JP4599028B2 - Novel inflammatory disease ameliorating agent - Google Patents

Novel inflammatory disease ameliorating agent Download PDF

Info

Publication number
JP4599028B2
JP4599028B2 JP2002354122A JP2002354122A JP4599028B2 JP 4599028 B2 JP4599028 B2 JP 4599028B2 JP 2002354122 A JP2002354122 A JP 2002354122A JP 2002354122 A JP2002354122 A JP 2002354122A JP 4599028 B2 JP4599028 B2 JP 4599028B2
Authority
JP
Japan
Prior art keywords
selenoprotein
patent document
inflammatory
disease
administration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002354122A
Other languages
Japanese (ja)
Other versions
JP2004182683A (en
Inventor
玲子 松山
亮一 川村
巧 佐々木
毅志 成瀬
正樹 平嶋
浩明 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemo Sero Therapeutic Research Institute Kaketsuken
Original Assignee
Chemo Sero Therapeutic Research Institute Kaketsuken
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemo Sero Therapeutic Research Institute Kaketsuken filed Critical Chemo Sero Therapeutic Research Institute Kaketsuken
Priority to JP2002354122A priority Critical patent/JP4599028B2/en
Publication of JP2004182683A publication Critical patent/JP2004182683A/en
Application granted granted Critical
Publication of JP4599028B2 publication Critical patent/JP4599028B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本願発明は医療用医薬品の分野に属する血漿タンパク質の新たな用途に関する。さらに詳細には、炎症反応の関わる疾患に対する医薬品に関する。より詳しくは、血漿タンパク質の一種であるセレノプロテインPに例示されるセレノシステイン含有タンパク質を、好適には当該セレノプロテインPのC末端側ペプチドもしくは当該ペプチド群を主たる有効成分として含有する炎症性疾患改善剤、とりわけインターロイキン6産生が関与する疾患に対して改善作用を有する薬剤に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
ICU(集中治療室)に入室するような重症の外傷、熱傷、手術侵襲、急性膵炎、腹膜炎、悪性腫瘍、急性腹症(急激な腹痛を主症状とする腹部疾患にして、早急に手術を行う必要がある疾患)、感染症、敗血症などなどの重症急性疾患患者では、しばしば全身性の炎症反応に犯され、臓器不全などで死に至ることがある。このように侵襲によって全身的な炎症が惹起されている状態をSIRS(全身性炎症反応症候群)という。SIRSの定義(例えば、非特許文献1参照)に示されている症状は各種のサイトカイン投与によって実験的に再現できる。例えば、体温上昇はIL-1、IL-6、頻脈はIL-1、TNF-α、白血球増加はG-CSF、GM-CSF、IL-6などである。すなわち、SIRSは高サイトカイン血症の状態であると言い換えることができる(例えば、非特許文献2参照)。このような観点から、抗サイトカイン療法と呼ばれる治療方法が試みられてきたが、臨床試験の結果はいずれも期待はずれに終わっている(例えば、非特許文献3参照)。例えば、抗TNF抗体や可溶性TNF受容体、IL-1受容体アンタゴニストなどを用いた大規模臨床試験では、いずれも当初設定した評価基準を上回ることができなかった。
【0003】
そのような状況の中で、セレン(Seと称することもある)投与という全く新しい治療方法が試みられている。熱傷や外傷のSIRS患者の血中セレン濃度が一時的に低下する現象が知られており、0.7μmol/L以下の患者は、それ以外の患者に比べて死亡率、臓器不全や肺炎の罹患率が3倍高いとの疫学調査がある(例えば、非特許文献4参照)。このような患者にICU入室直後から毎日セレンを亜セレン酸ナトリウムの形で投与し続けると症状が改善されるとの報告が相次いだ。例えば、AngstwurmらはSIRS患者に亜セレン酸ナトリウムを最初の3日間で535μg、次の3日間で285μg、最後の3日間で155μg投与することで、投与しなかった場合に比べ、急性腎不全になる確率や死亡率での改善、入室期間の短縮などの治療効果を認めた(例えば、非特許文献5参照)。Bergerらは重症熱傷患者に230μg/dayで8日間亜セレン酸ナトリウムを投与した。その結果、プラセボ群に比べ、肺炎罹患率低下や入院期間の短縮など改善効果を認めている(例えば、非特許文献6参照)。Porterらは外傷患者に対して亜セレン酸ナトリウムを6時間ごとに50μg投与し、これを7日間続けた。その結果、臓器不全や感染症の罹患率の低下を認めた(例えば、非特許文献7参照)。このように、セレン投与によってSIRS患者の症状改善が見られている。
【0004】
しかし、一方で患者に投与された亜セレン酸ナトリウムは毒性が強く、静脈注射での最小致死量は、ラットで3mg Se/kg、ウサギで1.5mg Se/kgである。また、ラットへの腹腔内投与では最小致死量は3.25〜3.5mg Se/kgである(例えば、非特許文献8参照)。ヒトへの最小致死量は1.5〜3mg/kgと言われており、摂取量で800μg/dayまでが悪影響のでない限界とされている(例えば、非特許文献9参照)。900μg/day以上のセレンを服用すると、皮膚炎、脱毛、末梢神経障害などの毒性症状が起こる(例えば、非特許文献10参照)。従って、前述のICUに入室するような重症患者に投与できる安全なセレン量は、現状では500μg/dayが上限とされている(例えば、非特許文献9参照)。
【0005】
このように、セレンの治療効果を高めるために高用量の亜セレン酸ナトリウムを投与しようとしても、セレン自体の持つ毒性のために用量が限定されるのが問題となっていた。この問題を解決するために副作用の少ない安全な薬剤が求められている。
【0006】
【課題を解決するための手段】
上述の状況の下、本願発明者等は先に、血液成分由来のタンパク質でセレノシステイン含有タンパク質の一種であるセレノプロテインP(以下、SePと称することがある)に、そしてより好適な態様として当該セレノプロテインPのC末端側ペプチドに、従来報告されていなかった細胞死抑制活性が認められることを見出し、この知見を基に特許出願した(例えば、特許文献1参照)。さらに、本願発明者は、前述したSIRS患者に適応できるような新たな炎症性疾患改善剤、とりわけ、インターロイキン6産生に代表されるような炎症反応を改善する薬剤を供するべく鋭意研究した結果、驚くべきことに従来試みられることのなかった前記セレノプロテインPまたはそのC末端側ペプチドもしくは当該ペプチド群が、細胞死抑制活性のみならず、炎症性疾患モデル動物での実際の生体内投与によって、炎症反応改善作用を持つことを見出し、この知見に基づいて本願発明を完成するに至った。
【0007】
本願発明者らは、具体的な事例として、リポポリサッカライド(LPS)の投与によって血液中にインターロイキン6(IL-6と称することがある)が誘導されるマウス炎症モデルを用いて、セレノプロテインPを投与することによってIL-6産生を抑制する改善効果を見出した。同時にセレン量で等量の亜セレン酸ナトリウムを投与した場合に比べ、より改善効果が高いことを見出した。これらのことから、セレノプロテインPがインターロイキン6産生抑制に代表されるような炎症疾患改善作用を有しており、SIRSに代表されるような炎症疾患の治療に有効であることを示した。
【0008】
インターロイキン6は、T細胞、B細胞などのリンパ球や、マクロファージ、線維芽細胞、血管内皮細胞、ケラチノ細胞、メサンギウム細胞、グリア細胞などの非リンパ球系細胞により構成的にあるいは種々の刺激により産生されている。IL-6はB細胞の抗体産生細胞への分化、キラーT細胞の分化、マクロファージの分化誘導、巨核球の熟成誘導、形質細胞腫細胞、骨髄腫細胞の増殖、T細胞の増殖、多能性コロニー刺激因子としての作用、メサンギウム細胞の増殖のような分化誘導や細胞増殖作用を持っている(例えば、非特許文献11参照)。炎症反応時には、血中IL-6の上昇はTNFαやIL-1βのような向炎症性サイトカイン(pro-inflammatory cytokine)によって引き起こされ、IL-6はCRP(C-reactive protein) のような急性期タンパク質(acute pHase protein)の生合成を誘導する。
【0009】
SIRSのような全身性の炎症反応の場合にIL-6は患者の病態の重篤度や死亡率と相関しているとの報告がある(例えば、非特許文献12参照)。マウスを使ったエンドトキシン血症動物モデルでもIL-6は致死率のよいマーカーになると報告されている(例えば、非特許文献13参照)。さらに、各種侵襲下におけるIL-6やIL-8のモニタリングは臓器障害発生を予測する上で有用であると言われている(例えば、非特許文献14参照)。このようにIL-6はSIRSでICUに入室した患者の病態とその予後に密接な相関を示しており、炎症反応のマーカーとして有用である。もしこのサイトカインを指標にその産生を抑制できるような治療方法が開発されれば、その治療方法はSIRSのような全身性炎症に対して効果的であるといえる。この点、セレノプロテインPはこれまで知られていなかったインターロイキン6産生抑制に代表されるような炎症反応改善作用を持っているので、SIRSに対する治療効果が高いと考えられる。
【0010】
セレノプロテインPは1977年にグルタチオンペロキシダーゼ(gulutathion−peroxidase)とは異なるセレン含有タンパク質として確認され、1982年にセレンがセレノシステイン(selenocystein)の形態で取り込まれていることが明らかにされた。さらに、1991年にラットセレノプロテインPのcDNAのクローニングにより全長のアミノ酸配列が明らかにされ、その結果、当該タンパク質は最大10個のセレノシステインを含む可能性等が示された(例えば、非特許文献15参照)。1993年にはヒトセレノプロテインPの核酸塩基配列及びアミノ酸配列が報告された(例えば、非特許文献16参照)が、その機能はほとんど不明であった。最近、in vitroの系でpHospHolipid hydroperoxideの還元活性(例えば、非特許文献17参照)やperoxynitriteの消去活性(例えば、非特許文献18参照)があると報告された。また、本願発明者らが見出した細胞死抑制活性 (例えば、特許文献1参照)や神経細胞のsurvival promoting factorとしての作用(例えば、非特許文献19参照)を持つことも明らかにされた。さらに、Se欠乏時に脳に特異的にSeを運搬するとの報告(例えば、非特許文献20参照)や、Seを細胞に供給するとの報告(例えば、非特許文献21参照)からセレノプロテインPがSeサプライヤーとしての機能を有していると考えられ、先に述べた細胞に対する細胞死抑制活性や生存維持活性の作用発揮するためのメカニズムと考えられている。しかし、これらの報告からセレノプロテインPの炎症反応改善作用を類推することは難しく、ましてや、本願発明で述べるようなセレノプロテインPのインターロイキン6産生に関わるような作用を見出した例はない。
【0011】
セレノプロテインPは、もともと生体の構成成分として血液中に存在するので、セレン投与で問題になっているセレンに基づいた毒性は亜セレン酸ナトリウムなどより遙かに低いと考えられる。さらに、前述のようにセレノプロテインPにはセレン供給能があるので、SIRSなどのICU患者へのセレン投与療法のセレン源としても最適である。すなわち、セレノプロテインPは、本願発明者らが見出したインターロイキン6産生抑制に代表されるような炎症反応改善作用と亜セレン酸ナトリウムの持つ二次的な疾患罹患率の低下などの予防効果を併せ持つ理想的な治療剤だといえる。
【0012】
本願発明は、セレノプロテインPの前記知見に基づく新たな薬効に関するものであり、本願発明の炎症性疾患改善剤の本態はセレノプロテインPである。さらに詳細には、セレノプロテインPの中のセレンを含むセレノシステインに特徴があり、このアミノ酸が炎症反応改善作用の中心的アミノ酸である。本願発明者等は、先の特許出願において、血液成分由来のタンパク質であるセレノプロテインPのC末端側ペプチド断片に従来報告されていなかった細胞死抑制活性が認められること、その活性にはセレノシステインが関与していることを開示した。本願発明で述べる活性にも、含有されるセレノシステインが関与していることは明らかである。従って、セレノシステインを含み細胞死抑制活性を持つタンパク質及び/またはペプチド群は、炎症性疾患改善剤の候補となりうる。
【0013】
そもそも、本願発明に関係するセレンは、微量必須元素の一つであり、それが欠乏した場合には心筋症などを伴う重篤な欠乏症が知られている。また、無血清培養の培地に亜セレン酸ナトリウムの添加が必須であることから、セレンが細胞レベルでの生存維持・増殖に必須であることが示されている。しかし、前述のようにセレン化合物が毒物指定されていることから理解されるように、有効量と危険量の幅、つまり安全域の濃度幅が狭く、適量以上のセレン化合物は一般的には細胞にとって毒性を示し、逆に細胞死を誘導する。例えば、セレンの急性中毒症状として、顔面蒼白、神経症状、神経障害、皮膚炎、胃腸障害などが知られている。また、細胞培養にセレノシステインの2量体であるセレノシスチンを添加すると、単独ではかなり強い毒性を示す。これに対して、本願発明の好適な態様であるセレノプロテインP、セレノプロテインPのC末端側断片は、その構造中に9〜10個のセレノシステインを含むにも拘わらず、強い毒性は観察されなかった。もともとセレノプロテインPは血液中に存在し、ヒトの場合、血漿中に約5μg/mlの濃度で含まれており(例えば、非特許文献22参照)、生体内を循環していると考えられることから、医薬品としての安全性は高いと考えられる。このことから、本発明の薬効作用を示すセレノプロテインPの特徴として、セレノシステインを含み、なおかつ毒性が減弱していることが重要と思われる。本願発明のペプチドまたは当該ペプチド群は、毒性の低減というセレン化合物に対する命題を克服するのみならず、予期し得ない炎症反応改善作用をもたらすことを可能とするものである。
【0014】
ここで用いられるセレノシステイン含有タンパク質に特段の制約はなく、セレノシステインを含み所望の炎症反応改善活性を有するものであれば如何なる分子形態のものをも包含する。すなわち、完全分子型セレノプロテインP(配列番号1)をはじめ種々の分子形態のものが対象となり得る。この中で、好適な態様はセレノプロテインPのC末端側ペプチドもしくは当該ペプチド群であり、中でもC末端側103個(配列番号2:セレノプロテインP配列260位から362位まで、260KRCINQLLCKLPTDSELAPRSUCCHCRHLIFEKTGSAITUQCKENLPSLCSUQGLRAEENITESCQURLPPAAUQISQQLIPTEASASURUKNQAKKUEUPSN362)のアミノ酸配列または当該アミノ酸配列のうち1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列または、前記いずれかのアミノ酸配列の部分配列または前記アミノ酸配列を含有するアミノ酸配列を有するペプチドまたは当該ペプチド群は、とりわけ好適な態様として推奨され得る。
【0015】
なお、本願明細書で用いる「当該ペプチド群」とは、セレノシステインを含むペプチドで所望の炎症反応改善作用を有するものであればいかなる配列のペプチドの集合体でもよいが、好適には、セレノプロテインPのアミノ酸配列に由来し、少なくとも1個のセレノシステインを含むペプチドで、当該アミノ酸配列のうち1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列を含み、糖鎖の有無、荷電の相違、断片化の多様性等に起因する微細構造の異なるペプチドの集合体を意味する。すなわち、本願発明のセレノプロテインP及びペプチド群は、セレノシステイン含有タンパク質、とりわけセレノプロテインPのアミノ酸配列に由来し、細胞障害抑制活性を有するものであればその分子形態に特段の制約はなく、これらには完全分子型のセレノプロテインPをはじめこれに起因するC末端側ペプチド等が含まれる。このような本願発明のペプチドは、ペプチド合成機を用いて常法に従って調製することもできるし、また、本願発明のペプチドをリード物質として、化学合成物をデザインすることも可能である。
【0016】
本願発明に使用されるセレノプロテインPまたは当該タンパク質に由来するペプチドもしくはペプチド群を製造する方法は特に限定されるものではないが、例えばヒト血液より分離する方法、または遺伝子組換え技術により製造することができる。本願発明に使用される炎症性疾患改善剤の主要構成成分となるセレノプロテインPまたは当該タンパク質に由来するペプチドもしくはペプチド群は、一般的な酵素類よりも熱、変性剤、幅広いpH、血中のプロテアーゼに対して安定であるため、これを精製同定するに際しては、一つの態様として、血漿を出発原料とし種々のクロマトグラフィー工程、例えば、ヘパリンクロマトグラフィー、陽イオン交換クロマトグラフィー、陰イオン交換クロマトグラフィー、疎水クロマトグラフィー、ゲル濾過クロマトグラフィー、逆相クロマトグラフィー、ハイドロキシアパタイトクロマトグラフィー、抗体カラムの様な各種アフィニティークロマトグラフィー等、適用可能な種々の担体を用いた分画方法の他、硫酸アンモニウム沈殿分画、分子量膜分画、等電点分画、電気泳動分画等、種々の分画法が利用可能である。これらの分画法を組み合わせることにより、所望のセレノプロテインPまたはペプチドもしくはペプチド群を分画することが可能である。その望ましい組み合わせの一例を調製例1及び2に示す。
【0017】
本願発明では、有効成分としての当該タンパク質またはペプチドもしくはペプチド群と公知の適当な賦形剤を組み合わせ、公知の方法で本願発明の炎症性疾患改善剤とすることができる。本願発明の炎症性疾患改善剤の有効投与量は、投与対象者の年齢、症状及び重症度などにより変動し、最終的には医師の意図により変動する。薬効は投与方法には依存しないが、皮下、皮内、腹腔への投与、血管内への単回(ボーラス)投与あるいは点滴投与などが最適である。また、分子量の小さなペプチド群の場合は、経口投与や経皮投与なども可能である。
【0018】
本願発明の炎症性疾患改善剤の投与対象は、炎症反応を呈する疾患であれば特に限定されることはないが、中でもICUに入室するような重症患者でSIRS症状を呈している疾患に好適である。例えば、重症の外傷、熱傷、手術侵襲、急性膵炎、腹膜炎、悪性腫瘍、急性腹症(急激な腹痛を主症状とする腹部疾患にして、早急に手術を行う必要がある疾患)、感染症、敗血症などの重症急性疾患などが挙げられる。さらに、臓器線維化を起こすような疾患も対象として挙げられる。ウイルスや細菌、化学物質、代謝障害により臓器が急性炎症を起こし、その治癒瘢痕として線維化が見られる。臓器線維化は障害臓器の機能を低下させ、やがては生命の存続を脅かす。肺、肝、膵、腎、心、骨髄、甲状腺、皮膚などの臓器がその対象である。また、クローン病や潰瘍性大腸炎などの炎症性腸疾患も対象として挙げることができる。その他、播種性血管内凝固症候群(DIC)を呈するような疾患も治療対象となりうる。DICとは、何らかの原因により、極端な血液凝固性亢進状態を生じ、全身の主として細小血管内に血栓の多発をきたし、このため消費性凝固障害を呈する症候群であるが、常位胎盤早期剥離、羊水塞栓などの産科的疾患、転移を有する悪性腫瘍(ことにムチン産生性腺癌)、急性白血病(ことに急性前骨髄球性白血病)、重症感染症(ことにグラム陰性菌による敗血症)、劇症肝炎、肝硬変症、膵疾患、急性血管内溶血、全身性の血管炎、広範な外傷や熱傷、手術、ショック、巨大血管腫、心臓瘤、大動脈瘤などに生ずることが多い(例えば、非特許文献11参照)ので、セレノプロテインPの対象疾患となりうる。このような疾患に対して炎症性疾患改善剤として本願発明のセレノプロテインPまたはこれに由来するペプチドもしくはペプチド群を主要構成成分として含有する薬剤を使用する場合、本薬剤を単独で投与することもできるし、他の治療薬剤との併用投与も効果を増大させるための有効な手段として期待できる。また、予防的または治療的投与のいずれにおいても効果が期待できる。
【0019】
【非特許文献1】
American College of Chest PHysicians/Society of Critical Care MeDICine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 864-874, 20, 1992
【非特許文献2】
小川、医学のあゆみ、1, 181, 1997
【非特許文献3】
若林ら、医学のあゆみ, 108, 181, 1997
【非特許文献4】
X. Forcevilleら, Crit. Care Med., 1536, 26, 1998
【非特許文献5】
M. W. Angstwurmら, Crit. Care Med, 1807, 27, 1999
【非特許文献6】
M. M. Bergerら, Am. J. Clin. Nutr., 365, 68, 1998
【非特許文献7】
J. M. Porterら, Am. Surgeon, 478, 65, 1999
【非特許文献8】
田中, 季刊化学総説, 日本化学会編, p120, 27, 1995
【非特許文献9】
X. Forceville, Intensive Care Med., 16, 27, 2001
【非特許文献10】
「Web版メルクマニュアル第17版日本語版」http://merckmanual.banyu.co.jp/
【非特許文献11】
医学大辞典CD-ROM版, Ver. 1.9, 南山堂, 1998
【非特許文献12】
E. Presterlら, Am. J. Respir. Crit. Care Med., 825, 156, 1997
【非特許文献13】
N. M. Kellyら, FEMS Microbiol. Immunol., 317, 4, 1992
【非特許文献14】
小川道雄, サイトカイン-基礎から臨床まで(今西、淀井編), 医歯薬出版, p127, 1992
【非特許文献15】
Hill K.E. and Burk R.F., Biomed Environ Sci., 10, p.198−208, 1997
【非特許文献16】
K.E.Hillら, Proc. Natl. Acad. Sci. USA, 90, 537, 1993
【非特許文献17】
Y. Saitoら, J. Biol. Chem. 274, 2866, 1999
【非特許文献18】
G. E. Arteel ら, Biol. Chem., 379, 1201, 1998
【非特許文献19】
J. Yan and J. N. Barrett, J. Neurosci., 18, 8682, 1998
【非特許文献20】
R. F. Burk ら., Am. J. PHysiol., 261, E26-E30, 1991
【非特許文献21】
Y. Saitoら, Eur. J. Biochem., 5746, 269, 2002
【非特許文献22】
Y. Saitoら, J. Health Sci., 346, 47, 2001
【特許文献1】
PCT/JP99/06322
【0020】
【発明の効果】
本願発明により、炎症症状を呈している疾患に対する好適な炎症性疾患改善剤、とりわけインターロイキン6産生抑制効果に代表される炎症反応を改善する作用を持った薬剤が提供される。
【0021】
以下、調製例及び実施例に沿って本願発明をさらに詳細に説明するが、これらは本願発明の範囲を何ら限定するものではない。なお、以下に示す調製例及び実施例では、特に断りのない限り、和光純薬、シグマ社、宝酒造、東洋紡及びNew England BioLabs社、アマシャムバイオサイエンス社、バイオラド社、シグマ社、ギブコBRL社製の試薬を使用した。また、本実施例で使用したセレノプロテインP及びその断片は調製例に示したものを使用した。
【0022】
【実施例】
調製例1
(セレノプロテインP断片の精製)
血漿中のヘパリンセファロース結合画分を2M硫酸アンモニウムにより沈殿させ、その沈殿画分に対して5倍以上の20mMTris(pH8.0)により沈殿を溶解させた。この溶液に存在するセレノプロテインPを抗セレノプロテインP抗体カラムに結合させ、PBSで洗浄した。その後4M尿素を含有する20mMクエン酸バッファー(pH4.2)によりセレノプロテインPを溶出し、20mMクエン酸バッファー(pH4.2)で平衡化した陽イオン交換体(MacroprepHigh S:BioRad)に結合させた。これを塩化ナトリウムによる塩濃度勾配溶出を行ない、細胞死抑制活性を示す画分を回収した。この時、全長のセレノプロテインPを得ることが可能であるが、蛋白あたりの細胞死抑制活性は明らかに弱い値を示した。本方法では、短時間の精製が可能であるため、蛋白あたりの細胞死抑制活性の強いセレノプロテインP断片を得ることができた。ここで得られた断片もまた、糖鎖の有無、分子間結合の有無、内部切断の有無などにより種々のサイズの分子種を含む混合画分であり、非還元電気泳動で10〜30kDaのサイズを示すセレノプロテインP断片群であった。
【0023】
調製例2
(セレノプロテインPの精製)
ヒト血漿に対して、フルオロリン酸ジイソプロピル(和光純薬)及びポリエチレングリコール3000(SIGMA)を、それぞれ終濃度2mM、5%になるように添加、1時間撹拌させ、10,000rpmで15分間遠心後、上清を回収した。その上清をPBSで平衡化した抗セレノプロテインP抗体カラムに結合させ、PBSで洗浄した。その後4M尿素を含有する20mMクエン酸バッファー(pH 4〜6)によりセレノプロテインPを溶出し、20mMクエン酸バッファーで平衡化した陽イオン交換体(MacroprepHigh S:BioRad)に結合させた。これを塩化ナトリウムによる塩濃度勾配溶出を行ない、セレン含量の最も多い画分を回収した。この方法により還元電気泳動で64kDaの完全長セレノプロテインPを血漿1リットルから2mg程度得ることができた。
【0024】
実施例1
C3H/HeNマウス(雌、4週齢、日本チャールズ・リバーより購入)8匹を4群(2匹/群)に分け、LPS(Lipopolysaccharides)投与直後に、続けて生理食塩水(大塚製薬社製)を400μLずつ腹腔に投与した。LPS( Escherichia coli 0111:B4、SIGMA社製)は、生理食塩水(大塚製薬社製)で30μg/100μLに調製し、100μLを腹腔に投与した。LPS投与後2時間、4時間、6時間、12時間後に、それぞれ2匹ずつからエーテル麻酔下で心臓より全採血した。血液は、血清分離剤入りチューブ(ベクトンディッキンソン社製)に回収し、4℃で一晩静置した後、4℃で15,000rpm 15分間遠心し血清のみを分離した。血清中のIL-6(Interleukin-6)含量を測定するために、血清を500倍に希釈し、IL-6 ELISAキット(BIOSOUCE社製)を用いて測定した。その結果、LPS投与によりマウス血中に放出されるIL-6は、LPS投与後2時間〜4時間でピークを迎え、6時間後にはほぼ消失することが確認された。すなわち、LPS投与により炎症反応が生じていることが確認された。
【0025】
実施例2
実施例1で確認された炎症反応(LPS投与マウスにおけるIL-6産生)に及ぼすセレノプロテインP(SeP)の効果を見るために、マウスにLPS、亜セレン酸ナトリウム及びSePを腹腔内投与し、血中IL-6含量を測定した。C3H/HeNマウス(雌、4週齢)19匹を5群に分け(表1参照)、生理食塩水で30μg/100μLに調製したLPS 100μLを腹腔に投与した。直後に、続いて、亜セレン酸ナトリウム及びSePをそれぞれ生理食塩水で同等のセレン量(亜セレン酸ナトリウム換算量で表記している)になるように希釈し、表1に従って400μLずつ腹腔に投与した。なお、対照群には、同体積の生理食塩水を投与した。これらのマウスにLPSを投与して4時間後に、全てのマウスにおいてエーテル麻酔下で心臓より全採血をおこなった。血液は、血清分離剤入りチューブ(ベクトンディッキンソン社製)に回収し、4℃で一晩静置した後、4℃で15,000rpm 15分間遠心し血清のみを分離した。血清中のIL-6含量を測定するために血清を500倍に希釈し、市販のIL-6 ELISAキットを用いて測定した。
【0026】
その結果、コントロール群(第1群)と比較して、SeP 2mg 亜セレン酸ナトリウム換算/kg投与群(第4群)は有意に血中IL-6濃度が低下しており、亜セレン酸ナトリウム 2mg/kg投与群(第2群)及びSeP 1mg 亜セレン酸ナトリウム換算 /kg投与群(第5群)では低下傾向が認められ、LPS投与により誘導されるIL-6の産生が亜セレン酸ナトリウム及びSePにより抑制されることが示唆された。また、SeP 2mg亜セレン酸ナトリウム換算 /kgを投与した群では、亜セレン酸ナトリウム 2mg/kgを投与した群とセレン含量が等しいにも拘わらず、IL-6含量が亜セレン酸ナトリウム投与群の1/2以下に低下していた。さらに亜セレン酸ナトリウム 1mg/kg投与群(第3群)では全く抑制効果が認められなかったことから、SePは亜セレン酸ナトリウムよりもIL-6産生を抑制する効果が高いと考えられた。
【0027】
【表1】

Figure 0004599028
【0028】
【配列表】
Figure 0004599028
Figure 0004599028
Figure 0004599028
Figure 0004599028
Figure 0004599028

【図面の簡単な説明】
【図1】 LPSにより誘導されたIL-6の血中産生量の推移を示す。
【図2】 LPSにより誘導されるIL-6の血中産生に対するSePの抑制作用を示す。[0001]
[Industrial application fields]
The present invention relates to a new use of plasma proteins belonging to the field of ethical drugs. More specifically, the present invention relates to a medicine for a disease involving an inflammatory reaction. More specifically, the selenocysteine-containing protein exemplified by selenoprotein P, which is a kind of plasma protein, preferably contains the C-terminal peptide of the selenoprotein P or the peptide group as a main active ingredient. The present invention relates to an agent, particularly a drug having an ameliorating action on a disease associated with interleukin 6 production.
[0002]
[Prior art and problems to be solved by the invention]
Severe trauma, burns, surgical invasion, acute pancreatitis, peritonitis, malignant tumor, acute abdomen (severe abdominal pain as the main symptom) In patients with severe acute diseases such as necessary diseases), infectious diseases, sepsis, etc., they are often committed to systemic inflammatory reactions and may die due to organ failure. Such a state in which systemic inflammation is induced by invasion is called SIRS (systemic inflammatory response syndrome). The symptoms shown in the definition of SIRS (for example, see Non-Patent Document 1) can be experimentally reproduced by administration of various cytokines. For example, body temperature rise is IL-1, IL-6, tachycardia is IL-1, TNF-α, leukocytosis is G-CSF, GM-CSF, IL-6, and the like. That is, it can be paraphrased that SIRS is a state of hypercytokinemia (for example, refer nonpatent literature 2). From such a point of view, a treatment method called anti-cytokine therapy has been attempted, but the results of clinical trials have all been disappointing (see, for example, Non-Patent Document 3). For example, in large-scale clinical trials using anti-TNF antibodies, soluble TNF receptors, IL-1 receptor antagonists, etc., none of them exceeded the initially set evaluation criteria.
[0003]
Under such circumstances, a completely new treatment method of administering selenium (sometimes referred to as Se) has been attempted. It is known that the blood selenium concentration temporarily decreases in patients with burns and trauma SIRS. Patients with 0.7 μmol / L or less suffer from mortality, organ failure and pneumonia compared to other patients. There is an epidemiological survey that the rate is three times higher (for example, see Non-Patent Document 4). Numerous reports have been reported that if these patients continue to receive selenium in the form of sodium selenite every day immediately after entering the ICU, symptoms improve. For example, Angstwurm et al. Administered SI selenite to patients with acute renal failure by administering 535 μg sodium selenite for the first 3 days, 285 μg for the next 3 days, and 155 μg for the last 3 days compared to when not administered. The therapeutic effects such as improvement in the probability and mortality and shortening the entrance period were recognized (for example, see Non-Patent Document 5). Berger et al. Administered sodium selenite at 230 μg / day to severe burn patients for 8 days. As a result, compared with the placebo group, the improvement effect, such as the pneumonia incidence rate reduction and the shortening of hospitalization period, is recognized (for example, refer nonpatent literature 6). Porter et al. Administered 50 μg of sodium selenite every 6 hours to trauma patients and continued this for 7 days. As a result, a decrease in the prevalence of organ failure and infectious diseases was recognized (for example, see Non-Patent Document 7). Thus, the symptom improvement of the SIRS patient is seen by selenium administration.
[0004]
However, sodium selenite administered to patients is highly toxic, and the minimum lethal dose by intravenous injection is 3 mg Se / kg in rats and 1.5 mg Se / kg in rabbits. In addition, the minimum lethal dose for intraperitoneal administration to rats is 3.25 to 3.5 mg Se / kg (see, for example, Non-Patent Document 8). The minimum lethal dose to humans is said to be 1.5 to 3 mg / kg, and up to 800 μg / day of intake is considered to be a limit that does not have an adverse effect (see, for example, Non-Patent Document 9). When selenium of 900 μg / day or more is taken, toxic symptoms such as dermatitis, hair loss, and peripheral neuropathy occur (for example, see Non-Patent Document 10). Therefore, the upper limit of the safe amount of selenium that can be administered to critically ill patients entering the ICU is 500 μg / day (see, for example, Non-Patent Document 9).
[0005]
Thus, even when trying to administer a high dose of sodium selenite to enhance the therapeutic effect of selenium, there has been a problem that the dose is limited due to the toxicity of selenium itself. In order to solve this problem, a safe drug with few side effects is required.
[0006]
[Means for Solving the Problems]
Under the circumstances described above, the inventors of the present invention first applied to selenoprotein P (hereinafter sometimes referred to as SeP), which is a blood component-derived protein and is a kind of selenocysteine-containing protein, and as a more preferred embodiment, The C-terminal peptide of selenoprotein P was found to have a cell death inhibitory activity that had not been reported before, and a patent application was filed based on this finding (see, for example, Patent Document 1). Furthermore, the inventor of the present application has conducted extensive research to provide a novel inflammatory disease ameliorating agent that can be applied to the above-mentioned SIRS patients, in particular, an agent that improves the inflammatory response represented by interleukin 6 production. Surprisingly, the selenoprotein P or its C-terminal peptide or the peptide group, which has never been tried before, is not only effective in inhibiting cell death, but also in the in vivo administration in an inflammatory disease model animal. Based on this finding, the present invention has been completed.
[0007]
As a specific example, the present inventors have used a mouse inflammation model in which interleukin 6 (sometimes referred to as IL-6) is induced in the blood by administration of lipopolysaccharide (LPS). The improvement effect which suppresses IL-6 production by administering P was found. At the same time, it was found that the improvement effect was higher than when selenium equivalent amount of sodium selenite was administered. From these results, it was shown that selenoprotein P has an inflammatory disease improving action as typified by suppression of interleukin 6 production, and is effective in the treatment of inflammatory diseases as typified by SIRS.
[0008]
Interleukin 6 is composed of lymphocytes such as T cells and B cells, non-lymphocyte cells such as macrophages, fibroblasts, vascular endothelial cells, keratinocytes, mesangial cells, and glial cells, or by various stimuli. Has been produced. IL-6 is the differentiation of B cells into antibody-producing cells, killer T cell differentiation, macrophage differentiation induction, megakaryocyte maturation induction, plasmacytoma cells, myeloma cell proliferation, T cell proliferation, pluripotency It has an action as a colony stimulating factor, differentiation induction such as proliferation of mesangial cells, and cell proliferation action (see, for example, Non-Patent Document 11). During an inflammatory reaction, the increase in blood IL-6 is caused by pro-inflammatory cytokines such as TNFα and IL-1β, and IL-6 is in the acute phase such as CRP (C-reactive protein). Induce biosynthesis of acute pHase protein.
[0009]
In the case of a systemic inflammatory reaction such as SIRS, it has been reported that IL-6 correlates with the severity of a patient's disease state and mortality (see, for example, Non-Patent Document 12). In an endotoxemia animal model using mice, IL-6 has been reported to be a marker with good mortality (see, for example, Non-Patent Document 13). Furthermore, it is said that monitoring of IL-6 and IL-8 under various invasion is useful for predicting the occurrence of organ damage (see, for example, Non-Patent Document 14). Thus, IL-6 shows a close correlation with the pathological condition of patients entering the ICU with SIRS and its prognosis, and is useful as a marker for inflammatory reaction. If a treatment method that can suppress the production of the cytokine as an index is developed, it can be said that the treatment method is effective against systemic inflammation such as SIRS. In this regard, selenoprotein P is considered to have a high therapeutic effect on SIRS because it has an inflammatory response improving action typified by suppression of interleukin 6 production, which has not been known so far.
[0010]
Selenoprotein P was identified in 1977 as a selenium-containing protein different from glutathione-peroxidase, and in 1982, selenium was incorporated in the form of selenocysteine. Furthermore, cloning of rat selenoprotein P cDNA in 1991 revealed the full-length amino acid sequence, and as a result, it was shown that the protein may contain up to 10 selenocysteines (for example, non-patent literature). 15). In 1993, the nucleobase sequence and amino acid sequence of human selenoprotein P was reported (for example, see Non-Patent Document 16), but the function was almost unknown. Recently, it has been reported that there is a reduction activity of pHospolipid hydroperoxide (for example, see Non-Patent Document 17) and an erasing activity of peroxynitrite (for example, see Non-Patent Document 18) in an in vitro system. It has also been clarified that the present inventors have the cell death inhibitory activity found by the present inventors (for example, see Patent Document 1) and the action of nerve cells as a surviving promoting factor (for example, see Non-Patent Document 19). Furthermore, selenoprotein P has been reported to be Se from a report that Se is transported specifically to the brain when Se is deficient (for example, see Non-Patent Document 20) or a report that Se is supplied to cells (for example, see Non-Patent Document 21). It is considered to have a function as a supplier, and is considered to be a mechanism for exerting the cell death inhibitory activity and survival maintenance activity on the cells described above. However, it is difficult to analogize the inflammatory response improving action of selenoprotein P from these reports, and there is no example of finding an action related to interleukin 6 production of selenoprotein P as described in the present invention.
[0011]
Since selenoprotein P is originally present in blood as a component of the living body, it is considered that toxicity based on selenium, which is a problem in selenium administration, is much lower than sodium selenite. Furthermore, since selenoprotein P has a selenium supply ability as described above, it is optimal as a selenium source for selenium administration therapy to ICU patients such as SIRS. That is, selenoprotein P has an effect of improving inflammatory response as typified by suppression of interleukin 6 production found by the present inventors and a preventive effect such as a reduction in secondary disease prevalence of sodium selenite. It can be said to be an ideal therapeutic agent.
[0012]
The present invention relates to a new drug effect based on the above findings of selenoprotein P, and the essential form of the inflammatory disease improving agent of the present invention is selenoprotein P. More specifically, selenocysteine including selenium in selenoprotein P is characterized, and this amino acid is a central amino acid for improving inflammatory response. In the previous patent application, the inventors of the present application have found that cell death inhibitory activity, which has not been reported previously, is observed in the C-terminal peptide fragment of selenoprotein P, which is a blood component-derived protein, and that activity includes selenocysteine. Disclosed that is involved. It is clear that the contained selenocysteine is also involved in the activity described in the present invention. Therefore, a protein and / or peptide group containing selenocysteine and having cell death inhibitory activity can be a candidate for an inflammatory disease ameliorating agent.
[0013]
In the first place, selenium related to the present invention is one of trace essential elements, and when it is deficient, serious deficiency accompanied by cardiomyopathy is known. Further, since it is essential to add sodium selenite to the serum-free culture medium, it has been shown that selenium is essential for the maintenance and proliferation of cells at the cell level. However, as can be seen from the fact that selenium compounds are designated as toxic substances as described above, the range of effective and dangerous amounts, that is, the safe range of concentration is narrow. It is toxic to humans and conversely induces cell death. For example, facial pallor, neurological symptoms, neuropathy, dermatitis, gastrointestinal disorders and the like are known as acute poisoning symptoms of selenium. In addition, when selenocystine, which is a dimer of selenocysteine, is added to cell culture, it exhibits a very strong toxicity by itself. On the other hand, selenoprotein P, which is a preferred embodiment of the present invention, and the C-terminal fragment of selenoprotein P, although containing 9-10 selenocysteine in the structure, are observed to be highly toxic. There wasn't. Selenoprotein P is originally present in blood, and in humans, it is contained in plasma at a concentration of about 5 μg / ml (see, for example, Non-Patent Document 22) and is considered to circulate in the living body. Therefore, it is considered that the safety as a medicine is high. From this, it seems that it is important that selenoprotein P showing the medicinal effect of the present invention contains selenocysteine and has reduced toxicity. The peptide of the present invention or the peptide group not only overcomes the proposition to selenium compounds of reducing toxicity, but also makes it possible to bring about an unexpected inflammatory response improving action.
[0014]
The selenocysteine-containing protein used here is not particularly limited, and includes any molecular form as long as it contains selenocysteine and has a desired inflammatory response improving activity. That is, various molecular forms including the complete molecular selenoprotein P (SEQ ID NO: 1) can be targeted. Among them, a preferred embodiment is a C-terminal peptide of selenoprotein P or a peptide group thereof. Among them, 103 C-terminal peptides (SEQ ID NO: 2: selenoprotein P sequence from position 260 to position 362, 260KRCINQLLCKLPTDSELAPRSUCCHCRUQQQQQQPPPAQ Or an amino acid sequence in which one or several amino acids in the amino acid sequence are deleted, substituted or added, a partial sequence of any one of the amino acid sequences or an amino acid sequence containing the amino acid sequence, or the peptide group May be recommended as a particularly preferred embodiment.
[0015]
The “related peptide group” used in the present specification may be an aggregate of peptides having any sequence as long as it is a peptide containing selenocysteine and has a desired inflammatory response-improving effect. A peptide derived from the amino acid sequence of P and containing at least one selenocysteine, including an amino acid sequence in which one or several amino acids of the amino acid sequence are deleted, substituted, or added. It means an aggregate of peptides having different fine structures due to differences in fragmentation, fragmentation diversity, and the like. That is, the selenoprotein P and the peptide group of the present invention are derived from the amino acid sequence of a selenocysteine-containing protein, particularly selenoprotein P, and have no particular restriction on the molecular form thereof as long as it has a cytostatic activity. Includes a fully molecular selenoprotein P and a C-terminal peptide derived therefrom. Such a peptide of the present invention can be prepared according to a conventional method using a peptide synthesizer, and a chemical composition can be designed using the peptide of the present invention as a lead substance.
[0016]
A method for producing selenoprotein P or a peptide or peptide group derived from the protein used in the present invention is not particularly limited, but for example, a method for separating from human blood or a gene recombination technique. Can do. Selenoprotein P, which is a main component of the inflammatory disease improving agent used in the present invention, or a peptide or a peptide group derived from the protein is more heat, denaturant, broader pH, in blood than general enzymes. In order to purify and identify this because it is stable against protease, in one embodiment, plasma is used as a starting material and various chromatographic steps such as heparin chromatography, cation exchange chromatography, anion exchange chromatography are used. , Hydrophobic chromatography, gel filtration chromatography, reverse phase chromatography, hydroxyapatite chromatography, various affinity chromatography methods such as antibody column, etc. , Molecular weight membrane Image, isoelectric point fractionation, electrophoresis fractionation and the like, various fractionation methods are available. By combining these fractionation methods, it is possible to fractionate a desired selenoprotein P or peptide or peptide group. An example of the desirable combination is shown in Preparation Examples 1 and 2.
[0017]
In the present invention, the protein or peptide or peptide group as an active ingredient can be combined with a known appropriate excipient, and the inflammatory disease improving agent of the present invention can be obtained by a known method. The effective dose of the inflammatory disease ameliorating agent of the present invention varies depending on the age, symptoms, severity, etc. of the administration subject, and finally varies depending on the intention of the doctor. The medicinal effect does not depend on the administration method, but subcutaneous, intradermal, intraperitoneal administration, single intravascular (bolus) administration, infusion administration, etc. are optimal. In the case of a peptide group having a small molecular weight, oral administration and transdermal administration are also possible.
[0018]
The administration target of the inflammatory disease ameliorating agent of the present invention is not particularly limited as long as it is a disease exhibiting an inflammatory reaction, but is particularly suitable for a disease presenting SIRS symptoms in a severe patient entering the ICU. is there. For example, severe trauma, burns, surgical invasion, acute pancreatitis, peritonitis, malignant tumor, acute abdomen (disease that requires rapid surgery for abdominal diseases whose main symptoms are acute abdominal pain), infections, Examples include severe acute diseases such as sepsis. In addition, diseases that cause organ fibrosis are also targeted. Viruses, bacteria, chemicals, and metabolic disorders cause acute inflammation of the organ and fibrosis is seen as a healing scar. Organ fibrosis reduces the function of damaged organs and eventually threatens the survival of life. This includes organs such as lung, liver, pancreas, kidney, heart, bone marrow, thyroid, and skin. In addition, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis can also be mentioned as targets. In addition, diseases such as disseminated intravascular coagulation syndrome (DIC) can be treated. DIC is an extremely hypercoagulable state caused by some cause, and a thrombus occurs mainly in small blood vessels in the whole body. Therefore, it is a syndrome exhibiting consumable coagulation disorder. Obstetric diseases such as amniotic fluid embolism, malignant tumors with metastasis (especially mucin producing adenocarcinoma), acute leukemia (especially acute promyelocytic leukemia), severe infections (especially sepsis due to gram-negative bacteria), fulminant It often occurs in hepatitis, cirrhosis, pancreatic disease, acute intravascular hemolysis, systemic vasculitis, extensive trauma and burns, surgery, shock, giant hemangioma, aneurysm, aortic aneurysm, etc. (eg, non-patent literature) 11). Therefore, it can be a target disease of selenoprotein P. When a drug containing the selenoprotein P of the present invention or a peptide or peptide group derived therefrom as a main constituent is used as an inflammatory disease ameliorating agent for such diseases, the drug may be administered alone. In addition, combined administration with other therapeutic agents can be expected as an effective means for increasing the effect. In addition, an effect can be expected in either prophylactic or therapeutic administration.
[0019]
[Non-Patent Document 1]
American College of Chest PHysicians / Society of Critical Care MeDICine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis.Crit Care Med.864-874, 20, 1992
[Non-Patent Document 2]
Ogawa, History of Medicine, 1, 181, 1997
[Non-Patent Document 3]
Wakabayashi et al., History of Medicine, 108, 181, 1997
[Non-Patent Document 4]
X. Forceville et al., Crit. Care Med., 1536, 26, 1998
[Non-Patent Document 5]
MW Angstwurm et al., Crit. Care Med, 1807, 27, 1999
[Non-Patent Document 6]
MM Berger et al., Am. J. Clin. Nutr., 365, 68, 1998
[Non-Patent Document 7]
JM Porter et al., Am. Surgeon, 478, 65, 1999
[Non-Patent Document 8]
Tanaka, Quarterly Chemistry Review, The Chemical Society of Japan, p120, 27, 1995
[Non-patent document 9]
X. Forceville, Intensive Care Med., 16, 27, 2001
[Non-Patent Document 10]
“Web version Merck Manual 17th Japanese version” http://merckmanual.banyu.co.jp/
[Non-Patent Document 11]
Medical Dictionary CD-ROM version, Ver. 1.9, Nanzan-do, 1998
[Non-Patent Document 12]
E. Presterl et al., Am. J. Respir. Crit. Care Med., 825, 156, 1997
[Non-Patent Document 13]
NM Kelly et al., FEMS Microbiol. Immunol., 317, 4, 1992
[Non-Patent Document 14]
Michio Ogawa, Cytokines-From basic to clinical (Imanishi, Sakurai edition), Ishiyaku Publishing, p127, 1992
[Non-Patent Document 15]
Hill KE and Burk RF, Biomed Environ Sci., 10, p. 198-208, 1997
[Non-Patent Document 16]
KEHill et al., Proc. Natl. Acad. Sci. USA, 90, 537, 1993
[Non-Patent Document 17]
Y. Saito et al., J. Biol. Chem. 274, 2866, 1999
[Non-Patent Document 18]
GE Arteel et al., Biol. Chem., 379, 1201, 1998
[Non-Patent Document 19]
J. Yan and JN Barrett, J. Neurosci., 18, 8682, 1998
[Non-Patent Document 20]
RF Burk et al., Am. J. PHYsiol., 261, E26-E30, 1991
[Non-patent document 21]
Y. Saito et al., Eur. J. Biochem., 5746, 269, 2002
[Non-Patent Document 22]
Y. Saito et al., J. Health Sci., 346, 47, 2001
[Patent Document 1]
PCT / JP99 / 06322
[0020]
【The invention's effect】
The present invention provides a suitable inflammatory disease ameliorating agent for a disease presenting inflammatory symptoms, particularly a drug having an action of improving an inflammatory reaction represented by an interleukin 6 production inhibitory effect.
[0021]
Hereinafter, although this invention is demonstrated further in detail along a preparation example and an Example, these do not limit the range of this invention at all. In the preparation examples and examples shown below, unless otherwise specified, Wako Pure Chemical, Sigma, Takara Shuzo, Toyobo and New England BioLabs, Amersham Biosciences, Biorad, Sigma, Gibco BRL Reagent was used. Moreover, the selenoprotein P and its fragment | piece used in the present Example used what was shown in the preparation example.
[0022]
【Example】
Preparation Example 1
(Purification of selenoprotein P fragment)
The heparin sepharose-binding fraction in plasma was precipitated with 2M ammonium sulfate, and the precipitate was dissolved with 20 mM Tris (pH 8.0) 5 times or more of the precipitated fraction. Selenoprotein P present in this solution was bound to an anti-selenoprotein P antibody column and washed with PBS. Thereafter, selenoprotein P was eluted with 20 mM citrate buffer (pH 4.2) containing 4 M urea and bound to a cation exchanger (MacropHpH S: BioRad) equilibrated with 20 mM citrate buffer (pH 4.2). . This was subjected to salt concentration gradient elution with sodium chloride, and a fraction showing cell death inhibitory activity was collected. At this time, full-length selenoprotein P can be obtained, but the cell death inhibitory activity per protein was clearly weak. In this method, since it was possible to purify in a short time, a selenoprotein P fragment having a strong cell death inhibitory activity per protein could be obtained. The fragments obtained here are also mixed fractions containing molecular species of various sizes depending on the presence or absence of sugar chains, the presence or absence of intermolecular bonds, the presence or absence of internal cleavage, and the size of 10 to 30 kDa by non-reducing electrophoresis. It was a selenoprotein P fragment group showing.
[0023]
Preparation Example 2
(Purification of selenoprotein P)
To human plasma, diisopropyl fluorophosphate (Wako Pure Chemical Industries) and polyethylene glycol 3000 (SIGMA) were added to final concentrations of 2 mM and 5%, respectively, stirred for 1 hour, centrifuged at 10,000 rpm for 15 minutes, The supernatant was collected. The supernatant was bound to an anti-selenoprotein P antibody column equilibrated with PBS and washed with PBS. Thereafter, selenoprotein P was eluted with 20 mM citrate buffer (pH 4 to 6) containing 4 M urea and bound to a cation exchanger (MacropreppH S: BioRad) equilibrated with 20 mM citrate buffer. This was subjected to salt concentration gradient elution with sodium chloride, and the fraction with the highest selenium content was recovered. By this method, about 2 mg of 1 liter of plasma was obtained from 64 liters of full-length selenoprotein P by reduction electrophoresis.
[0024]
Example 1
Eight C 3 H / HeN mice (female, 4 weeks old, purchased from Charles River, Japan) were divided into 4 groups (2 / group), and immediately after LPS (Lipopolysaccharides) administration, physiological saline (Otsuka Pharmaceutical) 400 μL each) was administered into the peritoneal cavity. LPS (Escherichia coli 0111: B4, manufactured by SIGMA) was adjusted to 30 μg / 100 μL with physiological saline (manufactured by Otsuka Pharmaceutical Co., Ltd.), and 100 μL was administered into the peritoneal cavity. At 2 hours, 4 hours, 6 hours, and 12 hours after LPS administration, blood was collected from the heart under ether anesthesia from 2 mice each. The blood was collected in a tube containing a serum separating agent (manufactured by Becton Dickinson), allowed to stand at 4 ° C. overnight, and then centrifuged at 15,000 rpm for 15 minutes at 4 ° C. to separate only the serum. In order to measure the IL-6 (Interleukin-6) content in the serum, the serum was diluted 500 times and measured using an IL-6 ELISA kit (manufactured by BIOSOUCE). As a result, it was confirmed that IL-6 released into the mouse blood by LPS administration peaked at 2 to 4 hours after LPS administration and almost disappeared after 6 hours. That is, it was confirmed that an inflammatory reaction was caused by LPS administration.
[0025]
Example 2
In order to see the effect of selenoprotein P (SeP) on the inflammatory response (IL-6 production in LPS-treated mice) confirmed in Example 1, mice were administered LPS, sodium selenite and SeP intraperitoneally, The blood IL-6 content was measured. 19 C 3 H / HeN mice (female, 4 weeks old) were divided into 5 groups (see Table 1), and 100 μL of LPS prepared to 30 μg / 100 μL with physiological saline was administered intraperitoneally. Immediately thereafter, sodium selenite and SeP were each diluted with physiological saline to the same amount of selenium (expressed in terms of sodium selenite equivalent), and 400 μL was administered to the peritoneal cavity according to Table 1. did. In the control group, the same volume of physiological saline was administered. Four hours after the administration of LPS to these mice, all blood was collected from the heart under ether anesthesia in all mice. The blood was collected in a tube containing a serum separating agent (manufactured by Becton Dickinson), allowed to stand at 4 ° C. overnight, and then centrifuged at 15,000 rpm for 15 minutes at 4 ° C. to separate only the serum. In order to measure the IL-6 content in serum, the serum was diluted 500 times and measured using a commercially available IL-6 ELISA kit.
[0026]
As a result, compared to the control group (Group 1), the serum IL-6 concentration was significantly reduced in the SeP 2 mg sodium selenite equivalent / kg administration group (Group 4), and sodium selenite. In the 2 mg / kg administration group (group 2) and SeP 1 mg sodium selenite equivalent / kg administration group (group 5), a decreasing tendency was observed, and the production of IL-6 induced by LPS administration was sodium selenite. And it was suggested that it is suppressed by SeP. In addition, in the group administered with SeP 2 mg sodium selenite equivalent / kg, although the selenium content is equal to the group administered with sodium selenite 2 mg / kg, the IL-6 content is the same as that of the sodium selenite group. It was reduced to 1/2 or less. Furthermore, since no inhibitory effect was observed in the sodium selenite 1 mg / kg administration group (Group 3), SeP was considered to have a higher effect of suppressing IL-6 production than sodium selenite.
[0027]
[Table 1]
Figure 0004599028
[0028]
[Sequence Listing]
Figure 0004599028
Figure 0004599028
Figure 0004599028
Figure 0004599028
Figure 0004599028

[Brief description of the drawings]
FIG. 1 shows the transition of blood production of IL-6 induced by LPS.
FIG. 2 shows the inhibitory effect of SeP on the blood production of IL-6 induced by LPS.

Claims (3)

セレノプロテインPを含有する炎症性疾患改善剤。An inflammatory disease ameliorating agent containing selenoprotein P. 炎症性疾患が、インターロイキン6産生を伴う疾患である請求項1に記載の炎症性疾患改善剤。The inflammatory disease ameliorating agent according to claim 1, wherein the inflammatory disease is a disease associated with interleukin 6 production. 炎症性疾患が、外傷、熱傷、外科手術等による侵襲、急性膵炎、腹膜炎、急性腹症、炎症性腸疾患、臓器線維症、悪性腫瘍、感染症、敗血症、DIC(播種性血管内凝固症候群)、及びSIRS(全身性炎症反応症候群)より選択される請求項1又は請求項2のいずれかに記載の炎症性疾患改善剤。Inflammatory diseases include trauma, burns, surgical invasion, acute pancreatitis, peritonitis, acute abdomen, inflammatory bowel disease, organ fibrosis, malignant tumor, infection, sepsis, DIC (Disseminated Intravascular Coagulation Syndrome) and inflammatory disease modifying agent according to claim 1 or claim 2 is selected from SIRS (systemic inflammatory response syndrome).
JP2002354122A 2002-12-05 2002-12-05 Novel inflammatory disease ameliorating agent Expired - Fee Related JP4599028B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002354122A JP4599028B2 (en) 2002-12-05 2002-12-05 Novel inflammatory disease ameliorating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002354122A JP4599028B2 (en) 2002-12-05 2002-12-05 Novel inflammatory disease ameliorating agent

Publications (2)

Publication Number Publication Date
JP2004182683A JP2004182683A (en) 2004-07-02
JP4599028B2 true JP4599028B2 (en) 2010-12-15

Family

ID=32755232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002354122A Expired - Fee Related JP4599028B2 (en) 2002-12-05 2002-12-05 Novel inflammatory disease ameliorating agent

Country Status (1)

Country Link
JP (1) JP4599028B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006098524A1 (en) * 2005-03-18 2006-09-21 Ajinomoto Co., Inc. Prophylactic/therapeutic agent for stress-induced bowel disease
CA2613247A1 (en) * 2005-06-22 2006-12-28 Kowa Company, Ltd. Prophylactic or therapeutic agent for corneal/conjunctival disease
FR3037798A1 (en) * 2015-06-25 2016-12-30 Serenite-Forceville COMPOSITION COMPRISING AT LEAST ONE COMPOUND SELECTED FOR THE TREATMENT OF SEPSIS AND / OR ANY GENERALIZED HYPER-INFLAMMATION (SIRS) OR CELLULAR DAMAGE

Also Published As

Publication number Publication date
JP2004182683A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
DE60219611T2 (en) MODIFIED ANNEXIN PROTEINS AND PREVENTION AND TREATMENT OF THROMBOSE
KR20150121715A (en) Csf1 therapeutics
JP2002543837A (en) Recombinant setomannan binding lectin
EP2781221B9 (en) Medicine for treatment and/or improvement of sepsis
EP3442562B1 (en) An il-22 dimer for use in treating necrotizing enterocolitis
JPH03193736A (en) Therapeutic composition for treating leukemia characterized by polypeptide contained therein and having activity of human interleukin 2
US6447766B1 (en) Method of mobilizing hematopoietic stem cells
JP2000504325A (en) Administration of new thrombopoietin
KR20000016159A (en) Lactoferrin variants and uses thereof
JPWO2005066206A1 (en) TNF antagonist and TNF inhibitor containing the same as an active ingredient
CA2708134C (en) Cyclic protein free from cysteines
JP4599028B2 (en) Novel inflammatory disease ameliorating agent
JP3030386B2 (en) Anticancer agent
JP2024500250A (en) DSG2 compositions and methods for the treatment of COVID-19
Gulevskyy et al. CURRENT CONCEPT OF THE STRUCTURAL AND FUNCTIONAL PROPERTIES OF ALFA-FETOPROTEIN AND THE POSSIBILITIES OF ITS CLINICAL APPLICATION
DE112018001364T5 (en) Use of lambda interferons in the treatment of obesity-related disorders and related disorders
JP7237085B2 (en) Medicine for treatment and/or improvement of sepsis accompanied by coagulation abnormality
US20090181882A1 (en) Methods and preparations for curing critically ill patients
RU2753191C2 (en) New recombinant growth hormone analogue with prolonged activity
ES2239814T3 (en) METHOD OF MOBILIZATION OF HEMATOPOYETIC MOTHER CELLS.
JPWO2009035055A1 (en) Insulin-like growth factor-1 (IGF-1) production promoter
US20230416326A1 (en) Modified interleukin-2 (il-2) molecule and use thereof
EP0560998A1 (en) Medicine for preventing and treating bleeding tendency
JP2001233784A (en) Interleukin-18 production promoter
JP5439007B2 (en) Vascular endothelial cell growth factor inhibitor and anticancer agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100723

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees