WO2002066069A1 - Remedies for inflammatory/tumor diseases - Google Patents

Remedies for inflammatory/tumor diseases Download PDF

Info

Publication number
WO2002066069A1
WO2002066069A1 PCT/JP2002/001445 JP0201445W WO02066069A1 WO 2002066069 A1 WO2002066069 A1 WO 2002066069A1 JP 0201445 W JP0201445 W JP 0201445W WO 02066069 A1 WO02066069 A1 WO 02066069A1
Authority
WO
WIPO (PCT)
Prior art keywords
lra
vil
inflammation
gene
cytokine
Prior art date
Application number
PCT/JP2002/001445
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Matsumori
Jun-Ichi Miyazaki
Atsushi Nakano
Original Assignee
Kansai Technology Licensing Organization Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Technology Licensing Organization Co., Ltd. filed Critical Kansai Technology Licensing Organization Co., Ltd.
Priority to JP2002565627A priority Critical patent/JPWO2002066069A1/en
Publication of WO2002066069A1 publication Critical patent/WO2002066069A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/19Cytokines; Lymphokines; Interferons
    • A61K38/20Interleukins [IL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/162Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from virus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • A61K38/1793Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the present invention relates to a therapeutic agent for inflammation / neoplastic disease.
  • Heart disease is one of the leading causes of death in developed countries. Among them, acute viral myocarditis is characterized by multifocal inflammation of the heart, and in the chronic phase leads to dilated cardiomyopathy (DCM), ventricular aneurysm, and arrhythmogenic right ventricular dysplasia. Encephalomyocarditis (EMC) virus induced myocarditis in mice, and studies using this experimental model provided important insights into the mechanisms of myocarditis and DCM (Matsumori, 197). In this model, cellular immunity is activated, and enhanced cytokine expression and activation of cytotoxic T cells and macrophages in the myocardium are observed. Therefore, the immune system is considered a therapeutic target.
  • DCM dilated cardiomyopathy
  • EMC Encephalomyocarditis
  • IL-1 inulin-leukin-1
  • TNF tumor necrosis factor
  • IFN interferon
  • the IL-11 receptor antagonist (IL-lra), a member of the IL-1 family, binds to the IL-11 receptor but does not elicit an intracellular response and is an important endogenous anti-inflammatory. It is a protein (Ai'end et al., 1998; Bresnihan et al., 1998).
  • Viral IL-10 (vIL "10) is thought to be a cellular cytoplasm that is captured by Epstein-Barr virus, and shares many of the anti-inflammatory properties of cellular IL-10. They lack action and therefore can provide excellent immunosuppression, and are promising candidates for the treatment of viral myocarditis.
  • Anti-inflammatory agents utilizing immunosuppressive cytokines are described in JP-A-2000-239182, but it is extremely difficult to administer cytodynamic proteins as proteins. However, there is a disadvantage that the cost is high.
  • Japanese Patent Application Laid-Open No. 2000-47115 describes a plasmid into which a cytokine gene has been incorporated.
  • inflammation such as myocarditis and the like is described using such a plasmid. No specific method of treatment is described.
  • An object of the present invention is to provide a therapeutic agent for inflammatory and neoplastic diseases capable of producing an immunosuppressive cytokine in a living body.
  • Figure 1A is an immunoblot of culture supernatant from BMT-10 cells transfected with pCAGGS-IL-lra showing successful expression of the 17-kDa protein and the correct size of mouse IL-lra. .
  • Each lane shows cells transfected with pCAGGS and cells transfected with pCAGGS-IL-li'a, and recombinant mouse IL-lra.
  • FIG. 1B shows serum levels of IL-lra 5 days after in vivo electroporation.
  • Figures 2A-2C show the survival curves after EMCV inoculation.
  • Figure 3A shows histological findings.
  • the lower panel shows representative histological results for each group.
  • Figure 3B shows histological findings 6 days after EMCV inoculation with soluble c-kit gene transfer.
  • Significant improvement p ⁇ 0.05).
  • FIG. 4 shows cytokine expression in the heart.
  • the present invention provides the following therapeutic agents for inflammatory and neoplastic diseases.
  • a therapeutic agent for inflammation / neoplastic disease comprising as an active ingredient an expression vector containing an immunosuppressive cytokine gene and / or a soluble cytokine receptor gene in an expressible state.
  • immunosuppressive cytokine and Z or soluble cytokine receptor gene are at least one selected from the group consisting of IL-lra, vIL-10 and soluble c_kit.
  • Inflammation including administering a therapeutically effective amount of an expression vector containing an immunosuppressive cytokine gene and Z or a soluble cytokine receptor gene in a state capable of expressing it to a patient suffering from inflammation or neoplastic disease.
  • Methods for treating neoplastic diseases including administering a therapeutically effective amount of an expression vector containing an immunosuppressive cytokine gene and Z or a soluble cytokine receptor gene in a state capable of expressing it to a patient suffering from inflammation or neoplastic disease.
  • immunosuppressive cytokine and / or soluble cytokine receptor gene is at least one selected from the group consisting of IL-lra, vIL'lO and soluble c'kit.
  • the immunosuppressive site force-in includes IL-1, IL-lj3, IL-lra, vIL-10, IL-2, 3, 4, 5, 6, 7, 8, 9, 10 , 11,12,13,14,15,16,17,18 inter-phagine, interferon ( ⁇ , ⁇ , r)> TNF-H, TGF- ⁇ , GM-CSF, EGF, FGF, RANTES, I-309 / TCA-3, rIP-10, ⁇ - ⁇ ⁇ , MIP-l jS, MIP-2, MCP-1, 2, 3, M-CSF, G-CSF, EPO, TPO, SCF, LIF, Examples include PDGF, KGF, IGF, NGF, BDNF, CDTF, OSM, HGF, and the like.
  • soluble cytokine receptors are included for the soluble receptors of these cytokins.
  • soluble c-kit is exemplified for SCF
  • soluble TNF- ⁇ receptor is exemplified for other cytokines such as TNF-Q !.
  • the gene sequences of these immunosuppressive cytokins are known, and it is particularly preferable to use human immunosuppressive cytokine genes.
  • a cytokine expression vector for example, pCAGGS can be used, and a promoter Z enhancer sequence, a splicing region, a poly (A) addition site, and the like can be appropriately combined and used.
  • a cytokine expression vector containing an immunosuppressive cytokine gene in a state capable of expressing it is described in, for example, the following description of the present specification and the description of JP-A-2000-47115. A person skilled in the art can easily perform this.
  • Inflammation's neoplastic diseases include cardiovascular diseases such as myocarditis, cerebral myocarditis, dilated cardiomyopathy, heart failure, coronary artery disease, early coronary atherosclerosis of transplanted hearts, vasculitis, and aortitis, arthritis, back pain, and gout Examples include bronchial asthma, diffuse lung disease, atopy, allergy, hepatitis, flf cirrhosis, nephritis, gastric ulcer, enteritis, encephalomyelitis, multiple sclerosis, autoimmune disease, cancer, and myeloma.
  • cardiovascular diseases such as myocarditis, cerebral myocarditis, dilated cardiomyopathy, heart failure, coronary artery disease, early coronary atherosclerosis of transplanted hearts, vasculitis, and aortitis, arthritis, back pain, and gout
  • cardiovascular diseases such as myocarditis, cerebral myocarditis, dilated cardiomyopathy
  • the combination of the specific immunosuppressive cytokine and the disease to be treated includes interferon (chronic myelogenous leukemia, multiple myeloma, renal cancer, malignant melanoma, chronic T-cell leukemia, hepatitis), 1-feron / 3 (brain tumors, hepatitis), inferior-feron r (chronic granulomatosis), IL-2 (primary immunodeficiency, malignant melanoma, kidney cancer, liver cancer), IL-6 (platelets) Hypotension), IL-11 (thrombocytopenia), Epo (thrombocytopenia), MCSF (thrombocytopenia, acute leukemia, neutropenia), GCSF (acute leukemia, neutropenia), IL-3 (neutropenia), GMCSF (neutropenia), SCF (neutropenia) power S Examples are shown.
  • interferon chronic myelogenous leukemia, multiple myeloma, renal cancer, malignant mela
  • the therapeutic agent for inflammation / neoplastic disease of the present invention is preferably administered by a parenteral route such as injection (intramuscular, subcutaneous, intradermal, intracorporeal, etc.), using any solvent such as physiological saline. be able to.
  • the administration site is preferably in the muscles of the extremities.
  • the therapeutically effective amount is about 0.00001 mg to 1000 mg, preferably about 0.01 mg to 100 mg, more preferably about 0.01 mg to 100 mg per day for an adult, and may be administered once or in several divided doses.
  • the therapeutic agent for inflammation / neoplastic diseases of the present invention is preferably subjected to electoral poration for applying an electric pulse across the administration site after administration, preferably immediately after administration.
  • the electric pulse is, for example, a DC pulse composed of an arbitrary pulse shape, pulse width, pulse frequency, voltage, and the like. It can be set appropriately according to the injection site, injection amount, etc. of plasmid DNA.
  • electrodes are inserted at a plurality of points around the administration site, a voltage of about 50 to 100 V is applied, the waveform is a rectangular wave, and the pulse width is about 0.1 to about 100 m.
  • pulse frequency is 1 to 10 pulses Z seconds, and number of times is 1 to 10 times.
  • Mouse IL-lra cDNA was extracted by PCR from total RNA extracted from mouse macrophage cell line J774A.1. Plasmid pCAGGS-IL-lra was constructed by inserting mouse IL-lra cDNA into the Xhol site between the CAG promoter and the 3 'flanking sequence of the egret / 3-glopurin gene on the pCAGGS expression vector. (Niwa et al., 1991). Similarly, plasmid pCAGGS-vIL-10 was constructed by inserting the mouse vIL-10 cDNA into the EcoRI site of the pCAGGS expression vector (Nitta et al., 1998).
  • vIL-10 was derived from pcDSR crBCRF (Suzuki et al., 1995). Similarly, the plasmid pCAGGS-c-kit was constructed similarly by inserting the mouse c-kit cDNA into the EcoRI site of the pCAGGS expression vector. c-kit was derived from pCAGn-c-kit-hFc (Kataoka. Takakura et al., 1997). The plasmid was propagated in Escherichia coli strain DH10B cells, extracted by the alkaline lysis method, and purified by two cycles of ethidium bromide-CsCl equilibrium density gradient centrifugation. The plasmid was further purified by isopropanol precipitation, phenol extraction, phenol Z-cloth form extraction and ethanol precipitation. Plasmid DNA was then dissolved in PBS.
  • Plasmid DNA (75 g, 1.5 g // l each) was injected into the bilateral tibialis anterior and given electrical pulses as previously described (Aihara et al., 1998). Briefly, a pair of electrode needles was inserted into the muscle at a depth of 5 mni to serve as a DNA injection site. Six pulses were emitted to both muscles by an electric pulse generator (Electro Square Porator T820M; BTX, San Diego, CA) at a rate of 1 pulse / sec, each pulse for a duration of 50 msec.
  • Electric pulse generator Electro Square Porator T820M; BTX, San Diego, CA
  • pCAGGS-IL-lra and pCAGGS were transfected into BMT-10 cells using Lipofectamine 2000 (GIBCO BRL, Gaithersburg, MD). Two days after transfection, the culture supernatant is removed by one-third volume of SDS sample buffer. (75 mM Tris-HCl, pH 6.8, 6% SDS, 15% glycerol, 15% ME and 0.015% bromophenol), heat at 98 ° C for 5 minutes, and mix with 15% polyacrylamide gel. SDS-PAGE above. Recombinant mouse IL-lm was simultaneously loaded on the gel. After electrophoresis, samples were transferred onto a polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA).
  • the membrane was incubated with goat anti-IL-lra polyclonal antibody (R & D Systems, Minneapolis, MN) for 3 hours at room temperature and washed. The membranes were then incubated for 1 hour at room temperature with anti-goat IgG2a, washed and washed according to the manufacturer's specifications. Autoradiography using chemiluminescence (ECL kit; Amersham Corp., Arlington Heights, IL). Performed photographic processing.
  • IL-lra ELISA serum samples obtained from the mouse tail vein were assembled using an ELISA kit (Biosom'ce International, Camarillo, CA) according to the supplier's specifications. Serial dilutions of recombinant mouse IL-lra (R & D system) were used as standards. Serum concentrations of vIL-10 were assayed as follows: 96-well plates were coated overnight at 4 ° C with 22 g / ml rat anti-IL-10 mAb, JES3_9D7 (PliarMingen). Then, the plate was washed with PBS containing 1% BSA at room temperature for 1 hour.
  • the substrate o-phenylenediamine
  • the absorbance at 490 nm was measured with a microplate reader.
  • the linear range of the ELISA system was 30 ⁇ 2000pg / ml. This ELISA system does not detect mouse IL-10.
  • the heart was fixed in 10% formalin, embedded in paraffin, sectioned, and Staining was performed by three-color staining.
  • the heart section specimens were photographed with a CCD camera, and the area of all heart section specimens and the area of the infiltration zone were measured in a blind fashion by NIH Image Software.
  • the extent of cell invasion was calculated by dividing the area of the invasion zone by the area of the whole heart section specimen.
  • IL-1 jS forward primer 5'-CAACCAACAAGTGATATTCTCCATG-3 '
  • IL-1 i8 probe 5'-CTGTGTAATGAAAGACGGCACACCCACC-3 '
  • TNF-back primer 5'-TGGGAGTAGACAAGGTACAACCC-3
  • TNF-probe 5'-CACGTCGTAGCAAACCACCAAGTGGA-3 '
  • IFN-forward primer 5'-TCAAGTGGCATAGATGTGGAAGAA-3 '
  • IFN-probe 5'-TCACCATCCTTTTGCCAGTTCCTCCAG-3 '
  • IL-6 forward primer 5'-CAGAATTGCCATCGTACAACTCTTTTCTCA-3 '
  • iNOS forward primer 5'-CAGCTGGGCTGTACAAACCTT3 '
  • iNOS ⁇ % liquid primer, 5'-CATTGGAAGTGAAGCGTTTCG-3 'iNOS probe, 5'-CGGGCAGCCTGTGAGACCTTTGA-3'
  • GAPDH forward primer 5'-TTCACCACCATGGAGAAGGC-3 ' GAPDH
  • probes were designed to include intron sequences to distinguish appropriate PCR products from amplification products from contaminated genomic DNA. Each was labeled 5 'of the probe.
  • Mouse IL-lra and vIL_10 and c_kit were introduced into pCAGGS expression vector to obtain pCAGGS-IL-lra and pCAGGS'vIL-10 and pCAGGS-c-kit.
  • Immunoblotting of culture supernatants from BM "10 transfected with pCAGGS-IL-lra showed successful expression of the 17 kDa protein, a mouse IL-lra of the correct size ( Figure 1A)
  • vIL-10 expression was confirmed by transient transfection of pCAGGS-vIL-10 into BMT-10 cells
  • c-kit expression was confirmed by pCAGGS-c Confirmed by transient transfection of -kit into BMT-10 cells
  • EMCV was inoculated to determine whether electroporation of each plasmid resulted in physiologically significant levels of protein.
  • the concentration of IL-lra was 3.5 times higher in EMCV-inoculated mice than in uninfected control mice (p ⁇ 0.005), and IL-lra gene transfer further reduced serum IL-li'a levels by 1 9-fold increase (p ⁇ 0.01, compared to EMCV-infected mice) .
  • the serum concentration of IL-lra was After 0, 3, 5, 7 and 14 days after the chilling, the preparation was started. During this time course, the serum concentration of IL-lra peaked on day 5 (p ⁇ 0.01, compared with day 0), and then gradually decreased (Fig. 1C), which is consistent with the previous report. (Wells, 1993; Vitadello et al., 1994).
  • the vIL-10 concentration 5 days after in vivo electroporation was 2294 pg / ml (FIG. 1D).
  • empty pCAGGS plasmid was similarly introduced into infected mice and the viability compared to PBS-injected mice. As shown in FIG. 2C, introduction of empty plasmid did not alter the survival curve. ⁇
  • cytokinines such as cytoin, especially IL-1] 3 and TNF-spin
  • proinflammatory cytokines such as cytoin, especially IL-1] 3 and TNF-spin
  • cytoin especially IL-1
  • TNF-spin proinflammatory cytokines
  • the heart has a proinflammatory site such as IL-1) 3 and TNF- ⁇ , chemokines such as monocyte chemoattractant protein-1, and inducible nitric oxide synthesis. It secretes inflammatory enzymes, such as enzymes, and site forces that contain adhesion molecules, such as intracellular adhesion molecule-1.
  • IL-1 J3 reached a maximum concentration of 150-200 pg / ml during experimental sepsis, and it was 10- 10 to suppress 50% of the IL-1 response in cells expressing the IL-1 receptor.
  • a 0-fold excess of IL-lra is required (Bi'esnihan et al., 1998; Granowitz et al., 1991).
  • the inventor has overcome these pitfalls by performing gene transfer using in vivo electotomy. In this way, high level Cytokines can be obtained in serum.
  • IL-lra is a member of the IL-1 gene family and suppresses many effects of IL-1 by competing with the IL-1 receptor both in vitro and in vivo.
  • the agonist effect of IL-1 is regulated, in part, by the interaction of IL-lra and the IL-1 receptor.
  • Administration of recombinant IL-lra improved mortality from TNF administration in mice, and intraperitoneal administration of LPS was more lethal in IL-lra knockout mice than in normal mice (Arend et al., 1998; Evei ' aerdt et al., 1994).
  • mice lacking endogenous IL-lra are less susceptible to Listeria monocytogenes infection than normal mice, suggesting that IL'l plays an important role in resistance to infection by intracellular organisms.
  • IL-lra gene transfer using viral vectors has recently been investigated in experimental animal models of inflammatory diseases such as arthritis and ischemic encephalopathy (Hung et al., 1994; Makarov et al., 1996; Otani et al., 1996).
  • the results of these studies suggest a therapeutic role for IL-lra and the important role of IL-1 in the activation of inflammatory cells in vivo.
  • the study of the present invention suggests a novel therapeutic approach for the treatment of myocarditis using IL-lra by gene transfer, where the transduction efficiency was increased by electo-portionation.
  • the present inventors have further analyzed the mechanism by which IL-lra reduces myocardial damage.
  • the IL-1 pathway plays a critical role in regulating myocardial iNOS (Ungureanu-Longrois et al., 1995).
  • TNF- ⁇ has a direct cytotoxic and negative inotropic effect on cultured cardiomyocytes and also activates cytotoxic ⁇ cells, which can cause myocyte damage (Pinsky et al., 1995; Yokoyama et al., 1993; Woodley et al., 1991). It has been suggested that TNF-a plays a key role at the very early stages of the immune response, and that administration of anti-TNF-a mAbs can interfere with the early pathways of acute viral myocarditis (Yamada et al., 1994). In this study, treatment with IL-lra may protect myocardium by suppressing iNOS and TNF- ⁇ expression.
  • IL-lra and vIL-10 were both effective treatments in the mouse model of myocarditis of the present invention, but treatment with in vivo electroporation itself was inoculated with EMCV The survival rate of the mice did not change.
  • IL-10 is considered to be an important regulatory response in the early immune response to viral infection. Mortality and inflammation are increased in IL-10 knockout mice with virus-induced encephalomyelitis (Lin et al., 1998). Recently, the present inventors have shown that treatment with recombinant IL-10 reduces mortality and cytoplasmic force-in expression in a mouse model of myocarditis (Nishio et al., 1999).
  • vIL-10 treatment strongly improved the efficacy of this experimental myocarditis.
  • Cellular IL-10 and vIL-10 share many immunosuppressive properties: they both inhibit INF- ⁇ production by activated mouse Thl clones, human peripheral mononuclear cells, and human natural killer cells ( Hsu et al., 1990; Vieira et al., 1991; deWaal Malefyt et al., 1991).
  • reduced expression of IFN-r was also observed in the vIL-10 treated group.
  • vIL-10 is thought to be a cellular site force captured by the EB virus. However, there are some differences between the effects of IL-10 and vIL-10.
  • vIL-10 is less active as a cytokine synthesis inhibitor than IL-10, it lacks some of the immunostimulatory activity of IL-10 on monocytes, lymphocytes and mast cells. Therefore, vIL-10 may provide excellent immunosuppression (Drazan et al., 1996; Debruyne et al., 1998; Henke et al., 2000). These differences may explain the superior effect of vIL-10 in reducing the effects of myocarditis as compared to IL-10. Recently, the structural basis for the different activities of IL-10 and vIL-10 has been elucidated (Ding et al., 2000). The results suggest that a single amino acid is important for the immunostimulatory activity of IL-10.
  • IL-10 is known to induce IL-Ira by mRNA stabilization, while it suppresses the production of IL_1 ⁇ , TNF and IL-8 (Cassatella et al., 1994; Chomarat et al. , 1995).
  • vIL-10 induces irlra is unknown, but mice transfected with vIL-10 show elevated serum concentrations of IL-Ira (874 pg / ml). This additional effect of vIL-10 may explain its higher efficacy compared to IL-lra.
  • cytokine expression is the induction of iNOS.
  • Monoacid nitrogen (NO) is produced during the subacute phase in response to cytokines induced by EMCV.
  • Sidani Nitrogen is a double-edged sword (Beckman et al., 1990; Beckman, 1991).
  • Nitric oxide is useful as an allergic mechanism of immunological self-protection, while at the same time it plays an important role in killing pathogens.
  • the excess of nitric oxide produced by iNOS also has a detrimental effect on myocardial tissue in viral and autoimmune myocarditis.
  • nitric oxide The direct negative inotropic effects of inflammatory cytokines may be mediated by nitric oxide (Balligand et al., 1993; Ungureanu-Longrois et al., 1995).
  • iNOS expression was suppressed by both IL-lra and vIL-10 administration, suggesting that nitric oxide is a terminal effector of myocardial damage in myocarditis.
  • in vivo electoporation is an effective method for introducing cytokine cytokine genes in vivo
  • the inhibitory cytokines IL-lra and vIL-10 We demonstrated that gene transfer reduced mortality in a mouse model of myocarditis, and (3) that the therapeutic effect was inhibition of immunosuppressive cytokines in the heart.
  • the therapeutic agent of this invention it becomes possible to produce
  • high levels of immunosuppressive cytokines can be obtained in the blood, and one or more inflammatory or neoplastic diseases can be obtained. It can be treated efficiently.
  • BECKMAN JS
  • BECKMAN TW
  • CHEN J.
  • MARSHALL PA
  • FREEMAN BA (1990) .Apparent hydroxyl radical production by perox nitrite * implications for endothelial injury from nitric oxide and superoxide.Proc.Nati.Acad. Sci. USA. 87, 1620-1624.
  • Interleukin 10 upregulates IL-I receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J. Exp. Med. 179, 1695-1699.
  • IL_1 receptor antagonist protects against TNF-induced lethality in mice. J. Immunol. 152, 5041-5049.
  • Viral IL-10 gene transfer decreased inflammation and cell adhesion molecule expression in a rat model of venous thrombosis. J. Immunol. 164, 2131-2141.
  • SUZUKI T "TAHARA, H., NARULA, S” MOORE, KW, ROBBINS, PD, and LOTZE, MT (1995) .
  • IL-10 the human herpes virus 4 cellular IL-10 homologue, induces. local anergy to allogeneic and syngeneic tumors.J. Exp.Med. 182, 477-486.
  • YANG, GY, LIU, XH, KADOYA, C, ZHAO, YJ "MAO, Y” DAVIDSON, B ⁇ ., And BETZ, AL (1998) .Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce. overexpression if interleukin-1 receptor antagonist. J. Cereb. Blood. Flow. Metab. 18, 840-847. YANG, GY, ZHAO, YJ, DAVIDSON, B ⁇ ., and BETZ, AL (1997). Overexpression oi interleukin- 1 receptor antagonist in the mouse brain reduce ischemic brain injury.Brain Res. 751, 181-188.

Abstract

Remedies for inflammatory/tumor diseases which contain as the active ingredient an expression vector containing an immunosuppressive cytokine gene and/or a soluble cytokine receptor gene in a state allowing expression thereof; and a method of treating inflammatory/tumor diseases which comprises administering a therapeutically efficacious amount of an expression vector containing an immunosuppressive cytokine gene and/or a soluble cytokine receptor gene in a state allowing expression thereof to a patients suffering from an inflammatory/tumor disease.

Description

明細書  Specification
炎症 ·腫瘍性疾患治療剤  Inflammation / neoplastic disease treatment
技術分野  Technical field
本発明は、 炎症 ·腫瘍性疾患治療剤に関する。  The present invention relates to a therapeutic agent for inflammation / neoplastic disease.
背景技術  Background art
心疾患は、 先進諸国の中で主要な死因の 1つとなっている。 なかでも急性ウィル ス性心筋炎は、 心臓の多病巣性炎症により特徵付けられ、 慢性相では、 拡張型心筋 症 (D C M)、 心室瘤、 不整脈原性右心室形成異常症を導く。 脳心筋炎 (E M C) ゥ ィルスは、 マウスで心筋炎を誘発し、 この実験モデルを用いた研究は心筋炎及び D C Mのメカニズムに重要な洞察を提供した (松森、 1 9 9 7 )。このモデルにおいて、 細胞性免疫が賦活化され、 サイトカイン発現の亢進並びに心筋層中の細胞障害性 T 細胞及びマクロファージの活性化が認められる。 従って、 免疫系は治療的標的と考 えられる。  Heart disease is one of the leading causes of death in developed countries. Among them, acute viral myocarditis is characterized by multifocal inflammation of the heart, and in the chronic phase leads to dilated cardiomyopathy (DCM), ventricular aneurysm, and arrhythmogenic right ventricular dysplasia. Encephalomyocarditis (EMC) virus induced myocarditis in mice, and studies using this experimental model provided important insights into the mechanisms of myocarditis and DCM (Matsumori, 197). In this model, cellular immunity is activated, and enhanced cytokine expression and activation of cytotoxic T cells and macrophages in the myocardium are observed. Therefore, the immune system is considered a therapeutic target.
直接的ウィルス性障害及び宿主の免疫応答は、 ウィルス性心疾患の病因に重要な 役割を果たす (Bowlesら、 1998)。免疫応答はウィルス感染と戦うのに重要な役割を 果たすが、 同時にそれは心筋細胞を不適切に攻撃することにより宿主に有害な効果 を有し得る。 このような保護効果と有害作用のバランスは、 疾患の予後を最終的に 決定し得る。 さらに、 心臓中の炎症性サイト力イン発現の亢進は、 ウィルス性心筋 炎に伴う心筋機能の低下に関与し得る (Shioiら, 1996)。 イン夕一ロイキン (I L ) — 1 、 腫瘍壊死因子 (TN F) —ひ、 及びインターフェロン (I F N) 一 γを含 むサイト力イン mR NAは、 ウィルス接種の 3日後に誘導されるが、 その時点では 細胞浸潤はほとんど見られない (Shioiら, 1996)。  Direct viral disorders and host immune responses play important roles in the pathogenesis of viral heart disease (Bowles et al., 1998). The immune response plays an important role in fighting viral infections, but at the same time it can have detrimental effects on the host by improperly attacking cardiomyocytes. The balance between such protective and adverse effects may ultimately determine the prognosis of the disease. In addition, increased expression of inflammatory site force-ins in the heart may be involved in reduced myocardial function associated with viral myocarditis (Shioi et al., 1996). Site-in mRNAs containing inulin-leukin (IL)-1, tumor necrosis factor (TNF)-, and interferon (IFN) -γ are induced 3 days after virus inoculation, at which time Cell infiltration is rarely seen (Shioi et al., 1996).
I L一 1受容体アン夕ゴニスト (IL-lra)は、 I L— 1ファミリーのメンバーであ り、 I L一 1受容体に結合するが、 細胞内応答を誘発せず、 重要な内在性の抗炎症 蛋白質である (Ai'endら, 1998; Bresnihanら, 1998)。ウィルス性 I L— 1 0 (vIL"10) は、 E Bウィルスにより捕捉される細胞性サイト力インと考えられ、 細胞性 I L一 1 0の抗炎症特性の多くを共有するが、 免疫束 !J激作用を欠如し、 それゆえ優れた免 疫抑制を提供し得る。 これらは、 ウィルス性心筋炎の治療剤の有望な候補である。 免疫抑制性サイトカインを利用した抗炎症剤としては、 特開 2 0 0 0— 2 3 9 1 8 2号に記載されているが、 このように、 サイト力インを蛋白質として投与するこ とは非常にコス卜がかかる欠点がある。 The IL-11 receptor antagonist (IL-lra), a member of the IL-1 family, binds to the IL-11 receptor but does not elicit an intracellular response and is an important endogenous anti-inflammatory. It is a protein (Ai'end et al., 1998; Bresnihan et al., 1998). Viral IL-10 (vIL "10) is thought to be a cellular cytoplasm that is captured by Epstein-Barr virus, and shares many of the anti-inflammatory properties of cellular IL-10. They lack action and therefore can provide excellent immunosuppression, and are promising candidates for the treatment of viral myocarditis. Anti-inflammatory agents utilizing immunosuppressive cytokines are described in JP-A-2000-239182, but it is extremely difficult to administer cytodynamic proteins as proteins. However, there is a disadvantage that the cost is high.
また、 特開 2 0 0 0— 4 7 1 5号公報には、 サイトカイン遺伝子を組み込んだプ ラスミドが記載されているが、 該公報には、 このようなプラスミドを用いて心筋炎 等の炎症を治療する具体的な方法については記載されていない。  In addition, Japanese Patent Application Laid-Open No. 2000-47115 describes a plasmid into which a cytokine gene has been incorporated. In this publication, inflammation such as myocarditis and the like is described using such a plasmid. No specific method of treatment is described.
本発明は、 免疫抑制性サイトカインを生体内で産生し得る炎症 ·腫瘍性疾患治療 剤を提供することを目的とする。  An object of the present invention is to provide a therapeutic agent for inflammatory and neoplastic diseases capable of producing an immunosuppressive cytokine in a living body.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1 A〜図 1 Dは、 導入遺伝子の発現を示す。  1A-1D show transgene expression.
図 1 Aは、 17-kDa蛋白質の成功した発現及びマウス IL-lraの正確なサイズを示 す pCAGGS-IL-lraでトランスフエクトされた BMT-10細胞由来の培養上清のィム ノブロットである。 各レーンは、 pCAGGS でトランスフエクトされた細胞及び pCAGGS-IL-li'aでトランスフエクトされた細胞、及び組換えマウス IL-lraを示す。 図 1 Bは、 in vivoエレクトロポレ一シヨンの 5日後の IL-lraの血清レベルであ る。 IL-lra 濃度は、 EMCV-接種マウス(n=5)は未感染コント口一ルマウス (n=4)(p<0.005)より 3.5倍高く、 IL-lm遺伝子導入 (IL-lra_EMCV)(n=5)は、 EMCV- 接種マウス (PBS-EMCV)よりもさらに 1 . 9倍 (p<0.01)血清 IL-lraレベルを増加さ せる。  Figure 1A is an immunoblot of culture supernatant from BMT-10 cells transfected with pCAGGS-IL-lra showing successful expression of the 17-kDa protein and the correct size of mouse IL-lra. . Each lane shows cells transfected with pCAGGS and cells transfected with pCAGGS-IL-li'a, and recombinant mouse IL-lra. FIG. 1B shows serum levels of IL-lra 5 days after in vivo electroporation. The concentration of IL-lra was 3.5 times higher in EMCV-inoculated mice (n = 5) than in uninfected control mice (n = 4) (p <0.005), and IL-lm gene transfer (IL-lra_EMCV) (n = 5 5) increases serum IL-lra levels 1.9-fold (p <0.01) more than EMCV-inoculated mice (PBS-EMCV).
図 1 Cにおいて、 タイムコースは、 IL-lra の血清濃度は (0日目と比較して、 p<0.0l) 第 5日にピークとなり、 その後徐々に減少する (それぞれ n=3)。  In FIG. 1C, in the time course, the serum concentration of IL-lra peaks on day 5 (p <0.01 compared to day 0) and then gradually decreases (n = 3 each).
図 I Dにおいて、 in vivo エレクト口ポレーシヨンの導入 5日目の血中濃度は IL-lra (l734pg/ml), vIL-10(2294pg/ml) (それぞれ n=5) であった。  In FIG. ID, the blood concentration on day 5 after the introduction of in vivo electoral poration was IL-lra (l734 pg / ml) and vIL-10 (2294 pg / ml) (n = 5 each).
図 2 A〜図 2 Cは、 EMCV接種後の生存曲線を示す。  Figures 2A-2C show the survival curves after EMCV inoculation.
図 2 Aにおいて、 生存曲線の分析は、 IL-l 処理群 (〇;η=Γ7) が PBS-処理群 (□; n=29) よりも有意に高い生存率を示した (p<0.05)。  In FIG. 2A, analysis of the survival curve showed that the IL-l treated group (η; η = Γ7) showed significantly higher survival rate than the PBS-treated group (□; n = 29) (p <0.05). .
図 2 Bにおいて、 vIL-10遺伝子導入 (□; n=19) も PBS処理 (〇; n=27) と比 較して EMCVで接種されたマウスの死亡率を減少した (p<0.01)。 図 2 Cにおいて、 空の pCAGGS導入 (C] ; n=10) は PBS処理 (O; n=10) と 比較して生存曲線を変化しない。 In FIG. 2B, vIL-10 gene transfer (□; n = 19) also reduced mortality (p <0.01) in mice vaccinated with EMCV compared to PBS treatment (〇; n = 27). In FIG. 2C, empty pCAGGS introduction (C); n = 10 does not change the survival curve compared to PBS treatment (O; n = 10).
図 3 Aは、 組織学的知見である。 図 3 Aにおいて、 心筋浸潤の定量的病理学的ス コアは、 IL-lra処理群及び vIL-10処理群 (各々 n=5) の両方における有意な改善 を示す (IL-lra処理群 vsコントロール、 p<0.01; vIL-10処理群 vsコントロール p<0.01)。 下のパネルは各群の代表的な組織学的結果を示す。  Figure 3A shows histological findings. In FIG. 3A, the quantitative pathological score of myocardial invasion shows a significant improvement in both the IL-lra treated group and the vIL-10 treated group (n = 5 each) (IL-lra treated vs. control). , P <0.01; vIL-10 treatment group vs control p <0.01). The lower panel shows representative histological results for each group.
図 3 Bは、可溶性 c-kit遺伝子導入による EMCV接種後 6日後の組織学的知見を 示す。図 3 Bにおいて、細胞浸潤の定量的病理学的スコアは可溶性 c-kit処理群 (n=7、 1.4±0.7平均土標準偏差)で空プラスミド群 (n=9、 0.9±0.4) に対し有意な改善を示 す (p<0.05)。  Figure 3B shows histological findings 6 days after EMCV inoculation with soluble c-kit gene transfer. In Figure 3B, the quantitative pathological score for cell invasion was significantly higher in the soluble c-kit treated group (n = 7, 1.4 ± 0.7 mean soil standard deviation) than in the empty plasmid group (n = 9, 0.9 ± 0.4). Significant improvement (p <0.05).
図 4は、心臓におけるサイトカイン発現を示す。図 4 Aの IL-lra導入マウスにお いて、心臓における TNF- α及び iNOSの発現レベルは有意に減少した(各々 n=5)。 図 4 Bの vIL-10導入マウスにおいて、 心臓における IFN- r及び iNOSの発現レべ ルは有意に減少した。 も vIL-10処理群において減少した (各々n=5)。  FIG. 4 shows cytokine expression in the heart. In the IL-lra-introduced mouse in Fig. 4A, the expression levels of TNF-α and iNOS in the heart were significantly reduced (n = 5 each). In the vIL-10-introduced mouse of FIG. 4B, the expression levels of IFN-r and iNOS in the heart were significantly reduced. Also decreased in the vIL-10 treatment group (n = 5 each).
発明の開示  Disclosure of the invention
本発明は、 以下の炎症 ·腫瘍性疾患治療剤を提供するものである。  The present invention provides the following therapeutic agents for inflammatory and neoplastic diseases.
( 1 ) 免疫抑制性サイトカイン遺伝子及び/又は可溶性サイトカイン受容体遺伝 子を発現可能な状態で含む発現ベクターを有効成分とする炎症 ·腫瘍性疾患 治療剤。  (1) A therapeutic agent for inflammation / neoplastic disease, comprising as an active ingredient an expression vector containing an immunosuppressive cytokine gene and / or a soluble cytokine receptor gene in an expressible state.
( 2 ) 免疫抑制性サイトカイン及び Z又は可溶性サイトカイン受容体遺伝子が IL-lra, vIL-10及び可溶性 c_kitからなる群から選ばれる少なくとも 1種で ある (1 ) に記載の治療剤。  (2) The therapeutic agent according to (1), wherein the immunosuppressive cytokine and Z or soluble cytokine receptor gene are at least one selected from the group consisting of IL-lra, vIL-10 and soluble c_kit.
( 3 ) 炎症 ·腫瘍性疾患が心血管系疾患である (1 ) に記載の治療剤。  (3) The therapeutic agent according to (1), wherein the inflammation and the neoplastic disease is a cardiovascular disease.
( 4 ) 炎症 ·腫瘍性疾患が心筋炎である (3 ) に記載の治療剤。  (4) Inflammation · The therapeutic agent according to (3), wherein the neoplastic disease is myocarditis.
( 5 ) 免疫抑制性サイトカイン遺伝子及び Z又は可溶性サイトカイン受容体遺伝 子を発現可能な状態で含む治療的有効量の発現ベクターを、 炎症 ·腫瘍性疾 患を患う患者に投与することを含む炎症 ·腫瘍性疾患の治療方法。  (5) Inflammation including administering a therapeutically effective amount of an expression vector containing an immunosuppressive cytokine gene and Z or a soluble cytokine receptor gene in a state capable of expressing it to a patient suffering from inflammation or neoplastic disease. Methods for treating neoplastic diseases.
( 6 ) 治療的有効量の該発現べクタ一の投与後に、 該投与部位を挟むようにして電 気パルスを与えることを特徴とする (5 ) に記載の治療方法。 (6) After administration of a therapeutically effective amount of the expression vector, an electric charge is applied across the administration site. The treatment method according to (5), wherein an air pulse is given.
( 7 ) 免疫抑制性サイトカイン及び/又は可溶性サイトカイン受容体遺伝子が IL-lra、 vIL'lO及び可溶性 c'kitからなる群から選ばれる少なくとも 1種で ある (5 ) に記載の治療方法。  (7) The method according to (5), wherein the immunosuppressive cytokine and / or soluble cytokine receptor gene is at least one selected from the group consisting of IL-lra, vIL'lO and soluble c'kit.
( 8 ) 炎症 ·腫瘍性疾患が心血管系疾患である (5 ) に記載の治療方法。  (8) The method according to (5), wherein the inflammation and the neoplastic disease is a cardiovascular disease.
( 9 ) 炎症 ·腫瘍性疾患が心筋炎である (8 ) に記載の治療方法。 発明の詳細な説明  (9) Inflammation · The therapeutic method according to (8), wherein the neoplastic disease is myocarditis. Detailed description of the invention
本発明において、 免疫抑制性サイト力インとしては、 IL-1ひ、 IL-l j3、 IL-lra, vIL-10、 IL-2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18などのインタ一口 ィキン類、 インターフェロン ( α、 β、 r ) > TNF-ひ、 TGF- β、 GM-CSF, EGF、 FGF、 RANTES, I-309/TCA-3, rIP-10, ΜΙΡ-Ι α, MIP-l jS , MIP-2, MCP-1, 2, 3, M-CSF, G-CSF, EPO, TPO, SCF, LIF, PDGF, KGF, IGF, NGF, BDNF, CDTF, OSM, HGFなどが例示される。また、 これらのサイト力インの可溶性受容体に対し ては可溶性サイトカイン受容体も含まれる。 例えば S C Fに対しては可溶性 c-kit が例示され、他のサイトカイン、例えば TNF- Q!に対しては可溶性 TNF- α受容体が 例示される。 これらの免疫抑制性サイト力インの遺伝子配列は、 公知であり、 特に ヒトの免疫抑制性サイトカイン遺伝子を用いるのが好ましい。  In the present invention, the immunosuppressive site force-in includes IL-1, IL-lj3, IL-lra, vIL-10, IL-2, 3, 4, 5, 6, 7, 8, 9, 10 , 11,12,13,14,15,16,17,18 inter-phagine, interferon (α, β, r)> TNF-H, TGF-β, GM-CSF, EGF, FGF, RANTES, I-309 / TCA-3, rIP-10, ΜΙΡ-Ι α, MIP-l jS, MIP-2, MCP-1, 2, 3, M-CSF, G-CSF, EPO, TPO, SCF, LIF, Examples include PDGF, KGF, IGF, NGF, BDNF, CDTF, OSM, HGF, and the like. In addition, soluble cytokine receptors are included for the soluble receptors of these cytokins. For example, soluble c-kit is exemplified for SCF, and soluble TNF-α receptor is exemplified for other cytokines such as TNF-Q !. The gene sequences of these immunosuppressive cytokins are known, and it is particularly preferable to use human immunosuppressive cytokine genes.
発現ベクターとしては、 例えば pCAGGSを使用することができ、 プロモーター Zェンハンサ一配列、 スプライシング領域、 ポリ (A) 付加部位等を適宜に組み合 わせて用いることができる。 免疫抑制性サイトカイン遺伝子を発現可能な状態で含 むサイトカイン発現べクタ一の構築は、 例えば本明細書の下記の記載及び特開 2 0 0 0 - 4 7 1 5号公報の記載を参照して当業者であれば、容易に行うことができる。 炎症'腫瘍性疾患としては、 心筋炎、 脳心筋炎、 拡張性心筋症、 心不全、 冠動脈 炎、 移植心の早期冠動脈硬化、 血管炎、 大動脈炎などの心血管系の疾患、 関節炎、 腰痛、痛風、気管支喘息、 びまん性肺疾患、 アトピー、 アレルギー、肝炎、 flf硬変、 腎炎、 胃潰瘍、 腸炎、 脳脊髄炎、 多発性硬化症、 自己免疫病、 癌、 骨髄腫などが例 示される。 本発明において、 特定の免疫抑制性サイトカインと治療対象疾患との組み合わせ としては、 インターフェロンお (慢性髄性白血病、 多発性骨髄腫、 腎癌、 悪性黒皮 腫、 慢性 T細胞白血病、 肝炎)、 インタ一フエロン /3 (脳腫瘍、、 肝炎)、 イン夕一フ ェロン r (慢性肉芽腫症)、 IL- 2 (原発性免疫不全症、 悪性黒皮腫、 腎癌、 肝癌)、 IL- 6 (血小板減少症)、 IL-11 (血小板減少症)、 Epo (血小板減少症)、 MCSF (血 小板減少症、 急性白血病、 好中球減少症)、 GCSF (急性白血病、 好中球減少症)、 IL- 3 (好中球減少症)、 GMCSF (好中球減少症)、 SCF (好中球減少症) 力 S例示さ れる。 As an expression vector, for example, pCAGGS can be used, and a promoter Z enhancer sequence, a splicing region, a poly (A) addition site, and the like can be appropriately combined and used. The construction of a cytokine expression vector containing an immunosuppressive cytokine gene in a state capable of expressing it is described in, for example, the following description of the present specification and the description of JP-A-2000-47115. A person skilled in the art can easily perform this. Inflammation's neoplastic diseases include cardiovascular diseases such as myocarditis, cerebral myocarditis, dilated cardiomyopathy, heart failure, coronary artery disease, early coronary atherosclerosis of transplanted hearts, vasculitis, and aortitis, arthritis, back pain, and gout Examples include bronchial asthma, diffuse lung disease, atopy, allergy, hepatitis, flf cirrhosis, nephritis, gastric ulcer, enteritis, encephalomyelitis, multiple sclerosis, autoimmune disease, cancer, and myeloma. In the present invention, the combination of the specific immunosuppressive cytokine and the disease to be treated includes interferon (chronic myelogenous leukemia, multiple myeloma, renal cancer, malignant melanoma, chronic T-cell leukemia, hepatitis), 1-feron / 3 (brain tumors, hepatitis), inferior-feron r (chronic granulomatosis), IL-2 (primary immunodeficiency, malignant melanoma, kidney cancer, liver cancer), IL-6 (platelets) Hypotension), IL-11 (thrombocytopenia), Epo (thrombocytopenia), MCSF (thrombocytopenia, acute leukemia, neutropenia), GCSF (acute leukemia, neutropenia), IL-3 (neutropenia), GMCSF (neutropenia), SCF (neutropenia) power S Examples are shown.
本発明の炎症 ·腫瘍性疾患治療剤は、 好ましくは注射 (筋肉内、 皮下、 皮内、 臓 器内など) 等の非経口経路により、 例えば生理食塩水等の任意の溶媒を用いて投与 することができる。 投与部位は、 四肢の筋肉内などが好ましい。 治療的有効量は、 成人 1日当たり 0.00001 mg〜1000mg程度、 好ましくは O.OOlmg〜: 100mg、 より 好ましくは 0.01〜: lOmg程度であり、 1回又は数回に分けて投与され得る。  The therapeutic agent for inflammation / neoplastic disease of the present invention is preferably administered by a parenteral route such as injection (intramuscular, subcutaneous, intradermal, intracorporeal, etc.), using any solvent such as physiological saline. be able to. The administration site is preferably in the muscles of the extremities. The therapeutically effective amount is about 0.00001 mg to 1000 mg, preferably about 0.01 mg to 100 mg, more preferably about 0.01 mg to 100 mg per day for an adult, and may be administered once or in several divided doses.
本発明の炎症 ·腫瘍性疾患治療剤は、 投与後、 好ましくは投与直後に、 投与部位 を挟むようにして電気パルスを与えるエレクト口ポレーシヨンを行うのが好ましい。 電気パルスは、 例えば、 任意のパルス形状、 パルス幅、 パルス頻度、 電圧等からな る D Cパルスであり、 これらのパルス変数およびパルス印加時間等は対象動物 (好 ましくはヒト) の種類、 発現プラスミド D NAの注入部位、 注入量等に応じて適宜 に設定することができる。 エレクト口ポレーシヨンは、 好ましくは投与部位の周囲 に複数箇所電極を差し込み、 5 0〜1 0 0 V程度の電圧を印加し、 波形は矩形波、 パルス幅は約 0 . 1〜約 1 0 0 m秒、 パルス頻度は 1〜 1 0パルス Z秒、 回数は 1 ~ 1 0回である。  The therapeutic agent for inflammation / neoplastic diseases of the present invention is preferably subjected to electoral poration for applying an electric pulse across the administration site after administration, preferably immediately after administration. The electric pulse is, for example, a DC pulse composed of an arbitrary pulse shape, pulse width, pulse frequency, voltage, and the like. It can be set appropriately according to the injection site, injection amount, etc. of plasmid DNA. In the election port, preferably, electrodes are inserted at a plurality of points around the administration site, a voltage of about 50 to 100 V is applied, the waveform is a rectangular wave, and the pulse width is about 0.1 to about 100 m. Seconds, pulse frequency is 1 to 10 pulses Z seconds, and number of times is 1 to 10 times.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 免疫抑制性サイト力インとして vIL-10、 IL-lra及び可溶性 c-kit (SCF受 容体) を用いて心筋炎を治療する例を示すが、 他のサイト力インについても同様に して本発明の炎症 ·腫瘍性疾患治療剤を得ることができる。  In the following, an example of treating myocarditis using vIL-10, IL-lra and soluble c-kit (SCF receptor) as immunosuppressive cytodynamics is shown. The therapeutic agent for inflammation / neoplastic disease of the present invention can be obtained.
方法及び結果 Methods and results
•心筋炎のマウスモデル 4週齢 inbredォス DBA/2マウスに、 リン酸緩衝生理食塩水 (PBS)で希釈した脳 心筋炎ウィルス (EMCV)の M変異株を lOpfu腹腔内接種した。 • Mouse model of myocarditis Four week-old inbredos DBA / 2 mice were inoculated intraperitoneally with lOpfu M mutant of encephalomyocarditis virus (EMCV) diluted in phosphate buffered saline (PBS).
•プラスミド D NA  • Plasmid DNA
マウス IL-lra cDNAをマウスマクロファージ細胞株 J774A.1から抽出された全 RNAから PCRにより抽出した。プラスミド pCAGGS-IL-lraを CAGプロモータ —及び pCAGGS発現べクタ一上のゥサギ /3—グロプリン遺伝子の 3'·フランキング 配列の間の Xhol部位にマウス IL-lra cDNAを揷入することにより構築した (Niwa ら, 1991)。同様に、プラスミド pCAGGS-vIL-10はマウス vIL-10 cDNAを pCAGGS 発現べクタ一の EcoRI部位に揷入することにより構築された (Nitta ら, 1998)。 vIL-10は pcDSR crBCRFに由来のものであった (Suzukiら, 1995)。 同様に、 プラ スミド pCAGGS-c-kitはマウス c-kit cDNAを pCAGGS発現ベクターの EcoRI部 位に揷入することにより同様に構築された。 c-kitは pCAGn-c-kit-hFcに由来のも のであった (Kataoka. Takakuraら, 1997)。プラスミドは大腸菌株 DH10B細胞で増 殖し、 アル力リ性溶菌法 (alkaline lysis method)により抽出し、 2サイクルのェチ ジゥムブロミドー CsCl平衡密度勾配遠心分離法により精製した。プラスミドをイソ プロパノール沈殿、 フエノール抽出、 フエノール Zクロ口ホルム抽出及びエタノー ル沈殿によりさらに精製した。 プラスミド D NAは次いで P B Sに溶解した。 Mouse IL-lra cDNA was extracted by PCR from total RNA extracted from mouse macrophage cell line J774A.1. Plasmid pCAGGS-IL-lra was constructed by inserting mouse IL-lra cDNA into the Xhol site between the CAG promoter and the 3 'flanking sequence of the egret / 3-glopurin gene on the pCAGGS expression vector. (Niwa et al., 1991). Similarly, plasmid pCAGGS-vIL-10 was constructed by inserting the mouse vIL-10 cDNA into the EcoRI site of the pCAGGS expression vector (Nitta et al., 1998). vIL-10 was derived from pcDSR crBCRF (Suzuki et al., 1995). Similarly, the plasmid pCAGGS-c-kit was constructed similarly by inserting the mouse c-kit cDNA into the EcoRI site of the pCAGGS expression vector. c-kit was derived from pCAGn-c-kit-hFc (Kataoka. Takakura et al., 1997). The plasmid was propagated in Escherichia coli strain DH10B cells, extracted by the alkaline lysis method, and purified by two cycles of ethidium bromide-CsCl equilibrium density gradient centrifugation. The plasmid was further purified by isopropanol precipitation, phenol extraction, phenol Z-cloth form extraction and ethanol precipitation. Plasmid DNA was then dissolved in PBS.
• In vivoエレクトロポレーション • In vivo electroporation
マウスをペントバルビタールナトリウムで麻酔した。 プラスミド D NA ( 7 5 g、 各々 1 . 5 g // l ) を両側前脛骨筋に注入し、 電気パルスを既述のように 与えた (Aiharaら, 1998)。 簡単に述べると、 1対の電極針を筋肉に深さ 5mniで揷 入し、 DNA注入部位とした。 6回のパルスを両側筋に電気パルス発生器 (Electro Square Porator T820M; BTX, San Diego, CA)により 1パルス/秒の割合で、 各パ ルスが 50msecの持続時間で発した。  Mice were anesthetized with sodium pentobarbital. Plasmid DNA (75 g, 1.5 g // l each) was injected into the bilateral tibialis anterior and given electrical pulses as previously described (Aihara et al., 1998). Briefly, a pair of electrode needles was inserted into the muscle at a depth of 5 mni to serve as a DNA injection site. Six pulses were emitted to both muscles by an electric pulse generator (Electro Square Porator T820M; BTX, San Diego, CA) at a rate of 1 pulse / sec, each pulse for a duration of 50 msec.
• SDS-PAGE及びウェスタンブロッティング  • SDS-PAGE and Western blotting
pCAGGS-IL-lra および pCAGGS を BMT-10 細胞にリポフエクタミン 2000(GIBCO BRL, Gaithersburg, MD)を用いて卜ランスフエクトした。 トランス フエクシヨンの 2日後、 培養上清を 3分の 1容量の SDS サンプルバッファー (75mM Tris-HCl, pH6.8, 6% SDS, 15% グリセロール, 15% MEおよび 0.015%ブ ロモフエノールブル一)と混合し、 9 8 °Cで 5分間加熱し、 15%ポリアクリルアミ ドゲル上の SDS-PAGEにかけた。組換えマウス IL-lmは同時にゲルにロードされ た。 電気泳動後、 サンプルをポリビニリデンジフルオライド膜 (Millipore Corp., Bedford, MA)上に移した。 膜は室温で 3時間ャギ抗 IL-lra ポリクロ一ナル抗体 (R&D Systems, Minneapolis, MN)とィンキュベ一トし、 洗浄した。 次いで膜は室 温で 1時間ピオチン化抗ャギ IgG2aとインキュベートし、洗浄し、製造業者の仕様 書に従レ 化学発光法 (ECLキット; Amersham Corp., Arlington Heights, IL)を用 いたオートラジオグラフィー処理した。 pCAGGS-IL-lra and pCAGGS were transfected into BMT-10 cells using Lipofectamine 2000 (GIBCO BRL, Gaithersburg, MD). Two days after transfection, the culture supernatant is removed by one-third volume of SDS sample buffer. (75 mM Tris-HCl, pH 6.8, 6% SDS, 15% glycerol, 15% ME and 0.015% bromophenol), heat at 98 ° C for 5 minutes, and mix with 15% polyacrylamide gel. SDS-PAGE above. Recombinant mouse IL-lm was simultaneously loaded on the gel. After electrophoresis, samples were transferred onto a polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA). The membrane was incubated with goat anti-IL-lra polyclonal antibody (R & D Systems, Minneapolis, MN) for 3 hours at room temperature and washed. The membranes were then incubated for 1 hour at room temperature with anti-goat IgG2a, washed and washed according to the manufacturer's specifications. Autoradiography using chemiluminescence (ECL kit; Amersham Corp., Arlington Heights, IL). Performed photographic processing.
. ELISA  ELISA
IL-lra ELISAのために、マウス尾静脈から得られた血清サンプルを ELISAキッ ト (Biosom'ce International, Camarillo, CA)を用い、 供給元の仕様書に従いアツセ ィした。組換えマウス IL-lra(R&Dシステム)の連続希釈物を標準品として使用した。 vIL-10 の血清濃度は、 以下のようにしてアツセィした: 96-ゥエルプレートを 2 2 g /m 1のラット抗 IL-10 mAb, JES3_9D7(PliarMingen)とともに 4°Cで終夜コ一 トし、 1%BSAを含む PBSを用いて室温で 1時間洗浄した。 0.05% Tweenを含む PBS(PBS/Tween)で洗浄後、 適切に希釈されたサンプルを該ゥエルに加えた。 プレ ートを 4でで終夜ィンキュペートし、 PBS/Tweenで洗浄した。 ビォチン化ラット 抗 IL-10 mAb(JES3-12G8; 2 g m 1 , PharMingen)を該ゥエルに加え、 プレ ―トを室温で 3時間激しく振とうしながらィンキュベ一トした。 PBS/ weenで洗 浄後、 希釈されたストレプトアビジン西洋わさびペルォキシダーゼ複合体をゥエル に加えた。プレートを室温で 3 0分間ィンキュベ一トし、 PBS/Tweenで洗浄した。 基質(o—フエ二レンジァミン) をゥエルに加え、 490nmの吸光度をマイクロプレ ートリーダ一で測定した。 組換え vIL-10(PharMingen)を標準品として用い、 この ELISAシステムの直線範囲は 30〜2000pg/mlであった。この ELISAシステムはマ ウス IL-10を検出しない。 For IL-lra ELISA, serum samples obtained from the mouse tail vein were assembled using an ELISA kit (Biosom'ce International, Camarillo, CA) according to the supplier's specifications. Serial dilutions of recombinant mouse IL-lra (R & D system) were used as standards. Serum concentrations of vIL-10 were assayed as follows: 96-well plates were coated overnight at 4 ° C with 22 g / ml rat anti-IL-10 mAb, JES3_9D7 (PliarMingen). Then, the plate was washed with PBS containing 1% BSA at room temperature for 1 hour. After washing with PBS containing 0.05% Tween (PBS / Tween), appropriately diluted samples were added to the wells. Plates were incubated overnight at 4 and washed with PBS / Tween. Biotinylated rat anti-IL-10 mAb (JES3-12G8; 2 gm 1, PharMingen) was added to the wells and plates were incubated with vigorous shaking at room temperature for 3 hours. After washing with PBS / ween, the diluted streptavidin horseradish peroxidase complex was added to the wells. Plates were incubated for 30 minutes at room temperature and washed with PBS / Tween. The substrate (o-phenylenediamine) was added to the wells, and the absorbance at 490 nm was measured with a microplate reader. Using recombinant v IL-10 and (PharMin g en) as a standard, the linear range of the ELISA system was 30~2000pg / ml. This ELISA system does not detect mouse IL-10.
•組織学的知見  • Histological findings
心臓を 10%ホルマリンで固定し、 パラフィン上に包埋し、 切片標本とし、 マツソ ン三色染色により染色した。 心臓切片標本を CCDカメラで写真撮影し、 全心臓切 片標本の面積及び浸潤ゾーンの面積をブラインド様式 (blind fashion)で、 NIHィメ 一ジソフトウエアにより測定した。 細胞浸潤の程度を浸潤ゾーンの面積を全心臓切 片標本の面積で割ることにより計算した。 The heart was fixed in 10% formalin, embedded in paraffin, sectioned, and Staining was performed by three-color staining. The heart section specimens were photographed with a CCD camera, and the area of all heart section specimens and the area of the infiltration zone were measured in a blind fashion by NIH Image Software. The extent of cell invasion was calculated by dividing the area of the invasion zone by the area of the whole heart section specimen.
• リアルタイム PCR  • Real-time PCR
全 R NAをグァニジンチオシァネート一セシウムクロライド遠心分離法によりマ ウスの心臓から抽出した。 R NAをオリゴ d Tプライマー及び Superscriptll逆転 写酵素 (GIBCO BRL, Gaithersburg, MD)を用いて逆転写した。 心臓中のサイトカ インの mHNA のレベルを測定するために、 リアルタイム定量 PCR を ABI PRISMTM 7700 System (PE Biosystems, Foster City, CA)(Overberghら, 1999) を用いて行った。 これらの分析のために使用したプライマ一対及びプローブは、 以 下の通りである。  Total RNA was extracted from mouse hearts by guanidine thiocyanate-cesium chloride centrifugation. RNA was reverse transcribed using oligo dT primer and Superscriptll reverse transcriptase (GIBCO BRL, Gaithersburg, MD). Real-time quantitative PCR was performed using the ABI PRISM ™ 7700 System (PE Biosystems, Foster City, Calif.) (Overbergh et al., 1999) to determine mHNA levels of cytokines in the heart. The primer pairs and probes used for these analyzes are as follows.
IL-1 jSフォワードプライマー, 5'-CAACCAACAAGTGATATTCTCCATG-3' IL-1 jS forward primer, 5'-CAACCAACAAGTGATATTCTCCATG-3 '
IL-1 )3バックヮードプライマー, 5*-GATCCACACTCTCCAGCTGCA-3' IL-1) 3 back primer, 5 * -GATCCACACTCTCCAGCTGCA-3 '
IL-1 i8プローブ, 5'-CTGTGTAATGAAAGACGGCACACCCACC-3'  IL-1 i8 probe, 5'-CTGTGTAATGAAAGACGGCACACCCACC-3 '
TNF- a;フォワードプライマ一, 5'-CATCTTCTCAAAATTCGAGTGACAA-3' TNF-a; forward primer, 5'-CATCTTCTCAAAATTCGAGTGACAA-3 '
TNF-ひバックヮードプライマ一, 5'-TGGGAGTAGACAAGGTACAACCC-3,TNF-back primer, 5'-TGGGAGTAGACAAGGTACAACCC-3,
TNF- プローブ, 5'-CACGTCGTAGCAAACCACCAAGTGGA-3' TNF-probe, 5'-CACGTCGTAGCAAACCACCAAGTGGA-3 '
IFN-ァフォワードプライマ一, 5'-TCAAGTGGCATAGATGTGGAAGAA- 3' IFN-forward primer, 5'-TCAAGTGGCATAGATGTGGAAGAA-3 '
IFN-アバックヮ一ドプライマ一, 5'-TGGCTCTGCAGGATTTTCATG-3' IFN-Avac @ 1 Primer, 5'-TGGCTCTGCAGGATTTTCATG-3 '
IFN-ァプローブ, 5'-TCACCATCCTTTTGCCAGTTCCTCCAG-3'  IFN-probe, 5'-TCACCATCCTTTTGCCAGTTCCTCCAG-3 '
IL-6 フォワードプライマ一, 5'-CAGAATTGCCATCGTACAACTCTTTTCTCA-3' IL-6 forward primer, 5'-CAGAATTGCCATCGTACAACTCTTTTCTCA-3 '
IL-6バックヮードプライマ一.5'-AAGTGCATCATCGTTGTTCATACA-3 IL-6 backed primer 1.5'-AAGTGCATCATCGTTGTTCATACA-3
IL-6 プローブ, 5'-GAGGATACCACTCCCAACAGACC-3'  IL-6 probe, 5'-GAGGATACCACTCCCAACAGACC-3 '
iNOS フォワードプライマー, 5'-CAGCTGGGCTGTACAAACCTT3' iNOS forward primer, 5'-CAGCTGGGCTGTACAAACCTT3 '
iNOS Γ%、リクヮードプライマー, 5'-CATTGGAAGTGAAGCGTTTCG-3' iNOS プローブ, 5'-CGGGCAGCCTGTGAGACCTTTGA-3' iNOS Γ%, liquid primer, 5'-CATTGGAAGTGAAGCGTTTCG-3 'iNOS probe, 5'-CGGGCAGCCTGTGAGACCTTTGA-3'
GAPDH フォワードプライマ一, 5'-TTCACCACCATGGAGAAGGC-3' GAPDHハックヮ一ドフライマ一, 5'-GGCATGGACTGTGGTCATGA-3' GAPDH forward primer, 5'-TTCACCACCATGGAGAAGGC-3 ' GAPDH Hack 1D-framer, 5'-GGCATGGACTGTGGTCATGA-3 '
GAPDH プローブ, 5 'TGCATCCTGCACCACCAACTGCTTAG-3' GAPDH probe, 5 'TGCATCCTGCACCACCAACTGCTTAG-3'
これらのプローブは、適切な PCR産物を汚染されたゲノム DNA由来の増幅産物 と区別するために、 イントロン配列を包含するように設計された。 プロ一プの 5'及 で各々標識した。  These probes were designed to include intron sequences to distinguish appropriate PCR products from amplification products from contaminated genomic DNA. Each was labeled 5 'of the probe.
•統計的分析  • Statistical analysis
生存を力プランメイャ一法 (Kaplan-Meier method)で分析した。 統計的比較は、 log-ランクテスト及び ANOVAにより行った。 スチューデントの t検定を使用して 組織学的知見、 サイトカインの血清レベルおよび心臓のサイトカインの発現を比較 した。  Survival was analyzed by the Kaplan-Meier method. Statistical comparison was performed by log-rank test and ANOVA. Histological findings, serum levels of cytokines and expression of cardiac cytokines were compared using the Student's t-test.
•導入された遺伝子の発現 • Expression of introduced genes
マウス IL-lra及び vIL_10及び c_kitが pCAGGS発現べクタ一に揷入されて、 pCAGGS-IL-lra 及び pCAGGS'vIL-10 及び pCAGGS- c-kit を得た。 pCAGGS-IL-lraを用いてトランスフエク卜された BM "10由来の培養上清のィム ノブロッテイングは、 正確なサイズのマウス IL-lraである、 17kDa蛋白質の成功 した発現を示した(図 1 A)。 同様に、 vIL-10発現は、 pCAGGS-vIL-10の BMT-10 細胞への一時的卜ランスフエクシヨンにより確認された。 同様に、 c-kit発現は、 pCAGGS-c-kitの BMT-10細胞への一時的卜ランスフエクションにより確認された。 各プラスミドのエレクトロポレ一シヨンが蛋白質の生理学的に有意なレベルを生じ るかどうかを測定するために、 EMCV接種された DBA/2マウスの両側性前脛骨筋 に 7 5 のプラスミドを注入し、 導入された遺伝子の発現レベルがそのピークと 予測されるときに、 IL-lraまたは vIL_10の血清レベルをエレクトロポレーション の 5日後 ELISAにより測定した (図 1 B; Aiharaら, 1998)。 IL-lraの濃度は、 未感染のコントロールマウスよりも EMCV接種マウスが 3 . 5倍高く (p<0.005)、 IL-lra遺伝子導入は、さらに血清 IL-li'aレベルを 1 · 9倍増大した (p<0.01、 EMCV 感染マウスとの比較)。 IL-lra の血清濃度は、 未感染マウスへのエレクトロボレー シヨンの 0 , 3, 5, 7及び 1 4日後調ベら lた。 該時間経過は、 IL-lraの血清濃 度は第 5日 (p<0.01、 第 0日との比較)でピークとなり、 その後徐々に減少し (図 1 C )、 この結果は既報告と一致する (Wells, 1993; Vitadelloら、 1994)。 in vivoェレ クトロポレーシヨンの 5日後の vIL-10濃度は 2294pg/mlであった(図 1 D)。 これ らの結果は明らかに in vivoエレクトロボレ一ションがサイトカインを全身に送達 するのに優れていることを示す。 Mouse IL-lra and vIL_10 and c_kit were introduced into pCAGGS expression vector to obtain pCAGGS-IL-lra and pCAGGS'vIL-10 and pCAGGS-c-kit. Immunoblotting of culture supernatants from BM "10 transfected with pCAGGS-IL-lra showed successful expression of the 17 kDa protein, a mouse IL-lra of the correct size ( Figure 1A) Similarly, vIL-10 expression was confirmed by transient transfection of pCAGGS-vIL-10 into BMT-10 cells Similarly, c-kit expression was confirmed by pCAGGS-c Confirmed by transient transfection of -kit into BMT-10 cells EMCV was inoculated to determine whether electroporation of each plasmid resulted in physiologically significant levels of protein. Injected 75 plasmids into the bilateral tibialis anterior muscle of DBA / 2 mice and electrotransferred serum levels of IL-lra or vIL_10 when the level of the introduced gene was predicted to be at its peak. Five days later, it was measured by ELISA (FIG. 1B; Aihara et al., 19). 98) The concentration of IL-lra was 3.5 times higher in EMCV-inoculated mice than in uninfected control mice (p <0.005), and IL-lra gene transfer further reduced serum IL-li'a levels by 1 9-fold increase (p <0.01, compared to EMCV-infected mice) .The serum concentration of IL-lra was After 0, 3, 5, 7 and 14 days after the chilling, the preparation was started. During this time course, the serum concentration of IL-lra peaked on day 5 (p <0.01, compared with day 0), and then gradually decreased (Fig. 1C), which is consistent with the previous report. (Wells, 1993; Vitadello et al., 1994). The vIL-10 concentration 5 days after in vivo electroporation was 2294 pg / ml (FIG. 1D). These results clearly show that in vivo electroporation is superior for delivering cytokines systemically.
•心筋炎に関する IL-lra及び vIL_10及び可溶性 c_kitの導入  • Introduction of IL-lra, vIL_10 and soluble c_kit for myocarditis
in vivoエレクトロボレ一シヨン法を適用し、本発明者は実験的心筋炎に対するサ ィトカイン遺伝子治療を試みた。 4週齢の DBA/2雄マウスに lOpfuの EMCVを接 種した。 接種 1 4日後に生存するのはこれらマウスの 20%未満であった。 IL-lra 遺伝子導入の結果の統計的分析は、 処理群が有意に高い生存を示すことを明らかに した (図 2A)。 vIL-10遺伝子導入は、 EMCV接種後の死亡率も減少し (図 2 B)、 IL-lra導入よりもわずかに良好な生存率を生じた。 これらのデータは、 2つの抑制 性サイトカインが有利な効果を有することを示唆した。 プラスミド自身が効果を有 する可能性を排除するために、 空の pCAGGSプラスミドを同様に感染マウスに導 入し、 生存率を PBS注入マウスと比較した。 図 2 Cに示すように、 空のプラスミ ドの導入は、 生存曲線を変化させなかった。 ·  By applying the in vivo electrobolition method, the present inventor tried a cytokine gene therapy for experimental myocarditis. 4-week-old DBA / 2 male mice were inoculated with lOpfu EMCV. Less than 20% of these mice survived 14 days after inoculation. Statistical analysis of the results of the IL-lra gene transfer revealed that the treated group showed significantly higher survival (Figure 2A). vIL-10 gene transfer also reduced mortality after EMCV inoculation (FIG. 2B) and resulted in slightly better survival than IL-lra transfer. These data suggested that the two inhibitory cytokines had a beneficial effect. To exclude the possibility of the plasmid itself having an effect, empty pCAGGS plasmid was similarly introduced into infected mice and the viability compared to PBS-injected mice. As shown in FIG. 2C, introduction of empty plasmid did not alter the survival curve. ·
可溶性 c-kit遺伝子導入では、 空の pCAGGSプラスミド群では 10匹中 5匹が死 亡したのに対し、 可溶性 c -Mt遺伝子導入群では 10匹中死亡はなく、 EMCV接種 後の死亡率を有意に減少した (p<0.05)。  In the case of the soluble c-kit gene transfer, 5 out of 10 animals died in the empty pCAGGS plasmid group, whereas there were no deaths in 10 animals in the soluble c-Mt gene transfer group, and the mortality after EMCV inoculation was significant. (P <0.05).
•組織学的知見  • Histological findings
IL-lra処理群及び vIL-10処理群において、 心臓切片標本を炎症は進行するがど のマウスも死んでいない時点である第 5日に組織学的に評価した(図 3 A)。心筋浸 潤の定量的病理学的スコアは、 IL-lra処理群及び vIL_10処理群の両方で明らかな 改善が見られ、 このことは生存率の改善は心筋障害の緩和によるものであることを 示唆した。 可溶性 c-Mt遺伝子導入でも心筋の細胞浸潤は減少した (図 3 B ) •心臓におけるサイトカイン発現  In the IL-lra treated group and the vIL-10 treated group, heart section specimens were evaluated histologically on day 5, when inflammation progressed but none of the mice died (Fig. 3A). Quantitative pathological scores for myocardial infiltration were clearly improved in both the IL-lra and vIL_10 treatment groups, suggesting that the improvement in survival was due to alleviation of myocardial damage. did. Transduction of soluble c-Mt gene also reduced myocardial cell infiltration (Fig. 3B). • Cytokine expression in heart
IL-lra及び vIL-10の有利な効果に横たわるメカニズムをさらに明らかにするた めに、 心臓における炎症遺伝子の発現レベルをリアルタイム定量的 P C R法で測定 した。 IL- Ira導入マウスにおいて、 T N F— α及び iNOSの発現は未処理マウスで 見られるレベルの 47%及び 83%に抑制し (TNF- α, p<0.001; iNOS, p<0.05; 図 4A)、 一方、 vIL- 10導入マウスにおいて、 IFNマ及び iNOSは各々 14%及び 16%に抑制 された (IFN- r, p<0.0i; iNOS, p<0.005; 図 4B)。 IL-1 j3はまた vIL-10処理群で減 少した。 これらの炎症遺伝子の発現パターンの相違は、 これら 2つの免疫調節処理 が異なるメカニズムでその治療的効果を引き出すことを示唆する。 To further clarify the mechanisms underlying the beneficial effects of IL-lra and vIL-10 To this end, the expression levels of inflammatory genes in the heart were measured by real-time quantitative PCR. In IL-Ira transfected mice, expression of TNF-α and iNOS was suppressed to 47% and 83% of the level seen in untreated mice (TNF-α, p <0.001; iNOS, p <0.05; FIG. 4A). On the other hand, in vIL-10-introduced mice, IFN and iNOS were suppressed to 14% and 16%, respectively (IFN-r, p <0.0i; iNOS, p <0.005; FIG. 4B). IL-1 j3 was also reduced in the vIL-10 treated group. Differences in the expression patterns of these inflammatory genes suggest that these two immunomodulatory processes elicit their therapeutic effects by different mechanisms.
現在、 感染は多くの心臓疾患の病因に関与すると考えられている。 ウィルス性心 筋炎は、 特に懸念され、 各種の形態が見られる (Matsumori, 1997)。過去数年にお いて、 サイト力イン、 特に IL-1 ]3及び TNF-ひのような前炎症 (proinflammatory) サイトカインは、 心筋炎及び心筋症の病因に重要な因子としてますます認識されて いる。 各種の形態のストレスに対応して、 心臓は IL-1 )3及び TNF- αのような前炎 症サイト力イン、 単球走化性蛋白質- 1の様なケモカイン、 誘導性一酸化窒素合成酵 素の様な炎症性酵素、細胞内接着分子- 1のような接着分子を含むサイ卜力インを分 泌する。 これらの生成物は、 病因に関係なく心臓病患者の心臓、 並びに実験的心臓 機能不全を有する動物の心臓で増加する。 これらの生成物は、 炎症及び免疫応答を 介在し、 全て NF- K Bにより調節される。 興味深いことに、 前炎症サイト力インで ある IL-1 j8及び TNF- の発現は NF- κ Βの活性化を必要とするだけでなく、 逆に その活性化を引き起こす。 このタイプのポジティブレギュレーションループは、 局 所炎症反応を増強し及び永続的にし得る。 この観点から、 ウィルス性心筋炎を治療 するために抗サイトカイン又は免疫調節剤を利用する幾つかの治療法が報告された。 しかしながら、 薬物送達の伝統的な方法は、 組換え蛋白質に適用されるとき多くの 落とし穴:短持続性の効力、 頻回投与の必要性、 及び最も重要である蛋白質を送達 することの不適切さ、 を有する。例えば、 IL-1 J3は実験的敗血症の間 150_200pg/ml の最大濃度に達し、 IL-1受容体を発現する細胞中の IL-1応答の 50%を抑制するた めに 1 0〜 1 0 0倍過剰量の IL-lraが要求される (Bi'esnihanら, 1998; Granowitz ら, 1991)。 この研究で、 本発明者は in vivoエレクト口ポレーシヨンを用いた遺伝 子導入を行うことによりこれらの落とし穴を克服した。 この方法により高レベルの サイトカインが血清中で得ることができる。 At present, infection is thought to be involved in the pathogenesis of many heart diseases. Viral cardiomyositis is of particular concern and has various forms (Matsumori, 1997). In the last few years, proinflammatory cytokines such as cytoin, especially IL-1] 3 and TNF-spin, have been increasingly recognized as important factors in the pathogenesis of myocarditis and cardiomyopathy . In response to various forms of stress, the heart has a proinflammatory site such as IL-1) 3 and TNF-α, chemokines such as monocyte chemoattractant protein-1, and inducible nitric oxide synthesis. It secretes inflammatory enzymes, such as enzymes, and site forces that contain adhesion molecules, such as intracellular adhesion molecule-1. These products are increased in the heart of patients with heart disease, regardless of etiology, as well as in animals with experimental cardiac dysfunction. These products mediate inflammatory and immune responses and are all regulated by NF-KB. Interestingly, expression of the pro-inflammatory sites, IL-1 j8 and TNF-, not only requires activation of NF-κΒ, but also causes its activation. This type of positive regulation loop can enhance and make the local inflammatory response permanent. In this regard, several treatments have been reported that utilize anti-cytokines or immunomodulators to treat viral myocarditis. However, traditional methods of drug delivery have many pitfalls when applied to recombinant proteins: short-lasting efficacy, the need for frequent dosing, and, most importantly, the inadequacy of delivering proteins. And. For example, IL-1 J3 reached a maximum concentration of 150-200 pg / ml during experimental sepsis, and it was 10- 10 to suppress 50% of the IL-1 response in cells expressing the IL-1 receptor. A 0-fold excess of IL-lra is required (Bi'esnihan et al., 1998; Granowitz et al., 1991). In this study, the inventor has overcome these pitfalls by performing gene transfer using in vivo electotomy. In this way, high level Cytokines can be obtained in serum.
IL-lraは IL-1遺伝子ファミリ一のメンバーであり、 IL-1の多くの作用を in vitro 及び in vivoの両方で IL-1受容体に競合することで抑制する。 IL-1のァゴニスト効 果は、 部分的には IL-lra及び IL-1受容体の相互作用により調節される。 組換え IL-lraの投与は、 マウスにおける TNF投与による致死率を改善し、 LPSの腹腔内 投与は、 正常マウスよりも IL-lraノックアウトマウスでより致死的である (Arend ら, 1998;Evei'aerdtら, 1994)。 一方、 内因性 IL-lraを欠損するマウスは正常マウ スよりも Listeria monocytogenesの感染により感受性が低く、 これは IL'lは細胞 内生物による感染に対する抵抗性に重要な役割を果たしているという考えを支持す る。 これらの研究は、 内因性 IL-1及び IL-lraの間の in vivoバランスが感染に対 する宿主応答の影響に重要であることを確立する。 ウィルスベクタ一を用いた IL-lra遺伝子導入は最近関節炎及び虚血性脳障害のような炎症性疾患の実験的動 物モデルで調べられた (Hungら, 1994; Makarovら, 1996; Otaniら, 1996; Yan ら, 1997; Yang 6, 1998; Fernandes ら, 1999);。 これらの研究のデ一夕は、 IL-lraの 治療的非有用性及び in vivoでの炎症細胞の活性ィ匕における IL-1の重要な役割を示 唆する。本発明の研究は、遺伝子導入により IL-lraを用いた心筋炎治療のための新 規な治療的アプローチを示唆し、 そこでは、 導入効率がエレクト口ポレーシヨンに よつて増大された。本発明者はさらに IL-lraが心筋損傷を軽減するメカニズムを分 析した。 IL-1 経路は、 心筋層の iNOS の調節に決定的な役割を果たす (Ungureanu-Longroisら、 1995)。 TNF- αは培養心筋細胞に直接的細胞障害性効果 及び負の変力作用を有し、 さらに細胞障害性 Τ細胞を活性化し、 それは筋細胞障害 を引き起こし得る (Pinskyら, 1995; Yokoyamaら, 1993; Woodleyら, 1991)。 TNF- aが免疫応答の非常に初期の段階で重要な役割を果たすこと、及び抗 TNF- a mAb の投与は急性ウィルス性心筋炎の初期の経路を妨げ得ることが示唆された (Yamadaら, 1994)。本研究では、 IL-lraでの処置が iNOS及び TNF- α発現の抑制 により心筋を保護し得る。  IL-lra is a member of the IL-1 gene family and suppresses many effects of IL-1 by competing with the IL-1 receptor both in vitro and in vivo. The agonist effect of IL-1 is regulated, in part, by the interaction of IL-lra and the IL-1 receptor. Administration of recombinant IL-lra improved mortality from TNF administration in mice, and intraperitoneal administration of LPS was more lethal in IL-lra knockout mice than in normal mice (Arend et al., 1998; Evei ' aerdt et al., 1994). On the other hand, mice lacking endogenous IL-lra are less susceptible to Listeria monocytogenes infection than normal mice, suggesting that IL'l plays an important role in resistance to infection by intracellular organisms. To support. These studies establish that the in vivo balance between endogenous IL-1 and IL-lra is important in affecting the host response to infection. IL-lra gene transfer using viral vectors has recently been investigated in experimental animal models of inflammatory diseases such as arthritis and ischemic encephalopathy (Hung et al., 1994; Makarov et al., 1996; Otani et al., 1996). Yan et al., 1997; Yang 6, 1998; Fernandes et al., 1999); The results of these studies suggest a therapeutic role for IL-lra and the important role of IL-1 in the activation of inflammatory cells in vivo. The study of the present invention suggests a novel therapeutic approach for the treatment of myocarditis using IL-lra by gene transfer, where the transduction efficiency was increased by electo-portionation. The present inventors have further analyzed the mechanism by which IL-lra reduces myocardial damage. The IL-1 pathway plays a critical role in regulating myocardial iNOS (Ungureanu-Longrois et al., 1995). TNF-α has a direct cytotoxic and negative inotropic effect on cultured cardiomyocytes and also activates cytotoxic Τ cells, which can cause myocyte damage (Pinsky et al., 1995; Yokoyama et al., 1993; Woodley et al., 1991). It has been suggested that TNF-a plays a key role at the very early stages of the immune response, and that administration of anti-TNF-a mAbs can interfere with the early pathways of acute viral myocarditis (Yamada et al., 1994). In this study, treatment with IL-lra may protect myocardium by suppressing iNOS and TNF-α expression.
IL-lra及び vIL-10は両方とも本発明の心筋炎のマウスモデルに有効な処置であ つたが、 in vivoエレクトロボレ一シヨンそのものによる処置は EMCV接種された マウスの生存率を変化させなかった。 IL-10はウィルス感染の初期の免疫応答の重 要なレギユレ一夕であると考えられる。 ウィルス誘導された脳脊髄炎を有する IL-10ノックァゥトマウスで致死率及び炎症は増大する (Linら, 1998)。 最近、 本発 明者は組換え IL-10を用いた処置が、 致死率及び心筋炎のマウスモデルにおける心 臓でのサイト力イン発現を減少することを示した (Nishioら, 1999)。 本発明では、 vIL-10処置はこの実験的心筋炎の効果を強力に改善した。細胞性 IL-10及び vIL-10 は多くの免疫抑制特性を共有する:それらは、 ともに活性化マウス Thlクローン、 ヒト末梢性単核細胞、 ヒトナチュラルキラ一細胞による INF-ァ產生を抑制する (Hsuら, 1990; Vieiraら, 1991; deWaal Malefytら, 1991)。 以前の報告によると、 IFN- rの発現の減少は、 vIL- 10処理群でも観察された。 vIL-10は E Bウィルスに より捕捉された細胞性サイト力インであると考えられる。 しかしながら、 IL-10及 び vIL-10の効果の間にいくつかの相違がある。 vIL-10は IL-10に比してサイトカ イン合成抑制因子としては活性が低いが、 それは単球、 リンパ球及び肥満細胞に対 する IL-10の免疫刺激活性のいくつかを欠如する。それゆえ、 vIL-10は優れた免疫 抑制を提供し得る (Drazanら, 1996; Debruyneら, 1998; Henkeら, 2000)。 これら の相違は、 IL-10と比較して心筋炎の作用を減少する点に関する vIL-10の優れた効 果を説明し得る。最近、 IL-10及び vIL-10の異なる活性の構造的基礎が解明された (Dingら, 2000)。 該結果は、 単一アミノ酸が IL-10の免疫刺激活性に重要であるこ とを示唆する。 本発明者のモデルでは、 心筋層における iNOS発現はまた vIL-10 処理マウスで抑制され、単球 Zマク口ファージの直接的脱活性化または IFN- rの阻 害を介した間接的脱活性化を示唆する。 LPS-刺激白血球では、 IL-10は mRNA安 定化により IL- Iraを誘導することが知られ、 一方、 それは IL_1 ^、 TNF及び IL-8 の産生を抑制する (Cassatellaら, 1994; Chomaratら, 1995)。 vIL-10力 irlraを 誘導するかどうかは不明であるが、 vIL-10を導入されたマウスは IL- Iraの上昇し た血清濃度 (874pg/ml)を示す。この vIL-10の付加的な効果は、 IL-lraと比較して、 そのより高い有効性を説明するかもしれない。 IL-lra and vIL-10 were both effective treatments in the mouse model of myocarditis of the present invention, but treatment with in vivo electroporation itself was inoculated with EMCV The survival rate of the mice did not change. IL-10 is considered to be an important regulatory response in the early immune response to viral infection. Mortality and inflammation are increased in IL-10 knockout mice with virus-induced encephalomyelitis (Lin et al., 1998). Recently, the present inventors have shown that treatment with recombinant IL-10 reduces mortality and cytoplasmic force-in expression in a mouse model of myocarditis (Nishio et al., 1999). In the present invention, vIL-10 treatment strongly improved the efficacy of this experimental myocarditis. Cellular IL-10 and vIL-10 share many immunosuppressive properties: they both inhibit INF-α production by activated mouse Thl clones, human peripheral mononuclear cells, and human natural killer cells ( Hsu et al., 1990; Vieira et al., 1991; deWaal Malefyt et al., 1991). According to previous reports, reduced expression of IFN-r was also observed in the vIL-10 treated group. vIL-10 is thought to be a cellular site force captured by the EB virus. However, there are some differences between the effects of IL-10 and vIL-10. Although vIL-10 is less active as a cytokine synthesis inhibitor than IL-10, it lacks some of the immunostimulatory activity of IL-10 on monocytes, lymphocytes and mast cells. Therefore, vIL-10 may provide excellent immunosuppression (Drazan et al., 1996; Debruyne et al., 1998; Henke et al., 2000). These differences may explain the superior effect of vIL-10 in reducing the effects of myocarditis as compared to IL-10. Recently, the structural basis for the different activities of IL-10 and vIL-10 has been elucidated (Ding et al., 2000). The results suggest that a single amino acid is important for the immunostimulatory activity of IL-10. In our model, iNOS expression in the myocardium was also suppressed in vIL-10-treated mice, resulting in direct deactivation of monocyte Z-mace phage or indirect deactivation via inhibition of IFN-r. Suggests. In LPS-stimulated leukocytes, IL-10 is known to induce IL-Ira by mRNA stabilization, while it suppresses the production of IL_1 ^, TNF and IL-8 (Cassatella et al., 1994; Chomarat et al. , 1995). Whether vIL-10 induces irlra is unknown, but mice transfected with vIL-10 show elevated serum concentrations of IL-Ira (874 pg / ml). This additional effect of vIL-10 may explain its higher efficacy compared to IL-lra.
サイトカイン発現の 1つの一般的な効果は iNOSの誘導である。一酸ィ匕窒素 (NO) は EMCVにより誘導されるサイトカインに応答した亜急性期中に生成される。 一 酸ィ匕窒素は両刃の剣である (Beckmanら, 1990; Beckman, 1991)。 一酸化窒素は免 疫学的自己防御メカニズムのモジユレ一夕一として有用であり、 同時に、 それは病 原菌を殺すのに重要な役割を果たす。 逆に、 iNOS により産生される過剰の一酸ィ匕 窒素もウィルス性心筋炎及び自己免疫性心筋炎において心筋組織に有害な効果を与 える。 炎症性サイトカインの直接のネガティブ変力効果が一酸化窒素により介在さ れるかもしれない (Balligandら, 1993; Ungureanu-Longroisら, 1995)。この研究で は、 iNOS発現は IL-lraおよび vIL-10投与の両方で抑制され、 これは、 一酸化窒 素が心筋炎における心筋損傷のターミナルエフェクターであることを示唆する。 結 論として、本発明者は、(1) in vivoエレクト口ポレーシヨンが in vivoでサイトカイ ンサイトカイン遺伝子を導入する有効な方法であること、 (2)抑制性サイトカイン IL-lra及び vIL-10の遺伝子導入が心筋炎のマウスモデルの死亡率を低下させるこ と、(3)治療効果は心臓における免疫抑制性サイトカインの阻害にあることを実証し た。 これらの結果は、 サイト力イン治療を開発する根拠を強力に支持し、 in vivoェ レクト口ポレーシヨンによるサイトカイン治療は心筋炎だけでなく、 他の 、血管系 疾患に対する新規な治療的アプローチを切り開くものである。 One common effect of cytokine expression is the induction of iNOS. Monoacid nitrogen (NO) is produced during the subacute phase in response to cytokines induced by EMCV. one Sidani Nitrogen is a double-edged sword (Beckman et al., 1990; Beckman, 1991). Nitric oxide is useful as an allergic mechanism of immunological self-protection, while at the same time it plays an important role in killing pathogens. Conversely, the excess of nitric oxide produced by iNOS also has a detrimental effect on myocardial tissue in viral and autoimmune myocarditis. The direct negative inotropic effects of inflammatory cytokines may be mediated by nitric oxide (Balligand et al., 1993; Ungureanu-Longrois et al., 1995). In this study, iNOS expression was suppressed by both IL-lra and vIL-10 administration, suggesting that nitric oxide is a terminal effector of myocardial damage in myocarditis. In conclusion, the present inventors have determined that (1) in vivo electoporation is an effective method for introducing cytokine cytokine genes in vivo, and (2) that the inhibitory cytokines IL-lra and vIL-10 We demonstrated that gene transfer reduced mortality in a mouse model of myocarditis, and (3) that the therapeutic effect was inhibition of immunosuppressive cytokines in the heart. These results strongly support the rationale for developing site-in-force therapy, and cytokine therapy with in vivo electoral poration opens up new therapeutic approaches not only for myocarditis but also for other vascular diseases. It is.
本発明の治療剤によれば、 免疫抑制性サイトカインを生体内で持続的に産生 ·放 出することが可能となり、 高価なサイトカイン蛋白質を頻回投与する必要がない。 また、 疾患に関係する免疫抑制性サイト力インの種類を適切に選択し、 あるいは 組み合わせることにより、 高レベルの免疫抑制性サイトカインを血液中で得ること ができ、 1以上の炎症 ·腫瘍性疾患を効率的に治療することができる。  ADVANTAGE OF THE INVENTION According to the therapeutic agent of this invention, it becomes possible to produce | generate and release | release an immunosuppressive cytokine in a living body continuously, and it is not necessary to administer expensive cytokine protein frequently. In addition, by appropriately selecting or combining the types of immunosuppressive cytodynamics involved in the disease, high levels of immunosuppressive cytokines can be obtained in the blood, and one or more inflammatory or neoplastic diseases can be obtained. It can be treated efficiently.
本明細書に記載した文献を以下に列挙する。  The documents described in this specification are listed below.
参考文献  References
AIHARA, H., and MIYAZAKI, J. (1998). Gene transfer into muscle by electroporation in vivo. Nat. Biotechnol. 16,867  AIHARA, H., and MIYAZAKI, J. (1998) .Gene transfer into muscle by electroporation in vivo.Nat.Biotechnol. 16,867
AREND, W.P., MALYAK, M., GUTHRIDGE, C.J., and GABAY, C. (1998). Interleukin-1 receptor antagonist: role in Diology. Annu. Rev. Immunol. 16, 24-55.  AREND, W.P., MALYAK, M., GUTHRIDGE, C.J., and GABAY, C. (1998). Interleukin-1 receptor antagonist: role in Diology. Annu. Rev. Immunol. 16, 24-55.
BALLIGAND, J.-L., UNGUREANU, D" KELLY, R., PIMENTAL, D., MICHEL, I" and SMITH, T. (1993). Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes floolws exposure to activated macrophage-conditioned medium. J Clin Invest 91, 2314-2319. BALLIGAND, J.-L., UNGUREANU, D "KELLY, R., PIMENTAL, D., MICHEL, I "and SMITH, T. (1993) .Abnormal contractile function due to induction of nitric oxide synthesis in rat cardiac myocytes floolws exposure to activated macrophage-conditioned medium. J Clin Invest 91, 2314-2319.
BECKMAN. J.S. (1991). The double-edged role of nitric oxide in brain function and sup eroxide -me diate d injury. J. Dev. Physiol. 15, 53-59. BECKMAN. J.S. (1991) .The double-edged role of nitric oxide in brain function and superoxide -me diate d injury.J. Dev.Physiol. 15, 53-59.
BECKMAN, J.S., BECKMAN, T.W., CHEN, J., MARSHALL, P.A., and FREEMAN, B.A. (1990). Apparent hydroxyl radical production by p erox nitrite* implications for endothelial injury from nitric oxide and superoxide. Proc. Nati. Acad. Sci. USA. 87, 1620-1624. BECKMAN, JS, BECKMAN, TW, CHEN, J., MARSHALL, PA, and FREEMAN, BA (1990) .Apparent hydroxyl radical production by perox nitrite * implications for endothelial injury from nitric oxide and superoxide.Proc.Nati.Acad. Sci. USA. 87, 1620-1624.
BOWLES, N.E., and TOWBIN, J.A. (1998). Molecular aspects of myocarditis. Curr. Opin. Cardiol. 13, 179-184.  BOWLES, N.E., and TOWBIN, J.A. (1998). Molecular aspects of myocarditis. Curr. Opin. Cardiol. 13, 179-184.
BRESNIHAN, B., and CUNNANE, G. (1998). Interleukin-1 receptor antagonist. Emerging therapies for rheumatoid arthritis 24, 615-628.  BRESNIHAN, B., and CUNNANE, G. (1998) .Interleukin-1 receptor antagonist.Emerging therapies for rheumatoid arthritis 24, 615-628.
CASSATELLA, M.A., MEDA, L., GASPERINI, S., CALZETTI, F" and BONOEA, S. (1994). Interleukin 10 (IL-10) upregulates IL-I receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J. Exp. Med. 179, 1695-1699. CASSATELLA, MA, MEDA, L., GASPERINI, S., CALZETTI, F "and BONOEA, S. (1994) .Interleukin 10 (IL-10) upregulates IL-I receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation. J. Exp. Med. 179, 1695-1699.
CHOMAEAT, P., VANNIER, E.. DECHANET, J., RISSOAN, MC, BANCHEREAU, J., DINARELLO, C.A., and MIOSSEC, P. (1995). Balance of IL-1 receptor antagonist/IL-lb in rheumatoid synovium and its regulation by IL-4 and IL-10. J. Immunol. CHOMAEAT, P., VANNIER, E..DECHANET, J., RISSOAN, MC, BANCHEREAU, J., DINARELLO, CA, and MIOSSEC, P. (1995) .Balance of IL-1 receptor antagonist / IL-lb in rheumatoid synovium and its regulation by IL-4 and IL-10. J. Immunol.
DE WAAL MALEFYT, R" HAANEN, J., SPITS, Η·, RONCAROLO. M G., TE VELDE, A.. FIGDOR, C, JOHNSON, , KASTELEIN, R., YSSEL. H., and DE VRIES, J.E. (1991). Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down regulation of class II major histocompatibility complex expression. J. Exp. Med. 174, 915-929.  DE WAAL MALEFYT, R "HAANEN, J., SPITS, Η ·, RONCAROLO. M G., TE VELDE, A. FIGDOR, C, JOHNSON,, KASTELEIN, R., YSSEL. H., and DE VRIES, JE (1991) .Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via down regulation of class II major histocompatibility complex expression.J. Exp. Med .174, 915-929.
DEBRUYNE, L.A., LI, K, CHAN, S.Y., L., Q., BISHOP, D.K., and BROMBERG, J.S. (1998). Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses. Gene. Ther. 5, 1079-1087. DEBRUYNE, LA, LI, K, CHAN, SY, L., Q., BISHOP, DK, and BROMBERG, JS (1998) .Lipid-mediated gene transfer of viral IL-10 prolongs vascularized cardiac allograft survival by inhibiting donor-specific cellular and humoral immune responses.Gene.Ther. 5, 1079-1087.
DING, Y" QIN, L" KOTENKO. S.V., PESTKA, S., and BROMBERG, J.S. (2000). A single amino acid determines the immunostimulatory activity of interleukin 10. J. Exp. Med. 191, 213-223.  DING, Y "QIN, L" KOTENKO. S.V., PESTKA, S., and BROMBERG, J.S. (2000) .A single amino acid determines the immunostimulatory activity of interleukin 10. J. Exp. Med. 191, 213-223.
DRAZAN. KE.. L., W., BULLINGTON, D.. and SHARED, A. (1996). Viral IL-10 gene therapy inhibits TNF-a and ILrlb, not IL-6, in the newborn endotdxemic mouse. J. Pediat. Surg. 31, 411-414.  DRAZAN. KE .. L., W., BULLINGTON, D .. and SHARED, A. (1996) .Viral IL-10 gene therapy inhibits TNF-a and ILrlb, not IL-6, in the newborn endotdxemic mouse. J Pediat. Surg. 31, 411-414.
EVERAERDT, B., BROUCKAERT, P., and FIERS, W. (1994). Recombinant IL_1 receptor antagonist protects against TNF-induced lethality in mice. J. Immunol. 152, 5041-5049.  EVERAERDT, B., BROUCKAERT, P., and FIERS, W. (1994) .Recombinant IL_1 receptor antagonist protects against TNF-induced lethality in mice. J. Immunol. 152, 5041-5049.
FERNANDES, J" TARDIF, G., MARTEL-PELLETIER. J.. LASCAU-COMAN, V., DUPUIS, M., MOLDOVAN, R. SHEPPARD, M., RISHNAN, B.R., and PELLETIER, J.-R (1999). In vivo transfer of interleukin- 1 receptor antagonist gene in osteoarthritic rabbit knee joints' prevention of osteoarthritis progression. Am. J. Pathol. 154, 1159-1169.  FERNANDES, J "TARDIF, G., MARTEL-PELLETIER. J .. LASCAU-COMAN, V., DUPUIS, M., MOLDOVAN, R. SHEPPARD, M., RISHNAN, BR, and PELLETIER, J.-R (1999 In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints' prevention of osteoarthritis progression.Am. J. Pathol. 154, 1159-1169.
GRANOWITZ, E.V., SANTOS, A., POUTSIAKA, D.D., CANNON, J.G., WILMORE, D.W" WOLFF, S.M., and DINARELLO, C.A. (1991). Production of interleukin- 1 -receptor antagonist during experimental endotoxaemia. Lancet 338, 1423-1424.  GRANOWITZ, EV, SANTOS, A., POUTSIAKA, DD, CANNON, JG, WILMORE, DW "WOLFF, SM, and DINARELLO, CA (1991) .Production of interleukin-1 -receptor antagonist during experimental endotoxaemia.Lancet 338, 1423- 1424.
HENKE, P.K., DEBRUNYE, L.A.. STRIETER, R.M., BROMBERG, J.S., PRINCE, M., KADELL, A.M., SARKAR. M" LONDY, F" and WAKEFIELD, T.W. (2000). Viral IL-10 gene transfer decreased inflammation and cell adhesion molecule expression in a rat model of venous thrombosis. J. Immunol. 164, 2131-2141.  HENKE, PK, DEBRUNYE, LA. STRIETER, RM, BROMBERG, JS, PRINCE, M., KADELL, AM, SARKAR. M "LONDY, F" and WAKEFIELD, TW (2000) .Viral IL-10 gene transfer decreased inflammation and cell adhesion molecule expression in a rat model of venous thrombosis. J. Immunol. 164, 2131-2141.
HSU, D.H., DE WAAL MALEFYT. R, FIORENTINO, D.F., DANG, M.N., VIEIRA, P., DE VRIES. J., SPITS, H., MOSMANN. T.R., and MOORE, K.W. (1990). Expression of IL-10 activity by Epstein-Barr virus protein BCRFl. Science 250, 830-832. HSU, DH, DE WAAL MALEFYT. R, FIORENTINO, DF, DANG, MN, VIEIRA, P., DE VRIES. J., SPITS, H., MOSMANN. TR, and MOORE, KW (1990) .Expression of IL-10 activity by Epstein-Barr virus protein BCRFl.Science 250, 830-832.
HUBER, S.A. (1997). Autoimmunity in myocarditis: relevance of animal models. Clin. Immunol. Immunopathol. 83, 93-102.  HUBER, S.A. (1997) .Autoimmunity in myocarditis: relevance of animal models. Clin. Immunol. Immunopathol. 83, 93-102.
HUBER, S.A., and LODGE, P.A. (1984). Coxsackievirus B-3 myocarditis in Balb/c mice: Evidence for autoimmunity to myocyte antigens. Am. J. Pathol. 116, 21-29.  HUBER, S.A., and LODGE, P.A. (1984) .Coxsackievirus B-3 myocarditis in Balb / c mice: Evidence for autoimmunity to myocyte antigens. Am. J. Pathol. 116, 21-29.
HUNG, G丄., GALEA-LAURI, J" MUELLER, G.M., GEORGESCU, H.I" LARKIN, L.A., SUCHANEK, P.D., TINDAL, M.H., ROBBINS, P.D., and EVANS, C.H. (1994). Suppression of intra- articular responses to interleukin- 1 by transfer of the interleukin- 1 receptor antagonist gene to synovium. Gene Ther. 1, 64_69.  HUNG, G 丄., GALEA-LAURI, J "MUELLER, GM, GEORGESCU, HI" LARKIN, LA, SUCHANEK, PD, TINDAL, MH, ROBBINS, PD, and EVANS, CH (1994). Suppression of intra-articular responses to interleukin- 1 by transfer of the interleukin- 1 receptor antagonist gene to synovium. Gene Ther. 1, 64_69.
ISHIYAMA, S., HIROE, M., NISHIKAWA, T" ABE, S" SHIMOJO, T., ITO, H., OZASA, S" YAMAKAWA, K.. MATSUZAKI, M" MOHAMMED, M.U., NAKAZAWA, H" KASAJIMA, T" and MARUMO, F. (1997). Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation 95, 489-496.  ISHIYAMA, S., HIROE, M., NISHIKAWA, T "ABE, S" SHIMOJO, T., ITO, H., OZASA, S "YAMAKAWA, K .. MATSUZAKI, M" MOHAMMED, MU, NAKAZAWA, H "KASAJIMA , T "and MARUMO, F. (1997) .Nitric oxide contributes to the progression of myocardial damage in experimental autoimmune myocarditis in rats. Circulation 95, 489-496.
IWASAKI, A" MATSUMORI, A.. YAMADA, T" SHIOI, T" WANG, W.Z., ONO, , NISHIO, R" OKADA. M" and SASAYAMA, S. (1999). Pimobendan inhibits the production of proinflammatory cytokines and gene expression of inducible nitric oxide synthase in a murine model of viral myocarditis. J. Am. Coll. Cardiol. 33, 1400-1407. IWASAKI, A "MATSUMORI, A..YAMADA, T" SHIOI, T "WANG, WZ, ONO,, NISHIO, R" OKADA. M "and SASAYAMA, S. (1999) .Pimobendan inhibits the production of proinflammatory cytokines and gene expression of inducible nitric oxide synthase in a murine model of viral myocarditis. J. Am. Coll. Cardiol. 33, 1400-1407.
LIN, M.T., HINTON, D.R., PARRA, B., STOHLMAN, S.A., and VAN DER VEEN, R.C. (1998). The role of IL-10 in mouse hepatitis virus -induced demyelinating encephalomyelitis . Virology 245, 270-280.  LIN, M.T., HINTON, D.R., PARRA, B., STOHLMAN, S.A., and VAN DER VEEN, R.C. (1998) .The role of IL-10 in mouse hepatitis virus -induced demyelinating encephalomyelitis.Virology 245, 270-280.
MAKAROV, S.S., OLSEN, J.C., JOHNSTON, W.N., ANDERLE, S.K, BROWN, R.R., BALDWIN, A.S.J., HASKILL, J.S., and SCHWAB, J.H. (1996). Suppression of experimental arthritis by gene transfer oi interleukin 1 receptor antagonist cDNA. Proc. Nati. Acad. Sci. USA 93, 402-406. MAKAROV, SS, OLSEN, JC, JOHNSTON, WN, ANDERLE, SK, BROWN, RR, BALDWIN, ASJ, HASKILL, JS, and SCHWAB, JH (1996) .Suppression of experimental arthritis by gene transfer oi interleukin 1 receptor Antagonist cDNA. Proc. Nati. Acad. Sci. USA 93, 402-406.
MATSUMORI, A. (1997). Molecular and immune mechanisms in the pathogenesis of cardiomyopathy: role of viruses, cytokines, and nitric oxide. Jpn Circ J. 61, 275-291. MATSUMORI, A. (1997) .Molecular and immune mechanisms in the pathogenesis of cardiomyopathy: role of viruses, cytokines, and nitric oxide.Jpn Circ J. 61, 275-291.
MIKAMI, S" KAWASHIMA, S., KANAZAWA, K" HIRATA, K" HOTTA, H., HAYASHI, Y" ITOH. H" and YOKOYAMA, M. (1997). Lowdose N ome ga-nitro -L- ar inine methyl ester treatment improves survival rate and decreases myocardial injury in a murine model of viral myocarditis induced by coxsackievirus B3. Circ. Res. 81, 504-511.  MIKAMI, S "KAWASHIMA, S., KANAZAWA, K" HIRATA, K "HOTTA, H., HAYASHI, Y" ITOH. H "and YOKOYAMA, M. (1997) .Lowdose Nome ga-nitro-L-ar inine methyl ester treatment improves survival rate and decreases myocardial injury in a murine model of viral myocarditis induced by coxsackievirus B3. Circ. Res. 81, 504-511.
NISHIO, R., MATSUMORI, A" SHIOI, T" ISHIDA, H., and SASAYAMA, S. (1999). Treatment of experimental viral myocarditis with interleukin-10. Circulation 100, 1102-1108.  NISHIO, R., MATSUMORI, A "SHIOI, T" ISHIDA, H., and SASAYAMA, S. (1999) .Treatment of experimental viral myocarditis with interleukin-10. Circulation 100, 1102-1108.
NITTA, Y., TASHIRO, F" TOKUI, M" SHIMADA, A" TAKEI, I" TABAYASHI, , and MIYAZAKI, J. (1998). Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Hum. Gene. Ther. 9, 1701-1707.  NITTA, Y., TASHIRO, F "TOKUI, M" SHIMADA, A "TAKEI, I" TABAYASHI,, and MIYAZAKI, J. (1998) .Systemic delivery of interleukin 10 by intramuscular injection of expression plasmid DNA prevents autoimmune diabetes in nonobese diabetic mice. Hum. Gene. Ther. 9, 1701-1707.
NIWA, H., YAMAMURA, , and MIYAZAKI, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, NIWA, H., YAMAMURA,, and MIYAZAKI, J. (1991). Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108,
193-200. 193-200.
OTANI, K., NITA, I., MACAULAY, W" GEORGESCU, H.L, ROBBINS, P.D., and EVANS, C.H. (1996). Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J. Immunol. 156, 3558-3562.  OTANI, K., NITA, I., MACAULAY, W "GEORGESCU, HL, ROBBINS, PD, and EVANS, CH (1996) .Suppression of antigen-induced arthritis in rabbits by ex vivo gene therapy. J. Immunol. 156, 3558-3562.
OVERBERGH, L., VALCKX. D., WAER, M" and MATHIEU, C. (1999). Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PGR. Cytokine 11, 305-312.  OVERBERGH, L., VALCKX. D., WAER, M "and MATHIEU, C. (1999). Quantification of murine cytokine mRNAs using real time quantitative reverse transcriptase PGR. Cytokine 11, 305-312.
PINSKY, D.J., CAI, B., YANG, X., RODRIGUEZ, C, SCIACCA, R.R., and CANNON, P.J. (I 995). The lethal effects of cytokine -induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor b. J. Clin. Invest. 95, 677-685. PINSKY, DJ, CAI, B., YANG, X., RODRIGUEZ, C, SCIACCA, RR, and CANNON, PJ (I 995) .The lethal effects of cytokine -induced nitric oxide on cardiac myocytes are blocked by nitric oxide synthase antagonism or transforming growth factor b. J. Clin. Invest. 95, 677-685.
SHIOI, T" MATSUMORI, A" and SASAYAMA, S. (1996). Persistent expression of cytokine in the chronic stage of viral myocarditis in mice. Circulation 94, SHIOI, T "MATSUMORI, A" and SASAYAMA, S. (1996) .Persistent expression of cytokine in the chronic stage of viral myocarditis in mice.Circulation 94,
2930-7. 2930-7.
SUZUKI, T" TAHARA, H., NARULA, S" MOORE, K.W., ROBBINS, P.D., and LOTZE, M.T. (1995). Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces local anergy to allogeneic and syngeneic tumors. J. Exp. Med. 182, 477-486.  SUZUKI, T "TAHARA, H., NARULA, S" MOORE, KW, ROBBINS, PD, and LOTZE, MT (1995) .Viral interleukin 10 (IL-10), the human herpes virus 4 cellular IL-10 homologue, induces. local anergy to allogeneic and syngeneic tumors.J. Exp.Med. 182, 477-486.
UNGUREANU-LONGROIS, D" BALLIGAND, J.-L., SIMMONS, W.W., OKADA, I" KOBZIK, L" LOWENSTEIN, C.J., KUNKEL, S.L., MICHEL. T.. KELLY, R.A., and SMITH, T.W. (1995)· Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to b-adrenergic agonists. Circ. Res. 77, 494-502.  UNGUREANU-LONGROIS, D "BALLIGAND, J.-L., SIMMONS, WW, OKADA, I" KOBZIK, L "LOWENSTEIN, CJ, KUNKEL, SL, MICHEL. T .. KELLY, RA, and SMITH, TW (1995) Induction of nitric oxide synthase activity by cytokines in ventricular myocytes is necessary but not sufficient to decrease contractile responsiveness to b-adrenergic agonists. Circ. Res. 77, 494-502.
VIEIRA, P., DE WAAL-MALEFYT. R., DANG, M.N" JOHNSON, K.E., KASTELEIN, R., FIORENTINO, D.F., DE VRIES, J.E., RONCAROLO, M.G., MOSMANN, T.F., and MOORE, K.W. (1991). Isolation and expression of human cytokine synthesis inhibitory factor (CSIF/IL-10) cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFl. Proc. Natl. Acad. Sci. USA 88, 1172-1176.  VIEIRA, P., DE WAAL-MALEFYT. R., DANG, MN "JOHNSON, KE, KASTELEIN, R., FIORENTINO, DF, DE VRIES, JE, RONCAROLO, MG, MOSMANN, TF, and MOORE, KW (1991) Isolation and expression of human cytokine synthesis inhibitory factor (CSIF / IL-10) cDNA clones: Homology to Epstein-Barr virus open reading frame BCRFl. Proc. Natl. Acad. Sci. USA 88, 1172-1176.
VITADELLO, M., SCHIAFFINO, M.V., PICAED, A., SCARPA, M., and SCHIAFFINO, 5. (1994). Gene transfer in regenerating muscle. Hum. Gene. Ther. 5, 11-18.  VITADELLO, M., SCHIAFFINO, M.V., PICAED, A., SCARPA, M., and SCHIAFFINO, 5. (1994). Gene transfer in regenerating muscle. Hum. Gene. Ther. 5, 11-18.
WANG, W.Z., MATSUMORI, A., YAMADA, T., SHIOI, T" OKADA, I, MATSUI, S., SATO, Y" SUZUKI, H., SHIOTA, K, and SASAYAMA, S. (1997). Beneficial effects of amlodipine in a murine model of congestive heart failure induced by viral myocarditis. Circulation 95, 245-251.  WANG, WZ, MATSUMORI, A., YAMADA, T., SHIOI, T "OKADA, I, MATSUI, S., SATO, Y" SUZUKI, H., SHIOTA, K, and SASAYAMA, S. (1997). Beneficial effects of amlodipine in a murine model of congestive heart failure induced by viral myocarditis. Circulation 95, 245-251.
WELLS, D.J. (1993). Improved gene transfer by direct plasmid injection associated with regeneration in mouse skeletal muscle. FEBS Lett. 332, 179-182. WELLS, DJ (1993) .Improved gene transfer by direct plasmid injection. associated with regeneration in mouse skeletal muscle.FEBS Lett.332, 179-182.
WOODLEY. S丄., MCMILLAN, M., SHELBY, J., LYNCH, D.H., ROBERTS, L.K., ENSLEY, R.D., and BARRY, W.H. (1991) Myocyte injury and contraction abnormalities produced by cytotoxic T lymphocytes. Circulation 83, 1410-1418. YAMADA, T.. MATSUMORI, A., and SASAYAMA, S. (1994). Therapeutic effect of anti-tumor necrosis factor-a antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89, 846-851. YANG, G.Y., LIU, X.H., KADOYA, C, ZHAO, Y.J" MAO, Y" DAVIDSON, B丄., and BETZ, A.L. (1998). Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce overexpression if interleukin-1 receptor antagonist. J. Cereb. Blood. Flow. Metab. 18, 840-847. YANG, G.Y., ZHAO, Y.J., DAVIDSON, B丄., and BETZ, A.L. (1997). Overexpression oi interleukin-1 receptor antagonist in the mouse brain reduces ischemic brain injury. Brain Res. 751, 181-188.  WOODLEY. S 丄., MCMILLAN, M., SHELBY, J., LYNCH, DH, ROBERTS, LK, ENSLEY, RD, and BARRY, WH (1991) Myocyte injury and contraction abnormalities produced by cytotoxic T lymphocytes. Circulation 83, 1410 -1418. YAMADA, T. MATSUMORI, A., and SASAYAMA, S. (1994) .Therapeutic effect of anti-tumor necrosis factor-a antibody on the murine model of viral myocarditis induced by encephalomyocarditis virus. Circulation 89, 846- 851. YANG, GY, LIU, XH, KADOYA, C, ZHAO, YJ "MAO, Y" DAVIDSON, B 丄., And BETZ, AL (1998) .Attenuation of ischemic inflammatory response in mouse brain using an adenoviral vector to induce. overexpression if interleukin-1 receptor antagonist. J. Cereb. Blood. Flow. Metab. 18, 840-847. YANG, GY, ZHAO, YJ, DAVIDSON, B 丄., and BETZ, AL (1997). Overexpression oi interleukin- 1 receptor antagonist in the mouse brain reduce ischemic brain injury.Brain Res. 751, 181-188.
YOKOYAMA. T" VACA, L" ROSSEN, R.D., DURANTE, W" HAZARIKA, P., and MANN. D.L. (1993). Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian heart. J. Clin. Invest 92, 2303-2312.  YOKOYAMA. T "VACA, L" ROSSEN, RD, DURANTE, W "HAZARIKA, P., and MANN.DL (1993) .Cellular basis for the negative inotropic effects of tumor necrosis factor-a in the adult mammalian heart. Clin. Invest 92, 2303-2312.

Claims

請求の範囲 The scope of the claims
1 . 免疫抑制性サイトカイン遺伝子及び/又は可溶性サイトカイン受容体遺伝子 を発現可能な状態で含む発現ベクターを有効成分とする炎症 ·腫瘍性疾患治療剤。  1. A therapeutic agent for inflammation and neoplastic disease, comprising as an active ingredient an expression vector containing an immunosuppressive cytokine gene and / or a soluble cytokine receptor gene in an expressible state.
2 . 免疫抑制性サイトカイン及び/又は可溶性サイトカイン受容体遺伝子が IL-lra、 vIL-10及び可溶性 c_kitからなる群から選ばれる少なくとも 1種である請 求項 1に記載の治療剤。 2. The therapeutic agent according to claim 1, wherein the immunosuppressive cytokine and / or soluble cytokine receptor gene is at least one selected from the group consisting of IL-lra, vIL-10 and soluble c_kit.
3 . 炎症 ·腫瘍性疾患が心血管系疾患である請求項 1に記載の治療剤。  3. The therapeutic agent according to claim 1, wherein the inflammation / neoplastic disease is a cardiovascular disease.
4. 炎症 ·腫瘍性疾患が心筋炎である請求項 3に記載の治療剤。  4. The therapeutic agent according to claim 3, wherein the inflammation / neoplastic disease is myocarditis.
5 . 免疫抑制性サイトカイン遺伝子及び/又は可溶性サイトカイン受容体遺伝子 を発現可能な状態で含む治療的有効量の発現べクタ一を、 炎症 ·腫瘍性疾患を患う 患者に投与することを含む炎症 ·腫瘍性疾患の治療方法。  5. Inflammation / tumor including administering a therapeutically effective amount of an expression vector containing an immunosuppressive cytokine gene and / or a soluble cytokine receptor gene in a state capable of expressing it to a patient suffering from inflammation / neoplastic disease How to treat sexual illness.
6 . 治療的有効量の該発現べクタ一の投与後に、 該投与部位を挟むようにして電 気パルスを与えることを特徴とする請求項 5に記載の治療方法。  6. The treatment method according to claim 5, wherein an electric pulse is applied so as to sandwich the administration site after administration of the therapeutically effective amount of the expression vector.
7 .. 免疫抑制性サイトカイン及ぴ Z又は可溶性サイトカイン受容体遺伝子が IL-lra、 vIL-10及び可溶性 c_kitからなる群から選ばれる少なくとも 1種である請 求項 5に記載の治療方法。  7. The treatment method according to claim 5, wherein the immunosuppressive cytokine and the Z or soluble cytokine receptor gene are at least one selected from the group consisting of IL-lra, vIL-10 and soluble c_kit.
8 . 炎症 ·腫瘍性疾患が心血管系疾患である請求項 5に記載の治療方法。  8. The treatment method according to claim 5, wherein the inflammation / neoplastic disease is a cardiovascular disease.
9 . 炎症 ·腫瘍性疾患が心筋炎である請求項 8に記載の治療方法。  9. The treatment method according to claim 8, wherein the inflammation / neoplastic disease is myocarditis.
PCT/JP2002/001445 2001-02-20 2002-02-20 Remedies for inflammatory/tumor diseases WO2002066069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002565627A JPWO2002066069A1 (en) 2001-02-20 2002-02-20 Inflammatory / neoplastic disease treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001043569 2001-02-20
JP2001-043569 2001-02-20

Publications (1)

Publication Number Publication Date
WO2002066069A1 true WO2002066069A1 (en) 2002-08-29

Family

ID=18905709

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001445 WO2002066069A1 (en) 2001-02-20 2002-02-20 Remedies for inflammatory/tumor diseases

Country Status (2)

Country Link
JP (1) JPWO2002066069A1 (en)
WO (1) WO2002066069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131548A (en) * 2005-11-08 2007-05-31 Hirosaki Univ New medicinal use of proteoglycan
CN114177295A (en) * 2021-12-16 2022-03-15 上海市第五人民医院 Use of interleukin 1receptor antagonist for treating non-alcoholic fatty liver disease

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514237B (en) * 2020-05-29 2021-09-07 中国人民解放军陆军第八十二集团军医院 Traditional Chinese medicine composition for treating viral myocarditis and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993018783A1 (en) * 1992-03-20 1993-09-30 Schering Corporation Use of interleukin-10 to induce the production of interleukin-1 receptor antagonist
JPH07502019A (en) * 1991-08-06 1995-03-02 シェリング・コーポレーション Use of interleukin-10 analogs or antagonists to treat endotoxin- or superantigen-induced toxicity
JPH07508721A (en) * 1992-04-23 1995-09-28 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Ligands for C-KIT receptors and their use
WO1999030730A1 (en) * 1997-12-15 1999-06-24 Universite Laval Methods and compositions for improving the success of cell transplantation in a host
JP2000004715A (en) * 1998-06-19 2000-01-11 Japan Science & Technology Corp Gene transfer into and expression in vertebrate
JP2000500493A (en) * 1995-11-21 2000-01-18 メデイノックス,インコーポレイテッド Combination therapy using nitric oxide scavenger
WO2000071718A1 (en) * 1999-05-25 2000-11-30 Canji, Inc. Gene therapy of pulmonary disease
WO2001005821A2 (en) * 1999-07-16 2001-01-25 Maria Teresa Bejarano Viral il-10 for the inhibition of angiogenesis, tumorigenesis and metastasis
WO2001016153A1 (en) * 1999-09-02 2001-03-08 University Of Medicine And Dentistry Of New Jersey Cytomegalovirus-encoded il-10 homolog

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502019A (en) * 1991-08-06 1995-03-02 シェリング・コーポレーション Use of interleukin-10 analogs or antagonists to treat endotoxin- or superantigen-induced toxicity
WO1993018783A1 (en) * 1992-03-20 1993-09-30 Schering Corporation Use of interleukin-10 to induce the production of interleukin-1 receptor antagonist
JPH07508721A (en) * 1992-04-23 1995-09-28 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Ligands for C-KIT receptors and their use
JP2000500493A (en) * 1995-11-21 2000-01-18 メデイノックス,インコーポレイテッド Combination therapy using nitric oxide scavenger
WO1999030730A1 (en) * 1997-12-15 1999-06-24 Universite Laval Methods and compositions for improving the success of cell transplantation in a host
JP2000004715A (en) * 1998-06-19 2000-01-11 Japan Science & Technology Corp Gene transfer into and expression in vertebrate
WO2000071718A1 (en) * 1999-05-25 2000-11-30 Canji, Inc. Gene therapy of pulmonary disease
WO2001005821A2 (en) * 1999-07-16 2001-01-25 Maria Teresa Bejarano Viral il-10 for the inhibition of angiogenesis, tumorigenesis and metastasis
WO2001016153A1 (en) * 1999-09-02 2001-03-08 University Of Medicine And Dentistry Of New Jersey Cytomegalovirus-encoded il-10 homolog

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
CASSATELLA M.A. ET AL.: "Interleukin 10 (IL-10) upregulates IL-1 receptor antagonist production from lipopolysaccharide-stimulated human polymorphonuclear leukocytes by delaying mRNA degradation", J. EXP. MED., vol. 179, 1994, pages 1695 - 1699, XP002951884 *
CONTI P. ET AL.: "Inhibition of leukotriene B4 (LTB4) by recombinant interleukin-1 receptor antagonist (IL-1RA) on human monocytes", AGENTS ACTIONS, SPECIAL CONFERENCE ISSUE, 1992, pages C93 - C95, XP002951885 *
HENKE P.K. ET AL.: "Viral IL-10 gene transfer decreases inflammation and cell adhesion molecule expression in a rat model of venous thrombosis", J. IMMUNOL., vol. 164, 2000, pages 2131 - 2141, XP002951881 *
KUBOTA T. ET AL.: "Development myocarditis in transgenic mice overexpressing tumor neclosis factor-alpha is mediated in part by the selective induction of downstream proinflammatory cytokines and beta-chemokines", CIRCULATION, vol. 98, no. 17 SUPPL., 1998, pages I-345, ABSTRACT NO. 1810, XP002951889 *
LECHMAN E.R. ET AL.: "Direct adenoviral gene transfer of viral IL-10 to rabbit knees with experimental arthritis amelioarates disease in both injected and contralateral control knees", J. IMMUNOL., vol. 163, 1999, pages 2202 - 2208, XP002951882 *
NAKANO A. ET AL.: "Cytokine gene therapy for myocarditis by in vivo electroporation", HUM. GENE. THER., vol. 12, 1 July 2001 (2001-07-01), pages 1289 - 1297, XP002951890 *
NEUMANN D.A. ET AL.: "Viral myocarditis leading to cardiomyopathy: do cytokines contribute to pathogenesis?", CLIN. IMMUN. IMMUNOPATHOL., vol. 68, no. 2, 1993, pages 181 - 190, XP002951883 *
TANAKA YASUSHI ET AL.: "IL-1 receptor antagonist (IL-1ra) to sono rinsho oyo", IGAKU NO AYUMI, vol. 174, no. 14, 1995, pages 1218 - 1222, XP002951888 *
THOMAS T.K. ET AL.: "Evaluation of an interleukin-1 receptor antagonist in the rat acetic acid-induced colitis model", AGENTS AND ACTIONS, vol. 34, no. 1/2, 1991, pages 187 - 190, XP002951887 *
THOMPSON R.C. ET AL.: "Interleukin-1 receptor antagonist (IL-1ra) as a probe and a a treatment for IL-1 mediated disease", INT. J. IMMUNOPHARMAC., vol. 14, no. 3, 1992, pages 475 - 480, XP002951886 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007131548A (en) * 2005-11-08 2007-05-31 Hirosaki Univ New medicinal use of proteoglycan
CN114177295A (en) * 2021-12-16 2022-03-15 上海市第五人民医院 Use of interleukin 1receptor antagonist for treating non-alcoholic fatty liver disease
CN114177295B (en) * 2021-12-16 2023-09-19 上海市第五人民医院 Use of interleukin 1receptor antagonist for treating non-alcoholic fatty liver disease

Also Published As

Publication number Publication date
JPWO2002066069A1 (en) 2004-09-24

Similar Documents

Publication Publication Date Title
Nakano et al. Cytokine gene therapy for myocarditis by in vivo electroporation
Gauldie et al. Transforming growth factor-β gene transfer to the lung induces myofibroblast presence and pulmonary fibrosis
Xing et al. Adenoviral vector-mediated interleukin-10 expression in vivo: intramuscular gene transfer inhibits cytokine responses in endotoxemia
US7820156B2 (en) Method of treatment using a cytokine able to bind IL-18BP to inhibit the activity of a second cytokine
JP5028553B2 (en) Efficient co-expression method of IL-12 and IL-23
US5831062A (en) Use of the human interferon consensus gene for gene therapy
Yamanaka et al. Suppression of TGF-β1 in human gliomas by retroviral gene transfection enhances susceptibility to LAK cells
WO2002066069A1 (en) Remedies for inflammatory/tumor diseases
CA2514781A1 (en) Methods of gene therapy for treating disorders of the ear by administering a vector encoding an atonal-associated factor
Apte Mechanisms of cytokine production by fibroblasts-implications for normal connective tissue homeostasis and pathological conditions
JPWO2002041922A1 (en) Method for controlling the activity of an expression product of a gene introduced into a living body
Saggio et al. Adenovirus-mediated gene transfer of a human IL-6 antagonist
Dong et al. Neutralization of endogenous interferon-β increases the efficiency of adenoviral vector-mediated gene transduction
Braciak Adenovirus Vectors for Cytokine Gene Expression
Makarov Gene therapy for rheumatoid arthritis: preclinical studies
Oberholzer et al. Gene Therapy Applications for the Treatment of Acute Inflammatory Conditions
WO2021007800A1 (en) Anti-infection effects of hnrnpa2b1 and use thereof
Thornton et al. Gene therapy for arthritis
Rogy Gene therapy—an alternative approach for anti-cytokine therapies
Sawamura Keratinocyte gene therapy using cytokine genes
Bemelmans Inflammatory cytokines in obstructive jaundice
Liska et al. INTERLEUKIN-6 INHIBITORS AS NOVEL GENERATION OF TREATMENT STRATEGIES
FR2899589A1 (en) Pharmaceutical composition, useful to treat asthma, kidney cancer, osteopetrosis, scleroderma, idiopathic pulmonary fibrosis, septic shock, allergic dermatitis and rheumatoid arthritis, comprises thermostable human interferon-gamma variant
MJBM et al. 10c hapter
Bamford et al. 3RD ANNUAL CONFERENCE INTERNATIONAL CYTOKINE SOCIETY

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002565627

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase