WO2002067567A1 - VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS - Google Patents

VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS Download PDF

Info

Publication number
WO2002067567A1
WO2002067567A1 PCT/EP2002/001797 EP0201797W WO02067567A1 WO 2002067567 A1 WO2002067567 A1 WO 2002067567A1 EP 0201797 W EP0201797 W EP 0201797W WO 02067567 A1 WO02067567 A1 WO 02067567A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
focal
focal line
radiation
leds
Prior art date
Application number
PCT/EP2002/001797
Other languages
English (en)
French (fr)
Inventor
Markus Schnitzlein
Arnold Allweier
Original Assignee
Océ Document Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Océ Document Technologies GmbH filed Critical Océ Document Technologies GmbH
Priority to AT02716794T priority Critical patent/ATE527814T1/de
Priority to US10/468,616 priority patent/US7012241B2/en
Priority to EP02716794A priority patent/EP1362473B1/de
Publication of WO2002067567A1 publication Critical patent/WO2002067567A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/0282Using a single or a few point light sources, e.g. a laser diode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/0282Using a single or a few point light sources, e.g. a laser diode
    • H04N1/0284Using a single or a few point light sources, e.g. a laser diode in combination with a light integrating, concentrating or diffusing cavity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/0285Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array in combination with at least one reflector which is in fixed relation to the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02865Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array using an array of light sources or a combination of such arrays, e.g. an LED bar

Definitions

  • the invention relates to a device for the cellular illumination of an object.
  • the invention further relates to a method for the cellular illumination of an object and a scanning system.
  • a typical application for a device for linearly illuminating an object is an image recording system in which a sensor, for example a camera, detects graphic elements of a template, these graphic elements are digitized and the image data are further processed.
  • the quality of an image recording system depends directly on the amount of light that is available to the sensor during scanning to generate the corresponding signals. It is therefore desirable, especially in the area of fast line scanning systems, to provide a large amount of light, since this provides a high signal-to-noise ratio for the subsequent signal processing. Furthermore, it is necessary to use a light source with the lowest possible power loss, which has high time stability and temperature stability.
  • LEDs Light-emitting diodes, so-called LEDs, have very good properties for use in image recording systems with regard to service life, time stability, temperature stability and efficiency of the light output.
  • Known scanning systems that use LED lines focus the radiation using rod lenses or Fresnel lenses. Such systems are used for monochromatic light.
  • an optical scanning system which works with a curved pivotable mirror.
  • the radiation from a monochromatic LED is directed through the mirror as a light spot onto an object to be scanned.
  • the received beam path of a light receiving diode is guided over the same mirror, so that the graphic elements illuminated in the light spot are scanned when the mirror is pivoted.
  • US-A-5, 12, 205 describes a scanning system with a stationary mirror which is elliptical in cross section.
  • An elongated fluorescent tube is arranged in the first focal line of the mirror, the document to be scanned in the second focal line.
  • the radiation from the fluorescent tube is focused on the document in a cell-like manner by the mirror.
  • an image reading device which uses an LED as the light source.
  • This LED has an elliptical mirror, the LED being arranged in one focal point of the mirror and the other focal point of the mirror on the image to be read.
  • a stationary mirror is used to concentrate the radiation.
  • This mirror has two
  • Focal lines Several LEDs are arranged along a focal line. The radiation detected by the mirror is focused in the second focal line.
  • the device has a compact structure and further favorable properties with regard to the service life of the light source, time stability, temperature stability and light output.
  • the beam path remains clear, as there are great degrees of freedom in the position of the two focal lines of the mirror.
  • the mirror there are no wavelength-dependent chromatic aberrations, so that when using LEDs that emit white light, there are no color errors at the focus edges.
  • the cylindrical section of the mirror has the shape of the inner circumferential surface of an elliptical cylinder.
  • the elliptically shaped mirror has the property of completely focusing radiation that is emitted from the first focal point of the ellipse into the second focal point. No chromatic errors occur due to the geometric reflection of the mirror surface. Such a mirror system is therefore particularly well suited for polychromatic light.
  • a focal line is created instead of a focal point, which enables optimal cellular illumination of an object. This cellular illumination is particularly advantageous when an object has to be scanned digitally.
  • a method is specified using the device mentioned. Furthermore, a system for scanning an object using a sensor system, for example a camera, is specified.
  • FIG. 1 shows an arrangement of an LED on a circuit board and the radiation characteristic of the LED
  • FIG. 2 shows the principle of radiation reflection on an elliptical mirror
  • Figure 3 shows an arrangement with several elliptical
  • FIG. 4 shows an embodiment with LED rows arranged on both sides on a printed circuit board
  • FIG. 5 shows a lighting arrangement with an LED
  • FIG. 6 shows a symmetrical arrangement of two LED rows and two elliptical mirrors
  • Figure 8 is a perspective view of a shaped sheet serving as an elliptical cylindrical mirror.
  • FIG. 1 shows the arrangement of an LED 10 on a printed circuit board 12.
  • This printed circuit board 12 carries conductor tracks and optionally also electronic components for controlling the LED 10.
  • This LED 10 emits polychromatic light, in particular white light.
  • the generation of polychromatic light is possible through the use of fluorescent conversion substances in the semiconductor structure of the LED.
  • the problem with such polychromatic LEDs 10 is that the radiated power density is relatively low.
  • FIG. 1 shows that the radiation, indicated by arrows 14, takes place in the half-space in the manner of a spherical light distribution curve 16.
  • Figure 2 shows the principle used in the invention. If a polychromatic LED 10 is arranged in an elliptical mirror 18 with the two focal points 20, 22 in the focal point 20 net, which emits light according to the light distribution curve 16, this light is reflected on the elliptical mirror 18 and focused in the second focal point 22. In principle, this applies to all rays. However, this is only used for rays that are emitted into the half-space in the direction of the light distribution curve 16; The beam 24 is also theoretically focused in the focus 22. In general, it is sufficient to use only a section of the ellipse 18 as a mirror in order to achieve a sufficient concentration of the radiation emitted in the half-space.
  • a skilful choice of the ellipse parameters enables a compact geometric arrangement with many degrees of freedom to be achieved. Due to the geometric reflection on the elliptical surface of the mirror 18, no chromatic aberration occurs; rather, the rays of different wavelengths are focused at the focal point 22 without color edges.
  • a section of an inner circumferential surface of an elliptical cylinder is used as the mirror.
  • the focal points 20, 22 are then points on focal lines 20, 22. If a plurality of LEDs 10 are arranged in the focal line 20, a line of light is produced in the focal line 22 which is particularly well suited for the optoelectronic scanning of originals.
  • FIG. 3 now shows an extension of the principle shown in FIG. 2 by means of parallel focusing with the aid of several elliptical mirrors 26, 28, 30, with mirror sections again being sufficient to reflect the radiation.
  • One or more LEDs in the manner of LED 10 are arranged in the respective first focal points or focal lines 32, 34, 36.
  • the various mirrors 26, 28, 30 have a common second focal point 38 and a common focal line 38.
  • This focal point 38 and the focal line 38 is again first focal point 38 or Br 'ennline 38 of another elliptical collecting mirror 40 having a second focal point 42 and fuels line 42 when the collecting mirror 40 is designed as an elliptical cylinder mirror.
  • the radiation emanating from the first focal lines 32, 34, 36 is bundled in the second focal line 38 common to all mirrors 26, 28, 30.
  • the radiation emanating from this focal line 38, which corresponds to the first focal line 38 of the mirror 40, is bundled in the second focal line 42 of the mirror 40.
  • a rotating element for example a section of an ellipsoid
  • a rotating element for example a section of an ellipsoid
  • Such a mirror then has no focal lines but focal points.
  • the radiation emanating from the focal points 32, 34, 36 is then focused on the ellipsoid mirror surfaces of the mirrors 26, 28, 30 into the focal point 38, which corresponds to the first focal point of the ellipsoid collecting mirror 40.
  • the radiation emanating from the focal point 38 is then bundled into the focal point 42, where a light spot of high radiation density is created.
  • FIG. 4 shows an arrangement of a device for illuminating an object 0 in the form of cells, the same parts being designated the same.
  • LEDs 10 are arranged on the circuit board 12 in a row on both sides of the circuit board 12. These LEDs 10 are arranged along the first focal line of two elliptical cylindrical mirrors 46, 48. These mirrors 46, 48 focus the radiation into its second one Focal line 50, which coincide locally and illuminate object 0.
  • the device shown has a compact structure, since the emission characteristic of the LED, which emits radiation only in one half-space, is linked to the favorable imaging properties of the elliptical mirrors 46, 48. In this way it is possible to record the entire emitted radiation with the aid of relatively small mirror elements. By choosing the ellipse parameters, a largely compact structure can be achieved, so that radiation can be focused on the object 0 even over a relatively large distance.
  • FIG. 5 shows a structure with only one row of LEDs 10 on the printed circuit board 12.
  • the elliptical mirror 52 is connected directly to the printed circuit board 12, which results in a structurally simple structure.
  • the object 0 to be illuminated is tilted with respect to the vertical in which the printed circuit board 12 is located. From direction 54, the cell-illuminated object 0 is scanned using a camera (not shown).
  • Figure 6 shows a structure symmetrical to an axis of symmetry 56 which is perpendicular to the object 0, e.g. a print template.
  • the axis of symmetry 56 also forms the central axis of the viewing angle for a scanning camera.
  • the elliptical mirrors 58, 60 each form a structural unit with the printed circuit board 12. From direction 56, the light line created on object 0 can be freely accessed. In the arrangement shown, shadows are largely avoided.
  • FIG. 7 shows a cross section of the structure of the elliptical mirror cylinder 62. It is produced by shaping a sheet, for example a thickness of 0.5 mm.
  • FIG. 8 shows a perspective illustration of the elliptical cylinder mirror 62, on the edges of which fastening holes 64 are provided.
  • the devices shown can be used particularly advantageously for image scanning systems, digital scanners and copying systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Lenses (AREA)

Abstract

Beschrieben wird eine Vorrichtung zum zeilenförmigen Beleuchten eines Objektes, bei der ein ortsfest angeordneter elliptischer Spiegel (52) die Strahlung einer polychromatischen LED-Zeile (10) sammelt und sie in seiner zweiten Brennlinie auf einem Objekt (O) fokussiert.

Description

Vorrichtung und Verfahren zum zellenförmigen Beleuchten eines Objektes mittels LEDs und eines elliptischen Spiegels
Die Erfindung betrifft eine Vorrichtung zum zellenförmigen Beleuchten eines Objektes. Ferner betrifft die Erfindung ein Verfahren zum zellenförmigen Beleuchten eines Objektes und ein Abtastsystem.
Eine typische Anwendung für eine Vorrichtung zum zeilenförmi- gen Beleuchten eines Objektes ist ein Bildaufnahmesystem, bei dem ein Sensor, beipsielsweise eine Kamera, grafische Elemente einer Vorlage erfaßt, diese grafischen Elemente digitalisiert und die Bilddaten weiterverarbeitet werden. Die Qualität eines Bildaufnahmesystems hängt direkt von der Licht- menge ab, die dem Sensor bei der Abtastung zur Erzeugung der entsprechenden Signale zur Verfügung steht. Es ist daher wünschenswert, insbesondere im Bereich schneller Zeilen-Abtastsysteme, eine große Lichtmenge zur Verfügung zu stellen, da hierdurch für die nachfolgende Signalverarbeitung ein hoher Signal-Rausch-Abstand bereitgestellt wird. Weiterhin ist es erforderlich, eine Lichtquelle mit möglichst geringer Verlustleistung einzusetzen, die eine hohe Zeitstabilität und Temperaturstabilität besitzt.
Lichtemittierende Dioden, sogenannte LEDs, haben für die Anwendung in Bildaufnahmesystemen sehr gute Eigenschaften im Hinblick auf Lebensdauer, Zeitstabilität, Temperaturstabilität und Effizienz der Lichtausbeute. Bekannte Abtastsysteme, die LED-Zeilen benutzen, bündeln die Strahlung mithilfe von Stablinsen oder Fresnel-Linsen. Derartige Systeme werden für monochromatisches Licht genutzt.
Aufgrund neuerer Entwicklungen stehen nunmehr polychromatische LEDs zur Verfügung, die auch weißes Licht emittieren. Derartige LEDs haben jedoch eine geringe Licht-Leistungsdichte, so daß sie nur sehr eingeschränkt in Bildaufnahmesystemen eingesetzt werden können. Die Verwendung von Linsen- komponenten, beispielsweise von Stablinsen oder Fresnel-Linsen bei polychromatischem Licht, führt zu erheblichen chromatischen Abbildungsfehlern. Diese chromatischen Abbildungsfehler äußern sich in Farbfehlern an den Fokusrändern. Bei der Abtastung farbiger grafischer Bildelemente ist es jedoch erforderlich, eine homogene Farbtemperatur für das gesamte Aus- leuchtungsfeld zu besitzen, um eine fehlerhafte Abtastung zu vermeiden. Daher ist es nur mit großem Aufwand möglich, die Lichtstrahlung polychromatischer LEDs mithilfe von Linsensy- stemen zu bündeln.
Aus der US-A-5, 828, 050 ist ein optisches Abtastsystem bekannt, das mit einem gewölbten schwenkbaren Spiegel arbeitet. Die Strahlung einer monochromatischen LED wird durch den Spiegel als Leuchtfleck auf ein abzutastendes Objekt gerichtet. Der Empfangsstrahlengang einer Lichtempfangsdiode wird über denselben Spiegel geführt, so daß die im Leuchtfleck beleuchteten grafischen Elemente bei der Schwenkbewegung des Spiegels abgetastet werden.
In der US-A-5, 12, 205 ist ein Abtastsystem mit einem ortsfest angeordneten Spiegel beschrieben, der im Querschnitt ellip- senförmig ist. Eine langgestreckte Fluoreszenzröhre ist in der ersten Brennlinie des Spiegels angeordnet, das abzuta- stende Dokument in der zweiten Brennlinie. Die Strahlung der Fluoreszenzröhre wird durch den Spiegel zellenförmig auf das Dokument fokussiert.
Aus der JP 08-307610A mit Abstract ist eine Bild-Lesevor- richtung bekannt, die als Lichtquelle eine LED verwendet. Diese LED hat einen elliptischen Spiegel, wobei die LED in einem Brennpunkt des Spiegels und der andere Brennpunkt des Spiegels auf dem zu lesenden Bild angeordnet ist.
Weiterhin wird auf den folgenden Stand der Technik verwiesen: JP 2000-312 305 A, FR 1 237 467, DE-OS 2 217 421, US 6,133,565, JP 56-106 257 A mit Abstract, DE 195 32 877 AI, DE 41 23 916 C2. In diesen Dokumenten wird die Verwendung von elliptischen Spiegeln im Zusammenhang mit digitalen Kameras und Abtastvorrichtungen beschrieben.
Es ist Aufgabe der Erfindung, eine Vorrichtung zum zellenförmigen Beleuchten eines Objektes anzugeben, das einen kompakten Aufbau hat und eine hohe Beleuchtungslichtmenge zur Verfügung stellt.
Diese Aufgabe wird für eine Vorrichtung durch die Merkmale des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind Gegenstand der abhängigen Ansprüche.
Gemäß der Erfindung wird zur Strahlungsbündelung ein ortsfest angeordneter Spiegel verwendet. Dieser Spiegel hat zwei
Brennlinien. Längs einer Brennlinie werden mehrere LEDs angeordnet. Die vom Spiegel erfaßte Strahlung wird in der zweiten Brennlinie fokussiert.
Durch die Verwendung von LEDs hat die Vorrichtung einen kompakten Aufbau sowie weitere günstige Eigenschaften im Hinblick auf Lebensdauer der Lichtquelle, Zeitstabilität, Temperaturstabilität und Lichtausbeute. Durch die Verwendung eines ortsfesten Spiegels bleibt der Strahlengang übersichtlich, da für die Lage der beiden Brennlinien des Spiegels große kon- truktive Freiheitsgrade gegeben sind. Durch die Verwendung des Spiegels entstehen keine wellenlängenabhängigen chromatischen Abbildungsfehler, so daß bei Verwendung von LEDs, die weißes Licht aussenden, an den Fokusrändern keine Farbfehler entstehen. Dies ist vorteilhaft, wenn die Vorrichtung zum zellenförmigen Beleuchten eines Objektes in ein Abtastsystem einbezogen wird, bei dem farbige Bildelemente mittels eines zellenförmig arbeitenden Abtastsystems abgetastet werden sollen, beispielsweise bei digitalen Scannersystemen oder Ko- piersystemen. Gemäß einer bevorzugten Ausführungsform hat der zylinderför- mige Abschnitt des Spiegels die Form der inneren Mantelfläche eines elliptischen Zylinders. Der elliptisch geformte Spiegel besitzt die Eigenschaft, Strahlung, die aus dem ersten Brenn- punkt der Ellipse emittiert wird, vollständig in den zweiten Brennpunkt zu fokussieren. Aufgrund der geometrischen Reflexion der Spiegeloberfläche treten keine chromatischen Fehler auf. Daher ist ein derartiges Spiegelsystem besonders gut geeignet für polychromatisches Licht. Bei Verwendung eines el- liptischen Zylinders entsteht anstelle eines Brennpunktes eine Brennlinie, wodurch eine optimale zellenförmige Beleuchtung eines Objektes ermöglicht wird. Diese zellenförmige Beleuchtung ist besonders vorteilhaft, wenn ein Objekt digital abgetastet werden muß.
Gemäß weiteren Aspekten der Erfindung wird ein Verfahren unter Verwendung der genannten Vorrichtung angegeben. Ferner wird ein System zum Abtasten eines Objektes unter Einbeziehung eines Sensorsystems, beispielsweise einer Kamera angege- ben.
Ausführungsbeispiele der Erfindung werden im folgenden anhand der Zeichnung erläutert. Darin zeigt:
Figur 1 eine Anordnung einer LED auf einer Leiterplatte und die Abstrahlcharakteristik der LED,
Figur 2 das Prinzip der Strahlungsreflexion an ei- nem elliptischen Spiegel,
Figur 3 eine Anordnung mit mehreren elliptischen
Spiegeln und gemeinsamen Brennpunkten bzw. Brennlinien, Figur 4 eine Ausführungsform mit doppelseitig auf einer Leiterplatte angeordneten LED-Zeilen,
Figur 5 eine Beleuchtungsanordnung mit einer LED-
Zeile,
Figur 6 eine symmetrische Anordnung zweier LED-Zeilen und zweier elliptischer Spiegel,
Figur 7 den Querschnitt durch einen Spiegel in Form einer elliptischen Zylindermantelfläche, und
Figur 8 eine perspektivische Darstellung eines als elliptischer Zylinderspiegel dienenden geformten Blechs.
Figur 1 zeigt die Anordnung einer LED 10 auf einer Leiter- platte 12. Diese Leiterplatte 12 trägt Leiterbahnen und gegebenenfalls auch elektronische Komponenten zur Ansteuerung der LED 10. Diese LED 10 sendet polychromatisches Licht, insbesondere weißes Licht aus. Die Erzeugung von polychromatischem Licht ist durch die Verwendung von fluoriszierenden Konver- tierungsstoffen beim Halbleiteraufbau der LED möglich. Problematisch ist bei derartigen polychromatischen LEDs 10, daß die abgestrahlte Leistungsdichte relativ gering ist. Beim Einsatz polychromatischer LEDs für Abtastsysteme oder Zeilen- Abtastsystemen mit hohen Anforderungen an die Lichtmenge ist daher eine effiziente Fokussierung der emittierten Strahlung erforderlich. In Figur 1 ist dargestellt, daß die Strahlung, angedeutet durch Pfeile 14, in den Halbraum nach Art einer kugelförmigen Lichtverteilungskurve 16 erfolgt.
Figur 2 zeigt das bei der Erfindung verwendete Prinzip. Wird in einem elliptischen Spiegel 18 mit den beiden Brennpunkten 20, 22 im Brennpunkt 20 eine polychromatische LED 10 angeord- net, die Licht gemäß der Lichtverteilungskurve 16 aussendet, so wird dieses Licht am elliptischen Spiegel 18 reflektiert und in den zweiten Brennpunkt 22 fokussiert. Prinzipiell gilt dies für alle Strahlen. Ausgenutzt wird dies jedoch nur für Strahlen, die in den Halbraum in Richtung der Lichtverteilungskurve 16 ausgesendet werden; auch der Strahl 24 wird theoretisch in den Brennpunkt 22 fokussiert. Im allgemeinen reicht es aus, nur einen Abschnitt der Ellipse 18 als Spiegel zu verwenden, um eine ausreichende Bündelung der in den Hal- braum ausgesendeten Strahlung zu erreichen. Durch geschickte Wahl der Ellipsenparameter kann eine kompakte geometrische Anordnung mit vielen konstruktiven Freiheitsgraden erreicht werden. Aufgrund der geometrischen Reflexion an der elliptischen Fläche des Spiegels 18 entsteht kein chromatischer Ab- bildungsfehler; vielmehr werden die Strahlen unterschiedlicher Wellenlänge im Brennpunkt 22 gebündelt, ohne daß Farbränder entstehen.
Um eine zellenförmige Beleuchtung zu erzielen, wird als Spie- gel ein Abschnitt einer inneren Mantelfläche eines elliptischen Zylinders verwendet. Die Brennpunkte 20, 22 sind dann Punkte auf Brennlinien 20, 22. Werden in der Brennlinie 20 mehrere LEDs 10 angeordnet, so entsteht in der Brennlinie 22 eine Leuchtzeile, die sich besonders gut für die optoelektro- nische Abtastung von Vorlagen eignet.
Figur 3 zeigt nun eine Erweiterung des in Figur 2 gezeigten Prinzips durch parallele Fokussierung mithilfe mehrerer elliptischer Spiegel 26, 28, 30, wobei wiederum Spiegelab- schnitte zur Reflexion der Strahlung ausreichen. In den jeweiligen ersten Brennpunkten bzw. Brennlinien 32, 34, 36 werden eine bzw. mehrere LEDs nach Art der LED 10 angeordnet. Die verschiedenen Spiegel 26, 28, 30 haben einen gemeinsamen zweiten Brennpunkt 38 bzw. eine gemeinsame Brennlinie 38. Dieser Brennpunkt 38 bzw. Brennlinie 38 ist wiederum erster Brennpunkt 38 oder Br'ennlinie 38 eines weiteren elliptischen Sammelspiegels 40 mit einem zweiten Brennpunkt 42 bzw. Brenn- linie 42, wenn der Sammelspiegel 40 als elliptischer Zylinderspiegel ausgebildet ist.
Unter der Annahme, daß die Spiegel 26, 28, 30, 40 elliptische Zylinderspiegelabschnitte haben, wird die von den ersten Brennlinien 32, 34, 36 ausgehende Strahlung in der für alle Spiegel 26, 28, 30 gemeinsamen zweiten Brennlinie 38 gebündelt. Die von dieser Brennlinie 38, die mit der ersten Brennlinie 38 des Spiegels 40 übereinstimmt, ausgehende Strahlung wird in der zweiten Brennlinie 42 des Spiegels 40 gebündelt. Durch die Hintereinanderschaltung der verschiedenen Spiegel ist es also möglich, die Leuchtdichte in der Brennlinie 42 noch weiter zu erhöhen. Die Kaskadierung mit weiteren Spiegeln kann fortgesetzt werden, indem die Brennlinie 42 die er- ste Brennlinie eines weiteren Sammelspiegels (nicht dargestellt) ist. Die Strahlung wird dann in dessen zweite Brennlinie abgebildet.
Für den Fall, daß nicht eine Leuchtzeile erzeugt werden soll, sondern ein Leuchtfleck, ist als Spiegel ein Rotationselement zu verwenden, beispielsweise ein Abschnitt eines Ellipsoids. Ein derartiger Spiegel hat dann keine Brennlinien sondern Brennpunkte. Die von den Brennpunkten 32, 34, 36 ausgehende Strahlung wird dann an den ellipsoiden Spiegelflächen der Spiegel 26, 28, 30 in den Brennpunkt 38 fokussiert, der mit dem ersten Brennpunkt des ellipsoiden Sammelspiegels 40 übereinstimmt. Die vom Brennpunkt 38 ausgehende Strahlung wird dann in den Brennpunkt 42 gebündelt, wo ein Leuchtfleck hoher Strahlungsdichte entsteht.
Figur 4 zeigt eine Anordnung einer Vorrichtung zum zellenförmigen Beleuchten eines Objektes 0, wobei gleiche Teile weiterhin gleich bezeichnet werden. Auf der Leiterplatte 12 sind in einer Zeile beidseitig der Leiterplatte 12 LEDs 10 ange- ordnet. Diese LEDs 10 sind längs der ersten Brennlinie zweier elliptischer Zylinderspiegel 46, 48 angeordnet. Diese Spiegel 46, 48 fokussieren die Strahlung in ihre jeweils zweite Brennlinie 50, die örtlich übereinstimmen und das Objekt 0 beleuchten. Die dargestellte Vorrichtung hat einen kompakten Aufbau, da die Emissionscharakteristik der LED, die nur in einen Halbraum Strahlung aussendet, mit den günstigen Abbil- dungseigenschaften der elliptischen Spiegel 46, 48 verknüpft ist. Auf diese Weise ist es möglich, mithilfe relativ kleiner Spiegelelemente die gesamte emittierte Strahlung zu erfassen. Durch Wahl der Ellipsenparameter kann ein weitgehend kompakter Aufbau erreicht werden, so daß auch über eine relativ große Entfernung hinweg Strahlung auf dem Objekt 0 gebündelt werden kann.
Figur 5 zeigt einen Aufbau mit nur einer Zeile von LEDs 10 auf der Leiterplatte 12. Der elliptische Spiegel 52 ist un- mittelbar mit der Leiterplatte 12 verbunden, wodurch sich ein konstruktiv einfacher Aufbau ergibt. Das zu beleuchtende Objekt 0 ist gegenüber der Vertikalen, in der die Leiterplatte 12 liegt, verkippt. Aus Richtung 54 wird das zellenförmig beleuchtete Objekt 0 mithilfe einer Kamera (nicht dargestellt) abgetastet.
Figur 6 zeigt einen Aufbau symmetrisch zu einer Symmetrieachse 56, die senkrecht auf dem Objekt 0, z.B. eine Druckvorlage, steht. Die Symmetrieachse 56 bildet gleichzeitig auch die Mittelachse des Blickwinkels für eine Abtastkamera. Die elliptischen Spiegel 58, 60 bilden mit der Leiterplatte 12 jeweils eine Baueinheit. Aus der Richtung 56 kann frei zu der auf dem Objekt 0 entstehenden Leuchtzeile zugegriffen werden. Bei der gezeigten Anordnung wird ein Schattenwurf weitgehend vermieden.
Figur 7 zeigt in einem Querschnitt den Aufbau des elliptischen Spiegelzylinders 62. Er wird durch Formen eines Blechs, beispielsweise der Dicke 0,5 mm, hergestellt. Figur 8 zeigt eine perspektivische Darstellung des elliptischen Zylinderspiegels 62, an dessen Rändern Befestigungslöcher 64 vorgesehen sind.
Die gezeigten Vorrichtungen lassen sich besonders vorteilhaft für Bildabtastsysteme, digitale Scanner und Kopiersysteme verwenden .
Bezugszeichenliste
10 LED
12 Leiterplatte 14 Strahlungspfeile
16 Lichtverteilungskurve
18 elliptischer Spiegel
20,22 Brennpunkte, Brennlinien
24 Strahl 26,28,30 elliptischer Spiegel
32,34,36 Brennlinien, Brennpunkte
38 zweiter Brennpunkt, zweite Brennlinie
40 Sammelspiegel
42 zweiter Brennpunkt, zweite Brennlinie 46,48 elliptische Zylinderspiegel
50 zweite Brennlinie
0 Objekt
52 elliptischer Spiegel
54 Richtungsachse 56 Symmetrieachse
58,60 elliptischer Spiegel
62 elliptischer Zylinderspiegel aus Blech
64 Befestigungslöcher

Claims

Ansprüche
1. Vorrichtung zum zellenförmigen Beleuchten eines Objektes (0),
bei der mindestens ein ortsfest angeordneter Spiegel (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) einen konkav gewölbten langgestreckten zylinderförmigen Abschnitt und zwei Brennlinien (32, 38; 34, 38; 36, 38; 38, 42; 50) hat,
längs einer Brennlinie (32, 34, 36) mehrere LEDs (10) angeordnet sind, die Strahlung in Richtung des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) aussenden,
und bei der die ausgesendete Strahlung in der zweiten Brennlinie (38, 42, 50) gesammelt wird.
2. Vorrichtung nach Anspruch 1, bei der der zylinderförmige Abschnitt des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) die Form der inneren Mantelfläche eines elliptischen Zylinders hat.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der mehrere Spiegel (26, 28, 30) mit jeweils einer ersten Brennlinie (32, 34, 36) und einer zweiten Brennlinie (38) vorgesehen sind,
je Spiegel (26, 28, 30) mehrere LEDs (10) längs der ersten Brennlinie (32, 34, 36) angeordnet sind, die Strahlung in Richtung des jeweiligen Spiegels (26, 28, 30) aussenden,
und bei der die von den mehreren Spiegeln (26, 28, 30) reflektierte Strahlung in einer gemeinsamen zweiten Brennlinie (38) gesammelt werden.
Vorrichtung nach Anspruch 3, bei der ein Sammelspiegel (40) mit zwei Brennlinien (38, 42) vorgesehen ist, dessen erste Brennlinie (38) mit der genannten gemeinsamen Brennlinie (38) übereinstimmt,
und bei der die von der ersten Brennlinie (38) herkommende Strahlung in der zweiten Brennlinie (42) des Sammelspiegels (40) gesammelt wird.
5. Vorrichtung nach Anspruch 4, bei der eine Kaskadierung mit mehreren Sammelspiegeln mit jeweils zwei Brennlinien vor- gesehen ist, bei der ein vorgelagerter Sammelspiegel die von seiner ersten Brennlinie ausgehende Strahlung in seiner zweiten Brennlinie sammelt,
und bei der die erste Brennlinie des nachgelagerten Sam- melspiegels mit der zweiten Brennlinie des vorgelagerten Sammelspiegels übereinstimmt und die Strahlung in seiner zweiten Brennlinie sammelt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die LEDs (10) polychromatisches Licht erzeugen.
7. Vorrichtung nach Anspruch 6, bei der die LEDs sichtbares Licht aussenden, vorzugsweise weißes Licht.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das zu beleuchtende Objekt (0) längs der zweiten Brennlinie (22; 38) des Spiegels (18) oder der Vielzahl von Spiegeln (26, 28, 30) oder bei einer Kaskadierung in der zweiten Brennlinie (42) des nachgelagerten letzten Sammelspiegels (40) angeordnet ist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die LEDs (10) auf einer Leiterplatte (12) in einer Zeile angeordnet sind, und bei der nahe der Leiterplatte (12) oder mit dieser verbunden der Spiegel (52) angeordnet ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der eine Leiterplatte (12) doppelseitig mit je einer Zeile von LEDs (10) bestückt ist,
und bei der auf jeder Seite der Leiterplatte (12) ein
Spiegel (46, 48) angeordnet ist, deren zweiten Brennlinien sich in einer Sammelbrennlinie (50) treffen.
11.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der symmetrisch zu einer Symmetrieachse (56) zwei Leiterplatten (12) mit LEDs (10) und je einem Spiegel (58, 60) angeordnet sind,
die zweiten Brennlinien der Spiegel (58, 60) sich in einer Sammelbrennlinie auf der Symmetrieachse (56) treffen,
und bei der das zu beleuchtende Objekt (0) in dieser Sammelbrennlinie angeordnet ist.
12.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der eine Kamera das beleuchtete Objekt (0) abtastet.
13. Verfahren zum zellenförmigen Beleuchten eines Objektes (0),
bei dem mindestens ein ortsfest angeordneter Spiegel (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) einen konkav gewölbten langgestreckten zylinderförmigen Abschnitt und zwei Brennlinien (32, 38; 34, 38; 36, 38; 38, 42; 50) hat,
längs einer Brennlinie (32, 34, 36) mehrere LEDs (10) Strahlung in Richtung des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) aussenden,
und bei dem die ausgesendete Strahlung in der zweiten Brennlinie (38, 42, 50) gesammelt wird.
14. Verfahren nach Anspruch 13, bei dem der zylinderförmige Abschnitt des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) die Form der inneren Mantelfläche eines elliptischen Zylinders hat.
15. Verfahren nach einem der vorhergehenden Ansprüche, bei dem mehrere Spiegel (26, 28, 30) mit jeweils einer ersten Brennlinie (32, 34, 36) und einer zweiten Brennlinie (38) verwendet werden,
je Spiegel (26, 28, 30) mehrere LEDs (10) längs der ersten Brennlinie (32, 34, 36) angeordnet sind, die Strahlung in Richtung des jeweiligen Spiegels (26, 28, 30) aussenden,
und bei dem die von den mehreren Spiegeln (26, 28, 30) reflektierte Strahlung in einer gemeinsamen zweiten Brennlinie (38) gesammelt werden.
16. Verfahren nach Anspruch 15, bei dem ein Sammelspiegel (40) mit zwei Brennlinien (38, 42) verwendet wird, dessen erste Brennlinie (38) mit der genannten gemeinsamen Brennlinie (38) übereinstimmt,
und bei dem die von der ersten Brennlinie (38) herkommende Strahlung in der zweiten Brennlinie (42) des Sammelspiegels (40) gesammelt wird.
17. Verfahren nach Anspruch 16, bei dem eine Kaskadierung mit mehreren Sammelspiegeln mit jeweils zwei Brennlinien vor- gesehen ist, bei der ein vorgelagerter Sammelspiegel die von seiner ersten Brennlinie ausgehende Strahlung in seiner zweiten Brennlinie sammelt,
und bei dem die erste Brennlinie des nachgelagerten Sam- melspiegels mit der zweiten Brennlinie des vorgelagerten Sammelspiegels übereinstimmt und die Strahlung in seiner zweiten Brennlinie sammelt.
18. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die LEDs (10) polychromatisches Licht erzeugen.
19. Verfahren nach Anspruch 18, bei dem die LEDs sichtbares Licht aussenden, vorzugsweise weißes Licht.
20. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das zu beleuchtende Objekt (0) längs der zweiten Brennli- nie (22; 38) des Spiegels (18) oder der Vielzahl von Spiegeln (26, 28, 30) oder bei einer Kaskadierung in der zweiten Brennlinie (42) des nachgelagerten letzten Sammelspiegels (40) angeordnet wird.
21. Verfahren nach einem der vorhergehenden Ansprüche, bei dem eine Kamera das beleuchtete Objekt (0) abtastet.
22. System zum zellenförmigen Abtasten eines Objektes (0),
bei der mindestens ein ortsfest angeordneter Spiegel (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) einen konkav gewölbten langgestreckten zylinderförmigen Abschnitt und zwei Brennlinien (32, 38; 34, 38; 36, 38; 38, 42; 50) hat,
längs einer Brennlinie (32, 34, 36) mehrere LEDs (10) angeordnet sind, die Strahlung in Richtung des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) aussenden,
bei dem die Strahlung in der zweiten Brennlinie (38, 42, 50) gesammelt wird, in welchem das Objekt (0) angeordnet ist, und bei dem ein Sensor die vom Objekt (0) abgestrahlte Strahlung erfaßt.
23. Vorrichtung zum Beleuchten eines Objektes (0) durch einen Leuchtfleck, bei der mindestens ein ortsfest angeordneter Spiegel (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) einen konkav gewölbten Abschnitt und zwei Brennpunkte (32, 38; 34, 38; 36, 38; 38, 42; 50) hat,
in einem Brennpunkt (32, 34, 36) mindestens eine LED (10) angeordnet ist, die Strahlung in Richtung des Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) aussendet,
und bei der die ausgesendete Strahlung im zweiten Brennpunkt (38, 42, 50) gesammelt wird.
24.Vorrichtung nach Anspruch 23, bei der der Abschnitt des
Spiegels (26, 28, 30, 40, 46, 48, 52, 58, 60, 62) die Form der inneren Mantelfläche eines Ellipsoids hat.
25.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der mehrere Spiegel (26, 28, 30) mit jeweils einem ersten Brennpunkt (32, 34, 36) und einem zweiten Brennpunkt (38) vorgesehen sind,
je Spiegel (26, 28, 30) mindestens eine LED (10) im ersten
Brennpunkt (32, 34, 36) angeordnet ist, die Strahlung in
Richtung des jeweiligen Spiegels (26, 28, 30) aussendet,
und bei der die von den mehreren Spiegeln (26, 28, 30) reflektierte Strahlung in einem gemeinsamen zweiten Brennpunkt (38) gesammelt wird.
26. Vorrichtung nach Anspruch 35, bei der ein Sammelspiegel
(40) mit zwei Brennpunkten (38, 42) vorgesehen ist, dessen erster Brennpunkt (38) mit dem genannten gemeinsamen Brennpunkt (38) übereinstimmt,
und bei dem die von dem ersten Brennpunkt (38) herkommende Strahlung im zweiten Brennpunkt (42) des Sammelspiegels (40) gesammelt wird.
27.Vorrichtung nach Anspruch 26, bei der eine Kaskadierung mit mehreren Sammelspiegeln mit jeweils zwei Brennpunkten vorgesehen ist, bei der ein vorgelagerter Sammelspiegel die von seinem ersten Brennpunkt ausgehende Strahlung in seinem zweiten Brennpunkt sammelt,
und bei der der erste Brennpunkt des nachgelagerten Sammelspiegels mit dem zweiten Brennpunkt des vorgelagerten Sammelspiegels übereinstimmt und die Strahlung in seinem zweiten Brennpunkt sammelt.
28.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die LEDs (10) polychromatisches Licht erzeugen.
29. Vorrichtung nach Anspruch 28, bei der die LEDs sichtbares Licht aussenden, vorzugsweise weißes Licht.
30.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der das zu beleuchtende Objekt (0) im zweiten Brennpunkt (22; 38) des Spiegels (18) oder der Vielzahl von Spiegeln (26, 28, 30) oder bei einer Kaskadierung imzweiten Brennpunkt (42) des nachgelagerten letzten Sammelspiegels (40) angeordnet ist.
31.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der die LED (10) auf einer Leiterplatte (12) angeordnet ist, und bei der nahe der Leiterplatte (12) oder mit dieser verbunden der Spiegel (52) angeordnet ist.
32. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der eine Leiterplatte (12) doppelseitig mit je einer LED (10) bestückt ist,
und bei der auf jeder Seite der Leiterplatte (12) ein
Spiegel (46, 48) angeordnet ist, deren zweite Brennpunkte sich in einem Sammelbrennpunkt (50) treffen.
3. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der symmetrisch zu einer Symmetrieachse (56) zwei Leiterplatten (12) mit LEDs (10) und je einem Spiegel (58, 60) angeordnet sind,
die zweiten Brennpunkte der Spiegel (58, 60) sich in einem Sammelbrennpunkt auf der Symmetrieachse (56) treffen,
und bei der das zu beleuchtende Objekt (0) in diesem Sammelbrennpunkt angeordnet ist.
34.Vorrichtung nach einem der vorhergehenden Ansprüche, bei der eine Kamera das beleuchtete Objekt (0) abtastet.
PCT/EP2002/001797 2001-02-20 2002-02-20 VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS WO2002067567A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT02716794T ATE527814T1 (de) 2001-02-20 2002-02-20 Vorrichtung und verfahren zum zeilenförmigen beleuchten eines objektes mittels leds und eines elliptischen spiegels
US10/468,616 US7012241B2 (en) 2001-02-20 2002-02-20 Device and method for linear illumination of an object using LEDs and elliptical mirrors
EP02716794A EP1362473B1 (de) 2001-02-20 2002-02-20 VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10108075A DE10108075A1 (de) 2001-02-20 2001-02-20 Vorrichtung und Verfahren zum zeilenförmigen Beleuchten eines Objektes mittels LEDs und eines elliptischen Spiegels
DE10108075.1 2001-02-20

Publications (1)

Publication Number Publication Date
WO2002067567A1 true WO2002067567A1 (de) 2002-08-29

Family

ID=7674815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001797 WO2002067567A1 (de) 2001-02-20 2002-02-20 VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS

Country Status (5)

Country Link
US (1) US7012241B2 (de)
EP (1) EP1362473B1 (de)
AT (1) ATE527814T1 (de)
DE (1) DE10108075A1 (de)
WO (1) WO2002067567A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249208A1 (de) * 2002-10-22 2004-03-18 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung und Lesegerät mit einer solchen Beleuchtungsvorrichtung
DE102016109803B3 (de) * 2016-05-27 2017-07-06 Eyec Gmbh Inspektionsvorrichtung und Inspektionsverfahren zur Inspektion des Oberflächenbildes einer einen Prüfling darstellenden Flachsache

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452010A2 (de) * 2001-11-23 2004-09-01 Oce Document Technologies Gmbh Einrichtung und verfahren zum abtasten einer vorlage unter anwendung einer hebe- und drehbewegung einer kamera
EP1653271B1 (de) * 2004-10-29 2008-08-13 Swarovski Optik KG Strichplatte und deren Verwendung für ein Zielfernrohr
CN100367072C (zh) * 2004-12-21 2008-02-06 亚洲光学股份有限公司 具有高反射性反光层的扫描单元
US20060214123A1 (en) * 2005-03-24 2006-09-28 Eastman Kodak Company Linear illumination using cylindrical elliptical reflective surface
JP2007013913A (ja) * 2005-05-30 2007-01-18 Toyota Industries Corp 照明装置および原稿読取装置
DE102005031647A1 (de) * 2005-07-06 2007-01-11 Chromasens Gmbh Beleuchtungsvorrichtung zur Dunkelfeldbeleuchtung für eine optische Testvorrichtung und Verfahren zum optischen Abtasten eines Objektes
DE102006017912B4 (de) 2006-04-18 2009-04-16 Chromasens Gmbh Beleuchtungssystem zur zeilenförmigen Beleuchtung
US8982125B1 (en) * 2014-05-15 2015-03-17 Chaos Software Ltd. Shading CG representations of materials
US11370231B2 (en) 2017-04-07 2022-06-28 Phoseon Technology, Inc. Pivoted elliptical reflector for large distance reflection of ultraviolet rays

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287414A (en) * 1979-06-29 1981-09-01 International Business Machines Corp. Illumination and pick up apparatus
US4422100A (en) * 1982-03-08 1983-12-20 The Mead Corporation Document scanning apparatus
JPH08307610A (ja) * 1995-05-12 1996-11-22 Nikon Corp 画像読取装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1237467A (fr) * 1959-10-08 1960-07-29 Appareil pour la concentration de sources de rayonnement
DE2217421A1 (de) * 1972-04-12 1973-10-25 Willi Dost Geraet zur buendelung von strahlen
US4657721A (en) * 1973-05-21 1987-04-14 Kms Fusion, Inc. Target illumination
JPS56106257A (en) * 1980-01-30 1981-08-24 Ricoh Co Ltd Illumination apparatus of copying machine
JPH0312305A (ja) * 1989-06-08 1991-01-21 Sumitomo Metal Ind Ltd 廃塩酸の回収方法
DE4123916C2 (de) * 1990-07-19 1998-04-09 Reinhard Malz Verfahren und Vorrichtung zum beleuchtungsdynamischen Erkennen und Klassifizieren von Oberflächenmerkmalen und -defekten eines Objektes
US5828050A (en) 1990-08-03 1998-10-27 Symbol Technologies, Inc. Light emitting laser diode scanner
US5412205A (en) 1993-11-18 1995-05-02 Logitech, Inc. Scanner with a wing-shaped fluorescent tube housing and dual-faceted scan window
DE19532877A1 (de) * 1995-09-06 1997-03-13 Giesecke & Devrient Gmbh Vorrichtung zur linienförmigen Beleuchtung von Blattgut, wie z. B. Banknoten oder Wertpapiere
US6133565A (en) * 1997-08-12 2000-10-17 Rohm Co., Ltd. Image reading apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287414A (en) * 1979-06-29 1981-09-01 International Business Machines Corp. Illumination and pick up apparatus
US4422100A (en) * 1982-03-08 1983-12-20 The Mead Corporation Document scanning apparatus
JPH08307610A (ja) * 1995-05-12 1996-11-22 Nikon Corp 画像読取装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 03 31 March 1997 (1997-03-31) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249208A1 (de) * 2002-10-22 2004-03-18 Osram Opto Semiconductors Gmbh Beleuchtungsvorrichtung und Lesegerät mit einer solchen Beleuchtungsvorrichtung
DE102016109803B3 (de) * 2016-05-27 2017-07-06 Eyec Gmbh Inspektionsvorrichtung und Inspektionsverfahren zur Inspektion des Oberflächenbildes einer einen Prüfling darstellenden Flachsache
EP3258244A2 (de) 2016-05-27 2017-12-20 Eyec GmbH Inspektionsvorrichtung und inspektionsverfahren zur inspektion des oberflächenbildes einer einen prüfling darstellenden flachsache
US10215708B2 (en) 2016-05-27 2019-02-26 Eyec Gmbh Inspection apparatus and inspection method for inspection of the surface appearance of a flat item that represents a test specimen

Also Published As

Publication number Publication date
EP1362473B1 (de) 2011-10-05
ATE527814T1 (de) 2011-10-15
US20040075047A1 (en) 2004-04-22
EP1362473A1 (de) 2003-11-19
US7012241B2 (en) 2006-03-14
DE10108075A1 (de) 2002-09-19

Similar Documents

Publication Publication Date Title
DE60225867T2 (de) Abbildendes optisches Gerät
DE69629878T2 (de) Kompakter optischer Abtaster vom Wellenleitertyp
EP0485803B1 (de) Optische Abtastvorrichtung mit konfokalem Strahlengang, in der Lichtquellen- und Detektormatrix verwendet werden
DE69723542T2 (de) Bildsensor
EP2136248B1 (de) Bildaufnahmevorrichtung mit anpassbarer Beleuchtung
EP0238977A2 (de) Sende- und Empfangsmodul für ein bidirektionales Kommunikationsnetz, insbesondere ein Breitband-ISDN
DE112013006158T5 (de) Lichtleiter, Lichtquellenvorrichtung und Bildleseeinrichtung
EP1362473B1 (de) VORRICHTUNG UND VERFAHREN ZUM ZEILENFÖRMIGEN BELEUCHTEN EINES OBJEKTES MITTELS LEDs UND EINES ELLIPTISCHEN SPIEGELS
DE112008001114T5 (de) Vorrichtung für die Oberflächenprüfung
EP2848966A1 (de) Beleuchtungsvorrichtung und Verfahren zum Erzeugen eines Beleuchtungsfeldes
DE102005031647A1 (de) Beleuchtungsvorrichtung zur Dunkelfeldbeleuchtung für eine optische Testvorrichtung und Verfahren zum optischen Abtasten eines Objektes
DE4004942C2 (de)
DE10028241A1 (de) Dokumentenprüfgerät
EP1298458B1 (de) Abbildungsvorrichtung zum Abbilden eines länglichen Gegenstandes
DE69934458T2 (de) Optischer Abtaster mit verschiedenen Auflösungen
DE10349611A1 (de) Systeme und Verfahren zum Bereitstellen mehrerer Objektebenen in einem optischen Bildscanner
DE3513192C2 (de) Vorrichtung zum optischen Abtasten eines Bildes
DE19511195C2 (de) Verfahren und Vorrichtung zum optischen Prüfen einer Oberfläche
DE112020004764T5 (de) Bildsensoreinheit und Verfahren zur Produktion einer Bildsensoreinheit
DE60210908T2 (de) Beleuchtung einer Abtastregion
DE112016000829T5 (de) Lichtleitkörper, Lichtquellenvorrichtung und Bildlesevorrichtung
EP1212660B1 (de) Vorrichtung und verfahren zur wellenlängenabhängigen lichtauskopplung
DE102006017912B4 (de) Beleuchtungssystem zur zeilenförmigen Beleuchtung
EP4300935B1 (de) Beleuchtungsvorrichtung zur erzeugung eines beleuchtungsfeldes für eine kamera
DE10301961A1 (de) Optische Linseneinrichtung für einen Scanner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10468616

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002716794

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002716794

Country of ref document: EP