WO2002068801A1 - Verfahren zur nachrüstung eines dampfsystems - Google Patents

Verfahren zur nachrüstung eines dampfsystems Download PDF

Info

Publication number
WO2002068801A1
WO2002068801A1 PCT/IB2002/000422 IB0200422W WO02068801A1 WO 2002068801 A1 WO2002068801 A1 WO 2002068801A1 IB 0200422 W IB0200422 W IB 0200422W WO 02068801 A1 WO02068801 A1 WO 02068801A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
waste heat
heat boiler
gas turbine
turbine system
Prior art date
Application number
PCT/IB2002/000422
Other languages
English (en)
French (fr)
Inventor
Erhard Liebig
Original Assignee
Alstom (Switzerland) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom (Switzerland) Ltd filed Critical Alstom (Switzerland) Ltd
Publication of WO2002068801A1 publication Critical patent/WO2002068801A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Definitions

  • the present invention relates to a method for retrofitting a steam system and the use of a gas turbine system for retrofitting a steam system
  • An extension, a conversion or a replacement of an existing power plant or heating plant or parts of such a plant is necessary, for example, when an existing steam generator can no longer provide the required performance (e.g. due to pollution, fuel changes, limited operating license, etc), or if a steam generator has to be shut down, e.g. due to excessive emissions.An extension, conversion or replacement of an existing power plant or heating plant must also be considered if the need for electrical and / or thermal output changes if this should be increased significantly, or if the flexibility of a power plant or heating plant with regard to fuel use, power and / or load change speed is to be increased
  • the invention is therefore based on the object of providing a method for retrofitting a steam system which has at least one steam generating device and at least one steam consumer
  • the solution to this problem is achieved by retrofitting a gas turbine system, the exhaust gas flow of which is used in a waste heat boiler to generate steam, the waste heat boiler being provided with additional firing, which makes it possible to adapt the steam parameters of the waste heat boiler to the parameters in the steam system by retrofitting
  • the at least one gas turbine system and the at least one waste heat boiler can completely or partially replace the existing steam generating devices.
  • it can also be a simple addition without stopping existing steam generating devices it is possible that the exhaust gas of a gas turbine plant is divided into several waste heat boilers or that several gas turbine plants work on a common waste heat boiler
  • a steam system is a system consisting of a steam generator, a steam network and a steam consumer.
  • a steam generator can be one or more steam generators from a heating plant, a thermal power station or a power plant.
  • the steam generation process, the structural design, the construction, the parameters, etc of the individual steam generator and the interconnection of the steam generators within the steam generating device are irrelevant.This also applies analogously to the steam network and steam consumers.
  • a steam network is a steam line system consisting of one or more pressure stages for supplying different steam consumers, e.g. of steam turbines, process engineering processes etc. to understand The pressure levels of a steam network can be connected to each other via back pressure turbines, reducing stations and the like.
  • a steam network can also be one Being a steam rail in a power plant
  • the steam pipe system transports the steam from the steam generator to the steam consumer
  • the essence of the invention is therefore to retrofit at least one gas turbine system and at least one waste heat boiler with additional firing and to set the steam parameters of the waste heat boiler by means of the additional firing such that the steam produced can be fed directly to the existing steam system.
  • the problem with retrofitting existing steam generators is namely the fact that the operation of an existing steam system requires compliance with fixed parameters of the supplied steam, such as steam pressure and / or steam temperature and / or steam mass flow.
  • the operation of a gas turbine system with a waste heat boiler is not flexible enough for this. Surprisingly, the required flexibility of the system can be achieved with additional firing for the waste heat boiler.
  • the additional firing in a gas turbine system with a waste heat boiler can ensure the required rapid reactions to fluctuations in the load of the steam consumer.
  • a first embodiment of the method according to the invention is characterized in that the gas turbine system with a waste heat boiler at least partially replaces the existing steam generating device in terms of performance.
  • the gas turbine system with waste heat boiler can at least partially, possibly even completely, take over the task of a steam generator to be replaced. This is particularly necessary if an old or no longer operational steam generator is to be completely replaced.
  • a second embodiment is characterized in that the existing steam system has several pressure levels. For example, up to 6 pressure levels can be provided and pressures up to 120 (160) bar can occur. With such complex steam systems in particular, the additional firing comes in handy.
  • the existing steam consumer can be a steam turbine or a process engineering process.
  • a process engineering process is to be understood as a process that uses the heat of a steam mass flow, for example for heating purposes.
  • a heat exchanger can be used for heat transfer.
  • the steam mass flow can also enter the product directly.
  • Another preferred embodiment of the method uses an additional firing of the waste heat boiler provided with a fresh fan.
  • the waste heat boiler can take over the function of an auxiliary boiler when the gas turbine is at a standstill and can thus be operated independently of the operation of the gas turbine system. Further embodiments of the method according to the invention result from the dependent claims.
  • the described invention relates to the use of a gas turbine system for retrofitting a steam system, which has at least one steam generating device and at least one steam consumer, the exhaust gas stream of the gas turbine system being used in a waste heat boiler for steam generation, and the waste heat boiler being provided with additional firing, which allows adapt the steam parameters of the waste heat boiler to the parameters in the steam system.
  • Figure 1 shows a plant of a cogeneration.
  • Fig. 4 two embodiments of the additional firing.
  • FIG. 1 shows three conventional steam generators 15 which supply a steam consumer 18 with steam via a steam network 16, in the specific case a steam bus bar 17.
  • the steam consumer 18 consists of a steam turbine system 19 and a process engineering process 20.
  • the steam turbine system 19 drives the generator 5 and thus serves to generate electricity.
  • the steam turbine system 19 in the present case is a counter-pressure steam turbine, i. H. the exhaust steam from the back pressure steam turbine serves to supply a further steam consumer 18, in the specific case of a process engineering process 20.
  • FIG. 2 compared to FIG. 1, one of the conventional steam generators 15 was replaced by a gas turbine system 1 with a waste heat boiler 7 connected downstream on the exhaust gas side.
  • the heat of the exhaust gases 6 of the gas turbine 4 of the gas turbine system 1 is used to generate steam in a waste heat boiler 7.
  • the steam generated in the waste heat boiler 7, together with the steam from the remaining two conventional steam generators 15, is in turn fed to the steam turbine system 19 via the steam collecting rail 17 in the exhaust line 6 between the gas turbine system 1 and the waste heat boiler 7 there is an additional firing 44, which is supplied with fuel via the fuel line 45.
  • the exhaust gas 6 ends up in the open via a chimney 43
  • the gas turbine system 1 consists of a compressor 2, a combustion chamber 3 and a gas turbine 4.
  • the gas turbine 4, the compressor 2 and the generator 5 are arranged on a common shaft 8.
  • the gas turbine 4 drives both the compressor 2 and the compressor via this common shaft 8
  • Generator 5 on The gas turbine system 1 and the generator 5 are referred to as a gas turbine set.
  • the air supplied to the compressor 2 via an intake air line 9, after compression in the compressor 2, arrives as combustion air 10 in the combustion chamber 3.
  • Fuel supplied to the combustion chamber 3 is burned in the combustion chamber 3
  • the hot gas 12 generated in the combustion chamber 3 reaches the gas turbine 4 and is expanded there in a work-performing manner
  • a gas turbine system can also have several combustion chambers and several gas turbines. For example, in gas turbine systems with sequential combustion of a high-pressure combustion chamber with a high-pressure turbine, a low-pressure combustion chamber with a low-pressure turbine is connected downstream.
  • a gas turbine system can also have several compressors
  • the steam turbine system 19 can also consist of several steam turbines, for example high-pressure, medium-pressure and low-pressure steam turbines Withdrawal backpressure or extraction condensation turbines conceivable.
  • a steam turbine system 19 with generator 5 is also referred to as a steam turbine set
  • FIG. 3 shows a complex steam system with numerous steam generating devices 14 in the form of the waste heat boiler 7 and the conventional steam generators 15, with numerous steam consumers 18 in the form of steam turbine systems 19 and process engineering processes 20.
  • the steam generating devices 14 and the steam consumers 18 are composed of the steam side via the steam network 16 Steam systems a to e and connected on the condensate side via the condensate system k.
  • the individual pressure steam systems a to e can in turn be connected via steam turbine systems 19 or reduction stations 21.
  • steam generating devices and steam consumers can be located to a certain extent in the form of islands, with only little integration into the steam system.
  • the condensates occurring in the entire system are collected in the condensate system k, possibly cleaned and degassed, and finally fed back to the steam generating devices 14.
  • the steam generated in the waste heat boiler 7 in several pressure stages is supplied to the individual pressure stages of the steam network via the respective live steam lines 30, 37, 42.
  • Feed water is conveyed from the condensate system k to a high-pressure economizer I 24, then flows to the high-pressure economizer II 25, to the high-pressure economizer III 26 and from there to the high-pressure steam drum 27.
  • the high-pressure steam drum 27 is connected to the high-pressure evaporator 28.
  • the high-pressure steam drum 27 is also followed by a high-pressure superheater 29, to which the high-pressure fresh steam line 30 connects, which leads directly to the high-pressure steam system e and, via a reducing station 21, to the medium-pressure steam system d.
  • Feed water is conveyed from the condensate system k to a medium pressure economizer I 32, then flows to the medium pressure economizer II 33 and from there to the medium pressure steam drum 34.
  • the medium pressure steam drum 34 is connected to the medium pressure evaporator 35.
  • the medium-pressure steam drum 34 is also followed by a medium-pressure superheater 36, to which the medium-pressure fresh steam line 37 connects, which leads directly to the medium-pressure steam system c and via a reducing station 21 to the medium-pressure steam system b.
  • Feed water is conveyed from the condensate system k to a low-pressure economizer 39 and flows from there to the low-pressure steam drum 40.
  • the low-pressure steam drum 40 is connected to the low-pressure evaporator 41.
  • the low-pressure fresh steam line 42 connects to the low-pressure steam drum 40 and leads directly to the low-pressure steam system a.
  • the high-pressure economizer I 24, the high-pressure economizer II 25, the high-pressure economizer III 26, the high-pressure steam drum 27, the high-pressure evaporator 28 and the high-pressure superheater 29 together form a high-pressure system operating at a first pressure stage.
  • the medium-pressure economizer I 32, the medium-pressure economizer II 33, the medium-pressure steam drum 34, the medium-pressure evaporator 35 and the medium-pressure superheater 36 together form a medium-pressure system operating at a second pressure stage.
  • the low pressure economizer 39, the low pressure steam drum 40 and the low pressure evaporator 41 together form a low pressure system operating at a third pressure stage.
  • a waste heat boiler 7 consisting of rotary drum evaporators has been described. Therefore, the feed water preheated by the economizer of the respective pressure level is conveyed into the steam drum.
  • the drum water is circulated in the steam drum-evaporator system and partially evaporated. The separation of water and steam takes place in the steam drum. The water is fed back to the evaporator, while the steam reaches the steam turbine system directly or via a superheater that may be present.
  • an additional firing 44 with the corresponding fuel line 45 is located directly in the exhaust gas line 6 between the gas turbine 4 and the waste heat boiler 7.
  • this additional firing 44 the exhaust gas 6 of the gas turbine 4 can be reheated if necessary, using the residual oxygen present in the exhaust gas 6. Since the additional firing 44 is only in operation when the gas turbine system 1 is in operation, it initially does not require a fresh fan. According to FIG. 4, however, it is also possible to operate the auxiliary firing 44 with a fresh fan 46.
  • the additional firing 44 can also be arranged separately.
  • the flue gas of the auxiliary firing 44 can be mixed into the exhaust gas 6 of the gas turbine 4 either before entering the waste heat boiler 7 or at any point within the waste heat boiler 7.
  • a fresh fan 46 is essential for operating the additional firing 44.
  • the additional firing 44 can also be located within the waste heat boiler 7 preferably arranged in the direction of flow before a respective pressure stage.
  • additional firing devices can also be arranged before the respective pressure stages
  • the steam parameters of waste heat boilers behind larger gas turbine systems are in the range of, for example, 5 bar / 210 ° C and 70 bar / 510 ° C for a two-pressure process or, for example, 4-8 bar / 150-320 ° C, 20-45 bar / 540-570 ° C and 80-160 bar / 540-570 ° C for a three-pressure process. It should be noted that these parameters depend very much on the gas turbine system and its operating conditions
  • the energy supply systems that are also to be built can be optimally matched to the structure of requirements.However, this is rather an exception.
  • new energy supply systems must be built within historically grown energy supply systems.As mentioned at the beginning, this is the case, for example, in the event of changes the demand structure is also necessary in the case of underperformance or a necessary replacement on the producer side
  • a gas turbine system 1 with a waste heat boiler 7 can be used for this task.
  • a gas turbine system 1 with a waste heat boiler 7 to be retrofitted must consider the design parameters and possible operating modes of the existing steam network 16.
  • narrow limits are set by the exhaust gas mass flow and the exhaust gas temperature of the gas turbine system 1
  • the exhaust gas mass flow determined by the operation of the gas turbine system 1 with an equally determined exhaust gas temperature, which also depend to a considerable extent on the ambient conditions, corresponding heat outputs can only be achieved for these parameters
  • Use steam generation in the waste heat boiler 7 Additional restrictions may result from the supply of various pressure stages of a steam system, which may be necessary. For example, large chemical companies or refineries have known steam networks with up to 6 pressure stages and pressures of up to 120 (160) bar
  • the waste heat boiler 7 is provided with an additional firing 44, the heat outputs of the exhaust gas 6 of the gas turbine system 1 and thus the steam generation in the waste heat boiler 7 can be easily and flexibly adapted to the current conditions.
  • Such waste heat boilers 7 with additional firing 44 are, for example Known from US 3,443,550, the additional firing 44 serves to increase the economy and optimize the steam production.
  • the parameters of temperature, pressure, mass flow, etc., of the already existing producer and consumer structure different temperature or pressure levels (hot water and / or steam) can be met
  • an existing steam generator 15 can be partially or completely replaced, but it is also possible to simply increase the output of an existing system by adding additional output or, in particular, to increase the flexibility of an existing system with regard to fuel use, output, load change rates and the like
  • the waste heat boiler 7 can take over the function of an auxiliary boiler even when the gas turbine system 1 is at a standstill, or can be operated independently of the electricity requirement. With the gas turbine system 1 running, the operation of the fresh air 46 is not absolutely necessary
  • the sole operation of the fresh air 46 of the auxiliary firing can also be expedient for reasons of more efficient control of unusual operating conditions or modes of operation. Cooling of the exhaust gases 6 of the gas turbine system 1 by admixing cold supply air can be used, for example Avoidance of temperature peaks, in the event of an unexpected failure of steam consumers, for faster cooling of the gas turbine system before revisions and the like. Like. be appropriate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Bei einem Verfahren zur Nachrüstung eines bestehenden Dampfsystems, welches wenigstens eine Dampferzeugungseinrichtung (14) sowie wenigstens einen Dampfverbraucher (18) aufweist, wird eine einfache und flexible Nachrüstung dadurch erreicht, dass eine Gasturbinenanlage (1) nachgerüstet wird, deren Abgas (6) in einem Abhitzekessel (7) zur Dampferzeugung verwendet wird, wobei der Abhitzekessel (7) mit einer Zusatzfeuerung (44) versehen wird, welche es erlaubt, die Dampfparameter des Abhitzekessels (7) den Parametern im Dampfsystem anzupassen.

Description

BESCHREIBUNG
TITEL
Verfahren zur Nachrüstung eines Dampfsystems
TECHNISCHES GEBIET
Die vorliegende Erfindung betrifft ein Verfahren zur Nachrüstung eines Dampfsystems sowie die Verwendung einer Gasturbinenanlage zur Nachrüstung eines Dampfsystems
STAND DER TECHNIK
Alte oder nicht mehr der Bedarfsstruktur entsprechende Energieerzeugungsanlagen stellen ein Problem dar Auf der einen Seite erhohen sich die ökologischen als auch die ökonomischen Anforderungen an bestehende Energieerzeugungsanlagen, auf der anderen Seite wachsen aber auch die Bedurfnisse hinsichtlich des dynamischen Verhaltens, d h diese Anlagen müssen in immer verstärkterem Masse in der Lage sein, Lastschwankungen des Verbrauchernetzes, sei dies ein Stromnetz oder beispielsweise ein Warmeversorgungssystem, schnell und möglichst kostengünstig auszugleichen
Eine Erweiterung, ein Umbau oder ein Ersatz einer bestehenden Kraftwerks- oder Heizwerk- sanlage oder von Teilen einer solchen Anlage drangt sich beispielsweise dann auf, wenn ein bestehender Dampferzeuger nicht mehr die geforderte Leistung erbringen kann (z B infolge Verschmutzung, Brennstoffumstellungen, eingeschränkter Betriebsgenehmigung, etc ), oder wenn ein Dampferzeuger, z B infolge zu hoher Emissionen, stillgelegt werden muss Ebenfalls muss eine Erweiterung, ein Umbau oder ein Ersatz einer bestehenden Kraftwerksoder Heizwerksanlage in Betracht gezogen werden, wenn sich der Bedarf an elektrischer und/oder Wärmeleistung verändert, wenn dieser signifikant gesteigert werden soll, oder wenn die Flexibilität eines Kraftwerks bzw Heizwerks bzgl Brennstoffeinsatz, Leistung und/oder Lastanderungsgeschwindigkeit erhöht werden soll
DARSTELLUNG DER ERFINDUNG
Der Erfindung liegt demnach die Aufgabe zugrunde, ein Verfahren zum Nachrusten eines Dampfsystems, welches wenigstens eine Dampferzeugungseinrichtung sowie wenigstens einen Dampfverbraucher aufweist, zur Verfugung zu stellen
Die Losung dieser Aufgabe wird dadurch erreicht, dass eine Gasturbinenanlage nachgerustet wird, deren Abgasstrom in einem Abhitzekessel zur Dampferzeugung verwendet wird, wobei der Abhitzekessel mit einer Zusatzfeuerung versehen wird, welche es erlaubt, die Dampfparameter des Abhitzekessels den Parametern im Dampfsystem anzupassen Unter einer Nachrüstung wird also der Zubau mindestens einer Gasturbinenanlage und mindestens eines Abhitzekessels mit Zusatzfeuerung zu einem Dampfsystem verstanden Dabei kann die mindestens eine Gasturbinenanlage und der mindestens eine Abhitzekessel die bestehenden Dampferzeugungseinrichtungen vollständig oder teilweise ersetzen Es kann sich aber auch um einen reinen Zubau ohne Stillsetzung bestehender Dampferzeugungseinrichtungen handeln Auch ist es möglich, dass sich das Abgas einer Gasturbinenanlage auf mehrere Abhitzekessel aufteilt oder mehrere Gasturbinenanlagen auf einen gemeinsamen Abhitzekessel arbeiten
Unter einem Dampfsystem versteht man ein System bestehend aus einer Dampferzeugungseinrichtung, einem Dampfnetz und einem Dampfverbraucher Eine Dampferzeugungseinrichtung können ein oder mehrere Dampferzeuger eines Heizwerkes, eines Heizkraftwerkes oder eines Kraftwerkes sein Für die Erfindung sind das Dampferzeugungsverfahren, die konstruktive Gestaltung, die Bauweise, die Parameter usw des einzelnen Dampferzeugers sowie die Verschaltung der Dampferzeuger innerhalb der Dampferzeugungseinrichtung ohne Bedeutung Dies gilt in analoger Weise auch für das Dampfnetz und die Dampfverbraucher Unter einem Dampfnetz ist in diesem Zusammenhang ein Dampfleitungssystem bestehend aus einer oder mehreren Druckstufen zur Versorgung unterschiedlicher Dampfverbraucher beispielsweise von Dampfturbinen, verfahrenstechnischen Prozessen usw zu verstehen Die Druckstufen eines Dampfnetzes können über Gegendruckturbinen, Reduzierstationen u dgl miteinander verbunden sein Ein Dampfnetz kann aber auch eine Dampfsammeischiene in einem Kraftwerk sein Das Dampfleitungssystem transportiert den Dampf von der Dampferzeugungseinrichtung zum Dampfverbraucher Der Kern der Erfindung besteht somit darin, wenigstens eine Gasturbinenanlage und wenigstens einen Abhitzekessel mit Zusatzfeuerung nachzurüsten und die Dampfparameter des Abhitzekessels mittels der Zusatzfeuerung derart einzustellen, dass der produzierte Dampf direkt dem bestehenden Dampfsystem zugeführt werden kann. Problem bei der Nachrüstung von bestehenden Dampferzeugern ist nämlich die Tatsache, dass der Betrieb eines bestehenden Dampfsystems die Einhaltung fest vorgegebener Parameter des zugeführten Dampfes wie Dampfdruck, und/oder Dampftemperatur, und/oder Dampfmassenstrom verlangt. Der Betrieb einer Gasturbinenanlage mit Abhitzekessel ist dafür nicht genügend flexibel. Überraschenderweise lässt sich aber die geforderte Flexibilität der Anlage mit einer Zusatzfeuerung für den Abhitzekessel erreichen. Ausserdem lassen sich durch die Zusatzfeuerung bei einer Gasturbinenanlage mit Abhitzekessel die erforderlichen schnellen Reaktionen auf Belastungsschwankungen des Dampfverbrauchers sicherstellen.
Eine erste Ausführungsform des erfindungsgemässen Verfahrens zeichnet sich dadurch aus, mit der Gasturbinenanlage mit Abhitzekessel die bestehende Dampferzeugungseinrichtung wenigstens teilweise leistungsmässig zu ersetzen. Durch eine genaue Einstellung des vom Abhitzekessel erzeugten Dampfes auf die Bedürfnisse des Dampfverbrauchers ist es möglich, dass die Gasturbinenanlage mit Abhitzekessel die Aufgabe eines zu ersetzenden Dampferzeugers wenigstens teilweise, ggf. sogar vollständig übernehmen kann. Dies ist insbesondere dann notwendig, wenn ein alter oder nicht mehr betriebstauglicher Dampferzeuger vollständig ersetzt werden soll.
Eine zweite Ausführungsform ist dadurch gekennzeichnet, dass das bestehende Dampfsystem mehrere Druckstufen aufweist. Zum Beispiel können darin bis zu 6 Druckstufen vorgesehen sein und Drücke bis zu 120 (160) bar auftreten. Gerade bei derartig komplexen Dampfsystemen kommt die Zusatzfeuerung vorteilhaft zum Tragen. Beim bestehenden Dampfverbraucher kann es sich dabei, wie bei den anderen Ausführungsformen, um eine Dampfturbine, oder einen verfahrenstechnischen Prozess handeln.
Unter einem verfahrenstechnischen Prozess ist in diesem Zusammenhang ein Prozess zu verstehen, welcher die Wärme eines Dampfmassenstromes beispielsweise zu Heizzwecken nutzt. Zur Wärmeübertragung kann ein Wärmeübertrager dienen. Der Dampfmassenstrom kann aber auch direkt in das Produkt eingehen.
Eine weitere bevorzugte Ausführungsform des Verfahrens verwendet eine mit einem Frischlüfter versehene Zusatzfeuerung des Abhitzekessels. So kann der Abhitzekessel bei Gasturbinenstillstand die Funktion eines Hilfskessels übernehmen und damit unabhängig vom Betrieb der Gasturbinenanlage betrieben werden. Weitere Ausführungsformen des erfindungsgemässen Verfahrens ergeben sich aus den abhängigen Ansprüchen.
Zusätzlich betrifft die beschriebene Erfindung die Verwendung einer Gasturbinenanlage zur Nachrüstung eines Dampfsystems, welches wenigstens eine Dampferzeugungseinrichtung sowie wenigstens einen Dampfverbraucher aufweist, wobei der Abgasstrom der Gasturbinenanlage in einem Abhitzekessel zur Dampferzeugung verwendet wird, und der Abhitzekessel mit einer Zusatzfeuerung versehen ist, welche es erlaubt, die Dampfparameter des Abhitzekessels den Parametern im Dampfsystem anzupassen.
Weitere bevorzugte Ausführungsformen der obigen Verwendung ergeben sich gemäss den abhängigen Ansprüchen.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll anfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren näher erläutert werden. Es zeigen:
Fig. 1 eine Anlage einer Kraft-Wärme-Kopplung;
Fig. 2 eine Anlage einer Kraft-Wärme-Kopplung nach der Umrüstung;
Fig. 3 eine Anlage eines ausgedehnten Dampfsystems nach der Umrüstung; und
Fig 4 zwei Ausführungsformen der Zusatzfeuerung.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Das erfindungsgemässe Verfahren wird nachfolgend anhand der in den Figuren gezeigten schematischen Darstellungen beschrieben.
Figur 1 zeigt drei konventionelle Dampferzeuger 15, welche über ein Dampfnetz 16, im konkreten Fall eine Dampfsammeischiene 17, einen Dampfverbraucher 18 mit Dampf versorgen. Der Dampfverbraucher 18 besteht aus einer Dampfturbinenanlage 19 und einem verfahrenstechnischen Prozess 20. Die Dampfturbinenanlage 19 treibt den Generator 5 an und dient somit zur Stromerzeugung. Bei der Dampfturbinenanlage 19 handelt es sich im vorliegenden Fall um eine Gegendruckdampfturbine, d. h. der Abdampf der Gegendruckdampfturbine dient der Versorgung eines weiteren Dampfverbrauchers 18, im konkreten Fall eines verfahrenstechnischen Prozesses 20.
In der Figur 2 wurde im Vergleich zur Figur 1 einer der konventionellen Dampferzeuger 15 durch eine Gasturbinenanlage 1 mit abgasseitig nachgeschaltetem Abhitzekessel 7 ersetzt. Die Warme der Abgase 6 der Gasturbine 4 der Gasturbinenanlage 1 dient dabei zur Dampferzeugung in einem Abhitzekessel 7 Der im Abhitzekessel 7 erzeugte Dampf wird zusammen mit dem Dampf der verbliebenen beiden konventionellen Dampferzeuger 15 über die Dampfsammeischiene 17 wiederum der Dampfturbinenanlage 19 zugeführt In der Abgaslei- tung 6 zwischen Gasturbinenanlage 1 und Abhitzekessel 7 befindet sich eine Zusatzfeuerung 44, welche über die Brennstoffleitung 45 mit Brennstoff versorgt wird Nach dem Durchströmen des Abhitzekessels 7 gelangt das Abgas 6 schhesslich über einen Kamin 43 ins Freie
Die Gasturbinenanlage 1 besteht aus einem Verdichter 2, einer Brennkammer 3 und einer Gasturbine 4 Die Gasturbine 4, der Verdichter 2 und der Generator 5 sind auf einer gemeinsamen Welle 8 angeordnet Die Gasturbine 4 treibt über diese gemeinsame Welle 8 sowohl den Verdichter 2 als auch den Generator 5 an Die Gasturbinenanlage 1 und der Generator 5 werden als Gasturbosatz bezeichnet Die über eine Ansaugluftleitung 9 dem Verdichter 2 zugefuhrte Luft gelangt nach der Verdichtung im Verdichter 2 als Verbrennungsluft 10 in die Brennkammer 3 In der Brennkammer 3 wird über die Brennstoffleitung 11 zugefuhrter Brennstoff verbrannt Das in der Brennkammer 3 erzeugte Heissgas 12 gelangt zur Gasturbine 4 und wird dort arbeitleistend entspannt
Eine Gasturbinenanlage kann auch mehrere Brennkammern und mehrere Gasturbinen aufweisen So sind beispielsweise bei Gasturbinenanlagen mit sequentieller Verbrennung einer Hochdruckbrennkammer mit Hochdruckturbine eine Niederdruckbrennkammer mit Nieder- druckturbine nachgeschaltet Auch kann eine Gasturbinenanlage mehrere Verdichter aufweisen
Auch die Dampfturbinenanlage 19 kann aus mehreren Dampfturbinen beispielsweise Hochdruck-, Mitteldruck- und Niederdruckdampfturbine bestehen Die Dampfturbinenanlage 19 kann aber auch als Kondensationsturbine zur reinen Stromerzeugung ausgelegt sein Wobei der Abdampf dieser Dampfturbine in einem Kondensator kondensiert wird Weitere Untervarianten bzgl der Dampfturbinenanlage 19 sind in Form von Entnahme-Gegendruck- oder Entnahme-Kondensationsturbinen denkbar In Analogie zum Gasturbosatz (Gasturbinenanlage und Generator) spricht man bei einer Dampfturbinenanlage 19 mit Generator 5 auch vom Dampfturbosatz
Figur 3 zeigt ein komplexes Dampfsystem mit zahlreichen Dampferzeugungseinrichtungen 14 in Form des Abhitzekessels 7 und der konventionellen Dampferzeuger 15, mit zahlreichen Dampfverbrauchern 18 in Form von Dampfturbinenanlagen 19 und verfahrenstechnischen Prozessen 20 Die Dampferzeugungseinrichtungen 14 und die Dampfverbraucher 18 sind dampfseitig über das Dampfnetz 16 bestehend aus den Druckdampfsystemen a bis e und kondensatseitig über das Kondensatsystem k miteinander verbunden. Die einzelnen Druckdampfsysteme a bis e können wiederum über Dampfturbinenanlagen 19 oder Reduzierstationen 21 verbunden sein. Innerhalb eines solchen komplexen Dampfsystems können sich ge- wissermassen in Form von Inseln Dampferzeugungseinrichtungen und Dampfverbraucher mit nur geringer Verflechtung zum Dampfsystem befinden.
Im vorliegenden Fall werden die im gesamten System anfallenden Kondensate im Kondensatsystem k gesammelt, möglicherweise gereinigt und entgast und schliesslich den Dampferzeugungseinrichtungen 14 wieder zugeführt.
Aus den verschiedensten Gründen kann es nun erforderlich sein, das Dampfsystem mit einer zusätzlichen Dampferzeugungseinrichtung 14 nachzurüsten. Infolge der Notwendigkeit der Deckung eines gleichzeitigen erhöhten Strombedarfs sowie unter dem Gesichtspunkt der Realisierung einer entscheidenden Wirkungsgraderhöhung kann nun eben eine Gasturbinenanlage 1 mit nachgeschaltetem Abhitzekessel 7 sowie eine Zusatzfeuerung 44 nachgerüstet werden.
Der im Abhitzekessel 7 in mehreren Druckstufen erzeugte Dampf wird über die jeweiligen Frischdampfleitungen 30,37,42 den einzelnen Druckstufen des Dampfnetzes zugeführt. Vom Kondensatsystem k wird Speisewasser zu einem Hochdruckeconomizer I 24 gefördert, strömt danach zum Hochdruckeconomizer II 25, zum Hochdruckeconomizer III 26 und von diesem zur Hochdruckdampftrommel 27. Die Hochdruckdampftrommel 27 steht mit dem Hochdruckverdampfer 28 in Verbindung. Weiter folgt der Hochdruckdampftrommel 27 ein Hochdrucküberhitzer 29, an welchem die Hochdruckfrischdampfleitung 30 anschliesst, welche unmittelbar zum Hochdruckdampfsystem e und über eine Reduzierstation 21 zum Mitteldruckdampfsystem d führt.
Vom Kondensatsystem k wird Speisewasser zu einem Mitteldruckeconomizer I 32 gefördert, strömt danach zum Mitteldruckeconomizer II 33 und von diesem zur Mitteldruckdampftrom- mel 34. Die Mitteldruckdampftrommel 34 steht mit dem Mitteldruckverdampfer 35 in Verbindung. Weiter folgt der Mitteldruckdampftrommel 34 ein Mitteldrucküberhitzer 36, an welchem die Mitteldruckfrischdampfleitung 37 anschliesst, welche unmittelbar zum Mitteldruckdampfsystem c und über eine Reduzierstation 21 zum Mitteldruckdampfsystem b führt.
Vom Kondensatsystem k wird Speisewasser zu einem Niederdruckeconomizer 39 gefördert und strömt von diesem zur Niederdruckdampftrommel 40. Die Niederdruckdampftrommel 40 steht mit dem Niederdruckverdampfer 41 in Verbindung. An der Niederdruckdampftrommel 40 schliesst die Niederdruckfrischdampfleitung 42 an, welche unmittelbar zum Niederdruckdampfsystem a führt. Der Hochdruckeconomizer I 24, der Hochdruckeconomizer II 25, der Hochdruckeconomizer III 26, die Hochdruckdampftrommel 27, der Hochdruckverdampfer 28 und der Hochdrucküberhitzer 29 bilden zusammen ein bei einer ersten Druckstufe arbeitendes Hochdrucksystem.
Der Mitteldruckeconomizer I 32, der Mitteldruckeconomizer II 33, die Mitteldruckdampftrommel 34, der Mitteldruckverdampfer 35 und der Mitteldrucküberhitzer 36 bilden zusammen ein bei einer zweiten Druckstufe arbeitendes Mitteldrucksystem.
Der Niederdruckeconomizer 39, die Niederdruckdampftrommel 40 und der Niederdruckverdampfer 41 bilden zusammen ein bei einer dritten Druckstufe arbeitendes Niederdrucksystem.
Im vorliegenden Fall wurde ein Abhitzekessel 7 bestehend aus Trommel-Umlaufverdampfern beschrieben. Daher wird das durch die Economizer der jeweiligen Druckstufe vorgewärmte Speisewasser in die Dampftrommel gefördert. Das Trommelwasser wird im System Dampftrommel-Verdampfer umgewälzt und dabei anteilig verdampft. In der Dampftrommel erfolgt die Separation von Wasser und Dampf. Das Wasser wird erneut dem Verdampfer zugeführt, während der Dampf direkt oder über einen möglicherweise vorhandenen Überhitzer zur Dampfturbinenanlage gelangt.
Nach dem Durchstömen des Abhitzekessels 7 gelangt das Abgas 6 schliesslich über einen Kamin 43 ins Freie.
Im vorliegenden Fall befindet sich unmittelbar in der Abgasleitung 6 zwischen Gasturbine 4 und Abhitzekessel 7 eine Zusatzfeuerung 44 mit der entsprechenden Brennstoffleitung 45. Mittels dieser Zusatzfeuerung 44 kann das Abgas 6 der Gasturbine 4 erforderlichenfalls nachbeheizt werden, wobei der im Abgas 6 vorhandene Restsauerstoff genutzt wird. Da die Zusatzfeuerung 44 nur in Betrieb ist, wenn die Gasturbinenanlage 1 in Betrieb ist, kommt diese zunächst ohne Frischlüfter aus. Entsprechend der Figur 4 besteht jedoch die Möglichkeit die Zusatzfeuerung 44 auch mit einem Frischlüfter 46 zu betreiben.
Die Zusatzfeuerung 44 kann auch separat angeordnet sein. Das Rauchgas der Zusatzfeuerung 44 kann in diesem Fall dem Abgas 6 der Gasturbine 4 entweder vor dem Eintritt in den Abhitzekessel 7 aber auch an beliebiger Stelle innerhalb des Abhitzekessels 7 zugemischt werden. In diesem Fall ist jedoch ein Frischlüfter 46 zum Betreiben der Zusatzfeuerung 44 unerlässlich.
Neben dem dargestellten Ausführungsbeispiel mit einer Zusatzfeuerung 44 zwischen Gasturbine 4 und Abhitzekessel 7 kann die Zusatzfeuerung 44 auch innerhalb des Abhitzekessels 7 vorzugsweise in Stromungsrichtung vor einer jeweiligen Druckstufe angeordnet sein Auch können mehrere Zusatzfeuerungen vor den jeweiligen Druckstufen angeordnet sein
Der Aufbau des beschriebenen Dampfsystems insbesondere des Abhitzekessels 7, der Gasturbinenanlage 1 und der Dampfturbinenanlage 19 ist lediglich als ein Beispiel zu betrachten, da wie allgemein bekannt ist, derartige Komponenten bzw Systeme sehr unterschiedlich ausgebildet sein können Für den Erfindungsgedanken ist lediglich wesentlich, dass sich
- zwischen Gasturbine 4 und Abhitzekessel 7, d h in der Abgasleitung 6,
- innerhalb des Abhitzekessels 7 oder
- dem Abhitzekessel 7 beigestellt eine Zusatzfeuerung 44 befindet
Die Dampfparameter von Abhitzekesseln hinter grosseren Gasturbinenanlagen liegen im Bereich von beispielsweise 5 bar / 210 °C und 70 bar / 510 °C für einen Zweidruckprozess oder von beispielsweise 4-8 bar / 150-320 °C, 20-45 bar / 540-570 °C und 80-160 bar / 540-570 °C für einen Dreidruckprozess Es sei darauf verwiesen, dass diese Parameter sehr stark von der Gasturbinenanlage und deren Einsatzbedingungen abhangen
Mittels des Betriebes der Zusatzfeuerung 44 ist es nun möglich die Parameter des Abhitzekessels 7 den Dampfparametern im Dampfsystem anzupassen, auf einen unterschiedlichen Dampfbedarf innerhalb der einzelnen Druckdampfsysteme zu reagieren,
- zeitliche Dampfbedarfsschwankungen auszugleichen sowie beim Stillstand der Gasturbinenanlage 1 eine Mindestdampferzeugung sicher zu stellen
Beim Neubau beispielsweise eines Chemiebetriebes auf der grünen Wiese können die ebenfalls zu errichtenden Energieversorgungsanlagen optimal auf die Bedarfsstruktur abgestimmt werden Dies ist jedoch eher ein Ausnahmefall In der Praxis müssen neue Energieversorgungsanlagen eher innerhalb historisch gewachsener Energieversorgungssysteme errichtet werden Das ist wie eingangs erwähnt beispielsweise im Fall von Änderungen der Bedarfsstruktur aber auch bei Minderleistungen oder einem erforderlichen Ersatz auf der Erzeugerseite notwendig
Es zeigt sich, dass sich für diese Aufgabe eine Gasturbinenanlage 1 mit Abhitzekessel 7 verwenden lasst Eine nachzurustende Gasturbinenanlage 1 mit Abhitzekessel 7 muss die Auslegungsparameter und möglichen Fahrweisen des bestehenden Dampfnetzes 16 berucksich- tigen Dem sind jedoch durch den Abgasmassenstrom und die Abgastemperatur der Gasturbinenanlage 1 enge Grenzen gesetzt Infolge des durch den Betrieb der Gasturbinenanlage 1 bestimmten Abgasmassenstrom mit einer ebenso bestimmten Abgastemperatur, welche zusätzlich in erheblichem Masse von den Umgebungsbedingungen abhangen, lassen sich nur diesen Parametern entsprechende Wärmeleistungen zur Dampferzeugung im Abhitzekessel 7 nutzen Zusatzliche Restriktionen können sich durch die ggf notwendige Versorgung verschiedener Druckstufen eines Dampfsystems ergeben So sind z B bei grossen Chemieunternehmen oder Raffinerien Dampfnetze mit bis zu 6 Druckstufen und Drucken von bis zu 120 (160) bar bekannt
Wird nun aber der Abhitzekessel 7 mit einer Zusatzfeuerung 44 versehen, so lassen sich die Wärmeleistungen des Abgases 6 der Gasturbinenanlage 1 und somit die Dampferzeugung im Abhitzekessel 7 einfach und flexibel den aktuellen Bedingungen anpassen Für eine derartige Verwendung geeignete Abhitzekessel 7 mit Zusatzfeuerung 44 sind z B aus der US 3,443,550 bekannt Die Zusatzfeuerung 44 dient dort der Erhöhung der Wirtschaftlichkeit und der Optimierung der Dampfproduktion Es kann mit anderen Worten durch eine entsprechende konstruktive Ausfuhrung resp Anordnung der Zusatzfeuerung 44 den Parametern Temperatur, Druck, Massenstrom etc der bereits bestehenden Erzeuger- und Verbraucherstruktur auf unterschiedlichen Temperatur- bzw Druckniveaus (Heisswasser und/oder Dampf) entsprochen werden
Ausserdem ergibt sich weiterhin der Vorteil, dass durch einen dem Bedarf angepassten Betrieb der Zusatzfeuerung 44 dem zeitlichen Bedarf und schnellen Bedarfsanderungen von Strom und/oder Warme Rechnung getragen werden kann
So kann ein bestehender Dampferzeuger 15 teilweise oder gänzlich ersetzt werden, es kann aber auch einfach die Leistung einer bestehenden Anlage durch einen Zubau von Erzeuger- leistung erhöht werden oder insbesondere die Flexibilität einer bestehenden Anlage bzgl Brennstoffeinsatz, Leistung, Lastanderungsgeschwindigkeiten u dgl vergrossert werden
Wird ausserdem die Zusatzfeuerung 44 mit einem Frischlufter 46 versehen, so kann der Abhitzekessel 7 auch bei Stillstand der Gasturbinenanlage 1 die Funktion eines Hilfskessels übernehmen, bzw unabhängig vom Strombedarf betrieben werden Bei laufender Gasturbinenanlage 1 ist der Betrieb des Frischlufters 46 nicht zwingend notwendig
Der alleinige Betrieb des Frischlufters 46 der Zusatzfeuerung (ohne Betrieb der eigentlichen Zusatzfeuerung 44) kann aber auch aus Gründen der effizienteren Beherrschung ausserge- wohnhcher Betriebsbedingungen bzw Betriebsweisen zweckmassig sein Eine Kühlung der Abgase 6 der Gasturbinenanlage 1 durch Zumischung kalter Zuluft kann beispielsweise zur Vermeidung von Temperaturspitzen, beim unerwarteten Ausfall von Dampfverbrauchern, zum schnelleren Abkühlen der Gasturbinenanlage vor Revisionen u. dgl. zweckmässig sein.
BEZUGSZEICHENLISTE
1 Gasturbinenanlage (bestehend aus 2,3,4)
2 Verdichter
3 Brennkammer
Gasturbine
5 Generator
6 Abgas, Abgasleitung
Abhitzekessel
(gemeinsame) Welle
Ansaugluftleitung
10 Verbrennungsluft
11 Brennstoffleitung (für Brennkammer 3)
12 Heissgas
14 Dampferzeugungseinrichtung
15 (konventioneller) Dampferzeuger
16 Dampfnetz 7 Dampfsammeischiene 8 Dampfverbraucher 9 Dampfturbinenanlage 0 verfahrenstechnischer Prozess 1 Reduzierstation 4 Hochdruckeconomizer I 5 Hochdruckeconomizer II 6 Hochdruckeconomizer III 7 Hochdruckdampftrommel 8 Hochdruckverdampfer 9 Hochdrucküberhitzer 0 Hochdruckfrischdampfleitung 2 Mitteldruckeconomizer I 3 Mitteldruckeconomizer II 4 Mitteldruckdampftrommel 5 Mitteldruckverdampfer 6 Mitteldrucküberhitzer 7 Mitteldruckfrischdampfleitung 39 Niederdruckeconomizer
40 Niederdruckdampftrommel
41 Niederdruckverdampfer
42 Niederdruckfrischdampfleitung
43 Kamin
44 Zusatzfeuerung
45 Brennstoffleitung (für Zusatzfeuerung 45)
46 Frischlüfter a Niederdruckdampfsystem (6 bar) b Mitteldruckdampfsystem (20 bar) c Mitteldruckdampfsystem (60 bar) d Mitteldruckdampfsystem (100 bar) e Hochdruckdampfsystem (160 bar) k Kondensatsystem

Claims

PATENTANSPRÜCHE
1 Verfahren zur Nachrüstung eines Dampfsystems, welches wenigstens eine Dampferzeugungseinrichtung (14) sowie wenigstens einen Dampfverbraucher (18) aufweist, dadurch gekennzeichnet, dass wenigstens eine Gasturbinenanlage (1) nachgerustet wird, deren Abgas (6) in wenigstens einem Abhitzekessel (7) zur Dampferzeugung verwendet wird, wobei der wenigstens eine Abhitzekessel (7) mit einer Zusatzfeuerung (44) versehen wird, welche es erlaubt, die Dampfparameter des Abhitzekessels (7) den Parametern im Dampfsystem anzupassen
2 Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die wenigstens eine Gasturbinenanlage (1 ) mit Abhitzekessel (7) die bestehende Dampferzeugungseinrichtung (14) wenigstens teilweise leistungsmassig ersetzt
3 Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das bestehende Dampfsystem mehrere Druckdampfsysteme (a bis e) aufweist, und dass insbesondere darin bis zu 6 Druckstufen vorgesehen sind und Drucke bis zu 120 (160) bar auftreten können
4 Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass es sich beim bestehenden Dampfverbraucher (18) um eine Dampfturbinenanlage (19), oder einen verfahrenstechnischen Prozess (20) handelt
5 Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzfeuerung (44) in Stromungsrichtung des Abgases (6) der Gasturbinenanlage (1 ) vor dem Abhitzekessel (7) und/oder innerhalb des Abhitzekessels (7) angeordnet ist
6 Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Zusatzfeuerung (44) des wenigstens einen Abhitzekessels (7) mit einem Frischlufter (46) versehen wird
7 Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Zusatzfeuerung (44) ausserhalb des Abgasstromes (6) angeordnet ist, über einen Frischlüfter (46) verfügt, und das Rauchgas der Zusatzfeuerung (44) mit dem Abgas (6) der Gasturbinenanlage (1) gemischt wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Mischung des Abgases (6) der Gasturbinenanlage (1 ) und des Rauchgases der Zusatzfeuerung (44) in Strömungsrichtung des Abgases (6) der Gasturbinenanlage (1) vor dem Abhitzekessel (7) und/oder innerhalb des Abhitzekessels (7) erfolgt.
9. Verwendung wenigstens einer Gasturbinenanlage (1 ) zur Nachrüstung eines Dampfsystems, welches wenigstens eine Dampferzeugungseinrichtung (14) sowie wenigstens einen Dampfverbraucher (18) aufweist, wobei das Abgas (6) der wenigstens einen Gasturbinenanlage (1) in wenigstens einem Abhitzekessel (7) zur Dampferzeugung verwendet wird, und der Abhitzekessel (7) mit einer Zusatzfeuerung (44) versehen ist, welche es erlaubt, die Dampfparameter des Abhitzekessels (7) den Parametern im Dampfsystem anzupassen.
10. Verwendung wenigstens einer Gasturbinenanlage (1 ) nach Anspruch 9, dadurch gekennzeichnet, dass die Gasturbinenanlage (1) mit Abhitzekessel (7) die Dampferzeugungseinrichtung (14) wenigstens teilweise leistungsmässig ersetzt, und dass es sich beim Dampfverbraucher (18) um eine Dampfturbinenanlage (19) oder einen verfahrenstechnischen Prozess (20) handelt.
11. Verwendung wenigstens einer Gasturbinenanlage (1 ) nach einem der Ansprüche 9 oder 10, dadurch gekennzeichnet, dass die Zusatzfeuerung (44) des wenigstens einen Abhitzekessels (7) mit einem Frischlüfter (46) versehen ist.
PCT/IB2002/000422 2001-02-27 2002-02-12 Verfahren zur nachrüstung eines dampfsystems WO2002068801A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10109336.5 2001-02-27
DE2001109336 DE10109336A1 (de) 2001-02-27 2001-02-27 Verfahren zur Nachrüstung eines Dampfsystems

Publications (1)

Publication Number Publication Date
WO2002068801A1 true WO2002068801A1 (de) 2002-09-06

Family

ID=7675608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2002/000422 WO2002068801A1 (de) 2001-02-27 2002-02-12 Verfahren zur nachrüstung eines dampfsystems

Country Status (2)

Country Link
DE (1) DE10109336A1 (de)
WO (1) WO2002068801A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10314041A1 (de) 2003-03-28 2004-12-02 Alstom Technology Ltd Verfahren und Vorrichtung zur Anpassung der Parameter des Heissgases eines Heissgaserzeugers mit nachgeschaltetem technologischem Prozess

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443550A (en) 1967-05-05 1969-05-13 Gen Electric Two-section heat recovery steam generator
DE4103228A1 (de) * 1991-02-02 1992-08-06 Radebeul Energie Umwelt Verfahren zum betreiben von kraftwerken
GB2277965A (en) * 1993-05-12 1994-11-16 British Gas Plc Steam turbine
EP0967366A1 (de) * 1998-06-22 1999-12-29 Stork Engineers & Contractors B.V. Kraft-Wärme-Kopplungsanlage und Verfahren zu seinem Betrieb

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443550A (en) 1967-05-05 1969-05-13 Gen Electric Two-section heat recovery steam generator
DE4103228A1 (de) * 1991-02-02 1992-08-06 Radebeul Energie Umwelt Verfahren zum betreiben von kraftwerken
GB2277965A (en) * 1993-05-12 1994-11-16 British Gas Plc Steam turbine
EP0967366A1 (de) * 1998-06-22 1999-12-29 Stork Engineers & Contractors B.V. Kraft-Wärme-Kopplungsanlage und Verfahren zu seinem Betrieb

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOELY F-J: "LEISTUNGSSTEIGERUNG FOSSILBEFEUERTER DAMPFTKRAFTWERKE DURCH UMBAU ZU KOMBINIERTEN ANLAGEN", BWK BRENNSTOFF WARME KRAFT, VDI VERLAG GMBH. DUSSELDORF, DE, vol. 48, no. 10, 1 October 1996 (1996-10-01), pages 44 - 48, XP000633032, ISSN: 0006-9612 *

Also Published As

Publication number Publication date
DE10109336A1 (de) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1407120B1 (de) Verfahren zum betrieb eines brenners einer gasturbine sowie kraftwerksanlage
EP0439754B1 (de) Verfahren zum Anfahren einer Kombianlage
EP0591163B1 (de) Kombinierte gas- und dampfturbinenanlage
DE60126721T2 (de) Kombiniertes Kreislaufsystem mit Gasturbine
EP0783619B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage
EP1119688B1 (de) Gas- und dampfturbinenanlage
DE19962386A1 (de) Verfahren zum Nachrüsten eines Sattdampf erzeugenden Systems mit mindestens einer Dampfturbogruppe sowie nach dem Verfahren nachgerüstete Dampfkraftanlage
DE10041413A1 (de) Verfahren zum Betrieb einer Kraftwerksanlage
DE102018123663A1 (de) Brennstoffvorwärmsystem für eine Verbrennungsgasturbine
EP1105624B1 (de) Gas- und dampfturbinenanlage
EP1099041B1 (de) Gas- und dampfturbinenanlage
EP1099042B1 (de) Gas- und dampfturbinenanlage
EP0666412A1 (de) Verfahren zur Kühlung von Kühlluft für eine Gasturbine
EP1904731B1 (de) Gas- und dampfturbinenanlage sowie verfahren zu deren betrieb
EP1286030B1 (de) Gas- und Luftturbinenanlage
DE10155508C2 (de) Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE19720789B4 (de) Verfahren und Vorrichtung zur Erzeugung von Dampf
DE4300192C2 (de) Verfahren zum Betrieb von mindestens zwei miteinander verknüpften Abhitzeprozessen und Dampferzeugungsanlage zur Durchführung des Verfahrens
DE19612921A1 (de) Kraftwerksanlage und Verfahren zum Betrieb einer Kraftwerksanlage
WO2012126727A1 (de) Verfahren zum schnellen zuschalten eines dampferzeugers
WO2002068801A1 (de) Verfahren zur nachrüstung eines dampfsystems
EP1111198A2 (de) Verfahren zum Umrüsten eines Sattdampf erzeugenden Systems mit mindestens einer Dampfturbogruppe sowie nach dem Verfahren umgerüstetes Kraftwerk
EP0212311B1 (de) Kombiniertes Gas- und Dampfturbinenkraftwerk
DE3815536C1 (en) Heating and power station and method for generating heat energy in the form of steam and generating electrical energy
DE10052414A1 (de) Verfahren zum Betreiben einer Energieumwandlungseinrichtung sowie Vorrichtung zur Durchführung eines solchen Verfahrens

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP