WO2002067976A1 - Novel ischemia/reperfusion injury inhibitors - Google Patents

Novel ischemia/reperfusion injury inhibitors Download PDF

Info

Publication number
WO2002067976A1
WO2002067976A1 PCT/JP2001/007524 JP0107524W WO02067976A1 WO 2002067976 A1 WO2002067976 A1 WO 2002067976A1 JP 0107524 W JP0107524 W JP 0107524W WO 02067976 A1 WO02067976 A1 WO 02067976A1
Authority
WO
WIPO (PCT)
Prior art keywords
ischemia
reperfusion injury
peptide
amino acid
selenoprotein
Prior art date
Application number
PCT/JP2001/007524
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Hirashima
Hiroaki Maeda
Chikateru Nozaki
Original Assignee
Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001054750A external-priority patent/JP2002060346A/en
Application filed by Juridical Foundation The Chemo-Sero-Therapeutic Research Institute filed Critical Juridical Foundation The Chemo-Sero-Therapeutic Research Institute
Publication of WO2002067976A1 publication Critical patent/WO2002067976A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the present invention relates to the field of ethical pharmaceuticals and to new uses for plasma proteins. More specifically, the present invention relates to a drug for diseases such as vascular disorder, neuropathy, organ / tissue disorder, and motor dysfunction caused by ischemia / reperfusion injury caused during organ transplantation or various shocks. More specifically, the present invention relates to an agent for suppressing ischemia / reperfusion injury, comprising selenoprotein P, which is a kind of plasma protein, and preferably containing the peptide at the C-terminal side of selenoprotein P or the peptide group as an active ingredient. .
  • selenoprotein P which is a kind of plasma protein, and preferably containing the peptide at the C-terminal side of selenoprotein P or the peptide group as an active ingredient.
  • Ischemia refers to highly localized anemia.
  • the types of ischemia include compression ischemia caused by stenosis or occlusion of the arterial wall due to external compression such as a tumor, obstructive ischemia due to changes in blood vessels or blood vessels themselves, such as thrombosis and arteriosclerosis, and It can be divided into spastic ischemia due to vasospasm such as cerebral anemia and angina, etc., and relative ischemia and absolute ischemia depending on whether the ischemia is due to the force due to stenosis of the vascular lumen or complete occlusion. They are classified into and. Also, ischemia easily occurs in cases other than those caused by the disease state, such as during bleeding prevention and hemostatic treatment during surgery.
  • the local changes caused by ischemia depend on the duration of ischemia, the susceptibility of the tissue to ischemia, or the presence or absence of a vascular anastomosis at that site.
  • oxygen deprivation and nutrients in cells and tissues in the ischemic area Oxygen deficiency results in impairment, through disruption of ATP production, which first impairs function and eventually leads to degeneration, necrosis, or atrophy.
  • localized ischemic ischemia resulting from circulatory disturbances is an infarction.
  • Infarcts can be broadly divided into anemic and hemorrhagic infarcts.
  • ischemic conditions that stop blood flow, to varying degrees, adversely affect tissues.
  • cerebral (frontal), cerebellar, vestibular, and spinal ataxia accompany vascular disorders.
  • Ischemic reperfusion injury is a disorder in which reperfusion or reoxygenation associated with resumption of blood flow to an ischemic organ occurs in the cells and tissues of the ischemic organ.
  • the mechanism of post-ischemic injury in the brain, myocardium, lung, liver, kidney, knee, and gastrointestinal tract includes the active oxygen produced mainly by phagocytic cells such as neutrophils and macrophages, and vascular endothelial cells.
  • trimetazidine hydrochloride a therapeutic agent for ischemic heart disease that is actually used for treatment.
  • trimetazidine hydrochloride a therapeutic agent for ischemic heart disease that is actually used for treatment.
  • Serenob Koutin P which is a protein derived from blood components
  • C-terminal peptide of the selenoprotein P in a more preferable embodiment.
  • Cell death inhibitory activity was found, and a patent application was filed based on this finding (PCT / JP99 / 063222).
  • the present inventors have conducted intensive studies to provide a new agent for suppressing ischemia / reperfusion injury.
  • the peptide group can be adequately adapted to humans and other animals as an agent for suppressing ischemia and reperfusion injury, especially as an ataxia-improving agent associated with vascular injury in the brain region, by actual in vivo administration in model animals
  • the present invention was completed based on this finding.
  • the present invention relates to an agent for suppressing ischemia / reperfusion injury comprising selenoprotein P and / or a C-terminal peptide of the protein or the peptide group as a main component.
  • the C-terminal peptide of the protein or the peptide group comprises a deletion, substitution or addition of one or several amino acids at the C-terminal 103 amino acid sequence of selenoprotein P.
  • the C-terminal peptide of the protein Or the peptide group has the following formula:
  • Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (location (J number 1) and / or
  • amino acid sequence represented by the following, an amino acid sequence in which one or several amino acids have been deleted, substituted or added, a partial sequence of any one of the above amino acid sequences, or a part thereof. Or a peptide group having the amino acid sequence contained therein.
  • the present invention relates to this new drug effect of selenoprotein P, and the essential feature of the ischemic / reperfusion injury inhibitor of the present invention is selenoprotein P.
  • the selenoprotein P used here is not particularly limited, and includes any molecular form as long as it has a desired ischemia / reperfusion injury inhibitory activity. That is, various molecular forms such as complete molecular selenoprotein P can be targeted.
  • a preferred embodiment is a peptide at the C-terminal side of selenoprotein P or the peptide group, and among them, a C-terminal 103 amino acid sequence, and one or several amino acids of the amino acid sequence
  • Particularly preferred are peptides having an amino acid sequence in which is deleted, substituted or added, a partial sequence of any one of the above amino acid sequences, or an amino acid sequence containing the above amino acid sequence as a part thereof, or a group of such peptides. It can be recommended as a mode.
  • amino acid substitution especially Cys is replaced with Ser The preferred embodiment is preferred.
  • the ⁇ peptide group '' refers to a sequence of about 4 to 14 amino acids or one or several amino acids including at least one selenocysteine derived from the amino acid sequence of selenoprotein P.
  • a peptide containing the amino acid sequence that has been deleted, substituted or added refers to a collection of peptides having different fine structures due to the presence or absence of sugar chains, differences in charge, diversity of fragmentation, and the like. That is, the selenoprotein P and peptide group of the present invention are derived from the amino acid sequence of selenoprotein P, and if they have a desired ischemia / reperfusion injury inhibitory activity, there are no particular restrictions on the molecular form.
  • Such a peptide of the present invention can be prepared by a conventional method using a peptide synthesizer, or a chemical compound can be designed using the peptide of the present invention as a lead substance.
  • the peptide or the peptide group was recovered in a molecular weight fraction of 1 OkDa to 30 kDa based on the (a) molecular weight fractionation membrane, and (b) ion
  • a molecular weight fractionation membrane based on the (a) molecular weight fractionation membrane, and (b) ion
  • Non-reducing SDS-PAGE shows two bands with a molecular weight of 13 to 14 kDa and two bands of 16 to 17 kDa with sugar chains added to them.
  • peptide or peptides are represented by the following formula:
  • a peptide having a partial sequence of the amino acid or Was found to be a peptide group Or a peptide having a partial sequence of the amino acid or Was found to be a peptide group.
  • the method for producing selenoprotein P or a peptide or peptide group derived from the protein used in the present invention is not particularly limited.
  • a method for separating human blood from human blood, or a method using genetic recombination technology Can be manufactured.
  • a method for preparing plasma as a starting material will be outlined.
  • Serenob which is a main component of the ischemia-reperfusion injury inhibitor used in the present invention, is a peptide, or a group of peptides derived from the protein, which is more heat, denaturing agent and broader than common enzymes.
  • plasma is used as a starting material and various chromatography steps, for example, heparin chromatography, Applicable to on-exchange chromatography, anion exchange chromatography, hydrophobic chromatography, genole filtration chromatography, reversed-phase chromatography, hide-port xyapatite chromatography, affinity chromatography such as antibody columns, etc.
  • chromatography steps for example, heparin chromatography, Applicable to on-exchange chromatography, anion exchange chromatography, hydrophobic chromatography, genole filtration chromatography, reversed-phase chromatography, hide-port xyapatite chromatography, affinity chromatography such as antibody columns, etc.
  • ammonium sulfate Various fractionation methods such as membrane precipitation fractionation, molecular weight membrane fractionation, isoelectric focusing fractionation, and electrophoretic fractionation can be used.
  • Preparation Examples 1 to 3 The outline of the embodiment is, for example, for a peptide or a group of peptides, in order, heparin chromatography, ammonium sulfate precipitation fractionation, anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, heparin chromatography, gel These are filtration chromatography, reverse phase chromatography and anion exchange chromatography.
  • the active fraction obtained by this combination has an estimated purity of 5% or less, for example, when human plasma is used as a starting material, when cell death inhibitory activity is used as an index, 2 X 1 OV lmg protein / m 1 It can be purified in a state showing activity. Since the plasma activity of the starting material is about 20 to 40 / lmg protein / ml, the specific activity increases about 5, 000 to 10, 0,000 times as estimated.
  • the selenoprotein P or peptide or peptide group of the present invention should be fresh or when stored at 4 ° C, within about 5 days after storage. preferable.
  • the protein or peptide or peptide group of the present invention can be lyophilized and stored together with a suitable stabilizer, and further, the solution can be frozen and stored.
  • the ischemia / reperfusion injury inhibitor of the present invention can be prepared by a known method by combining the protein or a peptide or peptide group as an active ingredient with a suitable known excipient.
  • the effective dose of the ischemia / reperfusion injury inhibitor of the present invention varies depending on the age, symptoms and severity of the administration subject, and ultimately varies according to the intention of the doctor.
  • the best mode of administration is a single local (portal) or transarterial large dose (porous) or intravenous drip.
  • oral or transdermal administration is also possible.
  • the subject to which the ischemia / reperfusion injury inhibitor of the present invention is administered is not particularly limited as long as it is a patient having a disease caused by ischemia / reperfusion injury, but is not limited to cerebral infarction, ischemic organ injury, and organ.
  • Patients such as reperfusion injury such as transplantation, vascular injury, neuropathy, arteriosclerosis, and myocardial infarction can be considered as targets.
  • a drug containing selenoprotein P of the present invention or a peptide or peptide group derived therefrom as a main component is used as an agent for suppressing ischemia / reperfusion injury, the drug is administered alone. It can also be used, and co-administration with other therapeutic agents can be expected as an effective means to increase the effect.
  • the ischemia / reperfusion injury inhibitor of the present invention is effective when administered immediately after a patient suffers from ischemic organ injury or before or after a surgical operation for organ transplantation, and is associated with vascular injury. It can be expected to be effective for prophylactic or therapeutic administration for ataxia.
  • This blood-derived selenoprotein P or the peptide or peptide group used in the present application is a single intravenous dose toxicity test in mice, repeated intravenous dose toxicity test, general pharmacology test, virus inactivation test Its safety has been confirmed by such means.
  • Monoclonal antibodies obtained based on immunization of mice with selenoprotein P were immobilized on an immobilization carrier at a ratio of 180 mg Z25 ml (gel) to prepare an antibody column.
  • One liter of plasma was passed through an antibody column equilibrated with phosphorylated saline (PBS), and selenoprotein P was adsorbed on the antibody column. After washing with PBS, the bound substance was eluted with 4 M urea / 2 OmM MES buffer (pH 4.5).
  • the eluted fraction was passed through heparin sepharose (5 ml) equilibrated with 2 OmM MES buffer (pH 4.5). Next, the heparin column was washed with 2 OmM phosphate buffer (pH 6.5) 2 Om1. Further, it was washed with 2 OmM phosphate buffer ( ⁇ 6.5) 0.5 M NaCl 1 1.5 mM DTT (Dithiothreitol) 3 Oml. 2 OmM phosphate buffer to remove DTT
  • Activity tracking in the following preparation steps was based on the following Atsushi method using cell death activity as an index.
  • D am i cells (Greenberg SM et al., Blood vol. 72, p. 1968-1977) that can be subcultured with serum-free medium SFO 3 (manufactured by Sanko Junyaku) containing 0.05 juM 2ME and 0.1% BSA 1988): 1 X 10 6 ce 1 1 / dish / 3ml) l PMI 1 in lml 640 / D—MEM / F-12: 1: 2: 2 mixed medium (SA medium) (2 ml) was added, followed by culturing for 3 days, and the cells were collected at the time of assay. Cells were washed twice with 50% PBS / SA / 0.
  • the cell death inhibitory activity in plasma indicates heparin binding. Therefore, first, fractionation using a heparin column was performed to collect the heparin-bound fraction in plasma. Using human plasma as a starting material, heparin-binding protein in plasma is adsorbed to a heparin column (Heparin Sepharose: Pharmacia), washed with 0.3 M sodium chloride,
  • the adsorbed fraction was eluted with 2M sodium chloride. Most of the target cell death inhibitory activity was recovered in the 0.3M sodium chloride wash fraction, but the 2M sodium chloride elution fraction was used for purification of the active substance.
  • fractionation was performed by ammonium sulfate precipitation. 31.3% w / v (about 2 M) of ammonium sulfate was added to the total amount of the fraction eluted with heparin in 2 M sodium chloride, and the precipitate was collected. The precipitate was dissolved in water and dialyzed against water using a dialysis membrane with a molecular weight of 3,500 cuts. After collecting the dialyzed solution, add 1/50 volume of 1 M Tris-HCl buffer (pH 8.0) to the total volume, and further use 20 mM Tris-HCl buffer (pH 8.0). The solution concentration was adjusted so that the OD280 value was 20-30. The solution was filtered using a filter of 1.0 juni and 0.45 ⁇ to remove insolubles.
  • the protein solution described above is passed through a cation exchange chromatography carrier (Macro-prep High S: BioRad) equilibrated with 20 mM citrate buffer (pH 4.0), and then subjected to cation exchange chromatography.
  • a cation exchange chromatography carrier Micro-prep High S: BioRad
  • cation exchange chromatography carrier equilibrated with 20 mM citrate buffer (pH 4.0
  • cation exchange chromatography carrier Micro-prep High S: BioRad
  • 1/30 volume of 1 M trisaminomethane solution was added to the total amount of the obtained 550 mM sodium chloride eluted fraction to adjust the pH to about 7.5.
  • To this solution add 2/3 volume of 3.5M ammonium sulfate solution (add 1/50 volume of 1M Tris-HCl buffer (pH8.5) and adjust ⁇ to about 7.5), and adjust the concentration of ammonium sulfate to 1.4M.
  • the salt concentration was adjusted so that the sodium chloride concentration was 330 mM. Further, in order to remove insoluble substances, the mixture was filtered using a 0.45 // m filtration filter.
  • the filtered protein was placed on a hydrophobic chromatography carrier (Macro-prep Methyl HIC: BioRad) equilibrated with 2 OmM Tris-HCl buffer (pH 7.5) containing 1.4 ammonium sulfate and 33 OmM sodium chloride.
  • the solution was passed, and hydrophobic chromatography was performed. Since there was activity in the non-adsorbed fraction and the washing fraction in the equilibration buffer (pH 7.5), this fraction was collected. Almost no activity was present in the adsorbed fraction.
  • the above-mentioned 3.5 M ammonium sulfate solution having a pH of about 7.5 was added to the active fraction so that the concentration of ammonium sulfate became 2.OM.
  • the sample was passed through a hydrophobic chromatography carrier (Macro-prep Methyl HIC: BioRad) equilibrated with 20 mM Tris-HCl buffer (pH 7.5) containing 2.0 M ammonium sulfate and 240 mM sodium chloride. The components were adsorbed. After washing with equilibration buffer, the adsorbed activity Elution was performed with 20 mM Tris-HCl buffer (pH 8.0). The collected active fraction is dialyzed against water one day and night, and 1/50 volume of 1M citrate buffer (H4.5) is added to ensure that the collected active fraction is adsorbed to the heparin column. PH was adjusted to about 5.0.
  • a 20 mM phosphate buffer (pH 6.2) (buffer B) was prepared, and the active fraction whose pH was adjusted was passed through a heparin column (Hi-Trap Heparin: Pharmacia) equilibrated with buffer A. . Then, after washing the column twice with a solution (0.1 M NaCl) containing 5% of buffer B mixed with buffer A, further mix 20% of buffer B with buffer A The active fraction was eluted with the eluted solution (0.4 MNaCl). The active fraction thus obtained was concentrated to a concentration of about 15 mg / ml using a ⁇ t condenser (centriprep 3: Amicon). After adding 2% acetic acid to the total amount of the concentrated active fraction, insolubles were removed by a 0.45 / zm filter.
  • the target active substance at this stage was analyzed by electrophoresis and found to be composed of several bands from 1 OkDa to 30 kDa in the non-reduced state, and 3 to 4 kD in the reduced state. a and one band at 7-9 kDa, two bands at 13-14 kDa, and two bands at 16-17 kDa showed a minimum of six bands. All of these bands were detectable by Western blotting using the aforementioned antibody. In the electrophoresis in the non-reducing state, a protein that reacts with the antibody was confirmed near 28 to 29 kDa, suggesting that the presence of some dimers may exist. Was.
  • the heparin-Sepharose-bound fraction of selenoprotein P fragment in plasma using an anti-selenoprotein P antibody-bound carrier column was precipitated with 2 M ammonium sulfate, and the volume of the precipitated fraction was 2 OmM at least 5 times the volume of the precipitated fraction.
  • the precipitate was dissolved using a Tris buffer (pH 8.0), and the selenoprotein P present in this solution was adsorbed to the anti-selenoprotein P antibody-bound carrier conjugate with the anti-selenoprotein p antibody bound to the carrier.
  • selenoprotein P was eluted with 2 OmM citrate buffer (pH 4.0) containing 4 M urea, and the eluate was further diluted with 20 mM citrate. Absorbed to a cation exchanger (Macroprep High S, BioRad) equilibrated with buffer (pH 4.0) This was eluted with a sodium chloride gradient using sodium chloride and fractions showing cell death inhibitory activity Recovered At this time, it is possible to obtain full-length selenoprotein P. However, this substance has a clearly low cell death inhibitory activity per protein.
  • the mortality rate of the selenoprotein ⁇ fragment administration group was clearly four times lower than that of the control saline administration group, suggesting that the rate of recovery from acute cerebral infarction was higher.
  • Example 2 The effects of selenoprotein ⁇ on cerebral ischemia-reperfusion injury and ataxia were evaluated in 12-week-old gerbils to confirm the degree of paralysis.
  • general anesthesia was performed by intraperitoneal injection of ketamine hydrochloride (100 mg Z kg), the jugular vein was exposed through a midline incision, and 1 mg of the selenoprotein P fragment prepared in Preparation Example 2 was used. Iv dose. After 30 minutes of ischemia and 45 minutes of ischemia, the blood flow was reperfused and evaluated by the degree of paralysis at 6 hours and 24 hours.
  • Gerbils were anesthetized with 10-fold diluted Nembutal (5 O mg / m 1) by intraperitoneal administration of 300 ⁇ l, and the inferior vena cava was exposed by abdominal incision, from which selenoprotein prepared in Preparation Example 2 ⁇ fragment lmg Z did. Five minutes later, the portal vein was exposed, and the blood flow was cut off with a clip. At 40 minutes, the gerbils were re-distributed. After abdominal suture, all gerbils were dissected under anesthesia 30 hours later, blood, organs were collected, and liver marker enzymes in the blood were analyzed. Table 5 shows the results.
  • the mortality rate of the physiological saline administration group was 3/4, whereas that of the selenoprotein P fragment administration group was 0/3.
  • ALP In the group administered with saline, the activity was increased about 5 times as compared with the control, whereas the activity was increased in the group treated with selenoprotein P. ALP increases when cell membranes in the liver or intestine are damaged, and the cells that should be damaged were stabilized by selenoprotein P and the damage was reduced.As a result, the selenoprotein P-treated group may have survived. It is suggested.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Vascular Medicine (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Ischemia/reperfusion injury inhibitors which contain as the main component(s) selenoprotein P and/or C-terminal peptide(s) of this protein. These ischemia/reperfusion injury inhibitors are efficaciously usable for diseases caused by ischemia/reperfusion injury such as cerebral infarction, ischemic organ injury, reperfusion injury following organ transplantation or the like, vascular lesion, arteriosclerosis and myocardial infarction.

Description

明 細 書  Specification
新規な虚血 ·再灌流障害抑制剤  Novel ischemia / reperfusion injury inhibitor
技術分野 Technical field
本願発明は医療用医薬品の分野に関し、 血漿蛋白質の新たな用途に関する。 さ らに詳細には、 臓器移植時あるいは種々のショック時に生じる虚血 ·再灌流障害 に起因する血管性障害、 神経障害、 臓器 ·組織障害及び運動機能障害等の疾患に 対する医薬品に関する。 より詳しくは、 血漿蛋白質の一種であるセレノプロティ ン Pを、 好適には当該セレノプロティン Pの C末端側べプチドもしくは当該ぺプ チド群を有効成分として含有する、 虚血 ·再灌流障害抑制剤に関する。  The present invention relates to the field of ethical pharmaceuticals and to new uses for plasma proteins. More specifically, the present invention relates to a drug for diseases such as vascular disorder, neuropathy, organ / tissue disorder, and motor dysfunction caused by ischemia / reperfusion injury caused during organ transplantation or various shocks. More specifically, the present invention relates to an agent for suppressing ischemia / reperfusion injury, comprising selenoprotein P, which is a kind of plasma protein, and preferably containing the peptide at the C-terminal side of selenoprotein P or the peptide group as an active ingredient. .
背景技術 Background art
近年、 虚血■再灌流障害に起因する臓器障害等の疾患が注目されている。  In recent years, diseases such as organ damage due to ischemia-reperfusion injury have been attracting attention.
虚血とは局所性の強い貧血を意味する。 虚血の種類としては、 腫瘍など外部か らの圧迫による動脈壁の狭窄または閉塞によって生じる圧迫性虚血、 血栓 ·動脈 硬化症のように血管内または血管自体の変化による閉塞性虚血、 及び脳貧血 ·狭 心症などのように血管痙攣による痙攣性虚血に分けることができ、 虚血が血管内 腔の狭窄による力 \ または完全閉塞によるかに依つて相対的虚血と絶対的虚血と に分類される。 また、 病態に起因する場合以外にも手術中の出血防止、 止血処置 などで、 容易に虚血が生じる。  Ischemia refers to highly localized anemia. The types of ischemia include compression ischemia caused by stenosis or occlusion of the arterial wall due to external compression such as a tumor, obstructive ischemia due to changes in blood vessels or blood vessels themselves, such as thrombosis and arteriosclerosis, and It can be divided into spastic ischemia due to vasospasm such as cerebral anemia and angina, etc., and relative ischemia and absolute ischemia depending on whether the ischemia is due to the force due to stenosis of the vascular lumen or complete occlusion. They are classified into and. Also, ischemia easily occurs in cases other than those caused by the disease state, such as during bleeding prevention and hemostatic treatment during surgery.
通常、 虚血により生ずる局所の変化は、 虚血の持続時間、 虚血に対する組織の 感受性、 あるいはその部位での血管吻合の有無によって異なる力 一般に虚血領 域の細胞や組織に酸素欠乏と栄養障害をもたらし、 酸素欠乏は AT P産生の途絶 を介して、 まず機能が障害され、 ついには変性、 壊死、 あるいは萎縮をきたす。 このように、 循環障害の結果起; iる限局性の虚血性壌死が梗塞である。 梗塞は基 本的には貧血性梗塞と出血性梗塞に大別できる。 前者は脳、 心、 ,腎、 脾にしばし ば観られ、 後者は肺、 腸、 精巣、 卵巣などに、 時に脳にも観られる。 このように、 血流を止める虚血状態は程度の差があるにせよ組織に悪影響を及ぼす。 特に、 脳 に関しては、 血管性障害に付随して大脳 (前頭葉)性、 小脳性、 前庭谜路)性及び 脊髄性の運動失調症が生じる。  Usually, the local changes caused by ischemia depend on the duration of ischemia, the susceptibility of the tissue to ischemia, or the presence or absence of a vascular anastomosis at that site.Generally, oxygen deprivation and nutrients in cells and tissues in the ischemic area Oxygen deficiency results in impairment, through disruption of ATP production, which first impairs function and eventually leads to degeneration, necrosis, or atrophy. Thus, localized ischemic ischemia resulting from circulatory disturbances is an infarction. Infarcts can be broadly divided into anemic and hemorrhagic infarcts. The former are often found in the brain, heart,, kidney, and spleen, and the latter are found in the lungs, intestines, testes, ovaries, and sometimes in the brain. Thus, ischemic conditions that stop blood flow, to varying degrees, adversely affect tissues. In particular, with regard to the brain, cerebral (frontal), cerebellar, vestibular, and spinal ataxia accompany vascular disorders.
初期の梗塞や梗塞にまで至らない手術中の虚血の場合などは、 虚血状態を改善 すれば梗塞が回避されるようにも考えられる力 実際には頻繁に虚血 ·再灌流障 害が生じる。 虚血'再灌流障害とは、 虚血に陥った臓器への血流再開に伴う再権 流あるいは再酸素化が逆に虚血臓器の細胞や組織に生じる障害のことである。 脳 や心筋、 肺、 肝、 腎、 膝、 消化管などの虚血後の障害発生機序としては、 主に好 中球やマクロファージなどの貪食細胞、 血管内皮細胞などにより産生される活性 酸素、 フリーラジカルの発生、 ロイコトリェン、 トロンポキサンの生成、 脂質- 糖の過酸化、 蛋白質の変性、 酵素の不活'性化、. D NA鎖の切断、 核酸塩基の修飾 などが組織障害の原因の一つと考えられている。 また、 同時に生じる内皮細胞の 障害が、 微小循環障害を起こして虚血は遷延し、 アルブミン透過性の亢進、 好中 球の内皮細胞への接着、 組織への浸潤、 細胞内 C aイオンの流入なども引き起こ し、 障害を増悪させている。 この障害は虚血時間に依存し、 虚血時間が長いほど 再灌流時の障害も悪化する傾向にある。 Improve ischemic status in cases of early infarction or ischemia during surgery that does not lead to infarction Forces that could avoid infarction would in fact often cause ischemia / reperfusion injury. Ischemic reperfusion injury is a disorder in which reperfusion or reoxygenation associated with resumption of blood flow to an ischemic organ occurs in the cells and tissues of the ischemic organ. The mechanism of post-ischemic injury in the brain, myocardium, lung, liver, kidney, knee, and gastrointestinal tract includes the active oxygen produced mainly by phagocytic cells such as neutrophils and macrophages, and vascular endothelial cells. The generation of free radicals, leukotriene, tropoxane formation, lipid-sugar peroxidation, protein denaturation, inactivation of enzymes, .DNA chain cleavage, nucleobase modification, etc. are one of the causes of tissue damage. It is considered. Simultaneously, damage of endothelial cells causes microcirculation disorder, prolongs ischemia, increases albumin permeability, adherence of neutrophils to endothelial cells, infiltration into tissues, influx of intracellular Ca ions And so on, exacerbating the obstacles. This disorder depends on the time of ischemia, and the longer the time of ischemia, the worse the reperfusion injury.
これらのことから、 虚血時に生じる組織細胞の障害とその再灌流時に生じる障 害を抑制することが、 虚血を伴う種々の病態の改善や手術時の組織障害などを低 減させるためには必要であることが理解される。 つまり、 虚血による直接の障害 を抑えるためには、 細胞が維持されるのに必要な物質、 例えば、 酸素や栄養濃度 が低い状態でも細胞死が生じにくい状態に保つことが必要であり、 また、 再灌流 障害を抑制するためには、 血管拡張による血流の改善、 抗酸化活性の上昇、 ケミ カルメディエーターの制御などが必要である。  From these facts, it is necessary to suppress the damage of tissue cells caused by ischemia and the damage caused by reperfusion, in order to improve various disease states associated with ischemia and reduce tissue damage during surgery. It is understood that it is necessary. In other words, in order to reduce the direct damage caused by ischemia, it is necessary to maintain substances that are necessary for maintaining cells, for example, cells in a state where cell death does not easily occur even when oxygen and nutrient concentrations are low. In order to suppress reperfusion injury, it is necessary to improve blood flow through vasodilation, increase antioxidant activity, and control chemical mediators.
発明の開示 Disclosure of the invention
(発明が解決しようとする技術的課題)  (Technical problems to be solved by the invention)
現在、 スーパーォキシドジスムターゼゃカタラーゼ、 ダルタチオンペルォキシ ダーゼほか多数の生体の酸化障害に対する予防、 制御物質のほか、実際に治療に 用いられている虚血性心疾患治療剤である塩酸トリメタジジン、 .ト口ンポキサン 合成酵素阻害剤であるォザダレルナトリゥム、 脳循環代謝改善剤である酒石酸ィ フェンプロジル、 虚血性脳障害改善剤であるフマル酸ニゾフェノンなどもあるが、 これらにより障害が完全に抑制できるわけではない。 このような、 種々の虚血が 原因となる障害を改善するためには、 現在開発もしくは使用されている既知の物 質以外の物質で、 細胞にとって悪条件下で生じる細胞死を抑制する物質、 細胞内 抗酸化能を上昇させる物質を探索することが必要とされており、 このような物質 の同定には大きな意味があると考えられ、 より効果の高い新規な虚血 ·再灌流障 害抑制剤、 特に脳領域に関しては、 血管性障害、 虚血 ·再灌流障害に付随して生 じる神経障害、 運動失調改善剤が切望されている。 Currently, in addition to superoxide dismutase ゃ catalase, daltathione peroxidase, and other substances that prevent and control oxidative disorders in many organisms, trimetazidine hydrochloride, a therapeutic agent for ischemic heart disease that is actually used for treatment, is also available. Tozampoxane Synthetic enzyme inhibitor ozadarel sodium, cerebral circulatory metabolism improver difenprodil tartrate, ischemic encephalopathy improver nizophenone fumarate, etc. It cannot be done. In order to ameliorate such various disorders caused by ischemia, substances other than known substances that are currently being developed or used, such as substances that suppress cell death occurring under adverse conditions for cells, Intracellular There is a need to search for substances that increase antioxidant capacity, and the identification of such substances is considered to be of great significance, and new, more effective ischemia / reperfusion injury inhibitors, Particularly in the area of the brain, a drug for improving vascular disorders, neuropathy associated with ischemia / reperfusion injury, and ataxia is in great demand.
なお、 上記の記述 (背景技術および発明が解決しょうとする技術的課題) は、 The above description (background art and technical problem to be solved by the invention)
「虚血によりなぜ細胞は死ぬのか」 田川邦夫著、 共立出版; 「脳卒中ハンドブッ ク」 佐野圭司、 アイ ·ピー ·シー; 「今日の診療」 C D- R OM版、 医学書院;"Why do cells die due to ischemia?" By Kunio Tagawa, Kyoritsu Shuppan; "Handbook of stroke" Keiji Sano, IPC; "Today's medical care" CD-ROM version, Medical Shoin;
「医学大辞典」 C D-R OM版、 南山堂; 「最新医学大辞典」 C D- R OM第 2版、 医歯薬出版の記述を参考にした。 "Medical Dictionary" CD-ROM version, Nanzan-do; "Latest Medical Dictionary" CD-ROM 2nd edition, referring to the description of Medical and Dental Medicine Publishing.
(その解決方法)  (How to solve it)
上述の状況の下、 本願 明者らは先に、 血液成分由来の蛋白質であるセレノブ 口ティン Pに、 そしてより好適な態様として当該セレノプロテイン Pの C末端側 ぺプチドに、 従来報告されていなかった細胞死抑制活性が認められることを見出 し、 この知見を基に特許出願した(P C T/ J P 9 9 / 0 6 3 2 2)。 本願発明者ら は、 新たな虚血■再灌流障害抑制剤を供するべく鋭意研究した結果、 驚くべきこ とに従来試みられることのなかった前記セレノプロティン Pまたはその C末端側 ぺプチドもしくは当該べプチド群が、 モデル動物での実際の生体内投与によって、 虚血 ·再灌流障害抑制剤、 とりわけ脳領域における血管性障害に付随する運動失 調改善剤として人間その他の動物に充分に適応できる事実を見出し、 この知見に 基づいて本願発明を完成するに至った。  Under the circumstances described above, the inventors of the present application have not previously reported on Serenob Koutin P, which is a protein derived from blood components, and on the C-terminal peptide of the selenoprotein P in a more preferable embodiment. Cell death inhibitory activity was found, and a patent application was filed based on this finding (PCT / JP99 / 063222). The present inventors have conducted intensive studies to provide a new agent for suppressing ischemia / reperfusion injury. The fact that the peptide group can be adequately adapted to humans and other animals as an agent for suppressing ischemia and reperfusion injury, especially as an ataxia-improving agent associated with vascular injury in the brain region, by actual in vivo administration in model animals The present invention was completed based on this finding.
すなわち、 本願発明は、 セレノプロテイン Pおよび/または当該蛋白質の C末 端側べプチドもしくは当該ぺプチド群を主要構成成分とする虚血 ·再灌流障害抑 制剤に関する。  That is, the present invention relates to an agent for suppressing ischemia / reperfusion injury comprising selenoprotein P and / or a C-terminal peptide of the protein or the peptide group as a main component.
本願発明の好ましい態様において、 前記蛋白質の C末端側ぺプチドもしくは当 該ペプチド群は、 セレノプロテイン Pの C末端側 1 0 3アミノ酸配列、 1もしく は数個のアミノ酸が欠失、 置換もしくは付加された当該アミノ酸配列、 前記いず れかのァミノ酸配列の部分配列または前記ァミノ酸配列をその一部に含有するァ ミノ酸配列を有するぺプチドまたは当該ぺプチド群である。  In a preferred embodiment of the present invention, the C-terminal peptide of the protein or the peptide group comprises a deletion, substitution or addition of one or several amino acids at the C-terminal 103 amino acid sequence of selenoprotein P. The amino acid sequence, a partial sequence of any one of the amino acid sequences, or a peptide having an amino acid sequence containing the amino acid sequence as a part thereof, or the peptide group.
本願発明のさらに好ましい態様において、 前記蛋白質の C末端側ぺプチドもし くは当該ペプチド群は、 次式、 In a further preferred embodiment of the present invention, the C-terminal peptide of the protein Or the peptide group has the following formula:
、上) : Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (配歹 (J番号 1 ) および/または  , Above): Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (location (J number 1) and / or
( I I ) : Thr Gly Ser Ala lie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu(I I): Thr Gly Ser Alalie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu
Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (配列番号 2 ) Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (SEQ ID NO: 2)
(式中、 Xaaはセレノシスティンを表す) (Where Xaa represents selenocistine)
で表されるアミノ酸配列、 1もしくは数個のアミノ酸が欠失、 置換もしくは付加 された当該ァミノ酸配列、 前記いずれかのァミノ酸配列の部分配列または前記い ずれかのァミノ酸配列をその一部に含有するアミノ酸配列を有するぺプチドまた は当該ペプチド群である。 An amino acid sequence represented by the following, an amino acid sequence in which one or several amino acids have been deleted, substituted or added, a partial sequence of any one of the above amino acid sequences, or a part thereof. Or a peptide group having the amino acid sequence contained therein.
セレノプロテイン Pは 1 9 7 7年にグルタチオンぺロキシダーゼ  Selenoprotein P is glutathione peroxidase in 1997
(glutathione - peroxidase)とは異なるセレン含有蛋白質として確認され、 1 9 8 2年にセレンがセレノシスティン(selenocysteine)の开態で取り込まれているこ とが明らかにされた。 さらに、 1 9 9 1年にセレノプロテイン Pの c D NAのク ローニングにより全長のアミノ酸配列が明らかにされ、 その結果、 当該蛋白質は 最大 1 0個のセレノシスティンを含む可能性等が示された (Hill K. E.及ひ urk R. F. , Biomed. Environ. Sci., 10, p. 198-208 (1997) )。 (glutathione-peroxidase) was identified as a selenium-containing protein, and in 1982 it was clarified that selenium was taken up in the form of selenocysteine. Furthermore, in 1991, cloning of the cDNA of selenoprotein P revealed the full-length amino acid sequence, which indicated that the protein could contain up to 10 selenocysteines. (Hill KE and urk RF, Biomed. Environ. Sci., 10, p. 198-208 (1997)).
本願発明はこのセレノプロテイン Pの新たな薬効に関するものであり、 本願発 明の虚血 ·再灌流障害抑制剤の本態はセレノプロテイン Pである。 ここで用いら れるセレノプロテイン Pに特段の制約はなく、 所望の虚血 ·再灌流障害抑制活性 を有するものであれば如何なる分子形態のものを包含する。 すなわち、 完全分子 型セレノプロテイン Pをはじめ種々の分子形態のものが対象となり得る。 この中 で、 好適な態様はセレノプロテイン Pの C末端側ぺプチドもしくは当該ぺプチド 群であり、 中でも C末端側 1 0 3ァミノ酸配列、 当該ァミノ酸配列のうち 1もし くは数個のアミノ酸が欠失、 置換もしくは付加されたアミノ酸配列、 前記いずれ かのアミノ酸配列の部分配列、 または前記ァミノ酸配列をその一部として含有す るアミノ酸配列を有するぺプチドまたは当該べプチド群は、 とりわけ好適な態様 として推奨され得る。 アミノ酸置換に関しては、 とりわけ C y sが S e rに置換 された態様のものが望ましい。 The present invention relates to this new drug effect of selenoprotein P, and the essential feature of the ischemic / reperfusion injury inhibitor of the present invention is selenoprotein P. The selenoprotein P used here is not particularly limited, and includes any molecular form as long as it has a desired ischemia / reperfusion injury inhibitory activity. That is, various molecular forms such as complete molecular selenoprotein P can be targeted. Among them, a preferred embodiment is a peptide at the C-terminal side of selenoprotein P or the peptide group, and among them, a C-terminal 103 amino acid sequence, and one or several amino acids of the amino acid sequence Particularly preferred are peptides having an amino acid sequence in which is deleted, substituted or added, a partial sequence of any one of the above amino acid sequences, or an amino acid sequence containing the above amino acid sequence as a part thereof, or a group of such peptides. It can be recommended as a mode. Regarding amino acid substitution, especially Cys is replaced with Ser The preferred embodiment is preferred.
なお、 本願発明でいう 「ペプチド群」 とは、 セレノプロテイン Pのアミノ酸配 列に由来する少なくとも 1個のセレノシスティンを含む 4〜1 4個程度のァミノ 酸配列または 1もしくは数個のァミノ酸が欠失、 置換もしくは付加された当該ァ ミノ酸配列を含むペプチドであって、 糖鎖の有無、 荷電の相違、 断片化の多様性 等に起因する微細構造の異なるペプチドの集合体を意味する。 すなわち、 本願発 明のセレノプロテイン P及ぴぺプチド群は、 セレノプロテイン Pのァミノ酸配列 に由来し、 所望の虚血■再灌流障害抑制活性を有するものであればその分子形態 に特段の制約はなく、 これらには完全分子型のセレノプロテイン Pをはじめこれ に起因する C末端側ペプチド等が含まれる。 このような本願発明のペプチドは、 ペプチド合成機を用いて常法に従って調製することもできるし、 また、 本願発明 のペプチドをリード物質として、 化学合成物をデザインすることも可能である。 当該ぺプチドの精製過程における知見により、 当該ぺプチドまたはべプチド群 は(a )分子量分画膜に基づき 1 O k D a〜3 0 k D aの分子量画分に回収され、 ( b )イオン交換樹脂への結合性の検討の結果、 血中で p H 7力、ら p H 8の間に等 電点を示す構造と p H 8以上に等電点を示す構造を有し、 ( c )非還元系 S D S— P A G Eでは分子量 1 3〜1 4 k D aの 2本のバンド及びそれらに糖鎖の付加さ れた 1 6〜1 7 k D aの 2本のバンドを示し、 また( d )還元条件下での S D S— P A G Eでは、 前記バンドに加えて 3〜4 k D a、 7〜 9 k D a及ぴ 1 0〜 1 2 k D aのバンドを呈する性状を有すること、 さらに断片化された前記ペプチドに も活性が存在することが明らかになつた。  In the present invention, the `` peptide group '' refers to a sequence of about 4 to 14 amino acids or one or several amino acids including at least one selenocysteine derived from the amino acid sequence of selenoprotein P. A peptide containing the amino acid sequence that has been deleted, substituted or added, and refers to a collection of peptides having different fine structures due to the presence or absence of sugar chains, differences in charge, diversity of fragmentation, and the like. That is, the selenoprotein P and peptide group of the present invention are derived from the amino acid sequence of selenoprotein P, and if they have a desired ischemia / reperfusion injury inhibitory activity, there are no particular restrictions on the molecular form. These include the complete molecular form of selenoprotein P as well as the C-terminal peptide resulting therefrom. Such a peptide of the present invention can be prepared by a conventional method using a peptide synthesizer, or a chemical compound can be designed using the peptide of the present invention as a lead substance. According to the knowledge obtained during the purification process of the peptide, the peptide or the peptide group was recovered in a molecular weight fraction of 1 OkDa to 30 kDa based on the (a) molecular weight fractionation membrane, and (b) ion As a result of the examination of the binding property to the exchange resin, it was confirmed that it has a structure showing an isoelectric point between pH 7 and pH 8 in blood and a structure showing an isoelectric point above pH 8 (c ) Non-reducing SDS-PAGE shows two bands with a molecular weight of 13 to 14 kDa and two bands of 16 to 17 kDa with sugar chains added to them. d) In SDS-PAGE under reducing conditions, in addition to the above-mentioned band, it has the property of exhibiting bands of 3 to 4 kDa, 7 to 9 kDa and 10 to 12 kDa. It was revealed that the fragmented peptide also had activity.
より詳細な解析により、 当該ペプチドまたはペプチド群は、 次式、  According to a more detailed analysis, the peptide or peptides are represented by the following formula:
( Iゾ : Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (配歹 (I番号 1 ) ぉょぴ /または  (Izo: Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (Distribution (I number 1))
( I I ) : Thr Gly Ser Ala lie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (配列番号 2 )  (II): Thr Gly Ser Ala lie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (SEQ ID NO: 2)
(式中、 Xaaはセレノシスティンを表す)  (Where Xaa represents selenocistine)
で表されるァミノ酸配列、 または当該ァミノ酸の部分配列を有するぺプチドまた はぺプチド群であることが判明した。 Or a peptide having a partial sequence of the amino acid or Was found to be a peptide group.
本願発明に使用されるセレノプロテイン Pまたは当該蛋白質に由来するべプチ ドもしくはぺプチド群を製造する方法は特に限定されるものではないが、 例えば ヒト血液より分離する方法、 または遺伝子組換え技術により製造することができ る。 以下に、 好適な態様として血漿を出発原料として調製する方法を概説する。 本願発明に使用される虚血■再灌流障害抑制剤の主要構成成分となるセレノブ •口ティン Pまたは当該蛋白質に由来するペプチドもしくはペプチド群は、 一般的 な酵素類よりも熱、 変性剤、 幅広い p H、 血中のプロテアーゼに対して安定であ るため、 これを精製同定するに際しては、 一つの態様として、 血漿を出発原料と し種々のクロマトグラフィー工程、 例えば、 へパリンクロマトグラフィー、 陽ィ オン交換クロマトグラフィー、 陰イオン交換クロマトグラフィー、 疎水クロマト グラフィー、 ゲノレ濾過クロマトグラフィー、 逆相クロマトグラフィー、 ハイ ド口 キシァパタイトクロマトグラフィー、 抗体カラムのようなァフィ二ティークロマ トグラフィ一等、 適用可能な種々の担体を用いた分画方法の他、 硫酸アンモユウ ム沈殿分画、 分子量膜分画、 等電点分画、 電気泳動分画等、 種々の分画法が利用 可能である。 これらの分画法を組み合わせることにより、 所望のセレノプロティ ン Pまたはべプチドもしくはぺプチド群を分画することが可能である。 その望ま しい組み合わせの一例を調製例 1ないし調製例 3に示す。 態様の概略は、 例えば ペプチドまたはペプチド群に対して、 順に、 へパリンクロマトグラフィー、 硫酸 アンモニゥム沈殿分画、 陰イオン交換クロマトグラフィー、 陽イオン交換クロマ トグラフィー、 疎水クロマトグラフィー、 へパリンクロマトグラフィー、 ゲル濾 過クロマトグラフィー、 逆相クロマトグラフィ一及び陰イオン交換クロマトグラ フィ一である。  The method for producing selenoprotein P or a peptide or peptide group derived from the protein used in the present invention is not particularly limited.For example, a method for separating human blood from human blood, or a method using genetic recombination technology Can be manufactured. Hereinafter, as a preferred embodiment, a method for preparing plasma as a starting material will be outlined. Serenob, which is a main component of the ischemia-reperfusion injury inhibitor used in the present invention, is a peptide, or a group of peptides derived from the protein, which is more heat, denaturing agent and broader than common enzymes. Since it is stable to pH and protease in blood, when purifying and identifying it, in one embodiment, plasma is used as a starting material and various chromatography steps, for example, heparin chromatography, Applicable to on-exchange chromatography, anion exchange chromatography, hydrophobic chromatography, genole filtration chromatography, reversed-phase chromatography, hide-port xyapatite chromatography, affinity chromatography such as antibody columns, etc. In addition to the fractionation method using various carriers, ammonium sulfate Various fractionation methods such as membrane precipitation fractionation, molecular weight membrane fractionation, isoelectric focusing fractionation, and electrophoretic fractionation can be used. By combining these fractionation methods, it is possible to fractionate a desired selenoprotein P or peptide or peptide group. Examples of desirable combinations are shown in Preparation Examples 1 to 3. The outline of the embodiment is, for example, for a peptide or a group of peptides, in order, heparin chromatography, ammonium sulfate precipitation fractionation, anion exchange chromatography, cation exchange chromatography, hydrophobic chromatography, heparin chromatography, gel These are filtration chromatography, reverse phase chromatography and anion exchange chromatography.
この組み合わせにより得られる活性画分は、 純度的に推定夾雑物 5 %以下、 例 えばヒト血漿を出発原料とした場合、 細胞死抑制活性を指標とすると、 2 X 1 O V l m g蛋白質/ m 1の活性を示す状態で精製することが可能である。 出発原 料の血漿の活性が約 2 0〜4 0 / l m g蛋白質/ m 1程度であるので、 比活性で推 定 5 , 0 0 0 ~ 1 0 , 0 0 0倍程度上昇する。  The active fraction obtained by this combination has an estimated purity of 5% or less, for example, when human plasma is used as a starting material, when cell death inhibitory activity is used as an index, 2 X 1 OV lmg protein / m 1 It can be purified in a state showing activity. Since the plasma activity of the starting material is about 20 to 40 / lmg protein / ml, the specific activity increases about 5, 000 to 10, 0,000 times as estimated.
上述の方法等で調製されたセレノプロティン Pまたはべプチドもしくはぺプチ ド群の活性を最大限に維持するために、 本願発明のセレノプロテイン Pまたはぺ プチドもしくはぺプチド群は新鮮であるか、 4°Cで保存する場合には保存後約 5 日以内のものが好ましい。 あるいは、 本願発明の当該蛋白質またはペプチドもし くはぺプチド群は好適な安定化剤と共に凍結乾燥して保存することができるし、 さらには、 溶液を凍結し保存することも可能である。 Selenoprotein P or peptide or peptide prepared by the method described above, etc. In order to maintain the activity of the peptide group to the maximum, the selenoprotein P or peptide or peptide group of the present invention should be fresh or when stored at 4 ° C, within about 5 days after storage. preferable. Alternatively, the protein or peptide or peptide group of the present invention can be lyophilized and stored together with a suitable stabilizer, and further, the solution can be frozen and stored.
本願発明では、 有効成分としての当該蛋白質またはべプチドもしくはぺプチド 群と公知の適当な賦形剤を組み合わせ、 公知の方法で本願発明の虚血 ·再灌流障 害抑制剤とすることができる。 本願発明の虚血 ·再灌流障害抑制剤の有効投与量 は、 投与対象者の年齢、 症状及び重症度などにより変動し、 最終的には医師の意 図により変動する。 投与方法は局部での経門脈あるいは経動脈的単回大量 (ポー ラス)投与あるいは点滴の静脈内投与が最適である。 また、 低分子ペプチド群の 場合は経口や経皮投与等も可能である。  In the present invention, the ischemia / reperfusion injury inhibitor of the present invention can be prepared by a known method by combining the protein or a peptide or peptide group as an active ingredient with a suitable known excipient. The effective dose of the ischemia / reperfusion injury inhibitor of the present invention varies depending on the age, symptoms and severity of the administration subject, and ultimately varies according to the intention of the doctor. The best mode of administration is a single local (portal) or transarterial large dose (porous) or intravenous drip. In the case of the low molecular weight peptide group, oral or transdermal administration is also possible.
本願発明の虚血 ·再灌流障害抑制剤の投与対象は、 虚血■再灌流障害に起因す る疾患の患者であれば特に限定されることはないが、 脳梗塞、 虚血性臓器障害、 臓器移植等再灌流障害、 血管性障害、 神経障害、 動脈硬化及び心筋梗塞等の患者 がその対象として考慮され得る。 虚血 ·再灌流障害抑制剤として本願発明のセレ ノプロテイン Pまたはこれに由来するぺプチ 'ドもしくはべプチド群を主要構成成 分として含有する薬剤を使用する場合、 本薬剤を単独で投与することもできるし、 他の治療薬剤との併用投与も効果を増大させるための有効な手段として期待でき る。 本願発明の虚血 ·再灌流障害抑制剤は、 患者が虚血性臓器障害を被った直後 や、 臓器移植のための外科的手術前後に投与されることが効果的であり、 血管性 障害に付随する運動失調に対しては、 予防的または治療的投与のいずれにおいて も効果が期待できる。  The subject to which the ischemia / reperfusion injury inhibitor of the present invention is administered is not particularly limited as long as it is a patient having a disease caused by ischemia / reperfusion injury, but is not limited to cerebral infarction, ischemic organ injury, and organ. Patients such as reperfusion injury such as transplantation, vascular injury, neuropathy, arteriosclerosis, and myocardial infarction can be considered as targets. When a drug containing selenoprotein P of the present invention or a peptide or peptide group derived therefrom as a main component is used as an agent for suppressing ischemia / reperfusion injury, the drug is administered alone. It can also be used, and co-administration with other therapeutic agents can be expected as an effective means to increase the effect. The ischemia / reperfusion injury inhibitor of the present invention is effective when administered immediately after a patient suffers from ischemic organ injury or before or after a surgical operation for organ transplantation, and is associated with vascular injury. It can be expected to be effective for prophylactic or therapeutic administration for ataxia.
今回の血液由来の本願宪明で用いるセレノプロテイン Pまたは当該ぺプチドも しくはペプチド群は、 マウスでの単回静脈内投与毒性試験、 反復静脈内投与毒性 試験、 一般薬理試験、 ウィルス不活化試験などによりその安全性が確認されてい る。  This blood-derived selenoprotein P or the peptide or peptide group used in the present application is a single intravenous dose toxicity test in mice, repeated intravenous dose toxicity test, general pharmacology test, virus inactivation test Its safety has been confirmed by such means.
以下、 調製例及び実施例に沿って本願発明をさらに詳細に説明するが、 これら は本願発明の範囲を何ら限定するものではない。 なお、 以下に示す調製例及び実 施例では、 特に断りのない限り、 和光純薬、 宝酒造、 東洋紡及び New England BioLabs社製の試薬を使用した。 Hereinafter, the present invention will be described in more detail with reference to Preparation Examples and Examples, but these do not limit the scope of the present invention in any way. The following preparation examples and actual In Examples, unless otherwise specified, reagents manufactured by Wako Pure Chemical, Takara Shuzo, Toyobo and New England BioLabs were used.
調製例 1 Preparation Example 1
(セレノプロテイン Pの調製)  (Preparation of selenoprotein P)
セレノプロテイン P(C末端 103アミノ酸)をマウスに免疫することを基に得 られたモノクローナル抗体を 180mgZ25ml (ゲル) の比率で固定化担体 に固定化し、 抗体カラムを作製した。 リン酸化生理食塩水(PBS)により平衡化 した抗体カラムに血漿 1リットルを通液し、 該抗体カラムにセレノプロテイン P を吸着させた。 PBSを用いて洗浄し、 4M尿素/ 2 OmM MESバッファー (pH4.5)により結合物を溶出した。  Monoclonal antibodies obtained based on immunization of mice with selenoprotein P (C-terminal 103 amino acids) were immobilized on an immobilization carrier at a ratio of 180 mg Z25 ml (gel) to prepare an antibody column. One liter of plasma was passed through an antibody column equilibrated with phosphorylated saline (PBS), and selenoprotein P was adsorbed on the antibody column. After washing with PBS, the bound substance was eluted with 4 M urea / 2 OmM MES buffer (pH 4.5).
前記溶出画分を 2 OmM ME Sバッファー(pH4.5)により平衡化したへパ リンセファロース(5m 1)に通液した。 次に、 へパリンカラムを 2 OmMリン酸 ノ ッファー(pH6.5) 2 Om 1を用いて洗浄した。 さらに、 2 OmMリン酸バ ッファー(ρΗ6.5)ノ0.5M Na C 1ノ1.5mM DTT(Dithiothreitol) 3 Omlにより洗浄した。 DTTを除去するために 2 OmMリン酸バッファー The eluted fraction was passed through heparin sepharose (5 ml) equilibrated with 2 OmM MES buffer (pH 4.5). Next, the heparin column was washed with 2 OmM phosphate buffer (pH 6.5) 2 Om1. Further, it was washed with 2 OmM phosphate buffer (ρ 6.5) 0.5 M NaCl 1 1.5 mM DTT (Dithiothreitol) 3 Oml. 2 OmM phosphate buffer to remove DTT
(pH6. 5)/0.5M Na C 1 20 m 1を用いて洗浄した。 その後、 2 OmM リン酸バッファー(pH 6. 5)/l". OM N a C 1 30mlにより吸着物を溶出 した。 Washing was performed using (pH 6.5) / 20 ml of 0.5 M NaC1. Thereafter, the adsorbed material was eluted with 30 ml of 2 OmM phosphate buffer (pH 6.5) / l ". OM NaC1.
溶出 ·回収された物質は電気泳動、 ウェスタンプロッティングにより約 66 k Daの分子量を有する完全分子型セレノプロテイン Pであることを確認した。 回 収量は約 3 m gであった。  Elution · The recovered substance was confirmed to be complete molecular selenoprotein P having a molecular weight of about 66 kDa by electrophoresis and Western blotting. The recovery was about 3 mg.
調製例 2 Preparation Example 2
(セレノプロテイン P由来 C末端べプチドまたは当該ぺプチド群の調製)  (Preparation of C-terminal peptide derived from selenoprotein P or the peptide group)
以下の調製工程における活性の追跡は、 すべて細胞死^]制活性を指標とする下 記アツセィ法に拠った。  Activity tracking in the following preparation steps was based on the following Atsushi method using cell death activity as an index.
(アツセィ法) (Atsusei method)
0.05 juM 2ME及ぴ 0. 1 %B S Aを含有する無血清培地 S F O 3 (三光純 薬社製)で継代可能な D am i細胞 (Greenberg S. M.ら、 Blood vol. 72, p.1968- 1977 (1988)に記載: 1 X 106 c e 1 1/d i s h/3ml) lmlに R PM I 1 640/D— MEM/F— 1 2の 1 : 2 : 2混合培地( S A medium)を 2 m 1添加 後、 3日間培養し、 ァッセィ時に当該細胞を回収した。 細胞を 50 % P B S / S A/0. 0 3%HSA(SIGMA社製)により 2回洗浄し、 同培地で3 1 04。 6 1 1 /m lになるように懸濁後、 得られた細胞懸濁液をサンプル添加ゥエルのみ 2 0 Ο μ 1、 段階希釈のためのゥエルには 1 0 1ずつを 9 6 we 1 1プレート に分注した。 サンプル添加ゥエルにアツセィ試料を 2 μ 1添加し撹拌後、 1 00 β 1細胞懸濁液が入ったゥエルに対して段階希釈した。 3 7°Cの C02インキュ ベータ一で 4〜 5日間培養し判定した。 D am i cells (Greenberg SM et al., Blood vol. 72, p. 1968-1977) that can be subcultured with serum-free medium SFO 3 (manufactured by Sanko Junyaku) containing 0.05 juM 2ME and 0.1% BSA 1988): 1 X 10 6 ce 1 1 / dish / 3ml) l PMI 1 in lml 640 / D—MEM / F-12: 1: 2: 2 mixed medium (SA medium) (2 ml) was added, followed by culturing for 3 days, and the cells were collected at the time of assay. Cells were washed twice with 50% PBS / SA / 0. 0 3% HSA (SIGMA Co.), 3 1 0 4 with the same medium. After suspending the cell suspension to 6 1 1 / ml, add 20 μl of the obtained cell suspension to the sample only, and add 10 1 to the well for serial dilution. Was dispensed. After adding 2 μl of Atsushi sample to the sample-added well, stirring, serial dilution was carried out for the well containing the 100β1 cell suspension. 3 7 ° and 4 cultured for 5 days in C0 2 incubator beta one C was determined.
アツセィの評価法としては培養 4 S目以降、 活'|"生のない w e 1 1の細胞は死滅 し活性のある w e 1 1の細胞は生存し続けることから、 生細胞が被検試料の何倍 希釈まで存在するかで評価した。  Assays for the evaluation of Atsushi, from the 4th culture onwards, since live 11 cells with no live | cells are killed and active 1 1 cells continue to survive, It was evaluated whether it was present up to a fold dilution.
血漿中の細胞死抑制活性はへパリン結合性を示す。 そこで、 先ず、 血漿中のへ パリン結合画分を集めるためにへパリンカラムを用いた分画を行なった。 ヒト血 漿を出発原料とし、 血漿中のへパリン結合蛋白をへパリンカラム(Heparin Sepharose: Pharmacia社製)に吸着させた後、 0. 3M塩化ナトリウムで洗浄後、 The cell death inhibitory activity in plasma indicates heparin binding. Therefore, first, fractionation using a heparin column was performed to collect the heparin-bound fraction in plasma. Using human plasma as a starting material, heparin-binding protein in plasma is adsorbed to a heparin column (Heparin Sepharose: Pharmacia), washed with 0.3 M sodium chloride,
2M塩化ナトリウムにより吸着画分を溶出した。 目的の細胞死抑制活性の殆どは 0. 3M塩化ナトリゥム洗浄画分に回収されるが、 活性物質の精製には 2M塩化 ナトリゥム溶出画分を用いた。 The adsorbed fraction was eluted with 2M sodium chloride. Most of the target cell death inhibitory activity was recovered in the 0.3M sodium chloride wash fraction, but the 2M sodium chloride elution fraction was used for purification of the active substance.
へパリンに結合した細胞死抑制活性の粗分画を実施するために、硫酸アンモニ ゥム沈殿による分画を行なった。 2 M塩化ナトリウムへパリン溶出画分の総量に 対して 3 1. 3 %w/v (約 2 M)の硫酸アンモニゥムを添加し、 沈澱物を回収した。 沈殿物を水に溶解し、 分子量 3, 500カツトの透析膜を用いて水に対して透析 レた。 透析の完了した溶液を回収後、 その総量に対して 1/50量の 1Mトリス 塩酸緩衝液( p H8. 0)を添加し、 さらに、 20 mMトリス塩酸緩衝液 (pH8. 0)を用いて OD 28 0の値で 20〜30になるように溶液濃度を調整した。 こ の溶液から不溶物質を除去するため、 1. 0 juni及び 0. 4 5 μιηの濾過フィルタ 一を用いて濾過した。  In order to carry out crude fractionation of cell death inhibitory activity bound to heparin, fractionation was performed by ammonium sulfate precipitation. 31.3% w / v (about 2 M) of ammonium sulfate was added to the total amount of the fraction eluted with heparin in 2 M sodium chloride, and the precipitate was collected. The precipitate was dissolved in water and dialyzed against water using a dialysis membrane with a molecular weight of 3,500 cuts. After collecting the dialyzed solution, add 1/50 volume of 1 M Tris-HCl buffer (pH 8.0) to the total volume, and further use 20 mM Tris-HCl buffer (pH 8.0). The solution concentration was adjusted so that the OD280 value was 20-30. The solution was filtered using a filter of 1.0 juni and 0.45 μιη to remove insolubles.
20 mMトリス塩酸緩衝液( p H 8. 0 )により平衡化した陰ィオン交換ク口マ トグラフィー担体 (Macro- prep High Q: BioRadネ; h^)に、 濾過済みの蛋白溶液を 通液し、 陰イオン交換クロマトグラフィーを実施した。 この時、 非吸着画分及びTransfer the filtered protein solution to an anion exchange chromatography carrier (Macro-prep High Q: BioRad; h ^) equilibrated with 20 mM Tris-HCl buffer (pH 8.0). The solution was passed, and anion exchange chromatography was performed. At this time, the non-adsorbed fraction and
5 OmM塩化ナトリゥム溶出画分に活性が存在していたため、 この画分を回収し 混合した。 陰ィオン交換ク口マトグラフィ一により得られた活性画分に対して、 1Mクェン酸緩衝液(pH4.0)と 1Mクェン酸を 6 : 4の割合で混合した溶液 を総量の 1/50量添加し、 2 OmMクェン酸緩衝液(pH約 4.0)となるように 蛋白溶液を調製した。 Since there was activity in the fraction eluted with 5 OmM sodium chloride, this fraction was collected and mixed. To the active fraction obtained by anion exchange chromatography, 1/50 volume of a solution obtained by mixing 1M citrate buffer (pH 4.0) and 1M citrate in a 6: 4 ratio was added. Then, a protein solution was prepared so as to be 2 OmM citrate buffer (pH about 4.0).
20 mMクェン酸緩衝液( p H 4.0 )により平衡化した陽ィオン交換ク口マト グラフィー担体 (Macro- prep High S: BioRad社製)に、 前述の蛋白溶液を通液し、 陽イオン交換クロマトグラフィーを実施した。 22 OmM塩化ナトリウムを含む 2 OmMクェン酸緩衝液(pH4.0)で洗浄後、 55 OmM塩化ナトリゥムを含 む 2 OmMクェン酸緩衝液(pH4.0)により溶出される画分に活性が存在した ため、 この画分を回収した。  The protein solution described above is passed through a cation exchange chromatography carrier (Macro-prep High S: BioRad) equilibrated with 20 mM citrate buffer (pH 4.0), and then subjected to cation exchange chromatography. Was carried out. After washing with 2 OmM citrate buffer containing 22 OmM sodium chloride (pH 4.0), there was activity in the fraction eluted with 2 OmM citrate buffer containing 55 OmM sodium chloride (pH 4.0) Therefore, this fraction was collected.
得られた 550 mM塩化ナトリウム溶出画分の総量に対して 1 Mトリスァミノ メタン溶液を 1/30量添加し、 pHを約 7.5に調整した。 この溶液に対して 3. 5M硫酸アンモユウム溶液(1Mトリス塩酸緩衝液(pH8.5)を 1/50量添加 し ρΗを約 7.5に調整)を 2/3量添加後、 硫酸アンモニゥム濃度が 1.4M、 塩 化ナトリウム濃度が 330mMになるように塩濃度を調整した。 さらに、 不溶物 質を除去するために、 0.45 //mの濾過フィルターを用いて濾過した。  1/30 volume of 1 M trisaminomethane solution was added to the total amount of the obtained 550 mM sodium chloride eluted fraction to adjust the pH to about 7.5. To this solution, add 2/3 volume of 3.5M ammonium sulfate solution (add 1/50 volume of 1M Tris-HCl buffer (pH8.5) and adjust ρΗ to about 7.5), and adjust the concentration of ammonium sulfate to 1.4M. The salt concentration was adjusted so that the sodium chloride concentration was 330 mM. Further, in order to remove insoluble substances, the mixture was filtered using a 0.45 // m filtration filter.
次に 1.4 Μ硫酸アンモユウム及ぴ 33 OmM塩化ナトリゥムを含む 2 OmM トリス塩酸緩衝液 (pH7. 5)で平衡化した疎水クロマトグラフィ一担体 (Macro- prep Methyl HIC: BioRad社製)に前述の濾過済み蛋白溶液を通液し、 疎水クロマ トグラフィーを実施した。 非吸着画分及び平衡化緩衝液(pH 7.5)洗浄画分に 活性が存在したため、 この画分を回収した。 吸着画分には殆ど活性は存在しなか つた。 活性画分を疎水クロマトグラフィー担体に結合させるために、 活性画分に 対して硫酸アンモニゥム濃度が 2. OMになるように上記の約 pH7. 5の 3. 5 M硫酸ァンモニゥム溶液を添加した。 2.0 M硫酸ァンモニゥム及ぴ 240 mM 塩化ナトリゥムを含む 20 mMトリス塩酸緩衝液( p H 7.5 )により平衡化した 疎水クロマトグラフィー担体 (Macro- prep Methyl HIC: BioRad社製)に試料を通 液し、 活性成分を吸着させた。 平衡化緩衝液により洗浄後、 吸着している活性を 20 mMトリス塩酸緩衝液( p H 8.0 )により溶出した。 回収した活性画分を水 に対して 1昼夜透析し、 この回収した活性画分をへパリンカラムに確実に吸着さ せるために、 1Mクェン酸緩衝液(: H4.5)を 1/50量添加し、 pHを約 5. 0に調整した。 Next, the filtered protein was placed on a hydrophobic chromatography carrier (Macro-prep Methyl HIC: BioRad) equilibrated with 2 OmM Tris-HCl buffer (pH 7.5) containing 1.4 ammonium sulfate and 33 OmM sodium chloride. The solution was passed, and hydrophobic chromatography was performed. Since there was activity in the non-adsorbed fraction and the washing fraction in the equilibration buffer (pH 7.5), this fraction was collected. Almost no activity was present in the adsorbed fraction. In order to bind the active fraction to the hydrophobic chromatography carrier, the above-mentioned 3.5 M ammonium sulfate solution having a pH of about 7.5 was added to the active fraction so that the concentration of ammonium sulfate became 2.OM. The sample was passed through a hydrophobic chromatography carrier (Macro-prep Methyl HIC: BioRad) equilibrated with 20 mM Tris-HCl buffer (pH 7.5) containing 2.0 M ammonium sulfate and 240 mM sodium chloride. The components were adsorbed. After washing with equilibration buffer, the adsorbed activity Elution was performed with 20 mM Tris-HCl buffer (pH 8.0). The collected active fraction is dialyzed against water one day and night, and 1/50 volume of 1M citrate buffer (H4.5) is added to ensure that the collected active fraction is adsorbed to the heparin column. PH was adjusted to about 5.0.
20 mMリン酸緩衝液 (pH6.5) (緩衝液 A)及び 2 M塩化ナトリウムを含む Contains 20 mM phosphate buffer (pH 6.5) (buffer A) and 2 M sodium chloride
20mMリン酸緩衝液(pH6.2) (緩衝液 B)を調製し、 緩衝液 Aで平衡化した へパリンカラム(Hi - Trap Heparin: Pharmacia社製)に p H調整した活性画分を通 液した。 その後、 緩衝液 Bを緩衝液 Aに対して 5%混合した溶液(0. 1M Na C 1)によりカラムの 2倍量洗浄した後、 さらに、 緩衝液 Bの緩衝液 Aに対して 20 %混合した溶液( 0.4 M N a C 1 )により溶出し、 活性画分を回収した。 こ こで得られた活性画分を 15mg/ml程度の濃度まで^ t縮器 (centriprep 3: Amicon社製)により濃縮した。 濃縮した活性画分の総量に対して 2 %の酢酸を添 加後、 0.45 /zmの濾過フィルタ一により不溶物の除去を行なった。 A 20 mM phosphate buffer (pH 6.2) (buffer B) was prepared, and the active fraction whose pH was adjusted was passed through a heparin column (Hi-Trap Heparin: Pharmacia) equilibrated with buffer A. . Then, after washing the column twice with a solution (0.1 M NaCl) containing 5% of buffer B mixed with buffer A, further mix 20% of buffer B with buffer A The active fraction was eluted with the eluted solution (0.4 MNaCl). The active fraction thus obtained was concentrated to a concentration of about 15 mg / ml using a ^ t condenser (centriprep 3: Amicon). After adding 2% acetic acid to the total amount of the concentrated active fraction, insolubles were removed by a 0.45 / zm filter.
2 %酢酸及び 50 OmM塩化ナトリゥムを含む溶液により平衡化したゲル濾過 クロマトグラフィ一担体 (Superdex 200 pg: Pharmacia社製)に活性画分を 1ml 通液し、 ゲル濾過クロマトグラフィーを実施し、 活性を分画後、 回収した。  1 ml of the active fraction was passed through a gel filtration chromatography carrier (Superdex 200 pg: Pharmacia) equilibrated with a solution containing 2% acetic acid and 50 OmM sodium chloride, and the gel filtration chromatography was performed. After painting, they were collected.
0. 1 %トリフルォロ酢酸及ぴ 1 %ィソプロパノールを含む 1 %ァセトニトリ ルにより平衡化した C 4逆相 H P L C (Wakosil 5C4 - 200 6 mm X 150m m: Wa k o社製)に前述の画分を通液し、 平衡化溶媒で洗浄後、 0. 1 %トリフ ルォロ酢酸及ぴ 1 %ィソプロパノールを含む条件下で 1 %から 40%ァセトニト リルのリニアグラジェント溶出により得られた活性画分を回収した。  The above fractions were subjected to C4 reversed-phase HPLC (Wakosil 5C4-200 6 mm x 150 mm: manufactured by Wako) equilibrated with 1% acetonitrile containing 0.1% trifluoroacetic acid and 1% isopropanol. After passing through the column and washing with the equilibration solvent, the active fraction obtained by linear gradient elution of 1% to 40% acetonitrile under the conditions containing 0.1% trifluoroacetic acid and 1% isopropanol was collected. Collected.
得られた活性画分をさらに細かく分画するためにイオン交換クロマトグラフィ 一担体 Mini Q (Pharmacia社製)による分画を実施した。 20 mMエタノールァミ ン(pH9.15)の条件下で塩化ナトリウムによるリニアグラジェント溶出を行 'なった。 分画された画分には全て活性が存在しており、 全ての画分が本願発明の' ペプチドに対する抗体と反応した。 つまり活性物質はいくつかの構造の異なる状 態で存在していることが確認された。  In order to further finely fractionate the obtained active fraction, fractionation by ion exchange chromatography one carrier Mini Q (manufactured by Pharmacia) was performed. Linear gradient elution with sodium chloride was performed under the condition of 20 mM ethanolamine (pH 9.15). All fractions had activity, and all fractions reacted with an antibody against the peptide of the present invention. In other words, it was confirmed that the active substance was present in several different structures.
この段階での目的の活性物質は、 電気泳動による解析の結果、 非還元状態で 1 OkDaから 30 kD aの数本のバンドより構成され、 還元状態では 3〜4kD aと 7〜9 kD aにスメァなバンドが 1本、 13〜14kDaに 2本、 16~1 7 k D aに 2本の最低 6本のバンドを示した。 これらのバンドは全て先述の抗体 を用いたウェスタンプロッティングにより検出可能であった。 非還元状態での電 気泳動において、 28〜29 kD a近傍にも抗体に反応する蛋白が確認されるこ とより、 2量体を形成しているものも存在している可能性が示唆された。 The target active substance at this stage was analyzed by electrophoresis and found to be composed of several bands from 1 OkDa to 30 kDa in the non-reduced state, and 3 to 4 kD in the reduced state. a and one band at 7-9 kDa, two bands at 13-14 kDa, and two bands at 16-17 kDa showed a minimum of six bands. All of these bands were detectable by Western blotting using the aforementioned antibody. In the electrophoresis in the non-reducing state, a protein that reacts with the antibody was confirmed near 28 to 29 kDa, suggesting that the presence of some dimers may exist. Was.
調製例 3 Preparation Example 3
(抗セレノプロテイン P抗体結合担体カラムを用いたセレノプロテイン P断片の 血漿中のへパリンセファロース結合画分を 2 M硫酸ァンモニゥムにより沈殿さ せ、 その沈殿画分に対して 5倍容量以上の 2 OmM Tr i sバッファー(pH8. 0 )を用いて沈殿を溶解させた。 この溶液に存在するセレノプロテイン Pを抗セ レノプロテイン p抗体を担体に結合させた抗セレノプロテイン P抗体結合担体力 ラムに吸着させ、 リン酸ィ匕生理食 ifcK(PBS)で洗浄した。 その後、 4M尿素を 含有する 2 OmMクェン酸緩衝液(pH4.0)によりセレノプロテイン Pを溶出 し、 当該溶出液をさらに 20 mMクェン酸緩衝液 (pH4.0)で平衡化した陽ィ オン交換体 (Macroprep High S、 BioRad社)に吸着させた。 これを、 塩化ナトリゥ ムによる塩濃度勾配溶出し、 細胞死抑制活性を示す画分を回収した。 このとき、 全長のセレノプロテイン Pを得ることが可能であるが、 この物質は蛋白質当たり の細胞死抑制活性は明らかに弱い値を示した。 本方法によれば、 短時間の精製が 可能であるため、 蛋白質当たりの細胞死抑制活性の強いセレノプロテイン P断片 を得ることができた。 ここで得られた断片もまた、 糖鎖の有無、 分子間結合の有 無、 内部切断の有無などにより種々の大きさの分子種を含む混合画分であり、 非 還元電気泳動で 10〜30 kDaのサイズを示すセレノプロテイン P断片群であ つた。 ,  (The heparin-Sepharose-bound fraction of selenoprotein P fragment in plasma using an anti-selenoprotein P antibody-bound carrier column was precipitated with 2 M ammonium sulfate, and the volume of the precipitated fraction was 2 OmM at least 5 times the volume of the precipitated fraction. The precipitate was dissolved using a Tris buffer (pH 8.0), and the selenoprotein P present in this solution was adsorbed to the anti-selenoprotein P antibody-bound carrier conjugate with the anti-selenoprotein p antibody bound to the carrier. After washing with phosphoric acid physiological saline ifcK (PBS), selenoprotein P was eluted with 2 OmM citrate buffer (pH 4.0) containing 4 M urea, and the eluate was further diluted with 20 mM citrate. Absorbed to a cation exchanger (Macroprep High S, BioRad) equilibrated with buffer (pH 4.0) This was eluted with a sodium chloride gradient using sodium chloride and fractions showing cell death inhibitory activity Recovered At this time, it is possible to obtain full-length selenoprotein P. However, this substance has a clearly low cell death inhibitory activity per protein. As a result, it was possible to obtain a selenoprotein P fragment having a strong cell death-suppressing activity per protein, and the fragment obtained here also varies depending on the presence or absence of sugar chains, the presence or absence of intermolecular bonds, and the presence or absence of internal cleavage. This was a mixed fraction containing molecular species of size, and was a group of selenoprotein P fragments showing a size of 10 to 30 kDa by non-reducing electrophoresis.
実施例 1 Example 1
(脳虚血再灌流障害モデルにおけるセレノプロテイン P断片の虚血 ·再灌流障害 抑制効果、 その 1)  (Effects of selenoprotein P fragment on ischemia / reperfusion injury in cerebral ischemia / reperfusion injury model, Part 1)
脳梗塞における脳神経障害に影響を与える因子の一つとして、 虚血状態で遊離 されてくる遊離脂肪酸が考えられている。 セレノプロテイン Pは脂肪酸により誘 導される細胞死 (神柽芽細胞 NT 2において確認している)を抑制することが可能 であることから、 脳梗塞におけるセレノプロテイン Pの影響を検討するため、 1 4週齢スナネズミを用いたセレノプロテイン P断片の脳梗塞モデルに対する虚 血■再灌流障害抑制効果を検討した。 Free fatty acids released under ischemic conditions have been considered as one of the factors affecting cranial nerve injury in cerebral infarction. Selenoprotein P is induced by fatty acids In order to examine the effect of selenoprotein P on cerebral infarction, we used 14-week-old gerbils because they can suppress induced cell death (confirmed in NT2). The effect of selenoprotein P fragment on ischemia-reperfusion injury in a cerebral infarction model was examined.
塩酸ケタミン(1 0 O m g Z k g )の腹腔内注射にて全身麻酔をかけ、 正中切開 にて頸静脈を露出させ調製例 2で調製したセレノプロテイン P断片を l m g Z匹 の量で静脈内投与した。 3 0分後両側の類動脈をクリップし、 3 0分遮断後、 再 灌流させ、 2 4時間後の生存率を比較した。  Under general anesthesia by intraperitoneal injection of ketamine hydrochloride (10 O mg Z kg), exposing the jugular vein by midline incision and intravenously administering the selenoprotein P fragment prepared in Preparation Example 2 in an amount of 1 mg Z did. After 30 minutes, the bilateral arterioles were clipped, and after 30 minutes of blockage, reperfusion was performed, and the survival rates after 24 hours were compared.
表 1
Figure imgf000014_0001
table 1
Figure imgf000014_0001
対照となる生理食塩水投与群よりセレノプロテイン Ρ断片投与群の死亡率が明 らカ 4こ低く、 急性期の脳梗塞で回復している割合が高いことを示唆する結果が得 られた。  The mortality rate of the selenoprotein ノ fragment administration group was clearly four times lower than that of the control saline administration group, suggesting that the rate of recovery from acute cerebral infarction was higher.
実施例 2  Example 2
(脳虚血再権流障害モデルにおけるセレノプロテイン Ρ断片の虚血 ·再灌流障害 抑制効果、 その 2 :運動失調改善効果) "  (Effect of selenoprotein Ρ fragment on ischemia and reperfusion injury in cerebral ischemia-reperfusion injury model, part 2: ataxia amelioration effect) "
セレノプロテイン ρの脳虚血再灌流障害、 運動失調に及ぼす影響を麻痺の度合 いで確認するために、 1 2週齢のスナネズミを用いて評価した。 実施例 1と同様 に塩酸ケタミン(l O O m g Z k g )の腹腔内注射にて全身麻酔をかけ、 正中切開 にて頸静脈を露出させ調製例 2で調製したセレノプロテイン P断片を 1 m g 匹 の量で静脈内投与した。 3 0分虚血、 4 5分間虚血を行なった後、 血流を再灌流 させ、 6時間後及び 2 4時間後の麻痺の度合いにより評価した。  The effects of selenoprotein ρ on cerebral ischemia-reperfusion injury and ataxia were evaluated in 12-week-old gerbils to confirm the degree of paralysis. As in Example 1, general anesthesia was performed by intraperitoneal injection of ketamine hydrochloride (100 mg Z kg), the jugular vein was exposed through a midline incision, and 1 mg of the selenoprotein P fragment prepared in Preparation Example 2 was used. Iv dose. After 30 minutes of ischemia and 45 minutes of ischemia, the blood flow was reperfused and evaluated by the degree of paralysis at 6 hours and 24 hours.
6時間後及び 2 4時間後の麻痺の状態を表 2に示すスコアで判定し評価した。 結果を表 3及ぴ表 4に示す。 表 The state of paralysis after 6 hours and 24 hours was judged and evaluated by the scores shown in Table 2. The results are shown in Tables 3 and 4. table
ΊΕ^  ΊΕ ^
刖足に軽い麻痺かあり、 足を曲けた状態で動きか鈍い■ · ■ ■  刖 There is slight paralysis in the feet, and the movement is dull with the legs bent.
足の麻痺が多少悪化し、 片側に回り続ける ■ · · · 2 麻痺が悪ィ匕し、 片側に倒れる  The paralysis of the foot deteriorates slightly and keeps turning to one side ■ · · · 2 The paralysis is bad and falls to one side
更に麻痺が悪ィ匕し、 動けない状態になる • ■ · · 4 In addition, the paralysis worsens and the person cannot move.
5Et 5 表 3 : 3 0分虚血モデル 5Et 5 Table 3: 30 minute ischemia model
Figure imgf000015_0001
Figure imgf000015_0001
3 0分虚血モデルにおける 6時間後の麻痺の状態及び 2 4時間後の麻痺の状態 を評価すると、 セレノプロテイン P断片投与群の方が明らかに症状が良好である 結果が得られた。 また、 4 5分虚血モデルでは 6時間後の麻痺の度合いは大差な いが、 2 4時間後の麻痺の度合いに大きな差が観られた。  When the state of paralysis after 6 hours and the state of paralysis after 24 hours in the 30-minute ischemia model were evaluated, it was found that the selenoprotein P fragment administration group had clearly better symptoms. In the 45-minute ischemia model, the degree of paralysis after 6 hours was not significantly different, but the degree of paralysis after 24 hours was significantly different.
実施例 3 ―  Example 3 ―
(クロトー (klotho)マウスへのセレノプロテイン Pの投与による運動失調の改善 果)  (Improvement of ataxia by administration of selenoprotein P to Klotho mice)
血管性障害に付随する運動失調の改善を目的として、 クロトーマウスを用いて 本願発明のセレノプロテイン P断片の効果を確認した。 クロトーマウスは、 Nature, 390: 45 - 51, 1997に記載され、 京都大学大学院医学研究科の鍋島陽一先 生の許可を得て日本クレアより入手した。 The effect of the selenoprotein P fragment of the present invention was confirmed using Klotho mice for the purpose of improving ataxia associated with vascular disorders. Klotho Mouse is described in Nature, 390: 45-51, 1997, and Yoichi Nabeshima, Graduate School of Medicine, Kyoto University Obtained raw permission from Claire Japan.
1群 4匹の 4週齢のクロトーマウスに対して 8週齢まで、 生理食塩水に溶解し た調製例 2で得られたセレノプロテイン P断片( 1 . 5 m g /m 1 )及ぴ生理食塩 水を毎週 3 0 0 μ 1ずつ腹腔に投与し、 その状態変化を観察した。 その結果、 生
Figure imgf000016_0001
セレノプロテイン Ρ断片投与群ともに、 4週齢からの体重の増 加は観察されず、 根本原因を解決する事は無かった。 しカゝし、 その行動を比較す るとセレノプロテイン Ρ断片投与群が手のひらに乗せた際、 自発的に逃げるため に飛び降りることが可能であるのに対し、 生食投与群は自発的な逃避行動をとる ことが出来なかった。 これはセレノプロテイン Ρ断片による運動能低下の改善効 果を示すものと考えられた。
Up to 8 weeks of age, 4 chicks of 4-week-old Klotho mice in one group were dissolved in physiological saline with the selenoprotein P fragment (1.5 mg / m 1) obtained in Preparation Example 2 and saline. Water was administered to the peritoneal cavity at a dose of 300 μl each week, and the state change was observed. As a result, raw
Figure imgf000016_0001
No weight gain was observed from the age of 4 weeks in the selenoprotein Ρ fragment administration group, and the root cause was not resolved. Comparing the behaviors, when the selenoprotein fragment administration group placed on the palm of the hand, it was possible to jump off to escape spontaneously, whereas the group administered with the saline diet voluntarily escaped. Could not be taken. This was considered to indicate the effect of selenoprotein Ρ fragment on the improvement of motor impairment.
実施例 4  Example 4
(肝虚血再灌流モデルにおけるセレノプロティン Ρ断片の虚血■再灌流障害抑制 効果)  (Effect of selenoprotein Ρ fragment on ischemia ■ reperfusion injury in liver ischemia reperfusion model)
スナネズミを用いた肝虚血再権流モデルおけるセレノプロテイン Ρ断片の虚 血'再灌流障害抑制効果を検討した。 セレノプロテイン Ρの影響を確認するため に、 セレノプロテイン Ρ断片及び生理食塩水を事前投与し門脈血流遮断による虚 血を行ない、 そめ後再権流させた際の 3 0時間後のスナネズミの生存率、 血中の G O T , G P T、 A L Pの濃度変化、 組織の観察によって評価した。  We investigated the effect of selenoprotein 抑制 fragments on ischemia 'reperfusion injury in hepatic ischemia reperfusion model using gerbils. In order to confirm the effect of selenoprotein 事前, pre-administration of selenoprotein Ρ fragment and physiological saline was performed to cause ischemia by blocking portal venous blood flow. Survival rate, blood GOT, GPT, ALP concentration changes, and tissue observation were evaluated.
スナネズミに 1 0倍希釈したネンブタール(5 O m g /m 1 )を 3 0 0 μ I腹^ 内投与により麻酔し、 腹部切開により下大静脈を露出、 そこから調製例 2で調製 されたセレノプロテイン Ρ断片 l m g Z匹、 もしく
Figure imgf000016_0002
した。 5 分後に門脈を露出し、 クリップにより血流遮断した。 4 0分後に再権流させ、 腹 部縫合後、 3 0時間後に全てのスナネズミを麻酔下で解剖し血液、 臓器採取、 血 中の肝臓マーカー酵素の解析を行なった。 結果を表 5に示す。
Gerbils were anesthetized with 10-fold diluted Nembutal (5 O mg / m 1) by intraperitoneal administration of 300 μl, and the inferior vena cava was exposed by abdominal incision, from which selenoprotein prepared in Preparation Example 2 Ρ fragment lmg Z
Figure imgf000016_0002
did. Five minutes later, the portal vein was exposed, and the blood flow was cut off with a clip. At 40 minutes, the gerbils were re-distributed. After abdominal suture, all gerbils were dissected under anesthesia 30 hours later, blood, organs were collected, and liver marker enzymes in the blood were analyzed. Table 5 shows the results.
表 5
Figure imgf000016_0003
Table 5
Figure imgf000016_0003
表 5に示す結果から明らかなように、 生理食塩水投与群の死亡率が 3 / 4であ るのに対し、 セレノプロテイン P断片投与群においては 0 / 3となった。 A L P の活性が生理食塩水投与群ではコントロールの 5倍程度上昇していたのに対し、 セレノプロティン P投与群では正常値を示していた。 肝臓もしくは腸の細胞膜に 傷害が起こると A L Pが上昇するため、 傷害を受けるはずの細胞がセレノプロテ イン Pにより安定化され傷害が低減された結果、 セレノプロテイン P投与群が生 き残った可能性が示唆される。 As is clear from the results shown in Table 5, the mortality rate of the physiological saline administration group was 3/4, whereas that of the selenoprotein P fragment administration group was 0/3. ALP In the group administered with saline, the activity was increased about 5 times as compared with the control, whereas the activity was increased in the group treated with selenoprotein P. ALP increases when cell membranes in the liver or intestine are damaged, and the cells that should be damaged were stabilized by selenoprotein P and the damage was reduced.As a result, the selenoprotein P-treated group may have survived. It is suggested.

Claims

請 求 の 範 囲 The scope of the claims
1. セレノプロテイン Pおよひンまたは当該蛋白質の C末端側ぺプチドもしくは 当該べプチド群を主要構成成分とする虚血■再灌流障害抑制剤。  1. An agent for suppressing ischemia / reperfusion injury comprising selenoprotein P and / or the C-terminal peptide of the protein or the peptide group as a main component.
2. 前記蛋白質の C末端側ペプチドもしくは当該ペプチド群が、 セレノプロティ ン Pの C末端側 103ァミノ酸配列、 1もしくは数個のァミノ酸が欠失、 置換も しくは付加された当該アミノ酸配列、 前記いずれかのアミノ酸配列の部分配列ま たは前記ァミノ酸配列をその一部に含有するァミノ酸配列を有する、 請求項 1記 載の虚血■再灌流障害抑制剤。  2. The C-terminal peptide or the peptide group of the protein described above, the C-terminal 103 amino acid sequence of selenoprotein P, the amino acid sequence of which one or several amino acids are deleted, substituted or added, The ischemic / reperfusion injury inhibitor according to claim 1, which has a partial sequence of any one of the amino acid sequences or an amino acid sequence containing the amino acid sequence as a part thereof.
3. 前記蛋白質の C末端側ペプチドもしくは当該ペプチド群が、 次式、  3. The peptide at the C-terminal side of the protein or the peptide group is represented by the following formula:
( I : Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu(I: Lys Arg Cys lie Asn Gin Leu Leu Cys Lys Leu Pro Thr Asp Ser Glu
Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (酉己列番号 1) および/または Leu Ala Pro Arg Ser Xaa Cys Cys His Cys Arg His Leu (Rooster column number 1) and / or
( I I ): Thr Gly Ser Ala lie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (配列番号 2)  (II): Thr Gly Ser Ala lie Thr Xaa Gin Cys Lys Glu Asn Leu Pro Ser Leu Cys Ser Xaa Gin Gly Leu Arg Ala Glu Glu Asn lie (SEQ ID NO: 2)
(式中、 Xaaはセレノシスティンを表す) (Where Xaa represents selenocistine)
で表されるアミノ酸配列、 1もしくは数個のアミノ酸が欠失、 置換もしくは付加 された当該ァミノ酸配列、 前記いずれかのァミノ酸配列の部分配列または前記い ずれかのァミノ酸配列をその一部に含有するアミノ酸配列を有するぺプチドまた は当該べプチド群である請求項 1または請求項 2記載の虚血 ·再灌流障害抑制剤。 An amino acid sequence represented by the following, an amino acid sequence in which one or several amino acids have been deleted, substituted or added, a partial sequence of any one of the above amino acid sequences, or a part thereof. 3. The ischemic / reperfusion injury inhibitor according to claim 1 or 2, which is a peptide having an amino acid sequence contained in the peptide or the peptide group.
4. 前記蛋白質の C末端側ペプチドもしくは当該ペプチド群が、 (a)分子量分 画膜に基づき 10〜30 kD aの分子量画分に回収され、 (b)イオン交換樹脂へ の結合性の検討の結果、 血中で pH7力 ら pH8の間に等電点を示す構造と p H 8以上に等電点を示す構造を有し、 ( c )非還元系 SDS— PAGEでは分子量 1 3〜14kDaの 2本のバンド及ぴそれらに糖鎖の付加された 1.6〜17 kDa の 2本のバンドを示し、 また(d)還元条件下での SDS— PAGEでは、 前記パ ンドに加えて 3〜4 kD a、 7〜9 kD a及び 10〜12 kD aのバンドを呈す る、 請求項 1から請求項 3のいずれかに記載の虚血 ·再灌流障害抑制剤。 4. The C-terminal peptide or the peptide group of the protein is recovered in (a) a molecular weight fraction of 10 to 30 kDa based on the molecular weight fractionation membrane, and (b) a study of the binding property to the ion exchange resin. As a result, it has a structure showing an isoelectric point between pH 7 and pH 8 in blood and a structure showing an isoelectric point above pH 8; (c) Non-reducing SDS-PAGE has a molecular weight of 13-14 kDa. It shows two bands and two bands of 1.6 to 17 kDa to which a sugar chain is added, and (d) SDS-PAGE under reducing conditions shows 3 to 4 kD in addition to the above band. The ischemia / reperfusion injury inhibitor according to any one of claims 1 to 3, wherein the agent exhibits bands of a, 7 to 9 kDa and 10 to 12 kDa.
5. 虚血'再灌流障害に起因する疾患が、 脳梗塞、 虚血性臓器'組織障害、 臓器 移植等再灌流傷害、 動脈硬化、 心筋梗塞及び血管性障害に付随する運動失調より 選択される、 請求項 1から請求項 4のいずれかに記載の虚血 ·再灌流障害抑制剤。 5. Diseases caused by ischemia and reperfusion injury are due to cerebral infarction, ischemic organ tissue damage, reperfusion injury such as organ transplantation, arteriosclerosis, myocardial infarction and ataxia associated with vascular injury. The ischemia / reperfusion injury inhibitor according to any one of claims 1 to 4, which is selected.
6 . 虚血 ·再灌流障害に起因する疾患が、 血管性障害に付随する運動失調である 請求項5記載の虚血 ·再灌流障害抑制剤。 6. The ischemia / reperfusion injury inhibitor according to claim 5 , wherein the disease caused by ischemia / reperfusion injury is ataxia associated with vascular injury.
PCT/JP2001/007524 2001-02-28 2001-08-31 Novel ischemia/reperfusion injury inhibitors WO2002067976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001054750A JP2002060346A (en) 2000-05-19 2001-02-28 New ischemic and reperfusion injury inhibitor
JP2001-54750 2001-02-28

Publications (1)

Publication Number Publication Date
WO2002067976A1 true WO2002067976A1 (en) 2002-09-06

Family

ID=18915036

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007524 WO2002067976A1 (en) 2001-02-28 2001-08-31 Novel ischemia/reperfusion injury inhibitors

Country Status (1)

Country Link
WO (1) WO2002067976A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031131A1 (en) * 1998-11-19 2000-06-02 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Peptide fragments having cell death inhibitory activity

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000031131A1 (en) * 1998-11-19 2000-06-02 Juridical Foundation The Chemo-Sero-Therapeutic Research Institute Peptide fragments having cell death inhibitory activity

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
J. YAN ET AL.: "Purification from bovine serum of a survival-promoting factor for cultured central neurons and its identification as selenoprotein-P", vol. 18, no. 21, 1998, pages 8682 - 8691, XP002906334 *
V. MOSTERT: "Selenoprotein P: Properties, functions and regulation", vol. 376, no. 2, 2000, pages 433 - 438, XP002906333 *
Y. SAITO ET AL.: "Selenoprotein P: Its structure and function", JOURNAL OF HEALTH SCIENCE, vol. 46, no. 6, 2000, pages 409 - 413, XP002906332 *

Similar Documents

Publication Publication Date Title
JP2544968B2 (en) Plasma and recombinant protein formulations in high ionic media
US9034815B2 (en) Polypeptide for treating or preventing adhesions
AU2007219031B2 (en) Peptides and peptide derivatives as well as pharmaceutical compositions containing the same
JPS6230A (en) Remedy for malignant tumorous anemia
ES2221926T3 (en) FRACTIONS OF THE VON WILLEBRAND ELEVATED AND LOW MOLECULAR WEIGHT FACTOR.
CN102319421A (en) Protection, recovery and enhancing to erythropoietin-responsive cells, tissue and organ
RU2580756C2 (en) Medicament for therapeutic treatment and/or improvement of sepsis
US20150031621A1 (en) Method for purification of complement factor h
JP5208135B2 (en) Recombinant leukocyte inhibitory factor and hirugen chimeric protein and drug composition thereof
WO1997015598A1 (en) Novel peptide
AU2009240026B2 (en) Dry transglutaminase composition
US8110552B2 (en) Antagonists against interaction of PF4 and RANTES
WO2000001407A1 (en) Pharmaceutical composition comprising human apotransferrin and process for manufacturing of the composition
JP3030386B2 (en) Anticancer agent
JP2002060346A (en) New ischemic and reperfusion injury inhibitor
WO2002067976A1 (en) Novel ischemia/reperfusion injury inhibitors
KR20060118486A (en) Therapeutic use of factor xi
JPH03218399A (en) Urine-derived anticoagulant substance, its production and medical composition containing the same substance
WO1997016205A1 (en) Antitumor agent
WO1998040096A1 (en) Preventives and/or remedies for multiple organ failure
JP4599028B2 (en) Novel inflammatory disease ameliorating agent
JP3691533B2 (en) Anti-arteriosclerotic peptide
JP3569904B2 (en) Organ damage drug
EP1094835B1 (en) Process for manufacturing of a pharmaceutical composition comprising human apotransferrin
JPH10182479A (en) Medicine comprising polypeptide derivatives

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase