique sous l'effet de ladite contrainte, ledit capteur (1 ) comprenant au moins un élément électrique (9) sensible aux déformations, caractérisé en ce qu'il comporte au moins un anneau périphérique (2) rigide délimitant dans la surface de la paroi (3) de ladite enceinte un diaphragme (5) supportant ledit capteur (1 ).
2. Dispositif de mesure de la pression selon la revendication 1 , caractérisé en ce que la surface intérieure (4) dudit anneau (2) est de forme circulaire.'
3. Dispositif de mesure de la pression selon l'une des revendications 1 ou 2, caractérisé en ce que ledit anneau périphérique (2) rigide est solidaire de la face extérieure (6), placée à la pression atmosphérique, de la paroi (3) de ladite enceinte.
4. Dispositif de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que ledit diaphragme (5) est réalisé en un matériau métallique.
5. Dispositif de mesure de la pression selon la revendication 4, caractérisé en ce que le rapport entre l'épaisseur (e) dudit diaphragme et le rayon (R) de la surface intérieure (4) dudit anneau périphérique (2) est inférieur e 1 :30.
6. Dispositif de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que l'épaisseur (e) dudit diaphragme (5) est obtenue par un amincissement de la paroi (3) de ladite enceinte.
7. Dispositif de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que la surface dudit diaphragme (5) est sensiblement plane.
8. Dispositif de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que ledit anneau périphérique (2) fait partie intégrante de la paroi (3) de l'enceinte.
9. Dispositif" de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que ledit anneau périphérique (2) est rapporté sur la paroi (3) de ladite enceinte.
10. Dispositif de mesure de la pression selon l'une des revendications 7 à 8, caractérisé en ce que ledit anneau périphérique (2) est réalisé en un matériau métallique.
11. Dispositif de mesure de la pression selon l'une des revendications précédentes, caractérisé en ce que ledit élément électrique (9) sensible aux déformations est une jauge de contrainte (10).
12. Dispositif de mesure de la pression selon la revendication 10, caractérisé en ce que ladite jauge de contrainte (10) est une jauge de contrainte à résistance.
13. Dispositif de mesure de la pression selon la revendication 11 , caractérisé en ce que ladite jauge de contrainte (10) à résistance est un élément résistif en technologie couche épaisse déposé sur une base isolante.
14. Dispositif de mesure de la pression selon la revendication 12, caractérisé en ce que ledit élément résistif est fixé par collage sur ledit diaphragme.
15. Appareil électrodomestique caractérisé en ce qu'il comporte un dispositif de mesure de la pression selon l'une des revendications précédentes.
16. Elément de structure pour véhicule automobile comprenant au moins une paroi déformable sous l'effet d'une différence de pressions, caractérisé en ce qu'il comporte un dispositif de mesure de la pression selon l'une des revendications précédentes.
17. Procédé de mesure de la pression d'un fluide renfermé dans une enceinte, comportant une paroi (3), destiné à être exposée à une pression (P) différente de la pression atmosphérique, caractérisé en ce qu'il consiste à : - délimiter dans la paroi (3) un diaphragme (5) constituant la zone de mesure en y formant un anneau périphérique (2) rigide, le diaphragme (5) étant déformable sous l'effet de la pression;
- appliquer un capteur de pression (1 ) sur ledit diaphragme, ledit capteur comportant au moins un élément électrique (9) sensible aux déformations du diaphragme (5) et étant relié à un circuit électπque (12) d'alimentation et de mesure des valeurs dudit élément électrique (9);
- soumettre ladite enceinte à une pression (P);
- appliquer une tension d'alimentation aux bornes (8) dudit circuit de mesure (12); - mesurer aux bornes de mesure (7) les variations des valeurs électriques dudit élément (9) et les convertir en valeurs de la pression (P) régnant à l'intérieur de ladite enceinte.
PCT/FR2002/000610 2001-02-26 2002-02-18 Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif WO2002068920A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0102607A FR2821426B1 (fr) 2001-02-26 2001-02-26 Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif
FR01/02607 2001-02-26

Publications (1)

Publication Number Publication Date
WO2002068920A1 true WO2002068920A1 (fr) 2002-09-06

Family

ID=8860461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000610 WO2002068920A1 (fr) 2001-02-26 2002-02-18 Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif

Country Status (2)

Country Link
FR (1) FR2821426B1 (fr)
WO (1) WO2002068920A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375631A (zh) * 2021-06-08 2021-09-10 长安大学 一种陀螺光纤环加速度场下的最大形变量测量装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116075A (en) * 1976-03-01 1978-09-26 Hottinger Baldwin Messtechnik Gmbh Mechanical to electrical transducer
US4722451A (en) * 1986-08-22 1988-02-02 General Electric Company Synthetic polymeric resin vacuum container with indicator
DE3919405A1 (de) * 1989-06-14 1990-12-20 Heinz Faulhammer Behaelter, insbesondere fuer verderbliche lebensmittel
FR2692870A1 (fr) * 1992-06-24 1993-12-31 Bastien Michel Dispositif de contrôle du maintien d'un niveau de pression dans une enceinte.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4116075A (en) * 1976-03-01 1978-09-26 Hottinger Baldwin Messtechnik Gmbh Mechanical to electrical transducer
US4722451A (en) * 1986-08-22 1988-02-02 General Electric Company Synthetic polymeric resin vacuum container with indicator
DE3919405A1 (de) * 1989-06-14 1990-12-20 Heinz Faulhammer Behaelter, insbesondere fuer verderbliche lebensmittel
FR2692870A1 (fr) * 1992-06-24 1993-12-31 Bastien Michel Dispositif de contrôle du maintien d'un niveau de pression dans une enceinte.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113375631A (zh) * 2021-06-08 2021-09-10 长安大学 一种陀螺光纤环加速度场下的最大形变量测量装置及方法

Also Published As

Publication number Publication date
FR2821426B1 (fr) 2004-05-14
FR2821426A1 (fr) 2002-08-30

Similar Documents

Publication Publication Date Title
US7260994B2 (en) Low cost high-pressure sensor
US4388668A (en) Capacitive pressure transducer
FR2983955A1 (fr) Capteur de pression pour fluide
FR2887629A1 (fr) Capteur de pression
KR20110134308A (ko) 밀폐형 압력 감지 장치
JPH11211592A (ja) 高圧センサー及びその製造方法
US20110303023A1 (en) Pressure sensor with semiconductor pressure measuring transducer
EP3304020B1 (fr) Dispositif de detection de pression
FR2470373A1 (fr) Procede de formage d'un diaphragme flexible utilisable dans un transducteur de pression
JP2009258085A (ja) 圧力センサおよびその製造方法
US20060053893A1 (en) Pressure measuring unit
WO2018104656A1 (fr) Dispositif de transmission d'un mouvement et d'une force entre deux zones isolées l'une de l'autre
FR2858053A1 (fr) Capteur de pression pour chambre de combustion, comportant une membrane metallique munie d'une couche metallique mince piezoresistive
US20070107494A1 (en) High Impedance Thin Film for Strain Gauge Applications
FR3032791A1 (fr) Capteur de pression miniature a membrane metallique et procede de fabrication
US8739632B2 (en) Pressure sensor structure and associated method of making a pressure sensor
JP2001033332A (ja) 相対圧センサ
US8281665B2 (en) Pressure sensor assembly
FR2600769A1 (fr) Transmetteur de pression differentielle, largement independant de la temperature avec protection contre toute surcharge
FR2995995A1 (fr) Capteur de pression a base de nanojauges couplees a un resonateur
FR2799837A1 (fr) Procede et dispositif de mesure d'efforts en presence d'une pression exterieure
JPH0599769A (ja) 力または圧力測定装置
WO2002068920A1 (fr) Dispositif de mesure de la pression au sein d'une enceinte et procede utilisant ce dispositif
EP3690405B1 (fr) Capteur pour la mesure d'une premiere grandeur physique dont la mesure est influencee par une deuxieme grandeur physique
FR2950692A1 (fr) Dispositif de capteur et procede de fabrication d'un tel dispositif de capteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP