WO2002065752A1 - Image input device with built-in display function - Google Patents

Image input device with built-in display function Download PDF

Info

Publication number
WO2002065752A1
WO2002065752A1 PCT/JP2002/001073 JP0201073W WO02065752A1 WO 2002065752 A1 WO2002065752 A1 WO 2002065752A1 JP 0201073 W JP0201073 W JP 0201073W WO 02065752 A1 WO02065752 A1 WO 02065752A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image input
input device
light emitting
housing
Prior art date
Application number
PCT/JP2002/001073
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Fujieda
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2002065752A1 publication Critical patent/WO2002065752A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/031Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors
    • H04N1/0311Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors using an array of elements to project the scanned image elements onto the photodetectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/032Details of scanning heads ; Means for illuminating the original for picture information reproduction
    • H04N1/036Details of scanning heads ; Means for illuminating the original for picture information reproduction for optical reproduction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission

Definitions

  • the present invention relates to an image input device used for electronic devices such as a portable information terminal, a mobile phone, and a personal computer, and more particularly, to an image input device having a built-in image display function.
  • Conventional technology such as a portable information terminal, a mobile phone, and a personal computer, and more particularly, to an image input device having a built-in image display function.
  • FIG. 20 shows a side view of an image input device disclosed in Japanese Patent Application Laid-Open No. Hei 7-236209.
  • the image input device includes a two-dimensional image sensor 110, a planar light source 120 arranged on the two-dimensional image sensor 110, and a planar light source 120.
  • the two-dimensional image sensor 110 which is arranged on the side of the liquid crystal light valve 130 disposed above, the two-dimensional image sensor 110, the planar light source 120, and the liquid crystal light valve 130, is disposed.
  • a drive circuit 140 for driving the liquid crystal light valve 130.
  • the two-dimensional image sensor 110 is configured by arranging a large number of photoelectric conversion elements on a transparent substrate. Adjacent photoelectric conversion elements are spaced apart from each other so that a gap is formed between them, and an opening for transmitting light emitted from the planar light source 120 is provided in this gap. Have been.
  • Image input in this image input device is performed as follows.
  • the original 100 is brought into close contact with the two-dimensional image sensor 110.
  • the planar light source 120 emits light toward the original 100.
  • the light emitted from the planar light source 120 passes through an opening formed in a gap between the photoelectric conversion elements constituting the two-dimensional image sensor 110, and illuminates the original 100.
  • the reflected light from original 100 is the same
  • the light is transmitted through the opening, is received by the photoelectric conversion element constituting the two-dimensional image sensor 110, and is converted into an electric signal.
  • Each photoelectric conversion element is provided with a switch (usually, this switch is formed by a thin film transistor) for reading out the electric signal to the outside. These switches are controlled to control all the photoelectric conversion elements. Image information is obtained by reading electrical signals.
  • the drive circuit 140 controls this series of image input operations by transmitting a control signal 150 to the photoelectric conversion element.
  • the liquid crystal light valve 130 includes two transparent substrates and a liquid crystal layer sandwiched between the two transparent substrates. Many pixels are regularly arranged on the display surface of the liquid crystal light valve 130, and the drive circuit 140 issues a control signal 160 to each pixel. Each pixel displays an image by switching between transmitting and absorbing light emitted from the planar light source 120 according to the control signal 160.
  • the conventional image input device shown in FIG. 20 is a flat type, and one surface (the bottom surface of the two-dimensional image sensor 110) is an input surface, and the other surface (a liquid crystal light valve 13).
  • the (top) of is the display surface. For example, place this image input device on a fine image document and display an enlarged image of that image, or place this image input device on an English document and translate the contents into Japanese. It is possible to display after doing.
  • FIG. 21 is a side view showing the configuration of this image input device.
  • the image input device shown in FIG. 21 includes a planar light source 120 b, a two-dimensional image sensor 170 serving also as a liquid crystal light valve disposed on the planar light source 120 b, and a planar light source 1 2 0b and a drive circuit 140b that is disposed on the side surface of the two-dimensional image sensor 170 that also serves as a liquid crystal light valve and drives the two-dimensional image sensor 170 that also serves as a liquid crystal light valve.
  • FIG. 22 is a cross-sectional view showing a cross section of a pixel portion of a two-dimensional image sensor 170 that also serves as a liquid crystal light valve, and a principle of operation thereof.
  • the two-dimensional image sensor 170 also serves as a liquid crystal light valve.
  • the two-dimensional image sensor 170 is composed of two transparent substrates 170 and 180, and a transparent electrode 17 formed on one surface of each of the transparent substrates 170 and 180. 5, 179, a liquid crystal layer 180 sandwiched between two transparent substrates 174, 180, and formed on the other surface of each of the transparent substrates 174, 180 Polarizing plates 17 3 and 18 1, a transparent protective layer 17 1 formed on the polarizing plate 17 3, and a plurality of lenses 17 regularly arranged on the polarizing plate 17 3 2, a photoelectric conversion material 1 76 in contact with the liquid crystal layer 1 78 on the transparent electrode 1 75 and regularly arranged corresponding to the lens 1 72, and on each photoelectric conversion material 1 6 And an opaque electrode 17 7
  • the two-dimensional image sensor 170 which also serves as a liquid crystal light valve, has a sensor pixel 182 sandwiched between two liquid crystal light bulb pixels 183, a lens 172, and a photoelectric conversion material 17
  • the reflected light from the original 100 reaches the photoelectric conversion material 176 through the lens 172, and is converted into an electric signal by the photoelectric conversion material 176.
  • an electrical signal corresponding to the light / dark information of the original document 100 that is, an image can be obtained by the large number of lenses 172 and the photoelectric conversion material 176 arranged regularly.
  • the opaque electrode 177 prevents direct light from the planar light source 12 Ob from entering the photoelectric conversion material 176.
  • the display of an image is realized by controlling the voltage applied to the transparent electrodes 179 and 175 and controlling the transmission of light from the planar light source 12 Ob.
  • the thickness of the conventional image input device shown in FIG. 20 is equal to the sum of the components, and further thinning is difficult or impossible.
  • the thickness of the two-dimensional image sensor 110 is 0.7 mm
  • the thickness of the planar light source 120 is l mm
  • the thickness of the liquid crystal light pulp 130 is 1.4 mm
  • the total thickness of the image input device is 3.1 mm, and further reduction in thickness is physically impossible.
  • the planar The light source 120 is configured to emit light in both directions. For this reason, for example, even when an image is displayed, the input light is emitted to the opposite side, which causes a reduction in light use efficiency.
  • the conventional image input device shown in FIG. 20 has a large number of components, and it is difficult to reduce the manufacturing cost.
  • TFT thin film transistor
  • the required number of transparent substrates after the TFT manufacturing process is one. As described above, according to the image input devices shown in FIGS. 21 and 22, it is possible to avoid an increase in the manufacturing cost due to the manufacture of the TFT.
  • the manufacturing cost for forming the lens 17 2 is added, and the manufacturing cost is eventually increased due to the TFT manufacturing. Nevertheless, the production cost is increasing due to the production of the lens 172.
  • the light component reaching the opaque electrode 177 of the light emitted from the planar light source 120b is used to illuminate the original 100. Absent. For this reason, the image input device shown in FIG. It has the problem of not being able to do so.
  • the thickness of the image input device shown in FIG. 22 is the thickness of the planar light source 120 b, the thickness of two transparent substrates 174 and 180, and the connection of the lens 172. It is equal to the sum of the distance required for the image and.
  • the thickness of the planar light source 120b is 1 mm, and the thickness of the two transparent substrates 174 and 180 is 1.4. If it is mm, it is difficult to make the thickness of the image input device thinner than 2.4 mm, which is the sum of them.
  • Japanese Patent Application Laid-Open No. Hei 7-322210 discloses an image input / output device having image input means, and image display means for enlarging and displaying at least a part of image information input by the image input means. Wherein the reading surface of the image input means and the display surface of the image display means are arranged so as to face each other, and the display surface is positioned on the reading range. is suggesting.
  • Japanese Patent Publication No. 390885/1995 Japanese Patent Application Laid-Open No. 10-97385 discloses an image sensor section having a plurality of light receiving elements arranged in a row facing the side of a document to be read.
  • a thin light source that is arranged in close contact with the reading document side of a sensor unit and emits light toward the reading document, wherein the thin light sources are smaller than the light receiving elements for each of the light receiving elements. It has at least one light emitting unit having an area, the light emitting unit has a light shielding layer on the light receiving element side, and is located on the lower surface of the light receiving element between the light receiving element and the original to be read.
  • An image sensor device characterized by being arranged is proposed.
  • Japanese Patent Publication No. 7-62885 Japanese Patent Application Laid-Open No. Hei 6-32515 discloses a planar light source and a light source arranged on the planar light source and emitting light emitted from the planar light source.
  • a two-dimensional image sensor having an opening through which light passes, and optical means for guiding light transmitted through the opening so as to irradiate a finger obliquely, and guiding reflected light from the finger to a photoelectric conversion element of the two-dimensional image sensor
  • a fingerprint image input device characterized by the following.
  • the present invention has been made in view of the above problems, and has as its object to realize, at low cost, an image input device having a thin display function that can be driven with high light use efficiency and low power consumption. . Disclosure of the invention
  • the present invention provides, as a first aspect, a transparent substrate, a plurality of light emitting units arranged on one surface of the transparent substrate, and an array of light emitting units arranged on the one surface of the transparent substrate.
  • An image input device comprising: a plurality of photoelectric conversion units; and a light switching unit disposed on the other surface of the transparent substrate and selectively reflecting or transmitting light emitted from the light emitting unit.
  • the light emitting means emits light toward the other surface of the transparent substrate
  • the photoelectric conversion means detects light incident on the one surface, and when an image is inputted, the light emitting means Light is emitted toward the other surface of the transparent substrate, and the light switching means is set to reflect the light, and the photoelectric conversion means receives reflected light from the image.
  • Image input equipment Provide a replacement.
  • the light switching unit when displaying an image, the light switching unit is set to transmit the light, and the light emitting unit is set to the other one of the transparent substrates according to the image. To emit light toward the surface of.
  • a substrate a plurality of light emitting units arranged on one surface of the substrate, and a plurality of photoelectric conversion units arranged on the one surface of the substrate
  • An image input device comprising: the light emitting unit emits light in a direction opposite to the other surface of the transparent substrate; the photoelectric conversion unit detects light incident on the one surface; and inputs an image. If so, an image input device is provided in which the light emitting means emits light in a direction opposite to the other surface of the transparent substrate, and the photoelectric conversion means receives reflected light.
  • the light emitting unit when displaying an image, the light emitting unit emits light toward the other surface of the transparent substrate according to the image.
  • each of the light emitting units can be arranged so as to overlap each of the photoelectric conversion units.
  • the image input device according to the first and second aspects further includes a transparent protective layer covering the light emitting means and the photoelectric conversion means.
  • the light-emitting unit may include, for example, a light-emitting element that emits light to the outside, and a light-emitting element selection unit that causes a specific light-emitting element to emit light. Can be.
  • the photoelectric conversion means can be constituted by, for example, a light receiving element for generating an electric signal corresponding to the amount of absorbed light, and a light receiving element selecting means for operating a specific light receiving element. .
  • the light-emitting means includes, for example, a light-emitting element that emits light to the outside, and a light-emitting element selecting means for causing a specific light-emitting element to emit light.
  • the photoelectric conversion unit includes: a light receiving element that generates an electric signal corresponding to an amount of absorbed light; and a light receiving element selecting unit that operates a specific light receiving element.
  • the light emitting element selecting unit and the light receiving unit A control signal for operating one of the element selecting means may be supplied to the light emitting element selecting means or the light receiving element selecting means via the same control wiring.
  • the light emitting unit includes: a light emitting element that emits light to the outside; and a light emitting element selecting unit that causes a specific light emitting element to emit light.
  • the converting means comprises: a light receiving element for generating an electric signal corresponding to the amount of absorbed light; and a light receiving element selecting means for operating a specific light receiving element, and provides the light emitting intensity of the light emitting element.
  • a signal and the electric signal generated by the light receiving element may be supplied to the light emitting element selecting means or the light receiving element selecting means via the same signal wiring.
  • the light emitting unit includes: a light emitting element that emits light to the outside; and a light emitting element selecting unit that causes a specific light emitting element to emit light.
  • the converting means comprises: a light receiving element for generating an electric signal corresponding to the amount of absorbed light; and a light receiving element selecting means for operating a specific light receiving element.
  • the current for charging the light receiving element may be supplied to the light emitting element and the light receiving element via the same power supply wiring.
  • the light switching means may include, for example, two transparent electrodes facing each other, and a liquid crystal layer sandwiched between the transparent electrodes. it can.
  • the light emitting element can be composed of, for example, two electrode layers, at least one of which is transparent, and a light emitting layer made of a light emitting material, sandwiched between the electrode layers.
  • the light receiving element can be composed of: two electrode layers, at least one of which is transparent; and a photoelectric conversion layer made of a photoelectric conversion material, sandwiched between the electrode layers.
  • the transparent electrode layer of the light emitting element and the transparent electrode layer of the light receiving element are formed in the same step.
  • the light emitting element can be composed of, for example, a laminate in which a first electrode, a first insulating layer, an inorganic electroluminescent material, a second insulating layer, and a second electrode are laminated in this order.
  • the light receiving element includes: a first electrode region; a first semiconductor region into which impurities are introduced; a second semiconductor region into which impurities are introduced at a lower concentration than the first semiconductor region;
  • the third semiconductor region made of the same material as the semiconductor region may be sequentially joined to the third semiconductor region.
  • a crystalline silicon substrate can be used as the substrate, and the photoelectric conversion unit has a light receiving element that generates an electric signal corresponding to an amount of absorbed light.
  • the light receiving element has a structure in which a region into which p-type silicon is introduced by introducing a first impurity into a region into which n-type silicon is introduced by introducing a second impurity into the crystalline silicon substrate. It can be configured as having.
  • the above-described image input device according to the present invention can be applied to mobile phones and other various devices.
  • the present invention provides a first housing incorporating the image input device of the first and second aspects, a second housing rotatably connected to the first housing, Wherein the first casing and the second casing are foldable so as to overlap each other, and the light switching means of the image input device includes the first casing.
  • the second Provided is a device that is disposed so as to face the second housing when the housing is folded.
  • the present invention provides a first housing incorporating an image input device, a second housing rotatably connected to the first housing, and being foldable so as to overlap with the first housing. And the first housing and the second housing so as to face the first housing when the first housing and the second housing are mutually folded.
  • the light emitting means is connected to the other side of the transparent substrate. Emit light towards the surface, and the light switching means is by Uni set to reflect the light, the photoelectric conversion means to provide a device is intended for receiving light reflected from the image.
  • the image input device in the above-described device corresponds to the image input device of the above-described first embodiment in which the light switching unit is removed.
  • the present invention provides a first housing incorporating an image input device, a second housing rotatably connected to the first housing, and being foldable so as to overlap with the first housing. And the first housing and the second housing are arranged to be sandwiched between the first housing and the second housing when the first housing and the second housing are folded together.
  • a third housing wherein the image input device comprises: a plurality of light emitting units arranged on one surface of a transparent substrate; and a plurality of light emitting units arranged on the one surface of the transparent substrate.
  • Photoelectric conversion means wherein the light emitting means emits light toward the other surface of the transparent substrate, and the photoelectric conversion means detects light incident on the one surface and inputs an image.
  • the light emitting unit emits light toward the other surface of the transparent substrate.
  • the light switching means is set to reflect the light, and the photoelectric conversion means receives reflected light from the image.
  • Opposing surfaces provide equipment with the added ability to diffuse light.
  • the image input device in the above-described device corresponds to the image input device of the first embodiment described above, from which the light switching unit is removed.
  • a microphone can be built in the third housing.
  • the present invention is an apparatus having a housing incorporating the image input device according to the first and second aspects, wherein the image input device irradiates a finger with light emitted by the light emitting unit, Provided is a device for inputting a fingerprint as an image by receiving reflected light from the finger in the photoelectric conversion means.
  • a mobile phone for example, a mobile phone can be selected.
  • FIG. 1 is a perspective view of an image input device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the cross section of the image input device according to the first embodiment of the present invention and the operation principle thereof.
  • FIG. 3 is a plan view (FIG. 3 (A)) showing an arrangement state of pixels in the image input device according to the first embodiment of the present invention, and a circuit diagram of each pixel (FIG. 3 (B)).
  • FIG. 4 is a circuit diagram of a pixel (FIG. 3A) in the image input device according to the first embodiment of the present invention, and a plan view (FIG. 3B) showing a layout of the pixel.
  • FIG. 5 is a sectional view showing a section of a pixel in the image input device according to the first embodiment of the present invention.
  • FIG. 6 is a plan view (FIG. 6) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 7 is a plan view (FIG. 7) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 10 is a plan view (FIG. 10 (A)) and a cross-sectional view (FIG. 10 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 11 is a plan view (FIG. 11 (A)) and a cross-sectional view (FIG. 11 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 12 is a plan view (FIG. 12 (A)) and a cross-sectional view (FIG. 12 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
  • FIG. 13 shows a mobile phone (FIG. 13 (A) and FIG. 13 (C)) equipped with the image input device according to the first embodiment of the present invention and a portable information terminal (FIG. 13 (A)).
  • FIG. 13 shows a mobile phone (FIG. 13 (A) and FIG. 13 (C)) equipped with the image input device according to the first embodiment of the present invention and a portable information terminal (FIG. 13 (A)).
  • FIG. 13 shows a mobile phone (FIG. 13 (A) and FIG. 13 (C)) equipped with the image input device according to the first embodiment of the present invention and a portable information terminal (FIG. 13 (A)).
  • FIG. 13 shows a mobile phone (FIG. 13 (A) and FIG. 13 (C)) equipped with the image input device according to the first embodiment of the present invention and a portable information terminal (FIG. 13 (A)).
  • FIG. 14 is a plan view (FIG. 14 (A)) showing an arrangement state of pixels in a modified example of the image input device according to the first embodiment of the present invention, and a circuit diagram of each pixel (FIG. B)).
  • FIG. 15 is a plan view showing a pixel layout in a modified example of the image input device according to the first embodiment of the present invention.
  • FIG. 16 is a perspective view of an image input device according to the second embodiment of the present invention.
  • FIG. 17 is a cross-sectional view showing a cross-section of an image input device according to a second embodiment of the present invention and its operation principle.
  • FIG. 18 is a plan view (FIG. 18 (A)) showing a layout of a pixel in the image input device according to the second embodiment of the present invention, and a circuit diagram (FIG. 18 (B)) of the pixel. is there.
  • FIG. 19 is a sectional view showing a section of a pixel in the image input device according to the second embodiment of the present invention.
  • FIG. 20 is a side view showing the configuration of a conventional image input device.
  • FIG. 21 is a side view showing the configuration of another conventional image input device.
  • FIG. 22 is a cross-sectional view of the conventional image input device shown in FIG. Detailed Description of the Preferred Embodiment
  • FIG. 1 is a perspective view of the image input device according to the first embodiment of the present invention
  • FIG. 2 is a sectional view of the image input device shown in FIG.
  • FIG. 3 is a plan view (FIG. 3A) showing an arrangement state of pixels in the image input device according to the present embodiment, and a circuit diagram (FIG. (B)).
  • FIG. 4 is a circuit diagram of a pixel in the image input device according to the first embodiment of the present invention (FIG. 3A) and a plan view showing a layout of the pixel (FIG. 3B).
  • the image input device according to the present embodiment includes a transparent substrate 10, a plurality of light emitting elements 20 regularly arranged on one surface 10 a of the transparent substrate 10, and one of the transparent substrates 10.
  • the light switching means 70 selectively reflects or transmits light emitted from the light emitting element 20 and transmitted through the transparent substrate 10.
  • the light emitting element 20 is configured to emit light only in a direction from one surface 10a to the other surface 10b.
  • the light receiving element 30 is configured to detect only light from the other surface 10 b of the transparent substrate 10.
  • each light receiving element 30 is provided with an opening 56 for transmitting light incident from the direction of the other surface 10 b of the transparent substrate 10. ing.
  • the light switching means 70 is formed on one surface of a transparent substrate 74, a transparent electrode 71 formed on the surface 10 b of the transparent substrate 10, and a transparent substrate 74.
  • liquid crystal layer 72 As a material of the liquid crystal layer 72, for example, a chiral nematic liquid crystal can be used. This type of liquid crystal maintains a helical structure when no voltage is applied, so that light incident on the liquid crystal is scattered. On the other hand, when voltage is applied, Since the helical structure is stretched into an almost linear structure, light can pass through the liquid crystal.
  • an input target 80 such as a manuscript is placed in close contact with the protective layer 60.
  • the light switching means 70 is set so as to diffuse and reflect the light. Therefore, the light emitted from the light emitting element 20 in the direction of the surface 10b of the transparent substrate 10 is transmitted through the transparent substrate 10 and is diffusely reflected by the light switching means 70.
  • the diffusely reflected light passes through the transparent substrate 10 again, reaches the surface 10a of the transparent substrate 10 and eventually reaches the light receiving element 30.
  • the light that reaches the light receiving element 30 passes through a gap formed between the light receiving element 30 and the light emitting element 20 or an opening 56 provided in the light receiving element 30, and passes through the protective layer 60.
  • the input target 80 that is in close contact with the object is illuminated and reflected by the input target 80.
  • the light reflected by the input object 80 is received by the light receiving element 30 and is converted into an electric signal according to the intensity of the reflected light.
  • the vertical drive circuit 40 and the horizontal drive circuit 41 read electric signals reflecting the intensity of the reflected light from all the light receiving elements 30. Thereby, the light / dark information of the input target 80, that is, the image is input to the image input device.
  • the light switching means 70 When displaying an image, the light switching means 70 is set to transmit light. Next, the light emitting element 20 corresponding to the image to be displayed is turned on via the vertical drive circuit 40 and the horizontal drive circuit 41. Light from the light emitting element 20 passes through the transparent substrate 10 and the light switching means 70 and reaches an observer (not shown). Thus, the image of the input object 80 is provided to the observer.
  • FIG. 3 is a plan view (FIG. 3A) showing an arrangement state of pixels in the image input device according to the present embodiment, and a circuit diagram of each pixel (FIG. 3B).
  • the display resolution is 20 Opp i (pi xe l / inch, that is, the number of pixels per inch when the light emitting elements of red, green, and blue are regarded as one pixel), the resolution of image input 400 dp i (do t / i nch, that is, the number of light receiving elements per inch).
  • the display resolution is 20 Opp i (pi xe l / inch, that is, the number of pixels per inch when the light emitting elements of red, green, and blue are regarded as one pixel)
  • the resolution of image input 400 dp i (do t / i nch, that is, the number of light receiving elements per inch).
  • one red (R) element, one green (G) element, and two blue (B) light emitting elements are arranged in a square, and each light emitting element is in a one-to-one relationship.
  • One pixel is configured by arranging light receiving elements.
  • circuits and wirings for driving these light emitting elements and light receiving elements are formed.
  • the pixel arrangement pitch is 127 m in both the X and Y directions.
  • some wirings (data line 87, gate line 85, power supply line 86) are shared by the light emitting element and the light receiving element. This is because, as shown in FIG. 4B, the area occupied by the wiring is reduced so that the areas of the light receiving element and the light emitting element are set large.
  • the source electrode of the first thin film transistor (TFT) Tr 1 is connected to the data line 87, the gate electrode is connected to the power supply line 86, and the drain electrode is connected to the input end of the light receiving element PD. It is connected.
  • the first thin film transistor (TFT) Tr 1 transfers the charge stored in the light receiving element PD to an external circuit.
  • the input terminal of the light receiving element PD is connected to the drain electrode of the first thin film transistor Tr1, and the output terminal is connected to the power supply line 86.
  • the source electrode of the second thin film transistor Tr2 is connected to the data line 87, the gate electrode is connected to the gate line 85, and the drain electrode is connected to the gate electrode of the third thin film transistor Tr3.
  • the drain electrode of the third thin film transistor Tr3 is connected to the power supply line 86, the gate electrode is connected to the drain electrode and capacitance of the second thin film transistor Tr2, and the source electrode is connected to the input terminal of the light emitting element LED.
  • the input terminal of the light emitting element LED is connected to the source electrode of the third thin film transistor Tr3, and the output terminal is connected to the ground line 88.
  • the third thin film transistor Tr3 supplies a current to the light emitting element LED.
  • the second thin film transistor Tr2 charges the capacitance C to a desired voltage corresponding to the video signal.
  • a TFT circuit for driving the light emitting element and the light receiving element is provided in the periphery of the pixel.
  • these TFT circuits are configured using polycrystalline silicon (po1y-Si) TFTs, and it is particularly desirable to include CMOS circuits using both n-type TFTs and p-type TFTs.
  • a control signal is supplied to the gate line 85 shown in FIG. 3B, and the second thin film transistors Tr2 of all the pixels sharing the gate line 85 are turned on.
  • the video signal is stored in each capacitance C.
  • a control signal is supplied to the gate line 85 shown in FIG. 3B to make the first thin film transistor Tr1 and the second thin film transistor Tr2 of all the pixels sharing the gate line 85 conductive.
  • the light emitting element P is completely charged, and the third thin film transistor Tr3 is turned on to turn on the light emitting element LED.
  • the potential of the gate line 85 is set to low level, and all the first thin film transistors Tr1 and the second thin film transistors Tr2 are turned off. At this time, the capacitance of the gate electrode of the third thin film transistor Tr 3 is generated by the capacitance C. Since the position is fixed, all light emitting diode LEDs continue to emit light at the same constant intensity.
  • uniform illumination light reaches the original 80 and other input objects 80, and reflected light corresponding to the brightness information of the input object 80 is generated.
  • the light receiving element PD is separated from the data line 87 by the first thin film transistor Tr1, and its potential changes as the reflected light enters the light receiving element PD.
  • the data line 87 is connected to the detection circuit in the horizontal drive circuit 41, and a control signal is supplied to the gate line 85 to make the first thin film transistor Tr1 conductive.
  • FIG. 3 (A) if the color of the light emitting element is ignored, it can be seen that the repeating unit of the pixel layout is the circuit shown in FIG. 4 (A).
  • Figure 4 (B) shows the layout of the circuit components included in this basic unit.
  • FIG. 5 is a cross-sectional view showing a cross section of main components of a pixel portion such as a thin film transistor (TFT), a light emitting element, and a light receiving element.
  • TFT thin film transistor
  • the numbers assigned to the wiring in the layout of FIG. 4 (B) correspond to the materials shown in FIG. Further, the wiring, the light receiving element PD, the light emitting element LED, and other components shown in FIG. 4B are arranged as much as possible to correspond to the circuit diagram shown in FIG. 4A.
  • the light emitting element 20 includes a transparent electrode 53, an electrode 55, and a light emitting material layer 5 formed of an organic EL material sandwiched between the transparent electrode 53 and the electrode 55. 4 and have.
  • a potential difference is provided between the transparent electrode 53 and the electrode 55, a current flows through the luminescent material layer 54 in a region sandwiched between these electrodes 53, 55, and from this region, the transparent electrode 53, Light is emitted through the second interlayer insulating film 50, the first interlayer insulating film 48, the via layer 43, and the transparent substrate 10.
  • the light receiving element 30 will be described here with reference to an example of a photodiode having a ⁇ -i one-shot configuration.
  • the light-receiving element 30 is composed of an electrode 49, which is a material of source and drain electrodes of a thin film transistor (TFT), a transparent electrode 53, and a photoelectric conversion formed by being sandwiched between these electrodes 49, 53.
  • Material 51 is provided. Between the transparent electrode 53 and the photoelectric conversion material 51, an extremely thin p-type silicon force-by-layer (p-SiC) layer is inserted as a blocking contact layer 52.
  • p-SiC p-type silicon force-by-layer
  • Hydrogenated amorphous silicon which is a photoelectric conversion material 51, is weak n-type when formed by ordinary plasma-enhanced chemical vapor deposition (PCVD), but intentionally contains impurities. Since it has not been introduced, it is called intrinsic semiconductor, that is, i-type. Since the interface between the i-type a-Si: H and the electrode formed of a metal material is a Schottky junction, this photodiode is called a p-i-Schottky type.
  • an n-type a-Si: H layer with a high concentration of phosphorus (P) introduced between the metal electrode and the i-type a-Si: H is used to form a p-i-n structure.
  • the photodiode may be used. This has the advantage that the leakage current is smaller than that of the Schottky type.
  • an opening 56 is provided as shown in FIG.
  • Both the light emitting element 20 and the light receiving element 30 have a diode structure, and their lower electrodes are connected to the source / drain regions 45 of the corresponding thin film transistors (TFT).
  • TFT thin film transistors
  • the thin film transistor a general top gate type polycrystalline silicon (Po1y-Si) TFT is adopted.
  • the wiring material 47 for the gate electrode and the wiring material 49 for the source drain electrode and the power supply line are connected between the wiring material 47 for the gate electrode and the wiring material 49 for the power supply line.
  • the capacitance C is formed by sandwiching one interlayer insulating film 48.
  • FIGS. 6, 7, 10 to 12 include a plan view (A) and a cross-sectional view (B) of the structure at the time of performing each step.
  • a top gate type polycrystalline silicon (po 1 y-Si) TFT will be described as an example.
  • a layer made of tungsten silicide (WSi) or another high melting point material is formed on a glass or other transparent substrate 10 by a sputtering method.
  • This high melting point material layer is patterned by photolithography to form a light shielding layer 42 on the transparent substrate 10 as shown in FIG. 6 (B).
  • the light shielding layer 42 is formed from tungsten silicide (WSi)
  • the thickness of the light shielding layer 42 is set in the range of 100 to 200 nm.
  • oxygen and silicon-containing gas e.g., silane (S i H 4)
  • a CVD method to deposit onto a substrate and then decomposed in a plasma, silicon dioxide (S i 0 2) or Ranaru barrier layer 43 Form on one side.
  • the barrier layer 43 prevents an impurity element contained in the transparent substrate 10 from diffusing into a layer above the transparent substrate 10 during a subsequent process.
  • the thickness of the layer 43 is 300 to 500 nm.
  • an amorphous silicon (aSi) layer which is a precursor of the po1ySi layer, is formed on the parier layer 43 by a plasma CVD method, a low pressure CVD method, or a sputtering method to a thickness of 100 nm.
  • the amorphous silicon (a-Si) layer is irradiated with a very short pulse light of several tens of nanoseconds from an excimer laser to instantaneously melt the amorphous silicon (a-Si) layer so that the amorphous silicon (aSi) layer becomes polysilicon.
  • This po 1 ySi layer is patterned by photolithography to form a thin film semiconductor 44.
  • a thickness 5 0 nm approximately silicon dioxide (S i 0 2) film and a thickness of 2 0 0 nm extent of tungsten Siri Sai de (WS i) layer the follower Torisogura Fi method
  • a gate insulating film 46 and a gate electrode 47 are formed by patterning a tungsten silicide (WS i) layer.
  • high concentration phosphorus (P) or boron (B) is selectively introduced into the region of the thin film semiconductor 44 by an ion doping method.
  • the transparent substrate 10 is heated to a temperature of about 500 degrees Celsius to activate the introduced impurity elements.
  • concentration of the impurity element, the heating time, the temperature, and other process conditions are important, and these process conditions are determined so that an ohmic contact with a wiring material to be formed later can be obtained.
  • the source / drain regions 45 of the thin film semiconductor 44 are formed.
  • the region into which the impurity element has not been introduced becomes the channel region 44 a of the thin film semiconductor 44.
  • the structure shown in the plan view of FIG. 6 (FIG. 6A) and the cross-sectional view of FIG. 6B is formed.
  • the tungsten silicide (W Si) layer and the insulating film at the lowermost layer of the thin film semiconductor 44 are not shown.
  • the material of the gate electrode 47 is arranged in the semiconductor region of the three thin film semiconductors 44 and the gate electrode, and in the region that will later become the lower electrode of the capacitance C.
  • a contact hole is opened in the first interlayer insulating film 48, and the source / drain electrode 49 and the wiring are made of chromium (Cr) or another low-resistance metal material.
  • the structure shown in the plan view of FIG. 7A and the cross-sectional view of FIG. 7B is formed. It can be confirmed that the data line, the power supply line, and the lower electrode of the light receiving element are formed of the material of the source / drain electrodes 49.
  • An opening 56 is formed in the lower electrode of the light receiving element.
  • a contact hole is formed in the second interlayer insulating film 50 by lithography and etching. I do.
  • a hydrogenated amorphous Si layer 51 and a SiC layer 52 are continuously formed on the entire surface by a plasma CVD method.
  • these two layers 51 and 52 are patterned by lithography and etching, and further, an indium tin oxide (ITO) is sputtered over the entire surface.
  • ITO indium tin oxide
  • the transparent electrode 53 is formed in a region to be the lower electrode (anode) of the light emitting element 20 while the light receiving element 30 is formed.
  • the transparent electrodes 53 of the light receiving element 30 and the light emitting element 20 are simultaneously formed.
  • the indium tin oxide (ITO) used as the transparent electrode 53 has a sheet resistance of about 20 ⁇ / b and a thickness of about 1 O Onm.
  • a light emitting material layer 54 made of an organic EL material is formed so as to cover the transparent electrode 53.
  • the light-emitting material layer 54 has a two-layer structure including a light-emitting layer and a hole injection / transport layer, a three-layer structure including an electron injection / transport layer, or a structure in which a thin insulating film is disposed at an interface with a metal electrode. Can be adopted.
  • a spin coating method As a method for manufacturing the light emitting material layer 54, a spin coating method, a vacuum evaporation method, or an ink jet printing method can be used. In accordance with each manufacturing method, a polymer or low molecular organic EL material is used. Selection, base structure, method of manufacturing upper electrode, and other manufacturing conditions are determined.
  • the light-emitting material layer 54 has a two-layer structure of a light-emitting layer and a hole transport layer.
  • a material of the hole injection / transport layer for example, a triarylamine derivative, an oxaziazole derivative or A porphyrin derivative can be selected.
  • a material for the light emitting layer for example, a metal complex of 8-hydroxyquinoline and its derivative, a tetraphenylbutadiene derivative or a distyrylaryl derivative is selected. be able to.
  • the light emitting layer and the hole transport layer are formed by laminating each with a thickness of about 50 nm by a vacuum evaporation method.
  • the light emitting material layer 54 is patterned so as to cover almost the transparent electrode 53, but the light emitting material layer 54 is a layer made of an insulating material. However, patterning is not necessarily required, and the transparent substrate 10 can be formed so as to cover the entire surface. However, when the image input device according to the present embodiment is applied to a color display, at least three kinds of light emitting material layers and their separation are required, so that the light emitting material layer 54 needs to be patterned.
  • a material having a low work function such as an aluminum-lithium alloy, is vacuum-deposited as a cathode of the light-emitting element 20 to a thickness of about 200 nm through a metal shadow mask.
  • an electrode 55 is formed as shown in FIG. 12 (B).
  • the GND line 55 shown in the circuit diagram of FIG. 4A is also formed of the same material as the electrode 55.
  • the entire surface of the device is covered with a protective layer 60.
  • the image input device according to the present embodiment is formed.
  • FIG. 13A is a perspective view of a mobile phone equipped with the image input device according to the present embodiment.
  • the image input device is mounted on a foldable mobile phone.
  • the foldable mobile phone includes a first housing 81 in which keys and other input means are arranged, and a second housing 82 including an antenna and other components.
  • the first and second housings 82 are connected at their ends via a hinge mechanism 83 so as to be mutually rotatable.
  • the image input device according to the present embodiment is incorporated in the second housing 82. That is, in the image input device according to the present embodiment, when the foldable mobile phone is folded, the protection layer 60, that is, the input surface 90 of the image input device according to the present embodiment faces the outside, and the light switching means 7 It is mounted on a foldable mobile phone such that the zero transparent electrode 74, that is, the display surface 91 faces inward.
  • the image input device is mounted on a foldable mobile phone as described above.
  • the following functions can be realized.
  • a finger is brought into close contact with the input surface 90 to input a fingerprint image into the image input device, and the phone is used only when it is confirmed that the mobile phone is a valid owner. Can be possible.
  • a fingerprint can be used for personal authentication when the service provider charges.
  • fingerprints of mobile phone users can be used as various payment means.
  • FIG. 13B is a perspective view of a double-page spread portable information terminal equipped with the image input device according to the present embodiment.
  • the portable information terminal shown in FIG. 13B includes a first housing 81, a second housing 82, and a third housing 84, and the first housing 81
  • the second case 82 and the second case 82 are connected to each other at their ends via a hinge mechanism (not shown) so as to be rotatable with each other, and the first case 81 and the third case 82 are connected to each other.
  • the housing 84 is connected at its ends via a hinge mechanism (not shown) so as to be mutually rotatable.
  • the image input device according to the present embodiment is incorporated in the second housing 82 without the light switching means 70. That is, when the portable information terminal is folded, the protective layer 60 of the image input device according to the present embodiment faces outward, and the transparent electrode 7 4 Is incorporated in the second housing 82 so that it faces inward.
  • the third housing 84 is formed of a light diffusion sheet 7OA having the same function as the light switching means 70.
  • a plastic sheet having an uneven shape on the surface and having a thickness of 1 mm or less can be used.
  • the original is closely attached to the protective layer 60 of the image input device in a state where the second housing 82 and the third housing 84 are folded with respect to the first housing 81. Let me do it.
  • the light diffusion sheet 7 OA is disposed in close contact with the lower part of the transparent substrate 10 of the image input device incorporated in the second housing 82, and is similar to the light switching means 70. Performs functions.
  • the second housing 82 When displaying an image, the second housing 82 is opened with respect to the first housing 81. Thus, an image can be displayed through the transparent substrate 10.
  • the first housing 8 By opening the second housing 82 with respect to the first housing 81 and also opening the third housing 84 with respect to the first housing 81, the first housing 8 is opened. It is possible to use a keyboard or display screen arranged on the surface of one.
  • the advantage of the image input device according to the present embodiment which can be reduced in thickness to almost the thickness of the transparent substrate 10, can be fully utilized.
  • the third housing 84 and the second housing 82 are located on two sides of the first housing 81 opposite to each other. Although they are arranged, for example, the third housing 84 can be arranged on a side orthogonal to the side of the first housing 81 in which the second housing 82 is arranged. is there.
  • FIG. 13C is a perspective view showing a three-fold type mobile phone equipped with the image input device according to the present embodiment.
  • the mobile phone shown in FIG. 13C has a first housing 81 in which keys and other input means are arranged, a second housing 82 including an antenna and other components, and a third housing.
  • the first housing 81 and the second housing 82 are connected to each other at their ends via a hinge mechanism 83a so as to be mutually rotatable.
  • the first housing 81 and the third housing 84 are connected at their ends via a hinge mechanism 83b so as to be mutually rotatable.
  • the image input device includes a second housing 8 excluding the light switching means 70. Built in two. That is, when the mobile phone is folded, the protective layer 60 of the image input device according to the present embodiment, that is, the input surface 90 faces the outside, and the image switching device 70 is transparent.
  • the electrode 74 that is, the display surface 91, faces the inside, and is incorporated in the second housing 82.
  • a light diffusion surface 70 B having the same function as the light switching means 70 is formed on the outer surface of the third housing 84.
  • the third housing 84 has a built-in microphone.
  • the second case 82 and the third case 84 When folding the second case 82 and the third case 84 with respect to the first case 81, the second case 82 and the third case 84 The second case 82 is folded so that the second case 82 is located directly above the first case 81 and the second case 82 is located above the third case 84.
  • Image input is performed on the protective layer 60 of the image input device, that is, on the input surface 9 in a state where the second housing 82 and the third housing 84 are folded with respect to the first housing 81. This is done by placing the original on top of 0. At this time, the light-diffusing surface 70 B of the third housing 84 is disposed in close contact with the transparent substrate 10 of the image input device incorporated in the second housing 82. It has the same function as the light switching means 70.
  • the second housing 82 When displaying an image, the second housing 82 is opened with respect to the first housing 81. Thus, an image can be displayed through the transparent substrate 10.
  • the first housing 8 is opened. It is possible to use a keyboard arranged on the surface of one.
  • the microphone is located near the mouth of the user of the mobile phone, so that voice input can be performed easily.
  • the advantage of the image input device according to the present embodiment which can be reduced in thickness to almost the thickness of the transparent substrate 10, can be fully utilized.
  • the third housing 84 and the second housing 82 are arranged on two mutually facing sides of the first housing 81. But, for example, It is also possible to arrange the third housing 84 on a side orthogonal to the side of the first housing 81 in which the second housing 82 is arranged.
  • FIGS. 3A and 3B realizes a 200 ppi color display and a 400 di image input.
  • the resolution and pixel rate of image display and image input are not limited to this example, and various combinations of resolutions can be realized by changing the pixel layout.
  • FIG. 14A shows another example of the pixel layout.
  • one red (R) element, one green (G) element, and one blue (B) light emitting element are arranged in the vertical direction, and three light receiving elements are arranged for each light emitting element.
  • One pixel is configured by arranging the elements.
  • the circuit configuration of the pixel layout shown in Fig. 14 (A) is shown in Fig. 14 (B).
  • a light emitting diode made of an organic EL material has been described as an example of a light emitting element.
  • an EL light emitting element made of an inorganic material can be used.
  • An EL light-emitting element composed of an inorganic material has, for example, a structure in which a first electrode, a first insulating layer, an inorganic EL material, a second insulating layer, and a second electrode are laminated in this order. can do.
  • a transparent material By forming one of the first and second electrodes from a transparent material, light emitted from the inorganic EL material can be extracted to the outside.
  • I TO of the first electrode has a thickness 0.2 m
  • the first and second insulating layers may be made of T a 2 0 5 with a thickness of 0.3 to 0.5 m
  • an inorganic EL material Can be formed by sputtering ZnS: Tb with a thickness of 0.5 ⁇ m.
  • a photoconductive light-receiving element made of n-type hydrogenated amorphous silicon (a-Si: H) can be used.
  • This light-receiving element has two n-type a-Si: H regions in which P is introduced at a high concentration, and an i-type a-Si: H region sandwiched between those n-type a-Si: H regions. Area.
  • FIG. 15 shows a layout of a pixel using such a photoconductive light receiving element.
  • the light receiving element is formed by successively overlapping the regions of i-type a-Si: H and n-type aSi: H, and using the material 49b of the source and drain electrodes on them. It is configured such that two electrodes formed in a comb shape face each other. At this time, the n-type a-Si: H in the region not covered by the electrode has been removed.
  • the i-type a-Si: H and n-type a-Si: H regions after such patterning are shown as the photoelectric conversion layer 51b.
  • a light-shielding layer 42 is arranged below the photoelectric conversion layer 5 lb, and light does not directly enter the photoelectric conversion layer 51 b through the transparent substrate 10. It has been like that.
  • the adopted TFT is an inverted staggered aSi TFT in which the gate electrode is disposed below the channel material a-Si: H, the material of the gate electrode can be used instead of the light shielding layer 42 .
  • such a light receiving element can be formed simultaneously with the TFT in the process of manufacturing the TFT as follows.
  • a-Si: H of the channel material of the TFT and a_Si: H of the photoelectric conversion material of the light-receiving element To simultaneously form a-Si: H of the channel material of the TFT and a_Si: H of the photoelectric conversion material of the light-receiving element, and to subsequently connect the source / drain regions of the TFT to the electrodes in an atomic fashion.
  • the n-type a-S i: H and the n-type a_S i: H of the light receiving element are simultaneously formed.
  • the source / K-rain electrode of the TFT and the comb-shaped electrode of the light receiving element are formed at the same time.
  • the n-type aSi: H existing between the source electrode and the drain electrode of the TFT and the n-type a-Si: H existing between two opposing comb-shaped electrodes of the light receiving element are as follows. Are removed simultaneously in the step of patterning the electrodes.
  • FIG. 3 (B) shows an example using a bottom gate type P 0 1 y-Si TFT.
  • the circuit shown can also be configured.
  • the circuit shown in FIG. 3B can be formed using an inverted staggered a-Si TFT or a forward staggered a-Si TFT generally applied to a liquid crystal display.
  • the resistance should be sufficiently low especially when used as a TFT that supplies current to light-emitting elements. It is necessary. In order to lower the resistance, for example, the width of the TFT is set to be large, or the thickness of the gate insulating film is reduced.
  • the configuration in which the vertical drive circuit 40 and the horizontal drive circuit 41 are formed on the transparent substrate 10 using the po1ySi TFT has been described. It is not limited to this.
  • a TAB (Tape Automated Bonding) connection and a COG (Chip On G 1 ass) connection are used to perform the same functions as those commonly used in the manufacturing process of liquid crystal displays.
  • This may be realized by an integrated circuit formed of a semiconductor, and the integrated circuit may be fixed on the transparent substrate 10 and electrically connected.
  • the configuration in which the light-emitting materials of three colors (RGB) are arranged in parallel is adopted.
  • RGB three colors
  • the light is emitted from the light emitting element 20 using the organic EL material toward the bottom surface 10 b of the transparent substrate 10. It is also possible to change the arrangement of the other electrode so that light is emitted above the transparent substrate 10. In this case, since the light emitted from the light emitting element 20 does not need to pass through the transparent substrate 10, the substrate corresponding to the transparent substrate 10 does not need to be transparent.
  • FIG. 16 is a perspective view of the image input device according to the second embodiment
  • FIG. FIG. 3 is a cross-sectional view of the image input device.
  • FIG. 18 shows a layout of a pixel unit (FIG. 18 (A)) and a circuit diagram of the pixel unit (FIG. 18 (B)) in the image input device according to the second embodiment.
  • 19 is a sectional view of a pixel portion.
  • the image input device includes a substrate 10 and a plurality of light receiving elements 3 O b arranged on one surface 10 a of the substrate 10.
  • a protective layer 60 b for protection for protection.
  • FIGS. 16 and 17 the same components as those in the first embodiment are denoted by the same reference numerals. In addition, for components that are made of the same material but have different shapes, the same numbers are added with “b”.
  • the light emitting elements 20b and the light receiving elements 30b are arranged in a matrix.
  • the light emitting element 2 Ob is configured to emit light upward from the surface 10 a of the transparent substrate 10, and the light receiving element 3 Ob is incident on the surface 10 a of the transparent substrate 10 It is configured to detect light.
  • the reason why the light emitting element 20b is arranged above the light receiving element 30b is as follows.
  • the first reason is to increase the area of the light emitting element 20b as compared with the case where the light emitting element 20b and the light receiving element 30b are juxtaposed.
  • the voltage applied to the light-emitting element 20b in order to realize the display with the desired brightness is increased when the light-emitting element 20b and the light-receiving element 30b are juxtaposed. Lower than Can be.
  • the second reason is that the area of the light receiving element 3 Ob, and therefore the capacitance thereof, can be increased, and the dynamic range of the light receiving element 3 Ob can be set wide.
  • the step to be covered by the lower electrode 55b of the light-receiving element 30b becomes large, so it is necessary to determine the conditions of the manufacturing process so that the step in the wiring does not break. It is.
  • the light emitting element 20 b and the light receiving element 30 b are arranged in parallel as in the first embodiment. It is also possible. In particular, when the resolution requirement is low, the two elements 20b and 30b are juxtaposed to give priority to the ease of the manufacturing process over the design freedom of the light receiving element 30Ob and the light emitting element 20b. It is desirable that the configuration be such.
  • the manufacturing process of the image input device according to the second embodiment is based on the point that the transparent electrode of the light emitting element 20b and the other electrode are exchanged, and the light receiving element 30b and the light emitting element 20 This is the same as the manufacturing process of the image input device according to the first embodiment, except that the transparent electrode cannot be formed simultaneously with the same material in b.
  • the TFT, the light receiving element 30 b, and the light emitting element 20 b are formed in this order.
  • the order of forming them is the same. This is because if an organic thin film is formed before forming the a-Si film, which is a photoelectric conversion material of the light receiving element 30b, the temperature will be around 250 ° C in the process of forming the a-Si film. This causes a problem that the organic thin film sublimates.
  • the operation of the image input device according to the second embodiment is as follows.
  • the operation of displaying an image is exactly the same as that of the first embodiment, except that light is emitted in the direction of the protective layer 60b.
  • the light emitted from the light emitting element 2 Ob directly illuminates the input target 80, and the reflected light is covered by the light emitting element 20b. No light is detected in the area of the light receiving element 30b.
  • the area where the finger is to be placed can be displayed by illuminating the light emitting element 2 Ob corresponding to the area where the finger is to be placed.
  • the position of the finger can be determined accurately, and the stability of fingerprint image input can be increased, and the accuracy of personal authentication can be improved.
  • a bottom gate type p 01 y-S i TFT can be used instead of a top gate type p 01 y-S i TFT.
  • the substrate 10 in the present embodiment does not need to be transparent, and for example, a crystalline Si substrate can be used.
  • the drive circuits 40b and 4lb and the transistor-to-capacitance of the pixel portion can be formed as a normal integrated circuit on the crystal S1 substrate.
  • a photodiode having a pn junction formed on a substrate can be used as in the case of a normal MOS image sensor.
  • the first effect is that the thickness of the entire image input device can be significantly reduced as compared with the conventional image input device.
  • the thickness of the transparent substrate 10 is set to 0.7 mm
  • the thickness of the transparent substrate 74 is set to 0.7 mm. be able to.
  • the total thickness of each of the transparent electrode 71, the liquid crystal layer 72, and the transparent electrode 73 is at most 5 m
  • the height of the light emitting element 20 and the light receiving element 30 formed on the surface 10a of the transparent substrate 10 Is at most 50 m.
  • the thickness of the image input device according to the first embodiment can be about 1.4 mm at the maximum. This is less than half the thickness of the conventional image input device shown in FIG. Is the thickness.
  • the image input device according to the first embodiment is 1 mm or thinner than the conventional image input device shown in FIG.
  • the thickness of the substrate 10 is about 0.7 mm, and the surface 10 of the transparent substrate 10 is The height of the light emitting element 20 and the light receiving element 30 formed on a is 50 m at the maximum.
  • the image input device according to the second embodiment is much thinner than the conventional image input device shown in FIGS. 20 and 21, and furthermore, the image input device according to the second embodiment. It can be formed thinner than the device.
  • the image input device according to the present invention has an effect that it can be configured to be thin. This is a great advantage when the image input device according to the present invention is incorporated in a mobile phone or other portable terminal device. Become.
  • the second effect is that the number of substrates on which TFTs are mounted can be reduced as compared with a conventional image input device.
  • the number of substrates on which TFTs are mounted is halved compared to the conventional image input device shown in FIG. For this reason, compared with the conventional image input device, the number of manufacturing steps of the image input device according to the present invention, and hence the manufacturing time, can be reduced, which directly leads to a reduction in manufacturing cost.
  • the image input device according to the present invention does not require a lens, thereby reducing the number of manufacturing steps and manufacturing time, and consequently manufacturing. Cost can be reduced.
  • the third effect is that the light use efficiency can be improved.
  • the light emitted from the light emitting element is one. Since the light is emitted only in the direction, the light use efficiency can be increased. Further, as compared with the conventional image input device shown in FIG. 21, the image input devices according to the first and second embodiments of the present invention provide a light emitting device that emits light emitted from the light emitting element when displaying an image. Since almost 100% can be used for display, light use efficiency is high, and Thus, power consumption can be reduced.
  • the image input device according to the present invention can be formed thinner, can reduce power consumption, and can reduce the number of manufacturing steps and the manufacturing time, and thus the manufacturing time, as compared with the conventional image input device. Cost can be reduced. Therefore, the image input device according to the present invention is particularly useful for mounting on a portable device such as a mobile phone.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Image Input (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Facsimile Heads (AREA)

Abstract

An image input device comprising a transparent substrate, a plurality of light emitting means arranged on one surface of this transparent substrate, a plurality of photoelectric conversion means arranged on the above one surface of the transparent substrate, and a light switching means disposed on the other surface of the transparent substrate, for selectively reflecting or transmitting light emitted from the light emitting means. The light emitting means emits light toward the above other surface of the transparent substrate, and the photoelectric conversion means detects light incident on the toe above one surface, and allows, when an image is to be input, the light emitting means to emit light toward the above other surface of the transparent substrate and the light switching means to be set to reflect the above light so that the photoelectric conversion means receives a reflection light from the image. When an image is to be displayed, the light switching means is set to transmit the light and allows the light emitting device to emit light toward the above other surface of the transparent substrate as required by the image.

Description

明 細 表示機能を内蔵した画像入力装置 発明の技術分野  Image input device with built-in display function TECHNICAL FIELD OF THE INVENTION
本発明は、 携帯情報端末、 携帯電話、 パーソナルコンピュータ等の電子機器に 使用される画像入力装置に関し、 特に、 画像表示機能を内蔵した画像入力装置に 関する。 従来の技術  The present invention relates to an image input device used for electronic devices such as a portable information terminal, a mobile phone, and a personal computer, and more particularly, to an image input device having a built-in image display function. Conventional technology
従来から、 文書や写真その他の平面状の媒体の上に記録された画像情報を入力 する画像入力装置であって、 画像表示機能を持つものが提案されている。 このよ うな従来の画像入力装置の一例として、 特開平 7— 2 3 6 0 2 9号公報に開示さ れている画像入力装置の側面図を図 2 0に示す。  2. Description of the Related Art Hitherto, an image input device for inputting image information recorded on a flat medium such as a document, a photograph, or the like and having an image display function has been proposed. As an example of such a conventional image input device, FIG. 20 shows a side view of an image input device disclosed in Japanese Patent Application Laid-Open No. Hei 7-236209.
図 2 0に示すように、 この画像入力装置は、 2次元イメージセンサ 1 1 0と、 2次元イメージセンサ 1 1 0上に配置されている面状光源 1 2 0と、 面状光源 1 2 0上に配置されている液晶ライ トバルブ 1 3 0と、 2次元イメージセンサ 1 1 0、 面状光源 1 2 0及び液晶ライ トバルブ 1 3 0の側面に配置され、 2次元ィメ ージセンサ 1 1 0と液晶ライトバルブ 1 3 0とを駆動する駆動回路 1 4 0と、 か ら構成されている。  As shown in FIG. 20, the image input device includes a two-dimensional image sensor 110, a planar light source 120 arranged on the two-dimensional image sensor 110, and a planar light source 120. The two-dimensional image sensor 110, which is arranged on the side of the liquid crystal light valve 130 disposed above, the two-dimensional image sensor 110, the planar light source 120, and the liquid crystal light valve 130, is disposed. And a drive circuit 140 for driving the liquid crystal light valve 130.
2次元イメージセンサ 1 1 0は透明基板上に光電変換素子を多数配列して構成 される。 隣接する光電変換素子はそれらの間に隙間ができるように相互に隔てて 配置されており、 この隙間には、 面状光源 1 2 0から発せられた光が透過するた めの開口部が設けられている。  The two-dimensional image sensor 110 is configured by arranging a large number of photoelectric conversion elements on a transparent substrate. Adjacent photoelectric conversion elements are spaced apart from each other so that a gap is formed between them, and an opening for transmitting light emitted from the planar light source 120 is provided in this gap. Have been.
この画像入力装置における画像入力は次のようにして行われる。  Image input in this image input device is performed as follows.
先ず、 原稿 1 0 0を 2次元イメージセンサ 1 1 0に密着させる。 次いで、 面状 光源 1 2 0が原稿 1 0 0に向かって発光を行う。 面状光源 1 2 0から発せられた 光は 2次元イメージセンサ 1 1 0を構成する光電変換素子間の隙間に形成されて いる開口部を透過して、 原稿 1 0 0を照明する。 原稿 1 0 0からの反射光は同様 に開口部を透過し、 2次元イメージセンサ 1 1 0を構成する光電変換素子に受光 された後、 電気信号に変換される。 First, the original 100 is brought into close contact with the two-dimensional image sensor 110. Next, the planar light source 120 emits light toward the original 100. The light emitted from the planar light source 120 passes through an opening formed in a gap between the photoelectric conversion elements constituting the two-dimensional image sensor 110, and illuminates the original 100. The reflected light from original 100 is the same The light is transmitted through the opening, is received by the photoelectric conversion element constituting the two-dimensional image sensor 110, and is converted into an electric signal.
個々の光電変換素子には、 その電気信号を外部へ読み出すためのスィッチ (通 常、 このスィッチは薄膜トランジスタで形成される) が配置されており、 これら のスィツチを制御して全ての光電変換素子から電気信号を読み出して画像情報を 得る。  Each photoelectric conversion element is provided with a switch (usually, this switch is formed by a thin film transistor) for reading out the electric signal to the outside. These switches are controlled to control all the photoelectric conversion elements. Image information is obtained by reading electrical signals.
駆動回路 1 4 0は、 光電変換素子に制御信号 1 5 0を送信することにより、 こ の一連の画像入力動作を制御する。  The drive circuit 140 controls this series of image input operations by transmitting a control signal 150 to the photoelectric conversion element.
一方、 液晶ライ トバルブ 1 3 0は、 2枚の透明基板と、 これら 2枚の透明基板 に挟まれた液晶層と、 から構成されている。 液晶ライトバルブ 1 3 0の表示面に は多数の画素が規則正しく配列されており、 駆動回路 1 4 0は各画素に対して制 御信号 1 6 0を発する。 各画素は、 制御信号 1 6 0に応じて、 面状光源 1 2 0が 発する光を透過させるか、 あるいは、 吸収するかを切り替えることにより、 画像 を表示する。  On the other hand, the liquid crystal light valve 130 includes two transparent substrates and a liquid crystal layer sandwiched between the two transparent substrates. Many pixels are regularly arranged on the display surface of the liquid crystal light valve 130, and the drive circuit 140 issues a control signal 160 to each pixel. Each pixel displays an image by switching between transmitting and absorbing light emitted from the planar light source 120 according to the control signal 160.
このように、 図 2 0に示した従来の画像入力装置は平面型であり、 その一方の 面 (2次元イメージセンサ 1 1 0の底面) が入力面、 他方の面 (液晶ライ トパル ブ 1 3の上面) が表示面になっているので、 種々の使用法がある。 例えば、 細か い画像の原稿の上にこの画像入力装置を置き、 その画像の拡大像を表示したり、 あるいは、 英語の原稿の上にこの画像入力装置を置き、 その内容を日本語に機械 翻訳した後に表示することが可能である。  As described above, the conventional image input device shown in FIG. 20 is a flat type, and one surface (the bottom surface of the two-dimensional image sensor 110) is an input surface, and the other surface (a liquid crystal light valve 13). There is a variety of uses because the (top) of is the display surface. For example, place this image input device on a fine image document and display an enlarged image of that image, or place this image input device on an English document and translate the contents into Japanese. It is possible to display after doing.
また、 液晶ライ トバルブ 1 3 0と 2次元イメージセンサ 1 1 0の両者の機能を 持つデバイスを使用することにより、 入力と表示とを同一面で行うことが可能で ある。 このような画像入力装置の一例が上記公報に開示されている。  Further, by using a device having both functions of the liquid crystal light valve 130 and the two-dimensional image sensor 110, input and display can be performed on the same surface. An example of such an image input device is disclosed in the above publication.
図 2 1はこの画像入力装置の構成を示す側面図である。  FIG. 21 is a side view showing the configuration of this image input device.
図 2 1に示す画像入力装置は、 面状光源 1 2 0 bと、 面状光源 1 2 0 b上に配 置された液晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0と、 面状光源 1 2 0 b及び液晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0の側面に配置され、 液 晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0を駆動する駆動回路 1 4 0 b と、 からなる。 図 2 2は、 液晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0の画素部の断面 とその動作原理を示す断面図である。 The image input device shown in FIG. 21 includes a planar light source 120 b, a two-dimensional image sensor 170 serving also as a liquid crystal light valve disposed on the planar light source 120 b, and a planar light source 1 2 0b and a drive circuit 140b that is disposed on the side surface of the two-dimensional image sensor 170 that also serves as a liquid crystal light valve and drives the two-dimensional image sensor 170 that also serves as a liquid crystal light valve. FIG. 22 is a cross-sectional view showing a cross section of a pixel portion of a two-dimensional image sensor 170 that also serves as a liquid crystal light valve, and a principle of operation thereof.
液晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0は、 2つの透明基板 1 7 4、 1 8 0と、 透明基板 1 7 4、 1 8 0の各々の一方の面上に形成された透明電極 1 7 5、 1 7 9と、 2つの透明基板 1 7 4、 1 8 0の間に挟み込まれた液晶層 1 8 0と、 透明基板 1 7 4、 1 8 0の各々の他方の面上に形成された偏光板 1 7 3、 1 8 1と、 偏光板 1 7 3上に形成された透明保護層 1 7 1と、 偏光板 1 7 3上に おいて規則的に配列された複数のレンズ 1 7 2と、 透明電極 1 7 5上において液 晶層 1 7 8に接して、 レンズ 1 7 2に対応して規則的に配列された光電変換材料 1 7 6と、各光電変換材料 1 Ί 6上に設けられた不透明電極 1 7 7と、からなる。 液晶ライ トバルブ兼用 2次元イメージセンサ 1 7 0は、 2つの液晶ライトパル ブ画素 1 8 3に挟まれた状態のセンサ画素 1 8 2を有しており、 レンズ 1 7 2、 光電変換材料 1 7 6及び不透明電極 1 7 7はセンサ画素 1 8 2の内部に配置され ている。  The two-dimensional image sensor 170 also serves as a liquid crystal light valve. The two-dimensional image sensor 170 is composed of two transparent substrates 170 and 180, and a transparent electrode 17 formed on one surface of each of the transparent substrates 170 and 180. 5, 179, a liquid crystal layer 180 sandwiched between two transparent substrates 174, 180, and formed on the other surface of each of the transparent substrates 174, 180 Polarizing plates 17 3 and 18 1, a transparent protective layer 17 1 formed on the polarizing plate 17 3, and a plurality of lenses 17 regularly arranged on the polarizing plate 17 3 2, a photoelectric conversion material 1 76 in contact with the liquid crystal layer 1 78 on the transparent electrode 1 75 and regularly arranged corresponding to the lens 1 72, and on each photoelectric conversion material 1 6 And an opaque electrode 17 7 The two-dimensional image sensor 170, which also serves as a liquid crystal light valve, has a sensor pixel 182 sandwiched between two liquid crystal light bulb pixels 183, a lens 172, and a photoelectric conversion material 1776. The opaque electrode 177 is arranged inside the sensor pixel 182.
図 2 1及び図 2 2に示した画像入力装置の動作は以下の通りである。  The operation of the image input device shown in FIGS. 21 and 22 is as follows.
光源 1 2 0 bから発せられた光は、 液晶ライトバルブ画素 1 8 3の領域におい ては、 偏光板 1 8 1によって一方の偏光成分のみが透過されて、 液晶層 1 7 8に 至る。 ここで、 透明電極 1 7 9、 1 7 5に印加する電圧を制御し、 この光が偏光 板 1 7 3を透過するようにしておくことにより、 光源 1 2 0 bから発せられた光 は原稿 1 0 0を照明する。  In the area of the liquid crystal light valve pixel 183, only one polarized component of the light emitted from the light source 120b is transmitted by the polarizing plate 181 and reaches the liquid crystal layer 178. Here, by controlling the voltage applied to the transparent electrodes 179 and 175 so that this light is transmitted through the polarizing plate 173, the light emitted from the light source 120b is converted to the original. Illuminate 100.
原稿 1 0 0からの反射光は、レンズ 1 7 2を介して光電変換材料 1 7 6に至り、 光電変換材料 1 7 6において、 電気信号に変換される。 このように、 規則正しく 配列された多数のレンズ 1 7 2と光電変換材料 1 7 6とにより、 原稿 1 0 0の明 暗情報に対応した電気信号、 即ち、 画像が得られる。 不透明電極 1 7 7は、 面状 光源 1 2 O bからの直接光が光電変換材料 1 7 6に入射することを防止してい る。  The reflected light from the original 100 reaches the photoelectric conversion material 176 through the lens 172, and is converted into an electric signal by the photoelectric conversion material 176. Thus, an electrical signal corresponding to the light / dark information of the original document 100, that is, an image can be obtained by the large number of lenses 172 and the photoelectric conversion material 176 arranged regularly. The opaque electrode 177 prevents direct light from the planar light source 12 Ob from entering the photoelectric conversion material 176.
また、 画像の表示は、 透明電極 1 7 9、 1 7 5に印加する電圧を制御し、 面状 光源 1 2 O bからの光の透過を制御することにより実現される。  The display of an image is realized by controlling the voltage applied to the transparent electrodes 179 and 175 and controlling the transmission of light from the planar light source 12 Ob.
しかしながら、 図 2 0乃至図 2 2に示した従来の画像入力装置には以下の課題 があった。 However, the conventional image input devices shown in FIGS. 20 to 22 have the following problems. was there.
第一に、 図 2 0に示した従来の画像入力装置の厚さは各構成要素の和に等しく なり、 それ以上の薄型化は困難もしくは不可能である。  First, the thickness of the conventional image input device shown in FIG. 20 is equal to the sum of the components, and further thinning is difficult or impossible.
例えば、. 2次元イメージセンサ 1 1 0の厚さが 0. 7 mm、 面状光源 1 2 0の 厚さが l mm、液晶ライ トパルプ 1 3 0の厚さが 1 . 4 mmである場合、画像入力 装置の厚さはそれらの合計の 3 . 1 mmとなり、これ以上の薄型化は物理的に不可 能である。  For example, when the thickness of the two-dimensional image sensor 110 is 0.7 mm, the thickness of the planar light source 120 is l mm, and the thickness of the liquid crystal light pulp 130 is 1.4 mm, The total thickness of the image input device is 3.1 mm, and further reduction in thickness is physically impossible.
また、 図 2 0に示した従来の画像入力装置においては、 面状光源 1 2 0の両面 に液晶ライ トパルプ 1 3 0と 2次元イメージセンサ 1 1 0とが配置されているた め、面状光源 1 2 0は両方向へ光を発するように構成される。 このため、例えば、 画像を表示しているときにも入力用の光が反対側へ出ていることになり、 光の利 用効率の低下の原因となっていた。  Further, in the conventional image input device shown in FIG. 20, since the liquid crystal light pulp 130 and the two-dimensional image sensor 110 are arranged on both sides of the planar light source 120, the planar The light source 120 is configured to emit light in both directions. For this reason, for example, even when an image is displayed, the input light is emitted to the opposite side, which causes a reduction in light use efficiency.
さらに、 図 2 0に示した従来の画像入力装置は部品点数が多く、 製造コストの 低減が困難であった。  Furthermore, the conventional image input device shown in FIG. 20 has a large number of components, and it is difficult to reduce the manufacturing cost.
第二に、高画質の画像表示が可能な薄膜トランジスタ(T h i n F i l m T r a n s i s t o r : T F T)方式の液晶ライ トバルブ 1 3 0を採用する場合、 2 次元イメージセンサ 1 1 0にも同様に T F Tを多数配列した透明基板が必要とな るため、 T F Tの製造工程を経た透明基板が合計 2枚必要となる。  Second, when a thin film transistor (TFT) liquid crystal light valve 130 capable of displaying high-quality images is adopted, a large number of TFTs are used in the two-dimensional image sensor 110 as well. Since an array of transparent substrates is required, a total of two transparent substrates that have undergone the TFT manufacturing process are required.
これに対して、 図 2 1及び図 2 2に示した画像入力装置においては、 T F Tの 製造工程を経た透明基板の必要枚数は 1枚である。 このように、 図 2 1及び図 2 2に示した画像入力装置によれば、 T F Tの製造に起因した製造コストの上昇を 回避することができる。  On the other hand, in the image input device shown in FIGS. 21 and 22, the required number of transparent substrates after the TFT manufacturing process is one. As described above, according to the image input devices shown in FIGS. 21 and 22, it is possible to avoid an increase in the manufacturing cost due to the manufacture of the TFT.
しかしながら、図 2 2に示した画像入力装置はレンズ 1 7 2を必要とするため、 レンズ 1 7 2の形成のための製造コストが加わり、 結局、 T F Tの製造に起因し て製造コストが上昇することはないが、 レンズ 1 7 2の製造に起因して製造コス トが上昇している。  However, since the image input device shown in FIG. 22 requires the lens 17 2, the manufacturing cost for forming the lens 17 2 is added, and the manufacturing cost is eventually increased due to the TFT manufacturing. Nevertheless, the production cost is increasing due to the production of the lens 172.
また、 図 2 2に示した画像入力装置においては、 面状光源 1 2 0 bから発せら れた光の中で不透明電極 1 7 7に至る光成分は原稿 1 0 0の照明には供されな い。 このため、 図 2 2に示した画像入力装置は、 光の利用効率を高くすることが できないという問題点を内包している。 In the image input device shown in FIG. 22, the light component reaching the opaque electrode 177 of the light emitted from the planar light source 120b is used to illuminate the original 100. Absent. For this reason, the image input device shown in FIG. It has the problem of not being able to do so.
さらに、 図 2 2に示した画像入力装置の厚さは、 面状光源 1 2 0 bの厚さと、 透明基板 1 7 4、 1 8 0の 2枚分の厚さと、 レンズ 1 7 2の結像に必要な距離と の和に等しい。  Further, the thickness of the image input device shown in FIG. 22 is the thickness of the planar light source 120 b, the thickness of two transparent substrates 174 and 180, and the connection of the lens 172. It is equal to the sum of the distance required for the image and.
この場合、 仮に、 結像距離を無視できるとしても、 例えば、 面状光源 1 2 0 b の厚さが 1 mm、透明基板 1 7 4、 1 8 0の 2枚分の厚さが 1 . 4 mmであるとす れば、画像入力装置の厚さをそれらの和である 2 . 4 mmより薄くすることは困難 である。  In this case, even if the imaging distance can be neglected, for example, the thickness of the planar light source 120b is 1 mm, and the thickness of the two transparent substrates 174 and 180 is 1.4. If it is mm, it is difficult to make the thickness of the image input device thinner than 2.4 mm, which is the sum of them.
また、 特開平 7— 3 2 2 0 1 2号公報は、 画像入力手段と、 この画像入力手段 により入力した画像情報の少なくとも一部を拡大表示する画像表示手段と、 を有 する画像入出力装置であって、 画像入力手段の読み取り面と画像表示手段の表示 面とが相互に表裏面となるように配置し、 読み取り範囲上に表示面を位置するこ とを特徴とする画像入出力装置を提案している。  Also, Japanese Patent Application Laid-Open No. Hei 7-322210 discloses an image input / output device having image input means, and image display means for enlarging and displaying at least a part of image information input by the image input means. Wherein the reading surface of the image input means and the display surface of the image display means are arranged so as to face each other, and the display surface is positioned on the reading range. is suggesting.
特許第 3 0 0 8 8 5 9号公報 (特開平 1 0— 9 3 7 8 5 ) は、 読み取り原稿側 を向いて整列して配列された複数の受光素子を有するイメージセンサ部と、 この イメージセンサ部の前記読み取り原稿側に密着して配列され、 前記読み取り原稿 に向けて光を発する薄型光源とを備えるイメージセンサ装置において、 前記薄型 光源が前記受光素子の個々に対して前記受光素子より少ない面積の一個以上の発 光部を有し、 前記発光部は、 前記受光素子側に遮光層を有し、 前記受光素子と前 記読み取り原稿との間の前記受光素子の下面に位置するように配置されているこ とを特徴とするイメージセンサ装置を提案している。  Japanese Patent Publication No. 390885/1995 (Japanese Patent Application Laid-Open No. 10-97385) discloses an image sensor section having a plurality of light receiving elements arranged in a row facing the side of a document to be read. A thin light source that is arranged in close contact with the reading document side of a sensor unit and emits light toward the reading document, wherein the thin light sources are smaller than the light receiving elements for each of the light receiving elements. It has at least one light emitting unit having an area, the light emitting unit has a light shielding layer on the light receiving element side, and is located on the lower surface of the light receiving element between the light receiving element and the original to be read. An image sensor device characterized by being arranged is proposed.
さらに、 特公平 7— 6 2 8 6 5号公報 (特開平 6— 3 2 5 1 5 8 ) は、 平面状 光源と、 この平面状光源の上に配置され、 前記平面状光源が発する光を透過させ る開口部を有する 2次元イメージセンサと、 前記開口部を透過した光を指を斜め に照射するように導き、 前記指からの反射光を 2次元イメージセンサの光電変換 素子に導く光学手段と、 からなることを特徴とする指紋画像入力装置を提案して いる。  Furthermore, Japanese Patent Publication No. 7-62885 (Japanese Patent Application Laid-Open No. Hei 6-32515) discloses a planar light source and a light source arranged on the planar light source and emitting light emitted from the planar light source. A two-dimensional image sensor having an opening through which light passes, and optical means for guiding light transmitted through the opening so as to irradiate a finger obliquely, and guiding reflected light from the finger to a photoelectric conversion element of the two-dimensional image sensor And a fingerprint image input device characterized by the following.
しかしながら、 これらの公報に提案されている画像入出力装置その他の装置に おいても、 上記のような問題点は未解決のままである。 本発明は上記の問題点に鑑みてなされたものであり、 光の利用効率が高く、 低 消費電力で駆動できる薄型の表示機能を内蔵した画像入力装置を低コストで実現 することを目的とする。 発明の開示 However, the problems described above remain unresolved in the image input / output devices and other devices proposed in these publications. The present invention has been made in view of the above problems, and has as its object to realize, at low cost, an image input device having a thin display function that can be driven with high light use efficiency and low power consumption. . Disclosure of the invention
上記の目的を達成するため、 本発明は、 第 1の態様として、 透明基板と、 前記 透明基板の一方の表面に配列された複数の発光手段と、 前記透明基板の前記一方 の表面に配列された複数の光電変換手段と、 前記透明基板の他方の表面に配置さ れ、 前記発光手段から発せられた光を選択的に反射し、 または、 透過させる光切 替手段と、 を備える画像入力装置であって、 前記発光手段は前記透明基板の前記 他方の表面に向かって発光し、 前記光電変換手段は前記一方の表面に入射する光 を検出し、 画像を入力する場合には、 前記発光手段を前記透明基板の前記他方の 表面に向かって発光させ、 かつ、 前記光切替手段は前記光を反射させるように設 定され、 前記光電変換手段が前記画像からの反射光を受光するものである画像入 力装置を提供する。  In order to achieve the above object, the present invention provides, as a first aspect, a transparent substrate, a plurality of light emitting units arranged on one surface of the transparent substrate, and an array of light emitting units arranged on the one surface of the transparent substrate. An image input device, comprising: a plurality of photoelectric conversion units; and a light switching unit disposed on the other surface of the transparent substrate and selectively reflecting or transmitting light emitted from the light emitting unit. Wherein the light emitting means emits light toward the other surface of the transparent substrate, the photoelectric conversion means detects light incident on the one surface, and when an image is inputted, the light emitting means Light is emitted toward the other surface of the transparent substrate, and the light switching means is set to reflect the light, and the photoelectric conversion means receives reflected light from the image. Image input equipment Provide a replacement.
上記の画像入力装置において、 画像を表示する場合には、 前記光切替手段は前 記光を透過させるように設定され、 かつ、 前記画像に応じて、 前記発光手段を前 記透明基板の前記他方の表面に向かって発光させる。  In the image input device described above, when displaying an image, the light switching unit is set to transmit the light, and the light emitting unit is set to the other one of the transparent substrates according to the image. To emit light toward the surface of.
さらに、 本発明は、 第 2の態様として、 基板と、 前記基板の一方の表面に配列 された複数の発光手段と、 前記基板の前記一方の表面に配列された複数の光電変 換手段と、 を備える画像入力装置であって、 前記発光手段は前記透明基板の前記 他方の表面とは反対の方向に発光し、 前記光電変換手段は前記一方の表面に入射 する光を検出し、 画像を入力する場合には、 前記発光手段を前記透明基板の前記 他方の表面とは反対の方向に発光させ、 前記光電変換手段は反射光を受光するも のである画像入力装置を提供する。  Further, according to a second aspect of the present invention, a substrate, a plurality of light emitting units arranged on one surface of the substrate, and a plurality of photoelectric conversion units arranged on the one surface of the substrate, An image input device comprising: the light emitting unit emits light in a direction opposite to the other surface of the transparent substrate; the photoelectric conversion unit detects light incident on the one surface; and inputs an image. If so, an image input device is provided in which the light emitting means emits light in a direction opposite to the other surface of the transparent substrate, and the photoelectric conversion means receives reflected light.
上記の画像入力装置において、 画像を表示する場合には、 前記画像に応じて、 前記発光手段を前記透明基板の前記他方の表面に向かって発光させる。  In the above image input device, when displaying an image, the light emitting unit emits light toward the other surface of the transparent substrate according to the image.
第 2の態様の画像入力装置においては、 例えば、 前記発光手段の各々は前記光 電変換手段の各々の上に重ねて配置することができる。 また、 第 1及び第 2の態様の画像入力装置は前記発光手段及び前記光電変換手 段を覆う透明の保護層をさらに備えることが好ましい。 In the image input device according to the second aspect, for example, each of the light emitting units can be arranged so as to overlap each of the photoelectric conversion units. Further, it is preferable that the image input device according to the first and second aspects further includes a transparent protective layer covering the light emitting means and the photoelectric conversion means.
第 1及び第 2の態様の画像入力装置においては、 前記発光手段は、 例えば、 光 を外部に放射する発光素子と、 特定の発光素子を発光させるための発光素子選択 手段と、 から構成することができる。  In the image input devices according to the first and second aspects, the light-emitting unit may include, for example, a light-emitting element that emits light to the outside, and a light-emitting element selection unit that causes a specific light-emitting element to emit light. Can be.
また、 前記光電変換手段は、 例えば、 吸収した光の量に対応した電気信号を生 成する受光素子と、 特定の受光素子を作動させるための受光素子選択手段と、 か ら構成することができる。  Further, the photoelectric conversion means can be constituted by, for example, a light receiving element for generating an electric signal corresponding to the amount of absorbed light, and a light receiving element selecting means for operating a specific light receiving element. .
第 1及び第 2の態様の画像入力装置においては、 前記発光手段は、 例えば、 光 を外部に放射する発光素子と、 特定の発光素子を発光させるための発光素子選択 手段と、 から構成し、 前記光電変換手段は、 吸収した光の量に対応した電気信号 を生成する受光素子と、特定の受光素子を作動させるための受光素子選択手段と、 から構成し、 前記発光素子選択手段及び前記受光素子選択手段の何れか一方を動 作させるための制御信号は同一の制御用配線を介して前記発光素子選択手段また は前記受光素子選択手段に供給されるものとすることができる。  In the image input device according to the first and second aspects, the light-emitting means includes, for example, a light-emitting element that emits light to the outside, and a light-emitting element selecting means for causing a specific light-emitting element to emit light. The photoelectric conversion unit includes: a light receiving element that generates an electric signal corresponding to an amount of absorbed light; and a light receiving element selecting unit that operates a specific light receiving element. The light emitting element selecting unit and the light receiving unit A control signal for operating one of the element selecting means may be supplied to the light emitting element selecting means or the light receiving element selecting means via the same control wiring.
第 1及び第 2の態様の画像入力装置においては、 前記発光手段は、 光を外部に 放射する発光素子と、 特定の発光素子を発光させるための発光素子選択手段と、 から構成し、 前記光電変換手段は、 吸収した光の量に対応した電気信号を生成す る受光素子と、 特定の受光素子を作動させるための受光素子選択手段と、 から構 成し、 前記発光素子の発光強度を与える信号と前記受光素子が生成した前記電気 信号とが同一の信号用配線を介して前記発光素子選択手段または前記受光素子選 択手段に供給されるものとすることができる。  In the image input device according to the first and second aspects, the light emitting unit includes: a light emitting element that emits light to the outside; and a light emitting element selecting unit that causes a specific light emitting element to emit light. The converting means comprises: a light receiving element for generating an electric signal corresponding to the amount of absorbed light; and a light receiving element selecting means for operating a specific light receiving element, and provides the light emitting intensity of the light emitting element. A signal and the electric signal generated by the light receiving element may be supplied to the light emitting element selecting means or the light receiving element selecting means via the same signal wiring.
第 1及び第 2の態様の画像入力装置においては、 前記発光手段は、 光を外部に 放射する発光素子と、 特定の発光素子を発光させるための発光素子選択手段と、 から構成し、 前記光電変換手段は、 吸収した光の量に対応した電気信号を生成す る受光素子と、 特定の受光素子を作動させるための受光素子選択手段と、 から構 成し、 前記発光素子に流れる電流と前記受光素子を充電する電流とが同一の電源 用配線を介して前記発光素子及び前記受光素子に供給されるものとすることがで ぎる。 第 1及び第 2の態様の画像入力装置においては、 前記光切替手段は、 例えば、 相互に対向する 2つの透明電極と、 前記透明電極の間に挟み込まれた液晶層と、 から構成することができる。 In the image input device according to the first and second aspects, the light emitting unit includes: a light emitting element that emits light to the outside; and a light emitting element selecting unit that causes a specific light emitting element to emit light. The converting means comprises: a light receiving element for generating an electric signal corresponding to the amount of absorbed light; and a light receiving element selecting means for operating a specific light receiving element. The current for charging the light receiving element may be supplied to the light emitting element and the light receiving element via the same power supply wiring. In the image input devices according to the first and second aspects, the light switching means may include, for example, two transparent electrodes facing each other, and a liquid crystal layer sandwiched between the transparent electrodes. it can.
前記発光素子は、 例えば、 少なくとも一方が透明である二つの電極層と、 前記 電極層の間に挟まれ、 発光材料からなる発光層と、 から構成することができる。 また、 前記受光素子は、 少なくとも一方が透明である二つの電極層と、 前記電 極層の間に挟まれ、 光電変換材料からなる光電変換層と、 から構成することがで きる。  The light emitting element can be composed of, for example, two electrode layers, at least one of which is transparent, and a light emitting layer made of a light emitting material, sandwiched between the electrode layers. Further, the light receiving element can be composed of: two electrode layers, at least one of which is transparent; and a photoelectric conversion layer made of a photoelectric conversion material, sandwiched between the electrode layers.
発光素子及ぴ受光素子を上記のように構成する場合、 前記発光素子の透明電極 層と前記受光素子の透明電極層とは同一の工程で形成することが好ましい。 前記発光素子は、 例えば、 第一の電極、 第一の絶縁層、 無機エレクトロルミネ ッセンス材料、 第二の絶縁層及び第二の電極がこの順に積層された積層体から構 成することができる。  When the light emitting element and the light receiving element are configured as described above, it is preferable that the transparent electrode layer of the light emitting element and the transparent electrode layer of the light receiving element are formed in the same step. The light emitting element can be composed of, for example, a laminate in which a first electrode, a first insulating layer, an inorganic electroluminescent material, a second insulating layer, and a second electrode are laminated in this order.
前記受光素子は、 第一の電極領域と、 不純物を導入した第一の半導体領域と、 前記第一の半導体領域よりも不純物を低濃度に導入した第二の半導体領域と、 前 記第一の半導体領域と同一の材料からなる第三の半導体領域と、 を順に接合した 構造を有するものとして構成することができる。  The light receiving element includes: a first electrode region; a first semiconductor region into which impurities are introduced; a second semiconductor region into which impurities are introduced at a lower concentration than the first semiconductor region; The third semiconductor region made of the same material as the semiconductor region may be sequentially joined to the third semiconductor region.
第 2の態様の画像入力装置においては、 前記基板として結晶シリコン基板を用 いることができ、 前記光電変換手段は、 吸収した光の量に対応した電気信号を生 成する受光素子を有するものとして構成することができる。 この場合、 前記受光 素子は、 前記結晶シリコン基板に第一の不純物を導入して p型シリコンとした領 域と、 第二の不純物を導入して n型シリコンとした領域とを接合した構造を有す るものとして構成することができる。  In the image input device of the second aspect, a crystalline silicon substrate can be used as the substrate, and the photoelectric conversion unit has a light receiving element that generates an electric signal corresponding to an amount of absorbed light. Can be configured. In this case, the light receiving element has a structure in which a region into which p-type silicon is introduced by introducing a first impurity into a region into which n-type silicon is introduced by introducing a second impurity into the crystalline silicon substrate. It can be configured as having.
上述の本発明に係る画像入力装置は、 携帯電話その他の各種機器に応用するこ とが可能である。  The above-described image input device according to the present invention can be applied to mobile phones and other various devices.
このため、 本発明は、 第 1及び第 2の態様の画像入力装置を内蔵する第一の筐 体と、 前記第一の筐体と回動可能に連結している第二の筐体と、 を備える機器で あって、 前記第一の筐体と前記第二の筐体とは相互に重なり合うように折り畳む ことが可能であり、 前記画像入力装置の光切替手段は、 前記第一の筐体と第二の 筐体とを折り畳んだ状態において、 前記第二の筐体に対向するように配置されて いる機器を提供する。 Therefore, the present invention provides a first housing incorporating the image input device of the first and second aspects, a second housing rotatably connected to the first housing, Wherein the first casing and the second casing are foldable so as to overlap each other, and the light switching means of the image input device includes the first casing. And the second Provided is a device that is disposed so as to face the second housing when the housing is folded.
また、 本発明は、 画像入力装置を内蔵する第一の筐体と、 前記第一の筐体と回 動可能に連結し、 前記第一の筐体と相互に重なり合うように折り畳み可能な第二 の筐体と、 前記第一の筐体と第二の筐体とを相互に折り畳んだときに前記第一の 筐体に対向するように前記第一の筐体と前記第二の筐体との間に配置された、 光 拡散機能を有する光拡散体と、 を備える機器であって、 前記画像入力装置は、 透 明基板の一方の表面に配列された複数の発光手段と、 前記透明基板の前記一方の 表面に配列された複数の光電変換手段と、 を備え、 前記発光手段は前記透明基板 の前記他方の表面に向かって発光し、 前記光電変換手段は前記一方の表面に入射 する光を検出し、 画像を入力する場合には、 前記発光手段を前記透明基板の前記 他方の表面に向かって発光させ、 かつ、 前記光切替手段は前記光を反射させるよ うに設定され、 前記光電変換手段が前記画像からの反射光を受光するものである 機器を提供する。  Further, the present invention provides a first housing incorporating an image input device, a second housing rotatably connected to the first housing, and being foldable so as to overlap with the first housing. And the first housing and the second housing so as to face the first housing when the first housing and the second housing are mutually folded. A light diffuser having a light diffusing function, disposed between the transparent substrate, the image input device comprising: a plurality of light emitting means arranged on one surface of a transparent substrate; and the transparent substrate And a plurality of photoelectric conversion units arranged on the one surface of the transparent substrate, wherein the light emitting unit emits light toward the other surface of the transparent substrate, and the photoelectric conversion unit emits light incident on the one surface. Is detected, and when an image is input, the light emitting means is connected to the other side of the transparent substrate. Emit light towards the surface, and the light switching means is by Uni set to reflect the light, the photoelectric conversion means to provide a device is intended for receiving light reflected from the image.
上記の機器における画像入力装置は、 上述の第 1の態様の画像入力装置から光 切替手段を除去したものに相当する。  The image input device in the above-described device corresponds to the image input device of the above-described first embodiment in which the light switching unit is removed.
さらに、 本発明は、 画像入力装置を内蔵する第一の筐体と、 前記第一の筐体と 回動可能に連結し、 前記第一の筐体と相互に重なり合うように折り畳み可能な第 二の筐体と、 前記第一の筐体と第二の筐体とを相互に折り畳んだときに前記第一 の筐体と前記第二の筐体との間に挟み込まれるように配置されている第三の筐体 と、 を備える機器であって、 前記画像入力装置は、 透明基板の一方の表面に配列 された複数の発光手段と、 前記透明基板の前記一方の表面に配列された複数の光 電変換手段と、 を備え、 前記発光手段は前記透明基板の前記他方の表面に向かつ て発光し、 前記光電変換手段は前記一方の表面に入射する光を検出し、 画像を入 力する場合には、 前記発光手段を前記透明基板の前記他方の表面に向かって発光 させ、 かつ、 前記光切替手段は前記光を反射させるように設定され、 前記光電変 換手段が前記画像からの反射光を受光するものであり、 前記第三の筐体の前記第 一の筐体に対向する表面は光を拡散させる機能が付加されている機器を提供す る。 上記の機器における画像入力装置は、 上述の第 1の態様の画像入力装置から光 切替手段を除去したものに相当する。 Further, the present invention provides a first housing incorporating an image input device, a second housing rotatably connected to the first housing, and being foldable so as to overlap with the first housing. And the first housing and the second housing are arranged to be sandwiched between the first housing and the second housing when the first housing and the second housing are folded together. A third housing, wherein the image input device comprises: a plurality of light emitting units arranged on one surface of a transparent substrate; and a plurality of light emitting units arranged on the one surface of the transparent substrate. Photoelectric conversion means, wherein the light emitting means emits light toward the other surface of the transparent substrate, and the photoelectric conversion means detects light incident on the one surface and inputs an image. In this case, the light emitting unit emits light toward the other surface of the transparent substrate. And the light switching means is set to reflect the light, and the photoelectric conversion means receives reflected light from the image. Opposing surfaces provide equipment with the added ability to diffuse light. The image input device in the above-described device corresponds to the image input device of the first embodiment described above, from which the light switching unit is removed.
前記第三の筐体には、 例えば、 マイクを内蔵させることが可能である。  For example, a microphone can be built in the third housing.
さらに、 本発明は、 第 1及び第 2の態様の画像入力装置を内蔵した筐体を有す る機器であって、前記画像入力装置は、前記発光手段が発光した光を指に照射し、 前記指からの反射光を前記光電変換手段において受光することにより、 指紋を画 像として入力するものである機器を提供する。  Further, the present invention is an apparatus having a housing incorporating the image input device according to the first and second aspects, wherein the image input device irradiates a finger with light emitted by the light emitting unit, Provided is a device for inputting a fingerprint as an image by receiving reflected light from the finger in the photoelectric conversion means.
上述の機器としては、 例えば、 携帯電話を選択することができる。 図面の簡単な説明  As the above-mentioned device, for example, a mobile phone can be selected. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第一の実施例に係る画像入力装置の斜視図である。  FIG. 1 is a perspective view of an image input device according to a first embodiment of the present invention.
図 2は、 本発明の第一の実施例に係る画像入力装置の断面とその動作原理を示 す断面図である。  FIG. 2 is a cross-sectional view showing the cross section of the image input device according to the first embodiment of the present invention and the operation principle thereof.
図 3は、 本発明の第一の実施例に係る画像入力装置における画素の配列状態を 示す平面図 (図 3 (A)) と、 各画素の回路図 (図 3 (B)) である。  FIG. 3 is a plan view (FIG. 3 (A)) showing an arrangement state of pixels in the image input device according to the first embodiment of the present invention, and a circuit diagram of each pixel (FIG. 3 (B)).
図 4は、 本発明の第一の実施例に係る画像入力装置における画素の回路図 (図 3 (A)) と、 画素のレイアウトを示す平面図 (図 3 (B)) である。  FIG. 4 is a circuit diagram of a pixel (FIG. 3A) in the image input device according to the first embodiment of the present invention, and a plan view (FIG. 3B) showing a layout of the pixel.
図 5は、 本発明の第一の実施例に係る画像入力装置における画素の断面を示す 断面図である。  FIG. 5 is a sectional view showing a section of a pixel in the image input device according to the first embodiment of the present invention.
図 6は、本発明の第一の実施例に係る画像入力装置の製造工程を示す平面図(図 FIG. 6 is a plan view (FIG. 6) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
6 (A)) 及び断面図 (図 6 (B)) である。 ' 6 (A)) and a sectional view (FIG. 6 (B)). '
図 7は、本発明の第一の実施例に係る画像入力装置の製造工程を示す平面図(図 FIG. 7 is a plan view (FIG. 7) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
7 (A)) 及び断面図 (図 7 (B)) である。 7 (A)) and a sectional view (FIG. 7 (B)).
図 8は、 本発明の第一の実施例に係る画像入力装置の製造工程を示す断面図で ある。  FIG. 8 is a cross-sectional view illustrating a manufacturing process of the image input device according to the first embodiment of the present invention.
図 9は、 本発明の第一の実施例に係る画像入力装置の製造工程を示す断面図で ある。  FIG. 9 is a cross-sectional view illustrating a manufacturing process of the image input device according to the first embodiment of the present invention.
図 1 0は、 本発明の第一の実施例に係る画像入力装置の製造工程を示す平面図 (図 1 0 (A)) 及び断面図 (図 1 0 (B)) である。 図 1 1は、 本発明の第一の実施例に係る画像入力装置の製造工程を示す平面図 (図 1 1 (A)) 及び断面図 (図 1 1 (B)) である。 FIG. 10 is a plan view (FIG. 10 (A)) and a cross-sectional view (FIG. 10 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention. FIG. 11 is a plan view (FIG. 11 (A)) and a cross-sectional view (FIG. 11 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
図 1 2は、 本発明の第一の実施例に係る画像入力装置の製造工程を示す平面図 (図 1 2 (A)) 及び断面図 (図 1 2 (B)) である。  FIG. 12 is a plan view (FIG. 12 (A)) and a cross-sectional view (FIG. 12 (B)) showing a manufacturing process of the image input device according to the first embodiment of the present invention.
図 1 3は、 本発明の第一の実施例に係る画像入力装置を搭載した携帯電話 (図 1 3 (A) 及び図 1 3 ( C )) と携帯情報端末 (図 1 3 (A)) とを示す斜視図で ある。  FIG. 13 shows a mobile phone (FIG. 13 (A) and FIG. 13 (C)) equipped with the image input device according to the first embodiment of the present invention and a portable information terminal (FIG. 13 (A)). FIG.
図 1 4は、 本発明の第一の実施例に係る画像入力装置の変形例における画素の 配列状態を示す平面図 (図 1 4 (A)) と、 各画素の回路図 (図 1 4 (B)) であ る。  FIG. 14 is a plan view (FIG. 14 (A)) showing an arrangement state of pixels in a modified example of the image input device according to the first embodiment of the present invention, and a circuit diagram of each pixel (FIG. B)).
図 1 5は、 本発明の第一の実施例に係る画像入力装置の変形例における画素の レイアウトを示す平面図である。  FIG. 15 is a plan view showing a pixel layout in a modified example of the image input device according to the first embodiment of the present invention.
図 1 6は、 本発明の第二の実施例に係る画像入力装置の斜視図である。  FIG. 16 is a perspective view of an image input device according to the second embodiment of the present invention.
図 1 7は、 本発明の第二の実施例に係る画像入力装置の断面とその動作原理を 示す断面図である。  FIG. 17 is a cross-sectional view showing a cross-section of an image input device according to a second embodiment of the present invention and its operation principle.
図 1 8は、 本発明の第二の実施例に係る画像入力装置における画素のレイァゥ トを示す平面図 (図 1 8 (A)) と、 画素の回路図 (図 1 8 (B)) である。 図 1 9は、 本発明の第二の実施例に係る画像入力装置における画素の断面を示 す断面図である。  FIG. 18 is a plan view (FIG. 18 (A)) showing a layout of a pixel in the image input device according to the second embodiment of the present invention, and a circuit diagram (FIG. 18 (B)) of the pixel. is there. FIG. 19 is a sectional view showing a section of a pixel in the image input device according to the second embodiment of the present invention.
図 2 0は、 従来の画像入力装置の構成を示す側面図である。  FIG. 20 is a side view showing the configuration of a conventional image input device.
図 2 1は、 他の従来の画像入力装置の構成を示す側面図である。  FIG. 21 is a side view showing the configuration of another conventional image input device.
図 2 2は、 図 2 1に示した従来の画像入力装置の断面図である。 好ましい実施例の詳細な説明  FIG. 22 is a cross-sectional view of the conventional image input device shown in FIG. Detailed Description of the Preferred Embodiment
以下、 本発明の実施例について図を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(第一の実施例) (First embodiment)
図 1は、 本発明の第一の実施例に係る画像入力装置の斜視図であり、 図 2は、 図 1に示した画像入力装置の断面図である。 図 3は、 本実施例に係る画像入力装 置における画素の配列状態を示す平面図 (図 3 (A)) と、 各画素の回路図 (図 3 (B)) である。 図 4は、本発明の第一の実施例に係る画像入力装置における画素 の回路図 (図 3 (A)) と、 画素のレイアウトを示す平面図 (図 3 (B)) である。 本実施例に係る画像入力装置は、 透明基板 1 0と、 透明基板 1 0の一方の表面 1 0 aに規則的に配列された複数の発光素子 2 0と、 透明基板 1 0の一^の表面 1 0 aに発光素子 2 0とともに規則的に配列された複数の受光素子 3 0と、 発光 素子 2 0及ぴ受光素子 3 0を駆動する垂直駆動回路 4 0及び水平駆動回路 4 1 と、 透明基板 1 0の一方の表面 1 0 a上に発光素子 2 0及ぴ受光素子 3 0を覆つ て形成された、 発光素子 2 0及ぴ受光素子 3 0を保護する保護層 6 0と、 透明基 板 1 0の他方の表面 1 O b上に形成された光切替手段 7 0と、 からなつている。 図 1に示すように、 発光素子 2 0と受光素子 3 0は X方向及び Y方向の双方に おいて交互にマトリクス状に配列されている。 FIG. 1 is a perspective view of the image input device according to the first embodiment of the present invention, and FIG. 2 is a sectional view of the image input device shown in FIG. FIG. 3 is a plan view (FIG. 3A) showing an arrangement state of pixels in the image input device according to the present embodiment, and a circuit diagram (FIG. (B)). FIG. 4 is a circuit diagram of a pixel in the image input device according to the first embodiment of the present invention (FIG. 3A) and a plan view showing a layout of the pixel (FIG. 3B). The image input device according to the present embodiment includes a transparent substrate 10, a plurality of light emitting elements 20 regularly arranged on one surface 10 a of the transparent substrate 10, and one of the transparent substrates 10. A plurality of light receiving elements 30 regularly arranged with the light emitting elements 20 on the surface 10 a; a vertical driving circuit 40 and a horizontal driving circuit 41 for driving the light emitting elements 20 and the light receiving elements 30; A protection layer 60 formed on one surface 10 a of the transparent substrate 10 so as to cover the light emitting element 20 and the light receiving element 30, and to protect the light emitting element 20 and the light receiving element 30; And light switching means 70 formed on the other surface 1 Ob of the transparent substrate 10. As shown in FIG. 1, the light emitting elements 20 and the light receiving elements 30 are alternately arranged in a matrix in both the X direction and the Y direction.
光切替手段 7 0は、 発光素子 2 0から発せられ、 透明基板 1 0を透過してきた 光を選択的に反射し、 または、 透過させる。  The light switching means 70 selectively reflects or transmits light emitted from the light emitting element 20 and transmitted through the transparent substrate 10.
図 2に示すように、 発光素子 2 0は一方の表面 1 0 aから他方の表面 1 0 bに 向かう方向にのみ光を放射するように構成されている。 また、 受光素子 3 0は透 明基板 1 0の他方の表面 1 0 bからの光のみを検出するように構成されている。 図 3 (A) に模式的に示すように、 各受光素子 3 0には、 透明基板 1 0の他方 の表面 1 0 bの方向から入射する光を透過するための開口部 5 6が設けられてい る。  As shown in FIG. 2, the light emitting element 20 is configured to emit light only in a direction from one surface 10a to the other surface 10b. The light receiving element 30 is configured to detect only light from the other surface 10 b of the transparent substrate 10. As schematically shown in FIG. 3A, each light receiving element 30 is provided with an opening 56 for transmitting light incident from the direction of the other surface 10 b of the transparent substrate 10. ing.
また、 光切替手段 7 0は、 図 2に示すように、 透明基板 7 4と、 透明基板 1 0 の表面 1 0 bに形成された透明電極 7 1と、 透明基板 7 4の一面に形成された透 明電極 7 3と、 2つの透明電極 7 1、 7 3の間に挟まれた液晶層 7 2と、 から構 成されている。  Further, as shown in FIG. 2, the light switching means 70 is formed on one surface of a transparent substrate 74, a transparent electrode 71 formed on the surface 10 b of the transparent substrate 10, and a transparent substrate 74. A transparent electrode 73, and a liquid crystal layer 72 sandwiched between the two transparent electrodes 71 and 73.
2つの透明電極 7 1、 7 3の間に印加する電圧を変えることにより、 液晶層 7 2が光を透過させる状態と液晶層 7 2が光を拡散する状態とを切り替えることが できる。  By changing the voltage applied between the two transparent electrodes 71 and 73, it is possible to switch between a state where the liquid crystal layer 72 transmits light and a state where the liquid crystal layer 72 diffuses light.
液晶層 7 2の材料としては、 例えば、 カイラルネマチック液晶を利用すること ができる。 この種の液晶は、 電圧が印加されない状態では螺旋構造を保っている ため、 液晶に入射する光は散乱される。 これに対して、 電圧が印加されると、 螺 旋構造が引き伸ばされてほぼ直線的な構造になるため、 光は液晶を透過すること ができるようになる。 As a material of the liquid crystal layer 72, for example, a chiral nematic liquid crystal can be used. This type of liquid crystal maintains a helical structure when no voltage is applied, so that light incident on the liquid crystal is scattered. On the other hand, when voltage is applied, Since the helical structure is stretched into an almost linear structure, light can pass through the liquid crystal.
次に、 図 1及び図 2を参照して、 本実施例に係る画像入力装置の全体の動作を 説明する。 個々の構成要素の動作は、 各々の詳細な構成とともに後述する。  Next, the overall operation of the image input apparatus according to the present embodiment will be described with reference to FIGS. The operation of each component will be described later together with the detailed configuration of each component.
先ず、 画像を入力するときには、 図 2に示すように、 原稿などの入力対象 8 0 を保護層 6 0上に密着させて配置する。  First, when inputting an image, as shown in FIG. 2, an input target 80 such as a manuscript is placed in close contact with the protective layer 60.
次に、 垂直駆動回路 4 0と水平駆動回路 4 1により全ての発光素子 2 0を点灯 する。 このとき、光切替手段 7 0は光を拡散反射するように設定する。 このため、 発光素子 2 0から透明基板 1 0の表面 1 0 bの方向へ発せられた光は、 透明基板 1 0を透過した後、 光切替手段 7 0によって拡散反射される。  Next, all the light emitting elements 20 are turned on by the vertical drive circuit 40 and the horizontal drive circuit 41. At this time, the light switching means 70 is set so as to diffuse and reflect the light. Therefore, the light emitted from the light emitting element 20 in the direction of the surface 10b of the transparent substrate 10 is transmitted through the transparent substrate 10 and is diffusely reflected by the light switching means 70.
拡散反射された光は再び透明基板 1 0を透過し、透明基板 1 0の表面 1 0 aに、 ひいては、 受光素子 3 0に到達する。  The diffusely reflected light passes through the transparent substrate 10 again, reaches the surface 10a of the transparent substrate 10 and eventually reaches the light receiving element 30.
受光素子 3 0へ到達した光は、 受光素子 3 0と発光素子 2 0との間に形成され ている隙間または受光素子 3 0に設けられた開口部 5 6を通過して、 保護層 6 0 に密着している入力対象 8 0を照明し、 入力対象 8 0により反射する。  The light that reaches the light receiving element 30 passes through a gap formed between the light receiving element 30 and the light emitting element 20 or an opening 56 provided in the light receiving element 30, and passes through the protective layer 60. The input target 80 that is in close contact with the object is illuminated and reflected by the input target 80.
入力対象 8 0によって反射された光は受光素子 3 0に受光され、 受光素子 3 0 において、 反射光の強度に応じた電気信号に変換される。  The light reflected by the input object 80 is received by the light receiving element 30 and is converted into an electric signal according to the intensity of the reflected light.
垂直駆動回路 4 0及び水平駆動回路 4 1は全ての受光素子 3 0から反射光の強 度を反映した電気信号を読み出す。 これにより、 入力対象 8 0の明暗情報、 すな わち、 画像が画像入力装置に入力される。  The vertical drive circuit 40 and the horizontal drive circuit 41 read electric signals reflecting the intensity of the reflected light from all the light receiving elements 30. Thereby, the light / dark information of the input target 80, that is, the image is input to the image input device.
画像を表示するときには、 光切替手段 7 0は光を透過するように設定される。 次いで、 垂直駆動回路 4 0及び水平駆動回路 4 1を介して、 表示させたい画像に 応じた発光素子 2 0を点灯する。 発光素子 2 0からの光は、 透明基板 1 0及び光 切替手段 7 0を透過し、 観察者(図示せず)に至る。 このようにして、 観察者に対 して入力対象 8 0の画像が提供される。  When displaying an image, the light switching means 70 is set to transmit light. Next, the light emitting element 20 corresponding to the image to be displayed is turned on via the vertical drive circuit 40 and the horizontal drive circuit 41. Light from the light emitting element 20 passes through the transparent substrate 10 and the light switching means 70 and reaches an observer (not shown). Thus, the image of the input object 80 is provided to the observer.
以下では、 本実施例に係る画像入力装置の構成要素の構成、 動作、 製造方法に ついて説明する。  Hereinafter, the configuration, operation, and manufacturing method of the components of the image input device according to the present embodiment will be described.
図 3は、本実施例に係る画像入力装置における画素の配列状態を示す平面図(図 3 (A)) と、 各画素の回路図 (図 3 (B)) である。 ここでは、 表示解像度 2 0 Opp i (p i xe l/i nch,すなわち、 赤色、 緑色、 青色の 3色の発光素子 を一画素と見るときの 1ィンチ当りの画素数)、 画像入力の解像度 400 dp i (do t/i nch, すなわち、 1インチ当りの受光素子数)の例を示している。 図 3 (A) においては、 赤色 (R) 1素子、 緑色 (G) 1素子、 青色 (B) 2 素子の発光素子を正方配列し、 それぞれの発光素子に対して、 1対 1の関係で受 光素子を配置し、 1画素が構成されている。 FIG. 3 is a plan view (FIG. 3A) showing an arrangement state of pixels in the image input device according to the present embodiment, and a circuit diagram of each pixel (FIG. 3B). Here, the display resolution is 20 Opp i (pi xe l / inch, that is, the number of pixels per inch when the light emitting elements of red, green, and blue are regarded as one pixel), the resolution of image input 400 dp i (do t / i nch, that is, the number of light receiving elements per inch). In Fig. 3 (A), one red (R) element, one green (G) element, and two blue (B) light emitting elements are arranged in a square, and each light emitting element is in a one-to-one relationship. One pixel is configured by arranging light receiving elements.
さらに、 図 3 (B) に示すように、 これらの発光素子及ぴ受光素子を駆動する ための回路と配線が形成されている。 画素の配列ピッチは X方向及び Y方向とも に 127 mである。発光素子と受光素子の駆動回路においては、一部の配線(デ —タ線 87、ゲート線 85、電源線 86)を発光素子と受光素子とが共有している。 これは、 図 4(B)に示すように、 配線の占める面積を低減することにより、 受 光素子と発光素子の面積を大きく設定するためである。  Further, as shown in FIG. 3 (B), circuits and wirings for driving these light emitting elements and light receiving elements are formed. The pixel arrangement pitch is 127 m in both the X and Y directions. In the driving circuit for the light emitting element and the light receiving element, some wirings (data line 87, gate line 85, power supply line 86) are shared by the light emitting element and the light receiving element. This is because, as shown in FIG. 4B, the area occupied by the wiring is reduced so that the areas of the light receiving element and the light emitting element are set large.
図 3 (B)の回路図に示すように、 第 1薄膜トランジスタ(TFT)Tr 1のソー ス電極はデータ線 87に、 ゲート電極は電源線 86に、 ドレイン電極は受光素子 PDの入力端にそれぞれ接続されている。 第 1薄膜トランジスタ(TFT)Tr 1 は、 受光素子 PDに蓄積された電荷を外部回路へ転送する。  As shown in the circuit diagram of FIG. 3 (B), the source electrode of the first thin film transistor (TFT) Tr 1 is connected to the data line 87, the gate electrode is connected to the power supply line 86, and the drain electrode is connected to the input end of the light receiving element PD. It is connected. The first thin film transistor (TFT) Tr 1 transfers the charge stored in the light receiving element PD to an external circuit.
受光素子 PDの入力端は第 1薄膜トランジスタ Tr 1のドレイン電極に、 出力 端は電源線 86にそれぞれ接続されている。  The input terminal of the light receiving element PD is connected to the drain electrode of the first thin film transistor Tr1, and the output terminal is connected to the power supply line 86.
第 2薄膜トランジスタ Tr 2のソース電極はデータ線 87に、 ゲート電極はゲ ート線 85に、 ドレイン電極は第 3薄膜トランジスタ Tr 3のゲート電極にそれ ぞれ接続されている。  The source electrode of the second thin film transistor Tr2 is connected to the data line 87, the gate electrode is connected to the gate line 85, and the drain electrode is connected to the gate electrode of the third thin film transistor Tr3.
第 3薄膜トランジスタ Tr 3のドレイン電極は電源線 86に、 ゲート電極は第 2薄膜トランジスタ Tr 2のドレイン電極及び静電容量じに、 ソース電極は発光 素子 LEDの入力端にそれぞれ接続されている。  The drain electrode of the third thin film transistor Tr3 is connected to the power supply line 86, the gate electrode is connected to the drain electrode and capacitance of the second thin film transistor Tr2, and the source electrode is connected to the input terminal of the light emitting element LED.
発光素子 LEDの入力端は第 3薄膜トランジスタ Tr 3のソース電極に、 出力 端はグラウンド線 88にそれぞれ接続されている。 第 3薄膜トランジスタ Tr 3 は発光素子 L E Dに電流を供給する。  The input terminal of the light emitting element LED is connected to the source electrode of the third thin film transistor Tr3, and the output terminal is connected to the ground line 88. The third thin film transistor Tr3 supplies a current to the light emitting element LED.
第 2薄膜トランジスタ Tr 2のドレイン電極と第 3薄膜トランジスタ Tr 3の ゲート電極との接続点と、 受光素子 PDの出力端と電源線 86との接続点との間 には、 第 3薄膜トランジスタ Tr 3のゲート電極を一定の電位に保持するための 静電容量 Cが接続されている。 . Between the connection point between the drain electrode of the second thin film transistor Tr2 and the gate electrode of the third thin film transistor Tr3, and the connection point between the output terminal of the light receiving element PD and the power supply line 86 Is connected to a capacitance C for holding the gate electrode of the third thin film transistor Tr3 at a constant potential. .
第 2薄膜トランジスタ Tr 2は、 映像信号に対応した所望の電圧まで静電容量 Cを充電する。  The second thin film transistor Tr2 charges the capacitance C to a desired voltage corresponding to the video signal.
図 1に示したように、 画素の周辺部には、 これらの発光素子と受光素子とを駆 動するための TFT回路が設けられる。 なお、 これらの TFT回路は、 多結晶シ リコン (p o 1 y-S i ) TFTを用いて構成され、 特に、 n型 TFTと p型 T FTの両者を用いた CMOS回路からなることが望ましい。  As shown in FIG. 1, a TFT circuit for driving the light emitting element and the light receiving element is provided in the periphery of the pixel. Note that these TFT circuits are configured using polycrystalline silicon (po1y-Si) TFTs, and it is particularly desirable to include CMOS circuits using both n-type TFTs and p-type TFTs.
以下、 図 3 (B) を参照しながら、 本実施例に係る画像入力装置の表示動作に ついて説明する。  Hereinafter, the display operation of the image input device according to the present embodiment will be described with reference to FIG.
先ず、 図 3 (B) に示したゲート線 85に制御信号を供給し、 ゲート線 85を 共有する全ての画素の第 2薄膜トランジスタ Tr 2を導通させる。 これに同期し て、 表示すべき映像信号をそれぞれのデータ線 87に与えると、 それぞれの静電 容量 Cに映像信号が記憶される。  First, a control signal is supplied to the gate line 85 shown in FIG. 3B, and the second thin film transistors Tr2 of all the pixels sharing the gate line 85 are turned on. In synchronization with this, when a video signal to be displayed is applied to each data line 87, the video signal is stored in each capacitance C.
このようにして、 ゲート線 85で選択された全ての画素の静電容量 Cに映像信 号が記憶されると、 これらの画素の発光素子 LEDにそれぞれの映像信号に対応 した所望の電流が供給される。 この結果、 図 2に示したように、 発光素子 20か ら透明基板 10の表面 10 bの方向に光が発せられる。  In this way, when the video signals are stored in the capacitances C of all the pixels selected by the gate line 85, the desired currents corresponding to the respective video signals are supplied to the light emitting element LEDs of these pixels. Is done. As a result, as shown in FIG. 2, light is emitted from the light emitting element 20 in the direction of the surface 10 b of the transparent substrate 10.
全てのゲート線 85について上述の操作を繰り返すことにより、 所望の画像を 表示することができる。  By repeating the above operation for all the gate lines 85, a desired image can be displayed.
次に、 画像入力の動作について説明する。  Next, the operation of image input will be described.
まず、 図 3 (B) に示したゲート線 85に制御信号を供給し、 ゲート線 85を 共有する全ての画素の第 1薄膜トランジスタ Tr 1及び第 2薄膜トランジスタ T r 2を導通させる。 全てのデータ線 87を低電位にすることにより、 発光素子 P を完全に充電するとともに、 第 3薄膜トランジスタ Tr 3を導通状態にして発 光素子 LEDを点灯する。  First, a control signal is supplied to the gate line 85 shown in FIG. 3B to make the first thin film transistor Tr1 and the second thin film transistor Tr2 of all the pixels sharing the gate line 85 conductive. By setting all the data lines 87 to a low potential, the light emitting element P is completely charged, and the third thin film transistor Tr3 is turned on to turn on the light emitting element LED.
これらの動作が完了した直後にゲート線 85の電位をローレベルとし、 全ての 第 1薄膜トランジスタ Tr 1及び第 2薄膜トランジスタ Tr 2を非導通状態にす る。 このとき、 静電容量 Cにより第 3薄膜トランジスタ T r 3のゲート電極の電 位が固定されているので、 全ての発光素子 LEDは同じ一定の強度で発光し続け る。 Immediately after these operations are completed, the potential of the gate line 85 is set to low level, and all the first thin film transistors Tr1 and the second thin film transistors Tr2 are turned off. At this time, the capacitance of the gate electrode of the third thin film transistor Tr 3 is generated by the capacitance C. Since the position is fixed, all light emitting diode LEDs continue to emit light at the same constant intensity.
従って、 前述の過程により、 一様な照明光が原稿その他の入力対象 80に到達 し、 入力対象 80の明暗情報に対応した反射光が発生する。  Therefore, according to the above-described process, uniform illumination light reaches the original 80 and other input objects 80, and reflected light corresponding to the brightness information of the input object 80 is generated.
—方、 受光素子 PDは第 1薄膜トランジスタ Tr 1によりデータ線 87から分 離されており、 受光素子 PDへの反射光の入射とともにその電位が変化する。 蓄 積時間と呼ばれるある一定の時間の後に、 データ線 87を水平駆動回路 41の中 の検出回路に接続し、 ゲート線 85に制御信号を供給して第 1薄膜トランジスタ Tr 1を導通状態にする。  On the other hand, the light receiving element PD is separated from the data line 87 by the first thin film transistor Tr1, and its potential changes as the reflected light enters the light receiving element PD. After a certain time called the accumulation time, the data line 87 is connected to the detection circuit in the horizontal drive circuit 41, and a control signal is supplied to the gate line 85 to make the first thin film transistor Tr1 conductive.
このとき、 蓄積時間中に放電した電荷量に対応した電荷が受光素子 P Dに流れ 込む。全ての受光素子 P Dについてこの電荷量を検出回路で検出することにより、 入力対象 80の明暗情報、 すなわち、 画像情報を得ることができる。  At this time, electric charge corresponding to the amount of electric charge discharged during the accumulation time flows into the light receiving element PD. By detecting this charge amount for all the light receiving elements P D by the detection circuit, light / dark information of the input target 80, that is, image information can be obtained.
なお、 上述の場合においては、 全ての発光素子 LEDを一様に点灯するとした が、 ある一色のみの発光素子を点灯してその色の反射画像を記録するという操作 を 3色について繰り返すことにより、 カラー画像を入力することもできる。  In the above case, all the light emitting element LEDs are turned on uniformly, but the operation of turning on a light emitting element of only one color and recording a reflection image of that color is repeated for three colors. A color image can also be input.
次に、 以上の画像表示動作及び画像入力動作を実現するための素子構造につい て説明する。  Next, an element structure for realizing the above-described image display operation and image input operation will be described.
図 3 (A) におい 、 発光素子の色を無視すると、 画素のレイアウトの繰り返 し単位は図 4 (A) に示す回路であることが分かる。 この基本単位に含まれる回 路の構成要素をレイアウトした様子を図 4 (B) に示す。  In FIG. 3 (A), if the color of the light emitting element is ignored, it can be seen that the repeating unit of the pixel layout is the circuit shown in FIG. 4 (A). Figure 4 (B) shows the layout of the circuit components included in this basic unit.
また、 図 5は、 薄膜トランジスタ (TFT)、 発光素子、 受光素子などの画素部 の主な構成要素の断面を示す断面図である。 図 4 (B) のレイアウトの配線に付 した番号は図 5に示す材料に対応している。 また、 図 4 (B) に示した配線、 受 光素子 PD、発光素子 LEDその他の構成要素は、可能な限りにおいて、図 4 (A) に示す回路図と対応するように配置されている。  FIG. 5 is a cross-sectional view showing a cross section of main components of a pixel portion such as a thin film transistor (TFT), a light emitting element, and a light receiving element. The numbers assigned to the wiring in the layout of FIG. 4 (B) correspond to the materials shown in FIG. Further, the wiring, the light receiving element PD, the light emitting element LED, and other components shown in FIG. 4B are arranged as much as possible to correspond to the circuit diagram shown in FIG. 4A.
ここでは、発光素子 20として、有機エレクトロルミネセンス(E 1 e c t r o l umi ne s c ence : E L)材料を用いたものを例にあげて説明する。 図 5に示すように、 発光素子 20は、 透明電極 53と、 電極 55と、 これらの 透明電極 53と電極 55の間に挟まれた有機 EL材料で形成される発光材料層 5 4とを備えている。 透明電極 5 3と電極 5 5との間に電位差を設けると、 これら の電極 5 3、 5 5で挟まれた領域の発光材料層 5 4に電流が流れ、 この領域から 透明電極 5 3、 第 2の層間絶縁膜 5 0、 第 1の層間絶縁膜 4 8、 ノ リア層 4 3、 透明基板 1 0を通して光が放射される。 Here, as the light emitting element 20, a device using an organic electroluminescence (E1 ectrol luminescence) (EL) material will be described as an example. As shown in FIG. 5, the light emitting element 20 includes a transparent electrode 53, an electrode 55, and a light emitting material layer 5 formed of an organic EL material sandwiched between the transparent electrode 53 and the electrode 55. 4 and have. When a potential difference is provided between the transparent electrode 53 and the electrode 55, a current flows through the luminescent material layer 54 in a region sandwiched between these electrodes 53, 55, and from this region, the transparent electrode 53, Light is emitted through the second interlayer insulating film 50, the first interlayer insulating film 48, the via layer 43, and the transparent substrate 10.
一方、 受光素子 3 0については、 ここでは ρ— i 一ショットキ構成のフォ トダ ィォードの例を挙げて説明する。  On the other hand, the light receiving element 30 will be described here with reference to an example of a photodiode having a ρ-i one-shot configuration.
受光素子 3 0は、 薄膜トランジスタ (T F T) のソース · ドレイン電極の材料 である電極 4 9と、 透明電極 5 3と、 これらの電極 4 9、 5 3の間に挟まれたで 形成される光電変換材料 5 1とを備えている。 透明電極 5 3と光電変換材料 5 1 との間には、 ブロッキングコンタクト層 5 2として、 極めて薄い p型シリコン力 一バイ ド(p— S i C)層が挿入されている。  The light-receiving element 30 is composed of an electrode 49, which is a material of source and drain electrodes of a thin film transistor (TFT), a transparent electrode 53, and a photoelectric conversion formed by being sandwiched between these electrodes 49, 53. Material 51 is provided. Between the transparent electrode 53 and the photoelectric conversion material 51, an extremely thin p-type silicon force-by-layer (p-SiC) layer is inserted as a blocking contact layer 52.
光電変換材料 5 1である水素化アモルファスシリコン(a— S i : H)は通常の プラズマ化学的気相成長法(P C V D)で形成された状態では弱い n型であるが、 意図的には不純物を導入していないので、 真性半導体、 即ち、 i型と呼ばれる。 この i型 a— S i : Hと金属材料で形成される電極との界面はショットキ接合と なるので、 このフォトダイオードは p— i—ショットキ型と呼ばれる。  Hydrogenated amorphous silicon (a-Si: H), which is a photoelectric conversion material 51, is weak n-type when formed by ordinary plasma-enhanced chemical vapor deposition (PCVD), but intentionally contains impurities. Since it has not been introduced, it is called intrinsic semiconductor, that is, i-type. Since the interface between the i-type a-Si: H and the electrode formed of a metal material is a Schottky junction, this photodiode is called a p-i-Schottky type.
仮に、 この金属電極と i型 a— S i : Hとの間に高濃度のリン (P ) を導入し た n型 a— S i : H層を揷入して、 p— i—n構成のフォトダイオードとしても よい。 これは、 ショットキ型に比べてリーク電流が小さいという利点がある。 受光素子 3 0の中央部には、 図 4 (B) に示すように、 開口部 5 6が設けられ ている。  Suppose that an n-type a-Si: H layer with a high concentration of phosphorus (P) introduced between the metal electrode and the i-type a-Si: H is used to form a p-i-n structure. The photodiode may be used. This has the advantage that the leakage current is smaller than that of the Schottky type. At the center of the light receiving element 30, an opening 56 is provided as shown in FIG.
発光素子 2 0と受光素子 3 0はともにダイオード構造であり、 それらの下部電 極は、 それぞれに対応する薄膜トランジスタ(T F T)のソース · ドレイン領域 4 5に接続されている。  Both the light emitting element 20 and the light receiving element 30 have a diode structure, and their lower electrodes are connected to the source / drain regions 45 of the corresponding thin film transistors (TFT).
薄膜トランジスタ (T F T) としては、 ここでは、 一般的なトップゲート型の 多結晶シリコン(P o 1 y - S i ) T F Tを採用している。 図 4 (B) 及び図 5に 示したように、 本実施例においては、 ゲート電極用の配線材料 4 7とソ一ス . ド レイン電極及び電源線用の配線材料 4 9との間に第 1の層間絶縁膜 4 8を挟むこ とにより、 静電容量 Cを形成している。 次に、 図 6乃至図 12を参照しながら、 本実施例に係る画像入力装置の構成要 素の製造方法について説明する。 製造工程は、 薄膜トランジスタ (TFT) と受 光素子とを形成する前工程と、 有機 EL材料を用いて発光素子を形成する後工程 とに大別される。 なお、 図 6、 7、 10乃至 12は各工程実施時における構造の 平面図 (A) 及び断面図 (B) を含む。 Here, as the thin film transistor (TFT), a general top gate type polycrystalline silicon (Po1y-Si) TFT is adopted. As shown in FIGS. 4 (B) and 5, in the present embodiment, the wiring material 47 for the gate electrode and the wiring material 49 for the source drain electrode and the power supply line are connected between the wiring material 47 for the gate electrode and the wiring material 49 for the power supply line. The capacitance C is formed by sandwiching one interlayer insulating film 48. Next, a method of manufacturing the components of the image input device according to the present embodiment will be described with reference to FIGS. The manufacturing process is roughly divided into a pre-process for forming a thin film transistor (TFT) and a light-receiving device, and a post-process for forming a light-emitting device using an organic EL material. FIGS. 6, 7, 10 to 12 include a plan view (A) and a cross-sectional view (B) of the structure at the time of performing each step.
前工程としての薄膜トランジスタ (TFT) 及び受光素子の製造工程において は、 種々の薄膜トランジスタを採用することができる。 本実施例においては、 ト ップゲ一ト型の多結晶シリコン(p o 1 y-S i)TFTを例として説明する。 先ず、 タングステンシリサイド(WS i)その他の高融点材料からなる層をガラ スその他の透明基板 10上にスパッタ法により形成する。 この高融点材料層をフ オ トリソグラフィ法によりパ夕一ニングし、 図 6 (B) に示すように、 透明基板 10上に遮光層 42を形成する。 遮光層 42をタングステンシリサイ ド(WS i) から形成する場合には、 遮光層 42の厚さは 100乃至 200 nmの範囲に設定 する。  Various thin film transistors can be employed in the manufacturing process of the thin film transistor (TFT) and the light receiving element as a pre-process. In this embodiment, a top gate type polycrystalline silicon (po 1 y-Si) TFT will be described as an example. First, a layer made of tungsten silicide (WSi) or another high melting point material is formed on a glass or other transparent substrate 10 by a sputtering method. This high melting point material layer is patterned by photolithography to form a light shielding layer 42 on the transparent substrate 10 as shown in FIG. 6 (B). When the light shielding layer 42 is formed from tungsten silicide (WSi), the thickness of the light shielding layer 42 is set in the range of 100 to 200 nm.
次いで、 酸素とシリコン含有ガス (例えば、 シラン(S i H4)) とをプラズマ 中で分解して基板上に堆積する CVD法により、 二酸化シリコン (S i 02) か らなるバリア層 43を一面に形成する。 バリア層 43は、 後続のプロセス中にお いて、 透明基板 10の中に含まれる不純物元素が透明基板 10よりも上の層に拡 散することを防止する。 ノ リア層 43の厚さは 300乃至 500 nmとする。 次いで、パリァ層 43上に p o 1 y-S i層の前駆膜であるアモルファスシリコ ン(a-S i)層を、 プラズマ CVD法、減圧 CVD法、 スパッタ法のいずれかの成 膜方法により、 厚さ 100 nm程度に形成する。 このアモルファスシリコン(a- S i )層にエキシマレーザーからの数十ナノ秒の非常に短いパルス光を照射して 瞬間的に溶融することにより、アモルファスシリコン(a-S i)層をポリシリコンThen, oxygen and silicon-containing gas (e.g., silane (S i H 4)) by a CVD method to deposit onto a substrate and then decomposed in a plasma, silicon dioxide (S i 0 2) or Ranaru barrier layer 43 Form on one side. The barrier layer 43 prevents an impurity element contained in the transparent substrate 10 from diffusing into a layer above the transparent substrate 10 during a subsequent process. The thickness of the layer 43 is 300 to 500 nm. Next, an amorphous silicon (aSi) layer, which is a precursor of the po1ySi layer, is formed on the parier layer 43 by a plasma CVD method, a low pressure CVD method, or a sputtering method to a thickness of 100 nm. Formed to the extent. The amorphous silicon (a-Si) layer is irradiated with a very short pulse light of several tens of nanoseconds from an excimer laser to instantaneously melt the amorphous silicon (a-Si) layer so that the amorphous silicon (aSi) layer becomes polysilicon.
(p o 1 y-S i )層に改質する。 このときの照射エネルギー密度が 40 OmJ/ cm2前後に設定すると、 特性の良い p o 1 y-S i TFTが得られることが知 られている。 (po 1 yS i) layer. It is known that when the irradiation energy density at this time is set to around 40 OmJ / cm 2 , a po 1 yS i TFT with good characteristics can be obtained.
この p o 1 y-S i層をフォ トリソグラフィ法によりパターニングして薄膜半 導体 44を形成する。 次に、 厚さ 5 0 n m程度の二酸化シリコン (S i 0 2) 膜と厚さ 2 0 0 n m程 度のタングステンシリサイ ド (W S i ) 層を同様にして形成し、 フォ トリソグラ フィ法によりタングステンシリサイ ド (W S i ) 層をパターニングすることによ り、 ゲート絶縁膜 4 6とゲート電極 4 7とを形成する。 This po 1 ySi layer is patterned by photolithography to form a thin film semiconductor 44. Next, formed in the same manner a thickness 5 0 nm approximately silicon dioxide (S i 0 2) film and a thickness of 2 0 0 nm extent of tungsten Siri Sai de (WS i) layer, the follower Torisogura Fi method A gate insulating film 46 and a gate electrode 47 are formed by patterning a tungsten silicide (WS i) layer.
次に、 イオンドーピング法により、 薄膜半導体 4 4の領域に選択的に高濃度の リン(P)またはボロン(B)を導入する。  Next, high concentration phosphorus (P) or boron (B) is selectively introduced into the region of the thin film semiconductor 44 by an ion doping method.
その後、 透明基板 1 0を摂氏 5 0 0度程度の温度に加熱して、 導入した不純物 元素を活性化する。 このときの不純物元素の濃度、 加熱時間、 温度その他のプロ セス条件は重要であり、 後に形成される配線材料との間にォ一ミックコンタクト が得られるように、 これらのプロセス条件を決定する。  Thereafter, the transparent substrate 10 is heated to a temperature of about 500 degrees Celsius to activate the introduced impurity elements. At this time, the concentration of the impurity element, the heating time, the temperature, and other process conditions are important, and these process conditions are determined so that an ohmic contact with a wiring material to be formed later can be obtained.
このようにして、 薄膜半導体 4 4のソース/ドレイン領域 4 5が形成される。 不純物元素を導入していない領域は、 薄膜半導体 4 4のチャネル領域 4 4 aと なる。  Thus, the source / drain regions 45 of the thin film semiconductor 44 are formed. The region into which the impurity element has not been introduced becomes the channel region 44 a of the thin film semiconductor 44.
その後、 二酸化シリコン (S i 02) からなる第 1の層間絶縁膜 4 8をプラズ マ C V D法により全面に形成する。 Thereafter, a first interlayer insulating film 4 8 made of silicon dioxide (S i 0 2) on the entire surface by plasma CVD method.
以上の工程を経て、 図 6の平面図 (図 6 (A)) 及び断面図 (図 6 (B)) に示 した構造が形成される。 ここで、 図 6 (A) の平面図においては、 薄膜半導体 4 4の最下層にあるタングステンシリサイ ド (W S i ) 層と絶縁膜は図示していな い。 3つの薄膜半導体 4 4の半導体領域とゲート電極と、 後に静電容量 Cの下部 電極となる領域にゲート電極 4 7の材料が配置されていることが確認できる。 次に、 図 7 (B) に示すように、 第 1の層間絶縁膜 4 8にコンタクトホールを 開けて、 クロム (C r ) その他の低抵抗の金属材料でソース · ドレイン電極 4 9 及び配線を形成する。  Through the above steps, the structure shown in the plan view of FIG. 6 (FIG. 6A) and the cross-sectional view of FIG. 6B is formed. Here, in the plan view of FIG. 6A, the tungsten silicide (W Si) layer and the insulating film at the lowermost layer of the thin film semiconductor 44 are not shown. It can be confirmed that the material of the gate electrode 47 is arranged in the semiconductor region of the three thin film semiconductors 44 and the gate electrode, and in the region that will later become the lower electrode of the capacitance C. Next, as shown in FIG. 7 (B), a contact hole is opened in the first interlayer insulating film 48, and the source / drain electrode 49 and the wiring are made of chromium (Cr) or another low-resistance metal material. Form.
これにより図 7 (A) の平面図及び図 7 (B) の断面図に示した構造が形成さ れる。 データ線、 電源線及び受光素子の下部電極がソース · ドレイン電極 4 9の 材料で形成されていることが確認できる。  Thus, the structure shown in the plan view of FIG. 7A and the cross-sectional view of FIG. 7B is formed. It can be confirmed that the data line, the power supply line, and the lower electrode of the light receiving element are formed of the material of the source / drain electrodes 49.
受光素子の下部電極には開口部 5 6が形成されている。  An opening 56 is formed in the lower electrode of the light receiving element.
次に、 図 8に示すように、 全面に第 2の層間絶縁膜 5 0を形成した後に、 リソ グラフィとエッチングにより、 第 2の層間絶縁膜 5 0にコンタクトホールを形成 する。 Next, as shown in FIG. 8, after forming a second interlayer insulating film 50 on the entire surface, a contact hole is formed in the second interlayer insulating film 50 by lithography and etching. I do.
更に、 図 9に示すように、 全面にプラズマ C V D法により水素化アモルファス S i層 5 1と S i C層 5 2とを連続して形成する。  Further, as shown in FIG. 9, a hydrogenated amorphous Si layer 51 and a SiC layer 52 are continuously formed on the entire surface by a plasma CVD method.
次に、 図 1 0に示すように、 これらの 2層 5 1、 5 2をリソグラフィとエッチ ングによりパターン化し、 更に、 酸化インジウム錫合金(I T O)を全面にスパッ タした後に、 酸化ィンジゥム錫合金(I T O)をリソグラフィとエッチングにより パターン化する。  Next, as shown in FIG. 10, these two layers 51 and 52 are patterned by lithography and etching, and further, an indium tin oxide (ITO) is sputtered over the entire surface. (ITO) is patterned by lithography and etching.
この段階においては、 受光素子 3 0が形成されていると同時に、 発光素子 2 0 の下部電極 (陽極)となる領域に透明電極 5 3が形成されていることが確認でき る。  At this stage, it can be confirmed that the transparent electrode 53 is formed in a region to be the lower electrode (anode) of the light emitting element 20 while the light receiving element 30 is formed.
すなわち、 この一連の工程を 1回行うことにより、 受光素子 3 0と発光素子 2 0の透明電極 5 3を同時に形成する。 ここで、 透明電極 5 3として使用する酸化 インジウム錫合金(I T O)は、 シート抵抗 2 0 Ω/ロ程度、厚さは 1 O O n m程度 とする。  That is, by performing this series of steps once, the transparent electrodes 53 of the light receiving element 30 and the light emitting element 20 are simultaneously formed. Here, the indium tin oxide (ITO) used as the transparent electrode 53 has a sheet resistance of about 20 Ω / b and a thickness of about 1 O Onm.
以上の工程により、 前工程の薄膜半導体及ぴ受光素子の製造工程が完了する。 後工程の製造工程においては、 第一に、 図 1 1 (B) に示すように、 有機 E L 材料からなる発光材料層 5 4を透明電極 5 3を覆うようにして形成する。  Through the above steps, the previous steps of manufacturing the thin film semiconductor and the light receiving element are completed. In the subsequent manufacturing process, first, as shown in FIG. 11B, a light emitting material layer 54 made of an organic EL material is formed so as to cover the transparent electrode 53.
発光材料層 5 4としては、 発光層と正孔注入輸送層からなる 2層構成、 これに 電子注入輸送層を加えた 3層構成、 あるいは、 金属電極との界面に薄い絶縁膜を 配置した構成を採用することができる。  The light-emitting material layer 54 has a two-layer structure including a light-emitting layer and a hole injection / transport layer, a three-layer structure including an electron injection / transport layer, or a structure in which a thin insulating film is disposed at an interface with a metal electrode. Can be adopted.
発光材料層 5 4の製造方法としては、 スピン塗布法、 真空蒸着法あるいはイン クジェット印刷法を用いることができ、 それぞれの製造方法に対応して、 高分子 系または低分子系の有機 E L材料の選択、 下地の構造、 上部電極の製造方法その 他の製造条件が決められる。  As a method for manufacturing the light emitting material layer 54, a spin coating method, a vacuum evaporation method, or an ink jet printing method can be used. In accordance with each manufacturing method, a polymer or low molecular organic EL material is used. Selection, base structure, method of manufacturing upper electrode, and other manufacturing conditions are determined.
本実施例においては、 発光材料層 5 4は発光層と正孔輸送層との 2層構造を有 しており、 正孔注入輸送層の材料としては、例えば、 トリァリ一ルァミン誘導体、 ォキサジァゾール誘導体あるいはポルフィリン誘導体を選択することができ、 発 光層の材料として、 例えば、 8 -ヒドロキシキノリン及びその誘導体の金属錯体、 テトラフヱニルブタジェン誘導体あるいはジスチリルァリール誘導体を選択する ことができる。 発光層及ぴ正孔輸送層はそれぞれ真空蒸着法により各々 5 0 n m 程度の厚さに積層して形成される。 In this embodiment, the light-emitting material layer 54 has a two-layer structure of a light-emitting layer and a hole transport layer. As a material of the hole injection / transport layer, for example, a triarylamine derivative, an oxaziazole derivative or A porphyrin derivative can be selected. As a material for the light emitting layer, for example, a metal complex of 8-hydroxyquinoline and its derivative, a tetraphenylbutadiene derivative or a distyrylaryl derivative is selected. be able to. The light emitting layer and the hole transport layer are formed by laminating each with a thickness of about 50 nm by a vacuum evaporation method.
なお、 図 1 1 (B) においては、 発光材料層 5 4が透明電極 5 3をほぼ覆うよ うにパターン化されて描かれているが、 発光材料層 5 4は絶縁材料からなる層で あるので、 必ずしもパターン化は必要ではなく、 透明基板 1 0の全面を覆うもの として形成することも可能である。 ただし、 本実施例に係る画像入力装置をカラ 一ディスプレイに応用する場合には、 少なくとも 3種類の発光材料層とその分離 が必要であるので、 発光材料層 5 4のパターン化が必要である。  In FIG. 11B, the light emitting material layer 54 is patterned so as to cover almost the transparent electrode 53, but the light emitting material layer 54 is a layer made of an insulating material. However, patterning is not necessarily required, and the transparent substrate 10 can be formed so as to cover the entire surface. However, when the image input device according to the present embodiment is applied to a color display, at least three kinds of light emitting material layers and their separation are required, so that the light emitting material layer 54 needs to be patterned.
次いで、 発光素子 2 0の陰極として、 アルミニウム—リチウム合金などの仕事 関数が低い材料を、 金属のシャドウマスクを介して、 厚さ 2 0 0 n m程度に真空 蒸着する。 これにより、 図 1 2 (B) に示すように、 電極 5 5を形成する。 ここ で、 電極 5 5と同じ材料により、 図 4 (A) の回路図に示す GN D線 5 5も形成 される。  Next, a material having a low work function, such as an aluminum-lithium alloy, is vacuum-deposited as a cathode of the light-emitting element 20 to a thickness of about 200 nm through a metal shadow mask. Thus, an electrode 55 is formed as shown in FIG. 12 (B). Here, the GND line 55 shown in the circuit diagram of FIG. 4A is also formed of the same material as the electrode 55.
さらに、 素子の全面を保護層 6 0で覆う。 これにより、 本実施例に係る画像入 力装置が形成される。  Further, the entire surface of the device is covered with a protective layer 60. Thus, the image input device according to the present embodiment is formed.
本実施例に係る画像入力装置は薄型で光の利用効率が高いので、 携帯電話のよ うな携帯機器への搭載に有利である。 図 1 3 (A) は、 本実施例に係る画像入力 装置を搭載した携帯電話の斜視図である。  Since the image input device according to the present embodiment is thin and has high light use efficiency, it is advantageous for mounting on a portable device such as a mobile phone. FIG. 13A is a perspective view of a mobile phone equipped with the image input device according to the present embodiment.
本実施例に係る画像入力装置は折り畳み式の携帯電話に搭載されている。 この 折り畳み式の携帯電話は、 キーその他の入力手段が配列されている第 1の筐体 8 1とアンテナその他の構成要素を含む第 2の筐体 8 2とを備え、 第 1の筐体 8 1 と第 2の筐体 8 2とはそれらの端部においてヒンジ機構 8 3を介して相互に回動 可能であるように連結されている。  The image input device according to the present embodiment is mounted on a foldable mobile phone. The foldable mobile phone includes a first housing 81 in which keys and other input means are arranged, and a second housing 82 including an antenna and other components. The first and second housings 82 are connected at their ends via a hinge mechanism 83 so as to be mutually rotatable.
本実施例に係る画像入力装置は第 2の筐体 8 2に組み込まれている。すなわち、 本実施例に係る画像入力装置は、 折り畳み式携帯電話を折り畳んだときに、 本実 施例に係る画像入力装置の保護層 6 0すなわち入力面 9 0が外側を向き、 光切替 手段 7 0の透明電極 7 4すなわち表示面 9 1が内側を向くようにして、 折り畳み 式携帯電話に搭載されている。  The image input device according to the present embodiment is incorporated in the second housing 82. That is, in the image input device according to the present embodiment, when the foldable mobile phone is folded, the protection layer 60, that is, the input surface 90 of the image input device according to the present embodiment faces the outside, and the light switching means 7 It is mounted on a foldable mobile phone such that the zero transparent electrode 74, that is, the display surface 91 faces inward.
本実施例に係る画像入力装置を上記のように折り畳み式携帯電話に搭載するこ とにより、 以下のような機能を実現することができる。 The image input device according to the present embodiment is mounted on a foldable mobile phone as described above. Thus, the following functions can be realized.
例えば、 携帯電話を折り畳んだ状態で入力面 9 0に指を密着させて指紋画像を 画像入力装置に入力し、 その携帯電話の正当な所有者であると確認された場合に 限り、 電話を使用可能とすることができる。  For example, when a mobile phone is folded, a finger is brought into close contact with the input surface 90 to input a fingerprint image into the image input device, and the phone is used only when it is confirmed that the mobile phone is a valid owner. Can be possible.
あるいは、 携帯電話を通じて各種のサービスの提供を受けるときに、 サービス 提供者が課金する際の個人の認証に指紋を用いることができる。  Alternatively, when various services are provided through a mobile phone, a fingerprint can be used for personal authentication when the service provider charges.
更に、 携帯電話の使用者の指紋を様々な決済の手段として用いることも可能で ある。  In addition, fingerprints of mobile phone users can be used as various payment means.
図 1 3 (A) に示した携帯電話においては、 入力面 9 0と表示面 9 1とが別に なっているので、 表示面 9 1に指を密着させる必要がない。 従って、 残留指紋に より表示面 9 1における画像表示の画質が劣化するという問題を回避することが できる。  In the mobile phone shown in FIG. 13A, since the input surface 90 and the display surface 91 are separate, it is not necessary to bring a finger into close contact with the display surface 91. Therefore, it is possible to avoid the problem that the image quality of the image display on the display surface 91 is deteriorated by the residual fingerprint.
図 1 3 (B) は、 本実施例に係る画像入力装置を搭載した見開き型の携帯情報 端末の斜視図である。  FIG. 13B is a perspective view of a double-page spread portable information terminal equipped with the image input device according to the present embodiment.
図 1 3 (B) に示した携帯情報端末は、 第 1の筐体 8 1と、第 2の筐体 8 2と、 第 3の筐体 8 4とを備え、 第 1の筐体 8 1と第 2の筐体 8 2とはそれらの端部に おいてヒンジ機構 (図示せず) を介して相互に回動可能であるように連結され、 第 1の筐体 8 1と第 3の筐体 8 4とはそれらの端部においてヒンジ機構 (図示せ ず) を介して相互に回動可能であるように接続されている。  The portable information terminal shown in FIG. 13B includes a first housing 81, a second housing 82, and a third housing 84, and the first housing 81 The second case 82 and the second case 82 are connected to each other at their ends via a hinge mechanism (not shown) so as to be rotatable with each other, and the first case 81 and the third case 82 are connected to each other. The housing 84 is connected at its ends via a hinge mechanism (not shown) so as to be mutually rotatable.
本実施例に係る画像入力装置は、 光切替手段 7 0を除いた形で、 第 2の筐体 8 2に組み込まれている。 すなわち、 本実施例に係る画像入力装置は、 携帯情報端 末を折り畳んだときに、本実施例に係る画像入力装置の保護層 6 0が外側を向き、 光切替手段 7 0の透明電極 7 4が内側を向くようにして、 第 2の筐体 8 2に組み 込まれている。  The image input device according to the present embodiment is incorporated in the second housing 82 without the light switching means 70. That is, when the portable information terminal is folded, the protective layer 60 of the image input device according to the present embodiment faces outward, and the transparent electrode 7 4 Is incorporated in the second housing 82 so that it faces inward.
また、 第 3の筐体 8 4は、 光切替手段 7 0と同様の機能を奏する光拡散シート 7 O Aから構成されている。 光拡散シート 7 O Aとしては、 例えば、 表面に凹凸 形状を有する厚さ 1 mm以下のプラスチック製のシートを用いることができる。 第 2の筐体 8 2及び第 3の筐体 8 4を第 1の筐体 8 1に対して折り畳む際に は、 第 2の筐体 8 2及び第 3の筐体 8 4は、 第 3の筐体 8 4が第 1の筐体 8 1の 直上に位置し、 第 3の筐体 8 4の上に第 2の筐体 8 2が位置するように、 折り畳 まれる。 The third housing 84 is formed of a light diffusion sheet 7OA having the same function as the light switching means 70. As the light diffusion sheet 7OA, for example, a plastic sheet having an uneven shape on the surface and having a thickness of 1 mm or less can be used. When folding the second case 82 and the third case 84 with respect to the first case 81, the second case 82 and the third case 84 Of the first housing 8 1 It is folded immediately so that the second housing 82 is positioned on the third housing 84 directly above.
図 1 3 (B) に示した携帯情報端末の動作は以下の通りである。  The operation of the portable information terminal shown in Fig. 13 (B) is as follows.
画像入力は、 第 2の筐体 8 2及び第 3の筐体 8 4を第 1の筐体 8 1に対して折 り畳んだ状態で、 画像入力装置の保護層 6 0上に原稿を密着させて行う。 このと き、 光拡散シート 7 O Aは、 第 2の筐体 8 2に組み込まれている画像入力装置の 透明基板 1 0の下方に密着して配置されており、 光切替手段 7 0と同様の機能を 奏する。  For image input, the original is closely attached to the protective layer 60 of the image input device in a state where the second housing 82 and the third housing 84 are folded with respect to the first housing 81. Let me do it. At this time, the light diffusion sheet 7 OA is disposed in close contact with the lower part of the transparent substrate 10 of the image input device incorporated in the second housing 82, and is similar to the light switching means 70. Performs functions.
画像表示を行う際には、 第 2の筐体 8 2を第 1の筐体 8 1に対して開く。 これ により、 透明基板 1 0を通して画像を表示することができる。  When displaying an image, the second housing 82 is opened with respect to the first housing 81. Thus, an image can be displayed through the transparent substrate 10.
第 2の筐体 8 2を第 1の筐体 8 1に対して開くとともに、 第 3の筐体 8 4をも 第 1の筐体 8 1に対して開くことにより、 第 1の筐体 8 1の表面に配列されてい るキーポードゃ表示スクリーンなどを使用することが可能になる。  By opening the second housing 82 with respect to the first housing 81 and also opening the third housing 84 with respect to the first housing 81, the first housing 8 is opened. It is possible to use a keyboard or display screen arranged on the surface of one.
このように、 図 1 3 (B) に示した携帯情報端末によれば、 ほぼ透明基板 1 0 の厚さまで薄型化できる本実施例に係る画像入力装置の利点を十分に生かすこと ができる。  Thus, according to the portable information terminal shown in FIG. 13B, the advantage of the image input device according to the present embodiment, which can be reduced in thickness to almost the thickness of the transparent substrate 10, can be fully utilized.
なお、 図 1 3 (B) に示した携帯情報端末においては、 第 3の筐体 8 4と第 2 の筐体 8 2とは第 1の筐体 8 1の相互に対向する 2辺上に配置されているが、 例 えば、 第 3の筐体 8 4を第 2の筐体 8 2が配置されている第 1の筐体 8 1の辺と 直交する辺上に配置することも可能である。  Note that, in the portable information terminal shown in FIG. 13B, the third housing 84 and the second housing 82 are located on two sides of the first housing 81 opposite to each other. Although they are arranged, for example, the third housing 84 can be arranged on a side orthogonal to the side of the first housing 81 in which the second housing 82 is arranged. is there.
図 1 3 (C ) は、 本実施例に係る画像入力装置を搭載した三つ折り式の携帯電 話を示す斜視図である。  FIG. 13C is a perspective view showing a three-fold type mobile phone equipped with the image input device according to the present embodiment.
図 1 3 (C ) に示した携帯電話は、 キーその他の入力手段が配列されている第 1の筐体 8 1と、 アンテナその他の構成要素を含む第 2の筐体 8 2と、 第 3の筐 体 8 4とを備え、 第 1の筐体 8 1と第 2の筐体 8 2とはそれらの端部においてヒ ンジ機構 8 3 aを介して相互に回動可能であるように連結され、 第 1の筐体 8 1 と第 3の筐体 8 4とはそれらの端部においてヒンジ機構 8 3 bを介して相互に回 動可能であるように接続されている。  The mobile phone shown in FIG. 13C has a first housing 81 in which keys and other input means are arranged, a second housing 82 including an antenna and other components, and a third housing. The first housing 81 and the second housing 82 are connected to each other at their ends via a hinge mechanism 83a so as to be mutually rotatable. The first housing 81 and the third housing 84 are connected at their ends via a hinge mechanism 83b so as to be mutually rotatable.
本実施例に係る画像入力装置は、 光切替手段 7 0を除いた形で、 第 2の筐体 8 2に組み込まれている。 すなわち、 本実施例に係る画像入力装置は、 携帯電話を 折り畳んだときに、 本実施例に係る画像入力装置の保護層 6 0すなわち入力面 9 0が外側を向き、 光切替手段 7 0の透明電極 7 4すなわち表示面 9 1が内側を向 くようにして、 第 2の筐体 8 2に組み込まれている。 The image input device according to the present embodiment includes a second housing 8 excluding the light switching means 70. Built in two. That is, when the mobile phone is folded, the protective layer 60 of the image input device according to the present embodiment, that is, the input surface 90 faces the outside, and the image switching device 70 is transparent. The electrode 74, that is, the display surface 91, faces the inside, and is incorporated in the second housing 82.
また、 第 3の筐体 8 4の外側表面には、 光切替手段 7 0と同様の機能を奏する 光拡散面 7 0 Bが形成されている。 また、 第 3の筐体 8 4にはマイクが内蔵され ている。  In addition, a light diffusion surface 70 B having the same function as the light switching means 70 is formed on the outer surface of the third housing 84. The third housing 84 has a built-in microphone.
第 2の筐体 8 2及び第 3の筐体 8 4を第 1の筐体 8 1に対して折り畳む際に は、 第 2の筐体 8 2及び第 3の筐体 8 4は、 第 3の筐体 8 4が第 1の筐体 8 1の 直上に位置し、 第 3の筐体 8 4の上に第 2の筐体 8 2が位置するように、 折り畳 まれる。  When folding the second case 82 and the third case 84 with respect to the first case 81, the second case 82 and the third case 84 The second case 82 is folded so that the second case 82 is located directly above the first case 81 and the second case 82 is located above the third case 84.
図 1 3 (C ) に示した携帯電話の動作は以下の通りである。  The operation of the mobile phone shown in Fig. 13 (C) is as follows.
画像入力は、 第 2の筐体 8 2及び第 3の筐体 8 4を第 1の筐体 8 1に対して折 り畳んだ状態で、 画像入力装置の保護層 6 0上すなわち入力面 9 0上に原稿を密 着させて行う。 このとき、 第 3の筐体 8 4の光拡散面 7 0 Bは、 第 2の筐体 8 2 に組み込まれている画像入力装置の透明基板 1 0の下方に密着して配置されてお り、 光切替手段 7 0と同様の機能を奏する。  Image input is performed on the protective layer 60 of the image input device, that is, on the input surface 9 in a state where the second housing 82 and the third housing 84 are folded with respect to the first housing 81. This is done by placing the original on top of 0. At this time, the light-diffusing surface 70 B of the third housing 84 is disposed in close contact with the transparent substrate 10 of the image input device incorporated in the second housing 82. It has the same function as the light switching means 70.
画像表示を行う際には、 第 2の筐体 8 2を第 1の筐体 8 1に対して開く。 これ により、 透明基板 1 0を通して画像を表示することができる。  When displaying an image, the second housing 82 is opened with respect to the first housing 81. Thus, an image can be displayed through the transparent substrate 10.
第 2の筐体 8 2を第 1の筐体 8 1に対して開くとともに、 第 3の筐体 8 4をも 第 1の筐体 8 1に対して開くことにより、 第 1の筐体 8 1の表面に配列されてい るキーボードを使用することが可能になる。  By opening the second housing 82 with respect to the first housing 81 and also opening the third housing 84 with respect to the first housing 81, the first housing 8 is opened. It is possible to use a keyboard arranged on the surface of one.
また、 第 3の筐体 8 4を開くことにより、 携帯電話の使用者の口の近くにマイ クが位置するため、 音声の入力を容易に行うことができる。  Further, by opening the third casing 84, the microphone is located near the mouth of the user of the mobile phone, so that voice input can be performed easily.
このように、 図 1 3 ( C ) に示した携帯電話によれば、 ほぼ透明基板 1 0の厚 さまで薄型化できる本実施例に係る画像入力装置の利点を十分に生かすことがで きる。  As described above, according to the mobile phone shown in FIG. 13C, the advantage of the image input device according to the present embodiment, which can be reduced in thickness to almost the thickness of the transparent substrate 10, can be fully utilized.
なお、 図 1 3 (C) に示した携帯電話においては、 第 3の筐体 8 4と第 2の筐 体 8 2とは第 1の筐体 8 1の相互に対向する 2辺上に配置されているが、例えば、 第 3の筐体 84を第 2の筐体 82が配置されている第 1の筐体 81の辺と直交す る辺上に配置することも可能である。 Note that, in the mobile phone shown in FIG. 13C, the third housing 84 and the second housing 82 are arranged on two mutually facing sides of the first housing 81. But, for example, It is also possible to arrange the third housing 84 on a side orthogonal to the side of the first housing 81 in which the second housing 82 is arranged.
以上に説明した第一の実施例においては、 図 3 (A)、 (B) に示した画素レイ アウトによって、 200pp iのカラー表示と 400d iの画像入力を実現す る例を挙げたが、 画像表示及び画像入力の解像度及び画素レイァゥトはこの例に 限られるものではなく、 画素レイアウトを変更することにより様々な解像度の組 合せを実現することができる。  In the first embodiment described above, an example has been described in which the pixel layout shown in FIGS. 3A and 3B realizes a 200 ppi color display and a 400 di image input. The resolution and pixel rate of image display and image input are not limited to this example, and various combinations of resolutions can be realized by changing the pixel layout.
例えば、 図 14 (A) は画素レイアウトの他の一例を示している。 この画素レ ィアウトにおいては、 赤色 (R) 1素子、 緑色 (G) 1素子、 青色 (B) 1素子 の発光素子を縦方向に配列し、 それぞれの発光素子に対して、 3個ずつの受光素 子を配置することにより、 1画素が構成されている。 図 14 (A) に示した画素 レイアウトの回路構成を図 14 (B) に示す。  For example, FIG. 14A shows another example of the pixel layout. In this pixel layout, one red (R) element, one green (G) element, and one blue (B) light emitting element are arranged in the vertical direction, and three light receiving elements are arranged for each light emitting element. One pixel is configured by arranging the elements. The circuit configuration of the pixel layout shown in Fig. 14 (A) is shown in Fig. 14 (B).
図 14 (A) に示した画素レイアウトにより、 200 p p iのカラー表示と 6 00dp iの画像入力を実現することが可能である。  With the pixel layout shown in FIG. 14A, it is possible to realize a color display of 200 ppi and an image input of 600 dpi.
また、 以下に述べるように、 上述の第 1の実施例に係る画像入力装置において は、 構成要素の置換、 材料の種類の変更、 回路実装の形態の変更その他の種々の 変更が可能である。  Further, as described below, in the image input device according to the first embodiment described above, replacement of components, change of material type, change of circuit mounting form, and other various changes are possible.
例えば、 第 1の実施例においては、 発光素子として有機 EL材料で構成する発 光ダイオードの例を挙げて説明したが、 無機材料で構成する EL発光素子を用い ることも可能である。  For example, in the first embodiment, a light emitting diode made of an organic EL material has been described as an example of a light emitting element. However, an EL light emitting element made of an inorganic material can be used.
無機材料で構成する EL発光素子は、 例えば、 第一の電極、 第一の絶縁層、 無 機 EL材料、 第二の絶縁層、 第二の電極をこの順番に積層した構造を有するもの として構成することができる。 第一及び第二の電極の一方を透明材料から形成す ることにより、 無機 E L材料から発せられた光を外部へ取り出すことができる。 例えば、第一の電極は厚さ 0.2 mの I TO、第一及び第二の絶縁層は厚さ 0. 3乃至 0.5 mの T a 205からなるものとすることができ、 無機 EL材料は厚 さ 0.5〃mの ZnS: T bをスパッ夕して形成することができる。 An EL light-emitting element composed of an inorganic material has, for example, a structure in which a first electrode, a first insulating layer, an inorganic EL material, a second insulating layer, and a second electrode are laminated in this order. can do. By forming one of the first and second electrodes from a transparent material, light emitted from the inorganic EL material can be extracted to the outside. For example, I TO of the first electrode has a thickness 0.2 m, the first and second insulating layers may be made of T a 2 0 5 with a thickness of 0.3 to 0.5 m, an inorganic EL material Can be formed by sputtering ZnS: Tb with a thickness of 0.5 μm.
また、上述の第 1の実施例においては、受光素子として p- i -ショットキ構成の フォトダイォ一ドの例を挙げて説明したが、上述のように P- i -n構成のフォトダ ィォードを用いることもできる。 Further, in the above-described first embodiment, an example in which the photodiode having the p-i-Schottky configuration is used as the light receiving element has been described. However, as described above, the photodiode having the P-i-n configuration has been described. Echoes can also be used.
あるいは、 n型の水素化アモルファスシリコン(a— S i : H)からなる光導電 型の受光素子を用いることもできる。 この受光素子は、 高濃度に Pを導入した二 つの n型 a- S i: Hの領域と、それらの n型 a- S i: Hの領域に挟まれた i型 a- S i: Hの領域とを備えている。  Alternatively, a photoconductive light-receiving element made of n-type hydrogenated amorphous silicon (a-Si: H) can be used. This light-receiving element has two n-type a-Si: H regions in which P is introduced at a high concentration, and an i-type a-Si: H region sandwiched between those n-type a-Si: H regions. Area.
このような光導電型の受光素子を用'いた画素のレイアウトを図 15に示す。 この画素においては、 受光素子は、 i型 a- S i: H及び n型 a-S i: Hの領域 を続けて重ねて形成し、 それらの上に、 ソース ' ドレイン電極の材料 49 bを用 いて櫛歯状に形成した二つの電極を対向させて構成される。 このとき、 電極で覆 われていない領域の n型 a- S i: Hは除去されている。  FIG. 15 shows a layout of a pixel using such a photoconductive light receiving element. In this pixel, the light receiving element is formed by successively overlapping the regions of i-type a-Si: H and n-type aSi: H, and using the material 49b of the source and drain electrodes on them. It is configured such that two electrodes formed in a comb shape face each other. At this time, the n-type a-Si: H in the region not covered by the electrode has been removed.
図 15に示す画素においては、 このようなパターン化された後の i型 a- S i: H及び n型 a- S i :Hの領域を光電変換層 51 bとして示している。  In the pixel shown in FIG. 15, the i-type a-Si: H and n-type a-Si: H regions after such patterning are shown as the photoelectric conversion layer 51b.
さらに、 図 15では複雑になるので示していないが、 この光電変換層 5 l bの 下方には遮光層 42が配置されており、 透明基板 10を通して光が直接に光電変 換層 51 bに入射しないようにされている。 採用する TFTが、 ゲート電極がチ ャネル材料の a- S i: Hの下方に配置される逆スタガ型 a-S i TFTの場合 には、 遮光層 42の代わりにゲート電極の材料を用いることもできる。  Further, although not shown in FIG. 15 because it is complicated, a light-shielding layer 42 is arranged below the photoelectric conversion layer 5 lb, and light does not directly enter the photoelectric conversion layer 51 b through the transparent substrate 10. It has been like that. When the adopted TFT is an inverted staggered aSi TFT in which the gate electrode is disposed below the channel material a-Si: H, the material of the gate electrode can be used instead of the light shielding layer 42 .
上記の光導電型の受光素子を用いた画素の動作は以下の通りである。  The operation of the pixel using the photoconductive light-receiving element described above is as follows.
透明基板 10の下方から透明基板 10を介して進入してきた光と透明基板 10 の上方から入射してきた光とが櫛歯状の電極で挟まれた領域の i型 a-S i: Hに 入射すると、 この光が生成する電子-正孔対の数に対応した電流が生成され、 この 電流はこれら 2つの電極の間に流れる。 このため、 光量に応じた電気信号が得ら れる。  When light that has entered through the transparent substrate 10 from below the transparent substrate 10 and light that has entered from above the transparent substrate 10 enter the i-type aSi: H in the region sandwiched by the comb-shaped electrodes, A current corresponding to the number of electron-hole pairs generated by this light is generated, and this current flows between these two electrodes. For this reason, an electric signal corresponding to the light amount is obtained.
ここで、逆スタガ型 a-S i TFTを採用する場合には、以下のように、 TF Tの製造工程において TFTと同時にこのような受光素子を形成することができ る。  Here, when the inverted staggered a-Si TFT is adopted, such a light receiving element can be formed simultaneously with the TFT in the process of manufacturing the TFT as follows.
TFTのチャネル材料の a- S i: Hと受光素子の光電変換材料の a _S i: Hと を同時に形成し、 続けて、 TFTのソース · ドレイン領域を電極にォ一ミック接 続するための n型 a- S i: Hと受光素子の n型 a_S i: Hとを同時に形成する。 次いで、 最後に、 TFTのソース · Kレイン電極と受光素子の櫛歯状電極とを同 時に形成する。 このとき、 T FTのソース電極とドレイン電極の間に存在した n 型 a-S i: Hと、 受光素子の 2つの対向する櫛歯状電極の間に存在した n型 a - S i: Hとは、 電極をパターン化する工程において同時に除去される。 To simultaneously form a-Si: H of the channel material of the TFT and a_Si: H of the photoelectric conversion material of the light-receiving element, and to subsequently connect the source / drain regions of the TFT to the electrodes in an atomic fashion. The n-type a-S i: H and the n-type a_S i: H of the light receiving element are simultaneously formed. Next, finally, the source / K-rain electrode of the TFT and the comb-shaped electrode of the light receiving element are formed at the same time. At this time, the n-type aSi: H existing between the source electrode and the drain electrode of the TFT and the n-type a-Si: H existing between two opposing comb-shaped electrodes of the light receiving element are as follows. Are removed simultaneously in the step of patterning the electrodes.
また、第 1の実施例においては、 トップゲート型の p o 1 y- S i TFTの例 を挙げて説明したが、 ボトムゲート型 P 0 1 y- S i TFTを用いて図 3 (B) に示した回路を構成することもできる。  In the first embodiment, an example of a top gate type po 1 y-Si TFT has been described, but FIG. 3 (B) shows an example using a bottom gate type P 0 1 y-Si TFT. The circuit shown can also be configured.
あるいは、一般に液晶ディスプレイに適用されている逆スタガ型 a- S i TF Tまたは順スタガ型 a- S i TFTを用いて、 図 3 (B) に示した回路を構成す ることもできる。  Alternatively, the circuit shown in FIG. 3B can be formed using an inverted staggered a-Si TFT or a forward staggered a-Si TFT generally applied to a liquid crystal display.
ただし、 a- S i TFTの移動度が p o 1 y- S i TFTの 1/100程度で あるので、 特に発光素子に電流を供給する TFTとして用いる場合には、 その抵 抗を十分に低くすることが必要となる。 抵抗を低くするためには、 例えば、 TF Tの幅を大きく設定するか、 あるいは、 ゲート絶縁膜の厚さを低減する。  However, since the mobility of the a-Si TFT is about 1/100 of that of the po-y-Si TFT, the resistance should be sufficiently low especially when used as a TFT that supplies current to light-emitting elements. It is necessary. In order to lower the resistance, for example, the width of the TFT is set to be large, or the thickness of the gate insulating film is reduced.
また、 第 1の実施例においては、 垂直駆動回路 40及び水平駆動回路 41を p o 1 y-S i TFTを用いて透明基板 10上に形成する構成を説明したが、駆動 回路 40、 41の実装形態はこれに限るものではない。  Further, in the first embodiment, the configuration in which the vertical drive circuit 40 and the horizontal drive circuit 41 are formed on the transparent substrate 10 using the po1ySi TFT has been described. It is not limited to this.
例えば、 TAB (Ta p e Au t oma t e d Bond i ng) 接続、 C OG (Ch i p On G 1 a s s ) 接続として、 液晶ディスプレイの製造工程 において一般的に実施されているように、 同様の機能を結晶半導体で形成した集 積回路により実現し、 この集積回路を透明基板 10上に固定し、 電気的に接続し てもよい。  For example, a TAB (Tape Automated Bonding) connection and a COG (Chip On G 1 ass) connection are used to perform the same functions as those commonly used in the manufacturing process of liquid crystal displays. This may be realized by an integrated circuit formed of a semiconductor, and the integrated circuit may be fixed on the transparent substrate 10 and electrically connected.
また、 第 1の実施例においては、 3色 (RGB) の発光材料を並列的に配置す る構成を採用したが、 カラ一フィルタと白色発光材料とを組み合わせることによ り、 あるいは、 青色発光材料と色変換材料とを組み合わせることによつても、 力 ラ一表示を実現することができる。  Further, in the first embodiment, the configuration in which the light-emitting materials of three colors (RGB) are arranged in parallel is adopted. However, by combining a color filter and a white light-emitting material, By combining the material and the color conversion material, it is possible to realize the power display.
(第 2の実施例) (Second embodiment)
上述の第 1の実施例においては、 有機 EL材料を用いた発光素子 20から透明 基板 10の底面 10 bに向かって光を発していたが、 発光素子 20の透明電極と もう一方の電極の配置を入れ替えて、 光を透明基板 1 0の上方へ照射するように することも可能である。 この場合には、 発光素子 2 0から発せられた光は透明基 板 1 0を透過する必要はないので、 透明基板 1 0に相当する基板は透明である必 要はない。 In the first embodiment described above, light is emitted from the light emitting element 20 using the organic EL material toward the bottom surface 10 b of the transparent substrate 10. It is also possible to change the arrangement of the other electrode so that light is emitted above the transparent substrate 10. In this case, since the light emitted from the light emitting element 20 does not need to pass through the transparent substrate 10, the substrate corresponding to the transparent substrate 10 does not need to be transparent.
第 2の実施例に係る画像入力装置は上記のような構成を有しており、 図 1 6は 第 2の実施例に係る画像入力装置の斜視図、 図 1 7は図 1 6に示した画像入力装 置の断面図である。 また、 図 1 8は、 第 2の実施例に係る画像入力装置における 画素部のレイアウト (図 1 8 (A)) と、 その画素部の回路図 (図 1 8 (B)) で あり、 図 1 9は画素部の断面図である。  The image input device according to the second embodiment has the above configuration, FIG. 16 is a perspective view of the image input device according to the second embodiment, and FIG. FIG. 3 is a cross-sectional view of the image input device. FIG. 18 shows a layout of a pixel unit (FIG. 18 (A)) and a circuit diagram of the pixel unit (FIG. 18 (B)) in the image input device according to the second embodiment. 19 is a sectional view of a pixel portion.
図 1 6及び図 1 7に示すように、 第 2の実施例に係る画像入力装置は、 基板 1 0と、 基板 1 0の一方の表面 1 0 aに配列された複数の受光素子 3 O bと、 受光 素子 3 0 bの各々の上に重ねて配置された複数の発光素子 2 0 bと、 発光素子 2 O b及び受光素子 3 O bを駆動する垂直駆動回路 4 O b及び水平駆動回路 4 1 b と、 透明基板 1 0の一方の表面 1 0 a上に発光素子 2 0 b及ぴ受光素子 3 0 bを 覆って形成された、 発光素子 2 0 b及ぴ受光素子 3 0 bを保護する保護層 6 0 b と、 からなつている。  As shown in FIGS. 16 and 17, the image input device according to the second embodiment includes a substrate 10 and a plurality of light receiving elements 3 O b arranged on one surface 10 a of the substrate 10. A plurality of light emitting elements 20 b arranged on each of the light receiving elements 30 b, a vertical driving circuit 4 O b and a horizontal driving circuit for driving the light emitting element 2 O b and the light receiving element 3 O b 4 1 b and the light emitting element 20 b and the light receiving element 30 b formed on one surface 10 a of the transparent substrate 10 so as to cover the light emitting element 20 b and the light receiving element 30 b. And a protective layer 60 b for protection.
図 1 6及ぴ図 1 7においては、 第 1の実施例と同一の構成要素には同一の番号 を付している。 また、 同一の材料で構成されるが形状が異なる構成要素について は、 同じ番号に 「b」 を付して記した。  In FIGS. 16 and 17, the same components as those in the first embodiment are denoted by the same reference numerals. In addition, for components that are made of the same material but have different shapes, the same numbers are added with “b”.
図 1 6に示すように、 発光素子 2 0 b及び受光素子 3 0 bはマトリクス状に配 列されている。  As shown in FIG. 16, the light emitting elements 20b and the light receiving elements 30b are arranged in a matrix.
また、 発光素子 2 O bは、 透明基板 1 0の表面 1 0 aから上方に光を発するよ うに構成されており、 受光素子 3 O bは、 透明基板 1 0の表面 1 0 aに入射する 光を検出するように構成されている。  The light emitting element 2 Ob is configured to emit light upward from the surface 10 a of the transparent substrate 10, and the light receiving element 3 Ob is incident on the surface 10 a of the transparent substrate 10 It is configured to detect light.
発光素子 2 0 bを受光素子 3 0 bの上方に配置した理由は次の通りである。 第一の理由は、 発光素子 2 0 b及ぴ受光素子 3 0 bを並置した場合に比べて、 発光素子 2 0 bの面積を大きくするためである。 発光素子 2 0 bの面積を大きく することにより、 所望の輝度の表示を実現するために発光素子 2 0 bに印加する 電圧を、 発光素子 2 0 b及ぴ受光素子 3 0 bの並置の場合に比べて低くすること ができる。 The reason why the light emitting element 20b is arranged above the light receiving element 30b is as follows. The first reason is to increase the area of the light emitting element 20b as compared with the case where the light emitting element 20b and the light receiving element 30b are juxtaposed. By increasing the area of the light-emitting element 20b, the voltage applied to the light-emitting element 20b in order to realize the display with the desired brightness is increased when the light-emitting element 20b and the light-receiving element 30b are juxtaposed. Lower than Can be.
第二の理由は、 受光素子 3 O bの面積、 従って、 その静電容量を大きくするこ とができ、 受光素子 3 O bのダイナミック · レンジを広く設定することができる ためである。 このように、 受光素子 3 0 bの上方に発光素子 2 0 bを重ねて配置 することにより、 これらの素子設計の自由度が増すという利点がある。  The second reason is that the area of the light receiving element 3 Ob, and therefore the capacitance thereof, can be increased, and the dynamic range of the light receiving element 3 Ob can be set wide. By thus arranging the light emitting element 20b on top of the light receiving element 30b, there is an advantage that the degree of freedom in designing these elements is increased.
一方、 図 1 9に示すように、 受光素子 3 0 bの下部電極 5 5 bが覆うべき段差 が大きくなるので、 配線の段差切れが起こらないように製造工程の条件を決定す ることが必要である。  On the other hand, as shown in Fig. 19, the step to be covered by the lower electrode 55b of the light-receiving element 30b becomes large, so it is necessary to determine the conditions of the manufacturing process so that the step in the wiring does not break. It is.
受光素子 3 0 bの上方に発光素子 2 0 bを重ねて配置することに代えて、 第 1 の実施例と同様に、 発光素子 2 0 bと受光素子 3 0 bとを並列に配置することも 可能である。 特に、 解像度の要求が低い場合においては、 受光素子 3 O b及び発 光素子 2 0 bの設計自由度よりも製造工程の容易さを優先させて、両素子 2 0 b、 3 0 bを並置する構成が望ましい。  Instead of arranging the light emitting element 20 b on top of the light receiving element 30 b, the light emitting element 20 b and the light receiving element 30 b are arranged in parallel as in the first embodiment. It is also possible. In particular, when the resolution requirement is low, the two elements 20b and 30b are juxtaposed to give priority to the ease of the manufacturing process over the design freedom of the light receiving element 30Ob and the light emitting element 20b. It is desirable that the configuration be such.
第 2の実施例に係る画像入力装置の製造工程は、 発光素子 2 0 bの透明電極と もう一方の電極とが入れ替わつている点と、 そのために受光素子 3 0 bと発光素 子 2 0 bとで透明電極を同じ材料で同時に形成できない点とを除いて、 第 1の実 施例に係る画像入力装置の製造工程と同じである。  The manufacturing process of the image input device according to the second embodiment is based on the point that the transparent electrode of the light emitting element 20b and the other electrode are exchanged, and the light receiving element 30b and the light emitting element 20 This is the same as the manufacturing process of the image input device according to the first embodiment, except that the transparent electrode cannot be formed simultaneously with the same material in b.
すなわち、 図 1 9の断面図に示すように、 透明基板 1 0上において、 T F T、 受光素子 3 0 b、 発光素子 2 0 bの順に形成される。  That is, as shown in the cross-sectional view of FIG. 19, on the transparent substrate 10, the TFT, the light receiving element 30 b, and the light emitting element 20 b are formed in this order.
発光素子 2 0 bと受光素子 3 0 bとが並置される構成においても、 これらを形 成する順序は同じである。 これは、受光素子 3 0 bの光電変換材料である a - S i 膜を形成する前に有機薄膜を形成すれば、 a - S i膜の形成過程において温度が 2 5 0 °C前後になつて有機薄膜が昇華するという問題が生じるためである。  Even in the configuration in which the light emitting element 20b and the light receiving element 30b are juxtaposed, the order of forming them is the same. This is because if an organic thin film is formed before forming the a-Si film, which is a photoelectric conversion material of the light receiving element 30b, the temperature will be around 250 ° C in the process of forming the a-Si film. This causes a problem that the organic thin film sublimates.
第 2の実施例に係る画像入力装置の動作は以下の通りである。  The operation of the image input device according to the second embodiment is as follows.
画像を表示する動作は、 光が保護層 6 0 bの方向へ放射されることを除き、 第 1の実施例と全く同様である。  The operation of displaying an image is exactly the same as that of the first embodiment, except that light is emitted in the direction of the protective layer 60b.
画像を入力する場合は、 図 1 7に示すように、 発光素子 2 O bから放射された 光が入力対象 8 0を直接に照明し、 その反射光を、 発光素子 2 0 bによって覆わ れていない受光素子 3 0 bの領域で検出する。 これにより、 入力対象 8 0の明暗 情報すなわち画像が入力される。 すなわち、 第 2の実施例においては、 表示と入 力とが透明基板 10の同じ面 10 aで行われる。 When inputting an image, as shown in Fig. 17, the light emitted from the light emitting element 2 Ob directly illuminates the input target 80, and the reflected light is covered by the light emitting element 20b. No light is detected in the area of the light receiving element 30b. This allows the input object 80 Information, ie, an image, is input. That is, in the second embodiment, display and input are performed on the same surface 10 a of the transparent substrate 10.
例えば、 指紋を入力する場合、 指を置くべき領域に対応する発光素子 2 Obを 発光させることにより、指を置くべき領域を表示することができる。これにより、 指の位置を正確に決めることができ、 ひいては、 指紋画像入力の安定性が増し、 個人認証の精度を向上させることができる。  For example, when inputting a fingerprint, the area where the finger is to be placed can be displayed by illuminating the light emitting element 2 Ob corresponding to the area where the finger is to be placed. As a result, the position of the finger can be determined accurately, and the stability of fingerprint image input can be increased, and the accuracy of personal authentication can be improved.
第 1の実施例の場合と同様に、第 2の実施例においても、以下に述べるように、 構成要素の置換、 材料の種類または寸法の変更が可能である。  As in the first embodiment, in the second embodiment, as described below, the replacement of the constituent elements and the change of the material type or dimensions are possible.
例えば、トップゲ一ト型の p 0 1 y-S i TFTの代わりにボトムゲート型 p 01 y-S i TFTを用いることができる。  For example, a bottom gate type p 01 y-S i TFT can be used instead of a top gate type p 01 y-S i TFT.
また、 本実施例における基板 10は透明である必要はなく、 例えば、 結晶 S i 基板を用いることができる。 この場合の駆動回路 40b、 4 l b及び画素部のト ランジスタゃ静電容量は、 結晶 S 1基板上に通常の集積回路として形成すること が可能である。  Further, the substrate 10 in the present embodiment does not need to be transparent, and for example, a crystalline Si substrate can be used. In this case, the drive circuits 40b and 4lb and the transistor-to-capacitance of the pixel portion can be formed as a normal integrated circuit on the crystal S1 substrate.
さらに、 受光素子 3 Obとしては、 通常の MOSイメージセンサの場合と同様 に、 基板に p n接合を形成したフォトダイォードを用いることができる。 産業上の利用可能性  Further, as the light receiving element 3 Ob, a photodiode having a pn junction formed on a substrate can be used as in the case of a normal MOS image sensor. Industrial applicability
以下、 上述の第 1及び第 2の実施例を参照して、 本発明により得ることができ る効果について説明する。  Hereinafter, the effects that can be obtained by the present invention will be described with reference to the above-described first and second embodiments.
第一の効果は、 画像入力装置全体の厚さを従来の画像入力装置よりも大幅に減 らすことができる点である。  The first effect is that the thickness of the entire image input device can be significantly reduced as compared with the conventional image input device.
本発明の第 1の実施例に係る画像入力装置においては、 図 2に示すように、 透 明基板 10の厚さを 0. 7mm、 透明基板 74の厚さを 0. 7mmにそれぞれ設 定することができる。 透明電極 71と液晶層 72と透明電極 73のそれぞれの厚 さの総和は最大でも 5 mであり、 透明基板 10の表面 10 a上に形成されてい る発光素子 20及ぴ受光素子 30の高さは最大でも 50 mである。  In the image input device according to the first embodiment of the present invention, as shown in FIG. 2, the thickness of the transparent substrate 10 is set to 0.7 mm, and the thickness of the transparent substrate 74 is set to 0.7 mm. be able to. The total thickness of each of the transparent electrode 71, the liquid crystal layer 72, and the transparent electrode 73 is at most 5 m, and the height of the light emitting element 20 and the light receiving element 30 formed on the surface 10a of the transparent substrate 10 Is at most 50 m.
このため、第 1の実施例に係る画像入力装置の厚さは、最大で約 1.4 mmとす ることができる。これは図 20に示した従来の画像入力装置の厚さの 1/2以下の 厚さである。 For this reason, the thickness of the image input device according to the first embodiment can be about 1.4 mm at the maximum. This is less than half the thickness of the conventional image input device shown in FIG. Is the thickness.
また、 図 2 1に示した従来の画像入力装置と比べても、 第 1の実施例に係る画 像入力装置は 1 mm以上薄い。  Further, the image input device according to the first embodiment is 1 mm or thinner than the conventional image input device shown in FIG.
さら、 本発明の第 2の実施例に係る画像入力装置おいては、 図 1 7に示すよう に、基板 1 0の厚さは約 0 . 7 mmであり、透明基板 1 0の表面 1 0 a上に形成さ れている発光素子 2 0及ぴ受光素子 3 0の高さは最大でも 5 0 mである。 このように、 第 2の実施例に係る画像入力装置は図 2 0及び図 2 1に示した従 来の画像入力装置よりも遥かに薄く、 さらには、 第 2の実施例に係る画像入力装 置よりも薄く形成することができる。  Further, in the image input device according to the second embodiment of the present invention, as shown in FIG. 17, the thickness of the substrate 10 is about 0.7 mm, and the surface 10 of the transparent substrate 10 is The height of the light emitting element 20 and the light receiving element 30 formed on a is 50 m at the maximum. As described above, the image input device according to the second embodiment is much thinner than the conventional image input device shown in FIGS. 20 and 21, and furthermore, the image input device according to the second embodiment. It can be formed thinner than the device.
このように、 本発明に係る画像入力装置は薄型に構成することができるという 効果があり、 これは本発明に係る画像入力装置を携帯電話その他の携帯端末機器 などに内蔵する場合に大きな利点になる。  As described above, the image input device according to the present invention has an effect that it can be configured to be thin. This is a great advantage when the image input device according to the present invention is incorporated in a mobile phone or other portable terminal device. Become.
第二の効果は、 従来の画像入力装置と比較して、 T F Tを搭載する基板の数を 減らすことができるという点である。  The second effect is that the number of substrates on which TFTs are mounted can be reduced as compared with a conventional image input device.
本発明の第 1及び第 2の実施例に係る画像入力装置においては、 図 2 0に示し た従来の画像入力装置と比較して、 T F Tを搭載する基板の数が半分になる。 こ のため、 従来の画像入力装置と比較して、 本発明に係る画像入力装置の製造工程 数、 ひいては、 製造時間を減らすことができ、 これらは製造コストの低減に直結 する。  In the image input device according to the first and second embodiments of the present invention, the number of substrates on which TFTs are mounted is halved compared to the conventional image input device shown in FIG. For this reason, compared with the conventional image input device, the number of manufacturing steps of the image input device according to the present invention, and hence the manufacturing time, can be reduced, which directly leads to a reduction in manufacturing cost.
さらには、 図 2 1に示した従来の画像入力装置と比較すれば、 本発明に係る画 像入力装置はレンズを不要とするので、 それに伴う製造工程数及び製造時間の削 減、 ひいては、 製造コストを低減を図ることができる。  Furthermore, as compared with the conventional image input device shown in FIG. 21, the image input device according to the present invention does not require a lens, thereby reducing the number of manufacturing steps and manufacturing time, and consequently manufacturing. Cost can be reduced.
第三の効果は、 光の利用効率を上げることができるという点である。  The third effect is that the light use efficiency can be improved.
双方向に光を発する図 2 1に示した従来の画像入力装置と比較して、 本発明の 第 1及び第 2の実施例に係る画像入力装置においては、 発光素子から発せられた 光は一方向にのみ放射されるので、 光の利用効率を高くすることができる。 また、 図 2 1に示した従来の画像入力装置と比較して、 本発明の第 1及び第 2 の実施例に係る画像入力装置は、 画像表示の際に、 発光素子から放射された光の ほぼ 1 0 0 %を表示に用いることができるので、 光利用効率が高く、 その結果と して、 消費電力量を低減することが可能になる。 Compared to the conventional image input device shown in FIG. 21 which emits light in both directions, in the image input device according to the first and second embodiments of the present invention, the light emitted from the light emitting element is one. Since the light is emitted only in the direction, the light use efficiency can be increased. Further, as compared with the conventional image input device shown in FIG. 21, the image input devices according to the first and second embodiments of the present invention provide a light emitting device that emits light emitted from the light emitting element when displaying an image. Since almost 100% can be used for display, light use efficiency is high, and Thus, power consumption can be reduced.
以上のように、本発明に係る画像入力装置は、従来の画像入力装置と比較して、 薄型に形成することができ、 消費電力を低減することができ、 製造工程数及び製 造時間ひいては製造コストを低減することができる。 従って、 本発明に係る画像 入力装置は、 特に携帯電話のような携帯機器への搭載に有用である。  As described above, the image input device according to the present invention can be formed thinner, can reduce power consumption, and can reduce the number of manufacturing steps and the manufacturing time, and thus the manufacturing time, as compared with the conventional image input device. Cost can be reduced. Therefore, the image input device according to the present invention is particularly useful for mounting on a portable device such as a mobile phone.

Claims

請求の範囲 The scope of the claims
1 . 透明基板と、 1. Transparent substrate,
前記透明基板の一方の表面に配列された複数の発光手段と、  A plurality of light emitting means arranged on one surface of the transparent substrate,
前記透明基板の前記一方の表面に配列された複数の光電変換手段と、 前記透明基板の他方の表面に配置され、 前記発光手段から発せられた光を選択 的に反射し、 または、 透過させる光切替手段と、  A plurality of photoelectric conversion means arranged on the one surface of the transparent substrate; and a light arranged on the other surface of the transparent substrate, for selectively reflecting or transmitting light emitted from the light emitting means. Switching means;
を備える画像入力装置であって、  An image input device comprising:
前記発光手段は前記透明基板の前記他方の表面に向かつて発光し、  The light emitting means emits light toward the other surface of the transparent substrate,
前記光電変換手段は前記一方の表面に入射する光を検出し、  The photoelectric conversion means detects light incident on the one surface,
画像を入力する場合には、 前記発光手段を前記透明基板の前記他方の表面に向 かって発光させ、 かつ、 前記光切替手段は前記光を反射させるように設定され、 前記光電変換手段が前記画像からの反射光を受光するものである画像入力装置。  When inputting an image, the light emitting unit is caused to emit light toward the other surface of the transparent substrate, and the light switching unit is set to reflect the light, and the photoelectric conversion unit is configured to output the image. An image input device that receives reflected light from a computer.
2. 画像を表示する場合には、 前記光切替手段は前記光を透過させるように設定 され、 かつ、 前記画像に応じて、 前記発光手段を前記透明基板の前記他方の表面 に向かって発光させるものである請求項 1に記載の画像入力装置。 2. When displaying an image, the light switching unit is set to transmit the light, and emits the light toward the other surface of the transparent substrate according to the image. 2. The image input device according to claim 1, wherein the image input device is a device.
3. 基板と、 3. substrate and
前記基板の一方の表面に配列された複数の発光手段と、  A plurality of light emitting means arranged on one surface of the substrate,
前記基板の前記一方の表面に配列された複数の光電変換手段と、  A plurality of photoelectric conversion means arranged on the one surface of the substrate,
を備える画像入力装置であって、  An image input device comprising:
前記発光手段は前記透明基板の前記他方の表面とは反対の方向に発光し、 前記光電変換手段は前記一方の表面に入射する光を検出し、  The light emitting unit emits light in a direction opposite to the other surface of the transparent substrate, and the photoelectric conversion unit detects light incident on the one surface,
画像を入力する場合には、 前記発光手段を前記透明基板の前記他方の表面とは 反対の方向に発光させ、 前記光電変換手段は反射光を受光するものである画像入  When inputting an image, the light emitting means emits light in a direction opposite to the other surface of the transparent substrate, and the photoelectric conversion means receives reflected light.
4. 画像を表示する場合には、 前記画像に応じて、 前記発光手段を前記透明基 板の前記他方の表面に向かって発光させるものである請求項 3に記載の画像入力 4. When displaying an image, according to the image, the light-emitting means is 4. The image input according to claim 3, wherein light is emitted toward the other surface of the plate.
5. 前記発光手段の各々は前記光電変換手段の各々の上に重ねて配置されてい ることを特徴とする請求項 3または 4に記載の画像入力装置。 5. The image input device according to claim 3, wherein each of the light emitting means is arranged so as to overlap with each of the photoelectric conversion means.
6. 前記発光手段及び前記光電変換手段を覆う透明の保護層をさらに備えるこ とを特徴とする請求項 1乃至 5の何れか一項に記載の画像入力装置。 6. The image input device according to claim 1, further comprising a transparent protective layer covering the light emitting unit and the photoelectric conversion unit.
7. 前記発光手段は、 7. The light emitting means,
光を外部に放射する発光素子と、  A light-emitting element that emits light to the outside,
特定の発光素子を発光させるための発光素子選択手段と、  Light emitting element selecting means for causing a specific light emitting element to emit light,
からなるものであることを特徴とする請求項 1乃至 6の何れか一項に記載の画 像入力装置。  7. The image input device according to claim 1, wherein the image input device comprises:
8. 前記光電変換手段は、 8. The photoelectric conversion unit includes:
吸収した光の量に対応した電気信号を生成する受光素子と、  A light-receiving element that generates an electric signal corresponding to the amount of light absorbed,
特定の受光素子を作動させるための受光素子選択手段と、  Light receiving element selecting means for operating a specific light receiving element,
からなるものであることを特徴とする請求項 1乃至 6の何れか一項に記載の画 像入力装置。  7. The image input device according to claim 1, wherein the image input device comprises:
9. 前記発光手段は、 9. The light emitting means,
光を外部に放射する発光素子と、  A light-emitting element that emits light to the outside,
特定の発光素子を発光させるための発光素子選択手段と、  Light emitting element selecting means for causing a specific light emitting element to emit light,
からなり、  Consisting of
前記光電変換手段は、  The photoelectric conversion means,
吸収した光の量に対応した電気信号を生成する受光素子と、  A light-receiving element that generates an electric signal corresponding to the amount of light absorbed,
特定の受光素子を作動させるための受光素子選択手段と、  Light receiving element selecting means for operating a specific light receiving element,
からなり、 前記発光素子選択手段及び前記受光素子選択手段の何れか一方を動作させるた めの制御信号は同一の制御用配線を介して前記発光素子選択 段または前記受光 素子選択手段に供給されることを特徴とする請求項 1乃至 6の何れか一項に記載 の画像入力装置。 Consisting of A control signal for operating one of the light emitting element selecting means and the light receiving element selecting means is supplied to the light emitting element selecting stage or the light receiving element selecting means via the same control wiring. The image input device according to any one of claims 1 to 6, wherein
1 0. 前記発光手段は、 1 0. The light emitting means,
光を外部に放射する発光素子と、  A light-emitting element that emits light to the outside,
特定の発光素子を発光させるための発光素子選択手段と、  Light emitting element selecting means for causing a specific light emitting element to emit light,
からなり、  Consisting of
前記光電変換手段は、  The photoelectric conversion means,
吸収した光の量に対応した電気信号を生成する受光素子と、  A light-receiving element that generates an electric signal corresponding to the amount of light absorbed,
特定の受光素子を作動させるための受光素子選択手段と、  Light receiving element selecting means for operating a specific light receiving element,
からなり、  Consisting of
前記発光素子の発光強度を与える信号と前記受光素子が生成した前記電気信号 とが同一の信号用配線を介して前記発光素子選択手段または前記受光素子選択手 段に供給されることを特徴とする請求項 1乃至 6の何れか一項に記載の画像入力  A signal giving the light emission intensity of the light emitting element and the electric signal generated by the light receiving element are supplied to the light emitting element selecting means or the light receiving element selecting means via the same signal wiring. Image input according to any one of claims 1 to 6
1 1 . 前記発光手段は、 1 1. The light emitting means is:
光を外部に放射する発光素子と、  A light-emitting element that emits light to the outside,
特定の発光素子を発光させるための発光素子選択手段と、  Light emitting element selecting means for causing a specific light emitting element to emit light,
からなり、  Consisting of
前記光電変換手段は、  The photoelectric conversion means,
吸収した光の量に対応した電気信号を生成する受光素子と、  A light-receiving element that generates an electric signal corresponding to the amount of light absorbed,
特定の受光素子を作動させるための受光素子選択手段と、  Light receiving element selecting means for operating a specific light receiving element,
からなり、  Consisting of
前記発光素子に流れる電流と前記受光素子を充電する電流とが同一の電源用配 線を介して前記発光素子及び前記受光素子に供給されることを特徴とする請求項 1乃至 6の何れか一項に記載の画像入力装置。 The current flowing through the light emitting element and the current charging the light receiving element are supplied to the light emitting element and the light receiving element via the same power supply wiring. An image input device according to the item.
1 2. 前記光切替手段は、 1 2. The light switching means,
相互に対向する 2つの透明電極と、  Two transparent electrodes facing each other,
前記透明電極の間に挟み込まれた液晶層と、  A liquid crystal layer sandwiched between the transparent electrodes,
からなるものであることを特徴とする請求項 1乃至 1 1の何れか一項に記載の 画像入力装置。  The image input device according to any one of claims 1 to 11, wherein the image input device comprises:
1 3. 前記発光素子は、 1 3. The light emitting element
少なくとも一方が透明である二つの電極層と、  Two electrode layers at least one of which is transparent,
前記電極層の間に挟まれ、 発光材料からなる発光層と、  A light-emitting layer made of a light-emitting material, sandwiched between the electrode layers;
からなるものであることを特徴とする請求項 7、 9、 1 0及び 1 1の何れか一 項に記載の画像入力装置。  The image input device according to any one of claims 7, 9, 10, and 11, wherein the image input device comprises:
1 4. 前記受光素子は、 1 4. The light receiving element is
少なくとも一方が透明である二つの電極層と、  Two electrode layers at least one of which is transparent,
前記電極層の間に挟まれ、 光電変換材料からなる光電変換層と、  A photoelectric conversion layer sandwiched between the electrode layers, and made of a photoelectric conversion material;
からなるものであることを特徴とする請求項 8乃至 1 1の何れか一項に記載の 画像入力装置。  The image input device according to any one of claims 8 to 11, wherein the image input device comprises:
1 5. 前記発光素子は、 1 5. The light emitting element
少なくとも一方が透明である二つの電極層と、  Two electrode layers at least one of which is transparent,
前記電極層の間に挟まれ、 発光材料からなる発光層と、  A light-emitting layer made of a light-emitting material, sandwiched between the electrode layers;
からなり、  Consisting of
前記受光素子は、  The light receiving element,
少なくとも一方が透明である二つの電極層と、  Two electrode layers at least one of which is transparent,
前記電極層の間に挟まれ、 光電変換材料からなる光電変換層と、  A photoelectric conversion layer sandwiched between the electrode layers, and made of a photoelectric conversion material;
からなり、  Consisting of
前記発光素子の透明電極層と前記受光素子の透明電極層とは同一の工程で形成 されることを特徴とする請求項 9乃至 1 1の何れか一項に記載の画像入力装置。 12. The image input device according to claim 9, wherein the transparent electrode layer of the light emitting element and the transparent electrode layer of the light receiving element are formed in the same step.
1 6. 前記発光素子は、 第一の電極、 第一の絶縁層、 無機エレクト口ルミネッ センス材料、 第二の絶縁層及び第二の電極がこの順に積層された積層体からなる ものであることを特徴とする請求項 7、 9、 1 0及び 1 1の何れか一項に記載の 画像入力装置。 1 6. The light-emitting element is formed of a laminate in which a first electrode, a first insulating layer, an inorganic electorescence material, a second insulating layer, and a second electrode are laminated in this order. The image input device according to any one of claims 7, 9, 10, and 11, wherein:
1 7. 前記受光素子は、 1 7. The light receiving element
第一の電極領域と、  A first electrode area;
不純物を導入した第一の半導体領域と、  A first semiconductor region into which impurities are introduced,
前記第一の半導体領域よりも不純物を低濃度に導入した第二の半導体領域と、 前記第一の半導体領域と同一の材料からなる第三の半導体領域と、  A second semiconductor region in which impurities are introduced at a lower concentration than the first semiconductor region, a third semiconductor region made of the same material as the first semiconductor region,
を順に接合した構造を有することを特徴とする請求項 8乃至 1 1及び 1 4の何 れか一項に記載の画像入力装置。  The image input device according to any one of claims 8 to 11, wherein the image input device has a structure in which are sequentially joined.
1 8. 前記基板は結晶シリコン基板であり、 1 8. The substrate is a crystalline silicon substrate,
前記光電変換手段は、 吸収した光の量に対応した電気信号を生成する受光素子 を有し、  The photoelectric conversion unit has a light receiving element that generates an electric signal corresponding to the amount of absorbed light,
前記受光素子は、 前記結晶シリコン基板に第一の不純物を導入して p型シリコ ンとした領域と、 第二の不純物を導入して n型シリコンとした領域とを接合した 構造を有することを特徴とする請求項 3乃至 1 7の何れか一項に記載の画像入力  The light receiving element has a structure in which a region formed by introducing a first impurity into the crystalline silicon substrate and formed into p-type silicon is joined to a region formed by introducing a second impurity and formed into n-type silicon. Image input according to any one of claims 3 to 17, characterized in that
1 9. 請求項 1、 2及び 6乃至 1 8の何れか一項に記載の画像入力装置を内蔵 する第一の筐体と、 1 9. a first housing incorporating the image input device according to any one of claims 1, 2 and 6 to 18;
前記第一の筐体と回動可能に連結している第二の筐体と、  A second housing rotatably connected to the first housing,
を備える機器であって、  An apparatus comprising:
前記第一の筐体と前記第二の筐体とは相互に重なり合うように折り畳むことが 可能であり、  The first housing and the second housing can be folded so as to overlap each other,
前記画像入力装置の光切替手段は、 前記第一の筐体と第二の筐体とを折り畳ん だ状態において、 前記第二の筐体に対向するように配置されている機器。 The light switching unit of the image input device folds the first housing and the second housing. The device which is arranged so as to face the second housing in the open state.
2 0. 画像入力装置を内蔵する第一の筐体と、 20. A first housing containing an image input device;
前記第一の筐体と回動可能に連結し、 前記第一の筐体と相互に重なり合うよう に折り畳み可能な第二の筐体と、  A second housing rotatably connected to the first housing and foldable so as to overlap with the first housing,
前記第一の筐体と第二の筐体とを相互に折り畳んだときに前記第一の筐体に対 向するように前記第一の筐体と前記第二の筐体との間に配置された、 光拡散機能 を有する光拡散体と、  Arranged between the first housing and the second housing so as to face the first housing when the first housing and the second housing are folded together. A light diffuser having a light diffusion function,
を備える機器であって、  An apparatus comprising:
前記画像入力装置は、  The image input device,
透明基板の一方の表面に配列された複数の発光手段と、  A plurality of light emitting means arranged on one surface of the transparent substrate,
前記透明基板の前記一方の表面に配列された複数の光電変換手段と、 を備え、  A plurality of photoelectric conversion means arranged on the one surface of the transparent substrate,
前記発光手段は前記透明基板の前記他方の表面に向かって発光し、  The light emitting means emits light toward the other surface of the transparent substrate,
前記光電変換手段は前記一方の表面に入射する光を検出し、  The photoelectric conversion means detects light incident on the one surface,
画像を入力する場合には、 前記発光手段を前記透明基板の前記他方の表面に向 かって発光させ、 かつ、 前記光切替手段は前記光を反射させるように設定され、 前記光電変換手段が前記画像からの反射光を受光するものである機器。  When inputting an image, the light emitting unit is caused to emit light toward the other surface of the transparent substrate, and the light switching unit is set to reflect the light. Equipment that receives light reflected from the
2 1 . 画像入力装置を内蔵する第一の筐体と、 2 1. A first housing containing an image input device,
前記第一の筐体と回動可能に連結し、 前記第一の筐体と相互に重なり合うよう に折り畳み可能な第二の筐体と、  A second housing rotatably connected to the first housing and foldable so as to overlap with the first housing,
前記第一の筐体と第二の筐体とを相互に折り畳んだときに前記第一の筐体と前 記第二の筐体との間に挟み込まれるように配置されている第三の筐体と、 を備える機器であって、  A third housing arranged so as to be sandwiched between the first housing and the second housing when the first housing and the second housing are folded together. A device comprising a body and
前記画像入力装置は、  The image input device,
透明基板の一方の表面に配列された複数の発光手段と、  A plurality of light emitting means arranged on one surface of the transparent substrate,
前記透明基板の前記一方の表面に配列された複数の光電変換手段と、 を備え、 前記発光手段は前記透明基板の前記他方の表面に向かって発光し、 A plurality of photoelectric conversion means arranged on the one surface of the transparent substrate, The light emitting means emits light toward the other surface of the transparent substrate,
前記光電変換手段は前記一方の表面に入射する光を検出し、  The photoelectric conversion means detects light incident on the one surface,
画像を入力する場合には、 前記発光手段を前記透明基板の前記他方の表面に向 かって発光させ、 かつ、 前記光切替手段は前記光を反射させるように設定され、 前記光電変換手段が前記画像からの反射光を受光するものであり、  When inputting an image, the light emitting unit is caused to emit light toward the other surface of the transparent substrate, and the light switching unit is set to reflect the light. To receive the reflected light from the
前記第三の筐体の前記第一の筐体に対向する表面は光を拡散させる機能が付加 されている機器。  A device to which a function of diffusing light is added to a surface of the third housing facing the first housing.
2 2. 前記第三の筐体はマイクを内蔵していることを特徴とする請求項 2 1に 記載の機器。 22. The device according to claim 21, wherein the third housing has a built-in microphone.
2 3. 請求項 1乃至 1 8の何れか一項に記載の画像入力装置を内蔵した筐体を 有する機器であって、 2 3. An apparatus having a housing incorporating the image input device according to any one of claims 1 to 18,
前記画像入力装置は、 前記発光手段が発光した光を指に照射し、 前記指からの 反射光を前記光電変換手段において受光することにより、 指紋を画像として入力 するものである機器。  The image input device is a device that irradiates a finger with light emitted by the light emitting unit and receives reflected light from the finger by the photoelectric conversion unit to input a fingerprint as an image.
2 4. 前記機器は携帯電話であることを特徴とする請求項 1 9乃至 2 3の何れ か一項に記載の機器。 24. The device according to any one of claims 19 to 23, wherein the device is a mobile phone.
PCT/JP2002/001073 2001-02-09 2002-02-08 Image input device with built-in display function WO2002065752A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-34571 2001-02-09
JP2001034571A JP4543560B2 (en) 2001-02-09 2001-02-09 Image input device with built-in display function

Publications (1)

Publication Number Publication Date
WO2002065752A1 true WO2002065752A1 (en) 2002-08-22

Family

ID=18898156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001073 WO2002065752A1 (en) 2001-02-09 2002-02-08 Image input device with built-in display function

Country Status (2)

Country Link
JP (1) JP4543560B2 (en)
WO (1) WO2002065752A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG110066A1 (en) * 2002-08-30 2005-04-28 Toshiba Matsushita Display Tec Suppression of leakage current in image acquisition
CN100370492C (en) * 2002-11-27 2008-02-20 株式会社半导体能源研究所 Display device and electronic device
WO2017155732A1 (en) * 2016-03-07 2017-09-14 Microsoft Technology Licensing, Llc Pixel having a photoemitter and a photodetector triggered by a pixel selector signal bus
US10387710B2 (en) 2016-03-07 2019-08-20 Microsoft Technology Licensing, Llc Image sensing with a waveguide display
EP4102572A3 (en) * 2021-04-23 2023-04-05 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device
US11856804B2 (en) 2017-04-28 2023-12-26 Semiconductor Energy Laboratory Co., Ltd. Imaging display device and electronic device
US11869428B2 (en) 2019-12-24 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Display apparatus

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002278504A (en) * 2001-03-19 2002-09-27 Mitsubishi Electric Corp Self-luminous display device
JP4227770B2 (en) * 2002-07-10 2009-02-18 シャープ株式会社 Display device and image reading / display system including the same
JP4656872B2 (en) * 2003-06-27 2011-03-23 株式会社半導体エネルギー研究所 Display device and electronic device
US7161185B2 (en) 2003-06-27 2007-01-09 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
WO2006013639A1 (en) * 2004-08-04 2006-02-09 Hitachi, Ltd. Image processing apparatus
WO2006033036A2 (en) 2004-09-21 2006-03-30 Koninklijke Philips Electronics N.V. Game board, pawn, sticker and system for detecting pawns on a game board
JP2007104088A (en) 2005-09-30 2007-04-19 Fujifilm Corp Electronic rubbed copy imaging apparatus
KR100882693B1 (en) 2007-09-14 2009-02-06 삼성모바일디스플레이주식회사 Light emitting display device and fabrication method for the same
US8736587B2 (en) * 2008-07-10 2014-05-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP4688229B2 (en) 2008-10-03 2011-05-25 東芝モバイルディスプレイ株式会社 Display device
JP2012256020A (en) 2010-12-15 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device and driving method for the same
JP6069822B2 (en) * 2011-10-12 2017-02-01 セイコーエプソン株式会社 Imaging method, biometric authentication method, imaging apparatus, and biometric authentication apparatus
KR102126334B1 (en) * 2017-09-15 2020-06-24 보에 테크놀로지 그룹 컴퍼니 리미티드 Display panel and display device
US10979699B2 (en) * 2018-02-07 2021-04-13 Lockheed Martin Corporation Plenoptic cellular imaging system

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05219301A (en) * 1992-01-31 1993-08-27 Fuji Xerox Co Ltd Drive method for display reader
JPH05252344A (en) * 1991-09-30 1993-09-28 Fuji Xerox Co Ltd Image reader/display device
JPH05276312A (en) * 1991-12-03 1993-10-22 Nec Corp Image sensor
JPH05276313A (en) * 1992-03-27 1993-10-22 Fuji Xerox Co Ltd Picture read and display device and its drive method
US5313055A (en) * 1991-09-30 1994-05-17 Fuji Xerox Co., Ltd. Two-dimensional image read/display device
US5340978A (en) * 1992-09-30 1994-08-23 Lsi Logic Corporation Image-sensing display panels with LCD display panel and photosensitive element array
JPH0998267A (en) * 1995-09-29 1997-04-08 Canon Inc Image input output device
JPH09321939A (en) * 1996-05-29 1997-12-12 Sharp Corp Information reading device
JPH103871A (en) * 1996-06-14 1998-01-06 Futaba Corp Display element having reading function
JPH11187211A (en) * 1997-12-17 1999-07-09 Sharp Corp Information reader
JP2001277785A (en) * 2000-04-03 2001-10-10 Minolta Co Ltd Electronic blackboard
JP2001292276A (en) * 2000-01-31 2001-10-19 Semiconductor Energy Lab Co Ltd Contact area sensor and display device provided with the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62186320A (en) * 1986-02-12 1987-08-14 Semiconductor Energy Lab Co Ltd Semiconductor device
JP3673567B2 (en) * 1994-08-23 2005-07-20 キヤノン株式会社 Image input / output device
JP3138599B2 (en) * 1994-10-11 2001-02-26 シャープ株式会社 Image display / input device
JPH1165763A (en) * 1997-08-22 1999-03-09 Sharp Corp Display panel and display device
JP3480562B2 (en) * 1999-05-17 2003-12-22 日本電気株式会社 Image input / output device
JP2002176162A (en) * 2000-08-10 2002-06-21 Semiconductor Energy Lab Co Ltd Area sensor and display device provided with area sensor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252344A (en) * 1991-09-30 1993-09-28 Fuji Xerox Co Ltd Image reader/display device
US5313055A (en) * 1991-09-30 1994-05-17 Fuji Xerox Co., Ltd. Two-dimensional image read/display device
JPH05276312A (en) * 1991-12-03 1993-10-22 Nec Corp Image sensor
JPH05219301A (en) * 1992-01-31 1993-08-27 Fuji Xerox Co Ltd Drive method for display reader
JPH05276313A (en) * 1992-03-27 1993-10-22 Fuji Xerox Co Ltd Picture read and display device and its drive method
US5340978A (en) * 1992-09-30 1994-08-23 Lsi Logic Corporation Image-sensing display panels with LCD display panel and photosensitive element array
JPH0998267A (en) * 1995-09-29 1997-04-08 Canon Inc Image input output device
JPH09321939A (en) * 1996-05-29 1997-12-12 Sharp Corp Information reading device
JPH103871A (en) * 1996-06-14 1998-01-06 Futaba Corp Display element having reading function
JPH11187211A (en) * 1997-12-17 1999-07-09 Sharp Corp Information reader
JP2001292276A (en) * 2000-01-31 2001-10-19 Semiconductor Energy Lab Co Ltd Contact area sensor and display device provided with the same
JP2001277785A (en) * 2000-04-03 2001-10-10 Minolta Co Ltd Electronic blackboard

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG110066A1 (en) * 2002-08-30 2005-04-28 Toshiba Matsushita Display Tec Suppression of leakage current in image acquisition
US7265740B2 (en) 2002-08-30 2007-09-04 Toshiba Matsushita Display Technology Co., Ltd. Suppression of leakage current in image acquisition
CN100370492C (en) * 2002-11-27 2008-02-20 株式会社半导体能源研究所 Display device and electronic device
CN108780500A (en) * 2016-03-07 2018-11-09 微软技术许可有限责任公司 Pixel with the photoemitter and photoelectric detector that are triggered by pixel selector signal bus
US10043050B2 (en) 2016-03-07 2018-08-07 Microsoft Technology Licensing, Llc Image sensing with a display
US10043051B2 (en) 2016-03-07 2018-08-07 Microsoft Technology Licensing, Llc Triggered image sensing with a display
WO2017155732A1 (en) * 2016-03-07 2017-09-14 Microsoft Technology Licensing, Llc Pixel having a photoemitter and a photodetector triggered by a pixel selector signal bus
US10387710B2 (en) 2016-03-07 2019-08-20 Microsoft Technology Licensing, Llc Image sensing with a waveguide display
US10387711B2 (en) 2016-03-07 2019-08-20 Microsoft Technology Licensing, Llc Pixel having a photoemitter and a photodetector triggered by a pixel selector signal bus
US10817695B2 (en) 2016-03-07 2020-10-27 Microsoft Technology Licensing, Llc Image sensing with a display
US11856804B2 (en) 2017-04-28 2023-12-26 Semiconductor Energy Laboratory Co., Ltd. Imaging display device and electronic device
US11869428B2 (en) 2019-12-24 2024-01-09 Semiconductor Energy Laboratory Co., Ltd. Display apparatus
EP4102572A3 (en) * 2021-04-23 2023-04-05 Samsung Electronics Co., Ltd. Sensor-embedded display panel and electronic device

Also Published As

Publication number Publication date
JP4543560B2 (en) 2010-09-15
JP2002237923A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
WO2002065752A1 (en) Image input device with built-in display function
US10936845B2 (en) OLED display panel and under-screen optical fingerprint recognition method
US11394014B2 (en) Display unit, display module, and electronic device
US8570302B2 (en) Display device having a photosensor and a correction sensor
JP5364227B2 (en) Display device with reading function and electronic device using the same
US7218048B2 (en) Display apparatus having photo sensor
CN100539179C (en) Organic electro-luminescent display unit and manufacture method thereof
KR100430452B1 (en) Light emitting device and production method thereof
JP4074099B2 (en) Flat display device and manufacturing method thereof
WO2010095401A1 (en) Semiconductor device and display device
US20070268206A1 (en) Image display device
KR101543353B1 (en) display
US20090256470A1 (en) Organic electroluminescence apparatus
US20070171157A1 (en) Display apparatus having photo sensor
KR20090098679A (en) Thin film transistor and display
US7999259B2 (en) Display device having a photodiode whose p region has an edge width different than that of the n region
JP2001085160A (en) Light emitting element with function of correcting light emission output
KR20200103239A (en) Transparent display apparatus and manufacturing method thereof
WO2002065394A1 (en) Fingerpirnt image input device having display function
Kamada et al. OLED display incorporating organic photodiodes for fingerprint imaging
US20240127622A1 (en) Electronic device
US20240127625A1 (en) Electronic device and program
US20220352265A1 (en) Display module and electronic device
JP2006091462A (en) Display device
CN112567446A (en) Display device and electronic apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase