WO2002064974A1 - Wind power generating device - Google Patents

Wind power generating device Download PDF

Info

Publication number
WO2002064974A1
WO2002064974A1 PCT/JP2002/001122 JP0201122W WO02064974A1 WO 2002064974 A1 WO2002064974 A1 WO 2002064974A1 JP 0201122 W JP0201122 W JP 0201122W WO 02064974 A1 WO02064974 A1 WO 02064974A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
wind
wind power
angle
power generator
Prior art date
Application number
PCT/JP2002/001122
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Obata
Original Assignee
Akira Obata
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akira Obata filed Critical Akira Obata
Publication of WO2002064974A1 publication Critical patent/WO2002064974A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/0608Rotors characterised by their aerodynamic shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/202Rotors with adjustable area of intercepted fluid
    • F05B2240/2022Rotors with adjustable area of intercepted fluid by means of teetering or coning blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a propeller-type wind power generator that rotates a rotor having a plurality of blades radially attached thereto.
  • a variable pitch angle device is attached to the blade root of the conventional propeller type wind power generator to prevent over-rotation against strong winds.
  • the present invention solves the above-mentioned problems.
  • the aim is to significantly reduce Disclosure of the invention
  • the present inventor attaches a flexible blade to a boss portion so as to be freely rotatable only in the direction of the flap angle, that is, in the direction of the upper and lower surfaces of the blade, and near the blade tip.
  • a control member that uses centrifugal force or pneumatic force to the surface, it does not require conventional rigid blades or a pitch angle control device, and it can exceed the rating by changing the flap angle. It was found that overspeed due to the wind speed could be prevented.
  • the skeleton of the invention of claim 1 forms a frame, and as shown in Fig. 2, the span of the rotor boss in the propeller type wind power generator is elastically twisted and deformed.
  • the mounting bracket is attached via a flap's hinge so that the blade that can change the pitch angle in the direction can freely move the blade section in the vertical direction, and the blade tip of the blade is It is characterized in that an additional mass is attached to the leading edge or trailing edge near the wing tip, including the wing tip.
  • the invention described in claim 2 is a means for imparting an alignment function to the invention described in claim 1 as shown in FIG. 2, and is provided at the front or rear edge near the blade tip of the blade.
  • the windmill is installed
  • the invention according to claim 3 is characterized in that an additional mass body is attached to the trailing edge of the blade tip as the control member of the invention described in claim 1. It is characterized by
  • the invention described in claim 4 and subsequent claims is an invention necessary for putting the basic principle of the invention described in claims 1 to 3 into practical use.
  • the S-shaped plate panel A and the substantially linear plate spring B are fixedly mounted on the blade and the boss portion, respectively, and they are mounted as one. It is characterized in that it is connected with the hinge of the bracket so that the blade does not fall down when there is no wind, and that the blade does not flow downwind during startup.
  • the blade and the boss are connected by a coil-shaped panel coaxial with the hinge, and the blade does not fall down when there is no wind and the blade is started at the time of startup. It is characterized in that it does not flow downwind.
  • a stopper is provided on the blade or the boss portion by a top projection or a leaf spring C, and the stopper and the blade are provided.
  • the special feature is that the blade is not completely swept downwind by the interference of the boss part 7 and the rotational force is maintained.
  • a plate spring D is attached to the boss portion as shown in Fig. 6, and the movement of the blade in the concave cross-sectional direction is restrained by interference between the plate spring D and the plate. It is characterized by providing weather vane stability to the rotor.
  • FIG. 1 is an explanatory diagram of one embodiment of one blade in the wind turbine generator of the present invention.
  • A is a perspective view.
  • B is FIG. 3 is an explanatory view of a cross section of FIG 1 in a span direction.
  • C is an explanatory sectional view in the span direction of another embodiment of Fig 1.
  • D is a cross-sectional view taken along line A-A of Fig 1, (b) and line B-B of Fig 1 (c).
  • E) is a sectional view taken along the line C_C of Figl (c).
  • FIG. 2 is an explanatory diagram showing another embodiment of one blade in the wind turbine generator of the present invention.
  • FIG. 2-1 is a perspective view in which a control windmill is attached to the blade end via an additional mass body.
  • Fig. 2-2 is a cross-sectional view for explaining an embodiment in which additional mass bodies are attached to both sides of the blade.
  • FIG. 3 is an explanatory view of a main part showing an embodiment of a mechanism for attaching a blade to the boss of the rotor of the wind turbine generator of the present invention.
  • FIG. 4 is an enlarged front view of a main part of FIG.
  • FIG. 5 is an enlarged side view of an essential part for explaining the mounting mechanism of the embodiment of the blade of the wind turbine generator of the present invention.
  • FIG. 6 is an explanatory diagram of the windless state of FIG.
  • FIG. 7 is a schematic diagram showing the operation of the wind turbine generator of the present invention.
  • FIG 7 indicates a windless state
  • FIG. 7 is a schematic diagram showing the
  • FIG. 8 shows the relationship between the torsion angle of the blade at the blade tip of the wind turbine generator of the present invention and the stall, lift, and drag.
  • FIG. 8-11 shows the relationship between lift and drag acting on a blade in a torsion angle state without stall.
  • Fig. 8-2) is a diagram showing the relationship between lift and drag acting on a blade in a torsion angle state that causes stall.
  • Fig. 9 shows the torsion of the blade and the flange in the wind turbine generator of the present invention.
  • Fig. 9 shows the relationship between the combined wind and the control wind turbine when the tip angle is large.
  • FIG. Fig. 10 shows the relationship between the combined wind and the control wind turbine when the flap angle is large.
  • FIG. 11 is a diagram showing the relationship between the blade tip vortex and the rotation direction of the control wind turbine in the wind turbine generator of the present invention.
  • Fig 11 1 1 has a tip vortex.
  • Fig. 11-2 is an illustration of a single control windmill that draws a vortex in the wake.
  • Fig 11-3) describes another embodiment of a blade with weak tip vortex.
  • FIG. 12 is a side view showing an outline of Embodiment 1 of the wind turbine generator of the present invention.
  • Fig. 13 shows details of Example 1 of Fig. 12;
  • (a) is a perspective view of the tip of the blade of Fig. 12;
  • (b) is a view of the blade of Fig. 12;
  • It is a principal part enlarged explanatory drawing which shows an attachment mechanism.
  • FIG. 14 shows the outline of the embodiment '2 of the wind turbine generator of the present invention, where (a) is a side view and (b) is a perspective view of the blade tip of the blade. BEST
  • Figure 2 shows the basic means.
  • Blade 1 is capable of changing pitch angle 0 in the span direction by elastic torsional deformation.
  • a thin blade having a single-arc-shaped structure is used.
  • the blade 1 is freely rotatable with respect to the boss 7 only in the direction of the blade 1 flap (Figlb, Fig1c).
  • the flap shaft is not necessarily the rotating surface.
  • the additional mass 2 is attached to the trailing edge of the wing tip of the pre-
  • a small control wind turbine 3 serving also as an additional mass body 2 that rotates substantially directly in the direction of travel of the blade 1 as a control member is provided.
  • the material of the plate 1 is a tough, lightweight aluminum alloy having a wide elastic deformation range. Composite materials such as and FRP are desirable.
  • the blade 1 in the present invention must have a property that it is much easier to twist than the blade 1 of a conventional wind turbine having a hollow or solid structure over its entire length, but the torsional rigidity (stiffness) is high. Has upper and lower limits.
  • the conditions of torsional rigidity that the blade 1 should satisfy in order to exert the function of the present invention include the inherent torsional rigidity of the blade 1, the total mass, the mass distribution, the generation of the blade 1 and the control windmill 3. It is difficult to determine the absolute value of the aerodynamic force, which varies depending on the number of revolutions, etc., but using the phenomenon that appears as a result of the interrelation of these factors, It can be described as follows.
  • the upper limit of the torsional rigidity of the blade 1 is the blade 1 including the additional mass.
  • the blade tip pitch angle 0 must be able to change to at least a negative value (pitch angle that gives the reverse rotation starting torque) in the following range.
  • the lower limit of torsional stiffness is determined by the condition that the shape of the wing must be able to maintain its own shape against the gravity or the wind pressure below the starting wind speed in the cantilever support condition of the blade root.
  • a typical example that satisfies the conditions is a thin, single-sheet arc wing with a thickness that is as small as possible without bending under its own weight.
  • Blade 1 to which the present invention can be applied is shown in Fig 1b. It is not limited to wings that have a thin cross section throughout the span direction.
  • the condition for the elastic torsional deformation is that if the tip is twisted by about 30 degrees, which corresponds to the angle of attack at which stall will almost certainly occur with a normal airfoil, it is only within the elasticity range. That is, the cross section in the radial direction does not need to be a uniform thin plate structure, and as shown in Fig 1c, for example, the outside of the radius of approximately 1/2 is assumed to be an airfoil with a normal closed cross section, The inside of the remaining radius of approximately 1 Z 2 may be a thin plate structure, and the torsion may be handled by the thin plate structure.
  • the cross section of the thin wing portion sharing twist is not necessarily an arc wing, but may be a cross section having excellent aerodynamic characteristics and easy to twist.
  • blade 1 is freely rotatable in the flap direction, so that blade 1 above the rotating shaft does not fall down in the absence of wind and rotates when the wind blows.
  • the blade root of blade 1 is supported by leaf spring B or panel D to prevent it from being washed away.
  • the leaf spring A if the leaf spring A is formed into an S-shape, the leaf spring A has a shape that is the most deformed, such that the S-shape is crushed even when the blade 1 is completely swept downwind. Therefore, it acts as a compressive force on the joint surface to the blade 1 and has a favorable effect on the strength design of the joint with the blade 1.
  • the plate 1 loses its rotational force, the apparent rigidity due to centrifugal force also disappears, and it may be impossible to maintain its own shape under strong wind pressure. is there. Therefore, it is desirable to provide a device to limit the blade 1 from falling to the downstream side as shown in Fig5.
  • a stopper 8 or a panel C is attached.
  • the wind turbine of the wind power generator of the present invention is In order to function as a downwind type without a weather vane, there must be a certain weather vane stabilizing effect, so a stopper such as a panel D as shown in Fig 6 must be used. It is desirable to provide.
  • Fig. 7 shows an outline of the operation status when the present invention is applied to a wind power generator.
  • the plate 1 rotates around the flip axis against the restraint of the elastic members such as the panel panel by the wind pressure and flows downwind (Fig. 7-2). Since it is installed with a pitch angle of 0, it starts to rotate due to the torque component of its own aerodynamic force before it is completely swept away by the wind. When rotation starts, the flap angle returns to the windward side due to centrifugal force, and stable rotation is performed (Fig. 7-3).
  • the control wind turbine 3 is provided as a blade rotation control member, the control wind turbine 3 provides resistance to blade rotation.However, by setting the pitch angle ⁇ of the control wind turbine 3 deep, the rotor play is performed. The aerodynamic performance of the entire aircraft can be prevented from being significantly impaired.
  • the torsional moment which forcibly lowers the trailing edge of the wing tip toward the rotating surface, can be adjusted by the size of the additional mass.
  • the pitch angle 0 becomes shallower, the angle of attack ⁇ increases, and the wind pressure acting on the plate 1, that is, the force in the direction perpendicular to the rotating surface increases, acting to increase the flap angle, and confronting the wind Reduce the rotating area.
  • a decrease in the rotating area leads to a decrease in the energy absorbed from the wind, which contributes to a decrease in the number of rotations, and consequently, the rotor does not increase the rotation speed and the change in the flap angle changes the wind speed. This will correspond to the increase. ,
  • the lap angle will automatically increase even if the wind speed further increases.
  • the flank angle is equal to or greater than a certain value, that is, the additional mass at the tip of the wing is balanced on the leeward side of the plane of rotation (Fig. 9-1).
  • a certain value that is, the additional mass at the tip of the wing is balanced on the leeward side of the plane of rotation (Fig. 9-1).
  • the aerodynamic force acting on the blade increases, so the rotation speed temporarily changes.
  • a torsional moment occurs in which the additional mass at the blade tip approaches the rotating surface.
  • the angle of attack at the tip of the wing will be further increased (Fig 9-2).
  • the flapping angle is large, the wind is obliquely received from the front of the blade root side (Fig. 10), so increasing the twist angle shifts the stall attack angle to the blade root side.
  • the stall region of the blade further increases, and the lift component that gives the rotational torque decreases. Therefore, once the increased rotation speed decreases, the rotation speed increases, that is, the increase in the centrifugal force is suppressed in a stable and balanced state.
  • the aerodynamic force consisting of the lift component and the anti-power component which tries to increase the flap angle against the centrifugal force, increases as a whole due to the increase in the anti-power component.
  • the flapping angle [3] determined by the ratio increases, and the blade 1 balances in such a way that the blade 1 flows downwind.
  • the position of the additional mass body at the trailing edge of the wing tip can suppress the increase in the number of revolutions, it is a real problem. These combinations may not be given freely.
  • a wind turbine for controlling the wing tip can be provided to share the function of increasing the flap angle with the increase in wind speed.
  • control wind turbine The function of the control wind turbine is described below.
  • the torsion angle increases in accordance with the increase in the rotation speed due to the increase in wind speed, and the stall area increases.
  • the rotational resistance of the plate increases; the rotational speed drops to a value close to the original value, and the centrifugal force does not change much.
  • the wind pressure received in the direction of the rotation axis increases due to wind speed increase and stall. Therefore, the angle of inclination of the blade downstream, which is determined by the balance between the centrifugal force and the wind pressure in the direction of the rotating shaft, that is, the flapping angle] 3 increases.
  • the rotation speed does not change much and balances when the flapping angle] 3 increases.
  • flap control can be sufficiently performed. Too much twisting could cause blade 1 to bend by losing stiffness to movement in the plane of rotation. In such a case, it would exhibit dynamically unstable movement. Therefore, when the torsion angle or flap angle exceeds a certain value, it is desirable that the rotation speed can be controlled by a method other than the torsional deformation of the blade 1.
  • the control wind turbine 3 performs this function.
  • the control wind turbine 3 performs the function of increasing the flapping angle ⁇ only by aerodynamic characteristics.
  • FIG. 10 shows the relationship between the direction of the synthetic wind and the control wind turbine when the flap angle is large.
  • blade 1 When the flapping angle [3] increases, blade 1 receives wind from obliquely forward on the blade root side with respect to the blade surface like a swept wing, and is placed at the tip of the blade.
  • the control windmill 3 also receives the wind diagonally (Fig. 10a).
  • the control wind turbine 3 that receives oblique wind generates not only drag against the relative wind but also lift (Fig 10b left side) in the direction perpendicular to the relative wind, like a disk wing formed on the rotating surface. Therefore, the resultant force becomes considerable, and both of them act as a resistance force (fig 10b right side) against the rotation of the blade 1.
  • is the rotational angular velocity
  • r is the radius of the plate.
  • the pitch angle ⁇ can be changed in the span direction by the elastic torsional deformation, and by using the blade 1 with the additional mass at the trailing edge of the wing tip, The additional moment by the additional mass body 3 provided at the trailing edge of the wing tip using the torsional moment, and the leading or trailing edge has a rotating surface generally facing the travel direction of the blade 1.
  • the flap angle / 3 is increased according to the wind speed over a large angle range, and the rotation speed is increased. Rotor that can suppress rising and maintain stable rotation ⁇ A blade can be realized.
  • the rotation direction of the control wind turbine 3 is arbitrary, but the rotation in the direction to spread and diffuse the tip vortex reduces induction resistance due to the tip vortex and reduces noise. It is more desirable (Fig 11). The smaller the size of the control wind turbine 3, the better the overall efficiency of the wind turbine.
  • the plate 1 that can change the pitch angle 0 in the span direction by elastic torsional deformation, the torsional moment to the self due to the rotational inertia generated by the self and the leading or trailing edge
  • the aerodynamic characteristics of the control wind turbine 3 mounted on the edge so as to have a rotating surface that roughly faces the direction of travel of the blade 1, it is possible to respond to the wind speed over a large angle range.
  • By increasing the flap angle it is possible to realize a rotor blade that can suppress a rise in the number of rotations and continue stable rotation.
  • the direction of rotation of the control wind turbine 3 is arbitrary, but rotation in the direction of spreading the tip vortex is desirable for reducing induced resistance and noise mitigation due to the tip vortex (Fig 11).
  • the blade 1 is a thin wing with a simple sectional shape of a single piece.
  • the arc wing is easily flap-hinged to the boss 7.
  • it does not have a closed cross section, it has the characteristic of being easily twisted, which is convenient for application of the present invention.
  • the performance is not affected by the number of Reynolds, it is useful as a countermeasure for performance degradation when the number of Reynolds is small, which is an essential problem of conventional small wind turbines. It also has the advantage of
  • Fig. 12 shows an example in which the blade mechanism of the wind power generator of the present invention is applied to a wind turbine of a wind power generator.
  • Blade 1 is an arc-shaped blade of blade 1 and a bar-shaped additional mass 2 is attached to the trailing edge of the blade tip.
  • the rotation axis of the flap shaft of the wind turbine blade 1 is set so that only the flap angle j3 (the leeward angle of the blade) can rotate freely and the starting torque can be generated. It is mounted with a pitch angle 0 of about 20 degrees.
  • Plate panels A and B are attached to plate 1 and boss 7 via coupling hinge 5 to allow the flap movement of plate 1 and to prevent excessive movement on both the positive and negative sides. Have been. Note that a stopper is attached to the plate 1 so that the plate 1 hits the boss 7 when the plate 1 flows over a certain angle. In the embodiment, the upper limit is a flapping angle of] 380 degrees.
  • the blade 1 at the highest point is set to a flapping angle of about 30 degrees in a normal installation mode and no wind, and when the rotor surface becomes horizontal, the blade 1 The shape and strength of the panel are adjusted so that the flapping angle] 3 can be maintained at 0 degrees.
  • the blade 1 is mounted so that one side of the rotor is on the leeward side during operation to obtain weather vane stability without the tail.
  • the plate 1 In the windless installation state, the plate 1 is within the range of the flapping angle of 30 ° to 0 ° due to the above-mentioned spring (FIG. 11).
  • blade 1 For the wind from the convex side of blade 1, that is, the wind from the leeward side of the windmill, blade 1 attempts to reduce the flap angle, but its movement is restrained by the spring. Therefore, it shows the same weather vane stability as a normal down-wind propeller type wind turbine.
  • blade 1 With respect to the wind from the concave side of blade 1, blade 1 had a flap angle of about 30 degrees, but the flap angle increased to about 45 degrees temporarily due to wind pressure. And each plate 1 has a pitch angle ⁇ Since it is installed in the center, it generates aerodynamic torque and starts to rotate (Fig. 7-2). When rotation starts, the flap angle e begins to decrease due to centrifugal force, and continues to rotate in a balanced state.
  • the wind turbine continues to rotate while increasing the flapping angle / 3 without increasing the number of rotations significantly, as the wind speed increases.
  • the stall of the blade 1 starts, not only does the torsional moment acting on the additional mass on the wing tip increase with the wind speed, but also the angle of attack further decreases due to the moment.
  • the circulation effect that the area is increased occurs, and the tendency that the flap angle increases as the wind speed increases but the rotation speed does not increase continues.
  • blade 1 will keep rotating while hitting the stopper with the upper limit of flapper angle / 3. If the upper limit of the flap angle] 3 is set to 80 degrees, the frontal area of the rotor will be about 1/36 when the flap angle is zero, and the received dynamic pressure will also be 1/36.
  • Fig 14 shows another embodiment of the present invention.
  • a control windmill is attached to the trailing edge of the blade tip so as to make the control of the flap angle easier.
  • the wind speed does not depend strongly on the combination of the torsional stiffness of the blade and the additional mass, but is independent of itself when the flap angle is large. It has the advantage that it has the function of increasing the flap angle without increasing the number of revolutions, thereby facilitating the design of the blade system.
  • the wind power generator of the present invention can realize a method that does not cause over-rotation against a strong wind without providing a blade pitch angle control device, which is essential for a conventional wind turbine.
  • the concept of the present invention simplifies the structure of the blade, thus enabling significant cost reductions compared to conventional wind turbines, and significantly improving portability and ease of assembly. Can be expected. '
  • the present invention has a great advantage that it is superior to the conventional type in securing the fatigue strength, and has a great advantage in securing the fatigue strength. Since there is no concept of stopping a boat, that is, a blade, it has the feature that power generation near rated power can be continued even in strong winds.
  • thin blades such as arc blades do not have a drastic reduction in performance at low Reynolds numbers, which was inevitable for wind turbine blades with streamlined blade cross sections. It is possible to significantly improve the performance of wind turbines with a diameter of 10 m or less. Open the way. Industrial applicability
  • the wind turbine generator of the present invention provides clean wind energy by using clean renewable energy, even if the energy cost is low. It is an efficient wind turbine, improving many disadvantages of conventional wind turbines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)

Abstract

A wind power generating device, wherein a blade (1) having a torsionally flexible structure is installed at a boss part (7) so as to be moved freely only through a flap angle of β, and a control member utilizing a centrifugal force or an aerodynamic force is installed near the wing end of the blade (1), whereby, since the blade (1) is tilted to a downwind side in a wide flap angle range according to a wind velocity, the rotation of the blade can be controlled.

Description

明細書  Specification
風力発電装置 技術分野  Technical field of wind power generator
本発明は、複数のプレー ド翼を放射状に取り付けたロータ 一の回転によるプロペラ型の風力発電装置に関する。  The present invention relates to a propeller-type wind power generator that rotates a rotor having a plurality of blades radially attached thereto.
背景技術  Background art
近年、 ク リ ーンな自然エネルギーの利用が見直されつつあ り 、 その代表例にエネルギー ' コス トが最も安いと言われる風力発 電がある。 しかし、 本格的に風力発電を普及させよ う とする観 点からは風車の製造 .組立てコス トを抜本的に低減するこ とが 求められている。  In recent years, the use of clean renewable energy has been reconsidered, and a typical example is wind power, which is said to have the lowest energy cost. However, from the viewpoint of realizing the widespread use of wind power generation, drastic reduction of windmill manufacturing and assembly costs is required.
従来のプロペラ型風力発電装置のブレー ド翼根部にはピッ チ角可変装置が取り付け られ強風に対する過回転の防止の役 割を果たしているが、基本的に剛構造であるためプレー ド翼根 部でのボス部との結合部分にはプレー ドの回転によ る遠心力 だけでなく 、'突風等による大きな曲げ荷重が作用する とい う 問 題があった。 木目の細かい工夫を尽く した設計を実施し軽量化 を図 りつつ強度を増すこ とが求めら  A variable pitch angle device is attached to the blade root of the conventional propeller type wind power generator to prevent over-rotation against strong winds. There was a problem that not only the centrifugal force due to the rotation of the plate but also a large bending load due to gusts and the like acts on the joint portion with the boss. It is necessary to increase the strength while reducing the weight by implementing a design that takes care of the fine grain of the wood.
れる所以であるが、 これは抜本的に単純かつ安価な構造のブレ 一ドの存在を許容しない理由 と もなつていた。 However, this was also the reason why a radically simple and inexpensive blade was not allowed.
また、然るべき質量をもつプレー ドの 'ピッチ角を可変と'する 装置は必然的に高強度で精度の高いものでなく てはならず、 こ れも風力発電装置の重量、 コス トを増加させる大きな要因 とな つていた。  In addition, a device that 'changes the pitch angle' of a board with an appropriate mass must necessarily have high strength and high accuracy, which also increases the weight and cost of the wind turbine generator This was a major factor.
このよ う に、 従来のプロペラ型風力発電装置においては、 高 強度で精密なピッチ角可変装置を備えねばならぬ上にブレー ドは大きな曲げ荷重と遠心力荷重に耐える必要があつたため 製造コス ト のみならず輸送 .組立てに関わる費用まで大き く な つてしま う という問題があった。 Thus, conventional propeller-type wind turbines must be equipped with high-strength and precise pitch angle variable devices, Since the cables had to withstand large bending loads and centrifugal loads, there was a problem that not only manufacturing costs but also transportation and assembly costs became large.
本発明は上記課題を解決する もので、風力発電装置のブレー ド部分を柔軟構造にすること によ り 、軽量かつ簡素な構造を可 能と して装置の製造および輸送 ·組立てに関わる コス トを大幅 に低減するこ とを目的とするものである。 発明の開示  The present invention solves the above-mentioned problems. By making the blade portion of the wind turbine generator flexible, a lightweight and simple structure is made possible, and the costs involved in manufacturing, transporting, and assembling the device are reduced. The aim is to significantly reduce Disclosure of the invention
本発明者は、 前記課題を解決するために、 柔軟性のあるブレ 一ドをフラ ップ角方向すなわち翼の上下面方向にのみ自 由に 回転できる よ うボス部に取付け、 その翼端近傍に遠心力あるい は空気力利用'する制御部材を取り付ける こ とで、従来の剛性高 い翼やピッチ角制御装置を必要とせず、 フラ ップ角を変化させ るこ と によつて定格以上の風速によ る過回転を防止し得る こ とを見出 した。 , この発明の風力発電装置は、請求項 1 の発明がその骨格をな すもので、 F i g 2 に示すよ う にプロペラ型の風力発電装置に おけるローターのボス部に、 弾性捩れ変形によってスパン方向 にピッチ角を変え得るブレー ドがその翼断面の上下方向への 動きを自 由にとれる よ う に取付金具ならぴにフラ ップ ' ヒ ンジ を介して取り付けられ、 プレー ドの翼端を含む翼端近傍の前縁 または後縁部に付加質量体が取り 付け られている こ と を特徴 と している。  In order to solve the above-mentioned problems, the present inventor attaches a flexible blade to a boss portion so as to be freely rotatable only in the direction of the flap angle, that is, in the direction of the upper and lower surfaces of the blade, and near the blade tip. By installing a control member that uses centrifugal force or pneumatic force to the surface, it does not require conventional rigid blades or a pitch angle control device, and it can exceed the rating by changing the flap angle. It was found that overspeed due to the wind speed could be prevented. According to the wind power generator of the present invention, the skeleton of the invention of claim 1 forms a frame, and as shown in Fig. 2, the span of the rotor boss in the propeller type wind power generator is elastically twisted and deformed. The mounting bracket is attached via a flap's hinge so that the blade that can change the pitch angle in the direction can freely move the blade section in the vertical direction, and the blade tip of the blade is It is characterized in that an additional mass is attached to the leading edge or trailing edge near the wing tip, including the wing tip.
請求項 2記載の発明は、 図 2 に示すよ う に請求項 1 に記載さ れた発明に 整機能を付与するため手段であり 、 プレー ドの翼 端近傍の前あるいは後縁部に制御用風車が取り 付けられてい るこ と を特徴と し、 請求項 3記載の発明は、 請求項 1 に記載さ れた発明の制御部材と してブレー ドの翼端後縁部に付加質量 体が取付けられている こ と を特徴と している。 The invention described in claim 2 is a means for imparting an alignment function to the invention described in claim 1 as shown in FIG. 2, and is provided at the front or rear edge near the blade tip of the blade. The windmill is installed The invention according to claim 3 is characterized in that an additional mass body is attached to the trailing edge of the blade tip as the control member of the invention described in claim 1. It is characterized by
請求項 4以下に記載の発明は、請求項 1 乃至請求項 3 に述べ られた発明の基本原理を実用化するために必要な発明である。 請求項 4記載の発明は、 F i g 3 に示すよ う にブレー ドとボ ス部にそれぞれ S字状板パネ Aと ほぼ直線状の板バネ B を固 定して取付け、それらを一つの取付金具のヒ ンジで結合して無 風時にプレー ドが倒れず、 かつ起動時にブレー ドが風下側に流 されないよ う にするこ とを特徴と している。  The invention described in claim 4 and subsequent claims is an invention necessary for putting the basic principle of the invention described in claims 1 to 3 into practical use. According to the invention described in claim 4, as shown in Fig. 3, the S-shaped plate panel A and the substantially linear plate spring B are fixedly mounted on the blade and the boss portion, respectively, and they are mounted as one. It is characterized in that it is connected with the hinge of the bracket so that the blade does not fall down when there is no wind, and that the blade does not flow downwind during startup.
請求項 5記載の発明は、 F i g 4 に示すよ う にブレー ドとボ ス部をフラップ■ ヒ ンジと同軸にあるコイル状のパネでつなぎ 無風時にブレー ドが倒れず、 かつ起動時にブレー ドが風下側に 流されないよ う にする こと を特徴と している。  According to the fifth aspect of the present invention, as shown in Fig. 4, the blade and the boss are connected by a coil-shaped panel coaxial with the hinge, and the blade does not fall down when there is no wind and the blade is started at the time of startup. It is characterized in that it does not flow downwind.
請求項 6記載の発明は、 F i g 5 に示すよ う にブレー ドある いはボス部にコマ状の突起あるいは板バネ Cによるス ト ッパ 一を設け、そのス ト ッパーとブレー ド.あるいはボス部 7の干渉 によってブレー ドが完全に風下側に流されないよ う に して回 転力を保持す 'こ と を特徼と している。 '  In the invention according to claim 6, as shown in Fig. 5, a stopper is provided on the blade or the boss portion by a top projection or a leaf spring C, and the stopper and the blade are provided. The special feature is that the blade is not completely swept downwind by the interference of the boss part 7 and the rotational force is maintained. '
請求項 7記載の発明は、 F i g 6 に示すよ う にボス部に板バ ネ Dを取付け、 その板バネ D とプレー ドの干渉によって、 プレ 一ドの凹側断面方向の動きを拘束し、 ローターに風見安定を与 えるこ とを特徴と している。 図面の簡単な説明  According to the invention described in claim 7, a plate spring D is attached to the boss portion as shown in Fig. 6, and the movement of the blade in the concave cross-sectional direction is restrained by interference between the plate spring D and the plate. It is characterized by providing weather vane stability to the rotor. BRIEF DESCRIPTION OF THE FIGURES
F i g 1 は本発明風力発電装置における 1 個のプレー ドの 1実施形態の説明図である。 ( a ) は斜視図である。 ( b ) は F i g 1 のスパン方向断面説明図である。 ( c ) は F i g 1 の 他の実施の形態のスパン方向断面説明図である。 ( d ) は F i g 1, ( b ) の A— A線及ぴ F i g 1 ( c ) の B— B線断面図で ある。 ( e ) は F i g l ( c ) の C _ C線断面図である。 FIG. 1 is an explanatory diagram of one embodiment of one blade in the wind turbine generator of the present invention. (A) is a perspective view. (B) is FIG. 3 is an explanatory view of a cross section of FIG 1 in a span direction. (C) is an explanatory sectional view in the span direction of another embodiment of Fig 1. (D) is a cross-sectional view taken along line A-A of Fig 1, (b) and line B-B of Fig 1 (c). (E) is a sectional view taken along the line C_C of Figl (c).
F i g 2 は、本発明の風力発電装置における 1個のプレー ド の他の実施の形態を示す説明図である。 ( F i g 2 - 1 ) はプ レー ド側端に付加質量体を介して制御用風車を取り付けた斜 視図である。 ( F i g 2 - 2 ) はブ レー ドの両面に付加質量体 を取り付けた実施の形態の説明用の断面図である。 F i g 3 は 本発明の風力発電装置のローターのボス部にブレー ド取付機 構の実施の形態を示す要部説明図である。 F i g 4は F i g 3 の要部拡大正面図である。 F i g 5 は本発明の風力発電装置の ブ レー ドの実施の形態の取付機構を説明する要部拡大側面図 である。 F i g 6 は F i g 5の無風状態の説明図である。 F i g 7は本発明の風力発電装置の稼動概要図である。 (F i g 7 — 1 )は無風状態を示し、 ( F i g 7 — 2 )は起動状態を示し、 FIG. 2 is an explanatory diagram showing another embodiment of one blade in the wind turbine generator of the present invention. (Fig. 2-1) is a perspective view in which a control windmill is attached to the blade end via an additional mass body. (Fig. 2-2) is a cross-sectional view for explaining an embodiment in which additional mass bodies are attached to both sides of the blade. FIG. 3 is an explanatory view of a main part showing an embodiment of a mechanism for attaching a blade to the boss of the rotor of the wind turbine generator of the present invention. FIG. 4 is an enlarged front view of a main part of FIG. FIG. 5 is an enlarged side view of an essential part for explaining the mounting mechanism of the embodiment of the blade of the wind turbine generator of the present invention. FIG. 6 is an explanatory diagram of the windless state of FIG. FIG. 7 is a schematic diagram showing the operation of the wind turbine generator of the present invention. (Fig 7 — 1) indicates a windless state, (Fig 7 — 2) indicates a startup state,
( F i g 7— 3 ) は定格発電状態を示し、 ( F i g 7— 4 ) は 強風下発電状態を示し、 ( F i g 7 - 5 ) は稀な強風下での発 電装置状態を示す。 F i g 8 は本発明の風力発電装置の翼端に おけるプレー ド捩り角 と失速および揚力、抗力の関係図を示し(Fig 7-3) indicates the rated power generation state, (Fig 7-4) indicates the strong wind power generation state, and (Fig 7-5) indicates the rare power generator state under strong wind. Fig. 8 shows the relationship between the torsion angle of the blade at the blade tip of the wind turbine generator of the present invention and the stall, lift, and drag.
( F i g 8 一 1 ) は失速のない捩り 角状態のブレー ドに作用す る揚力、 抗力の関係図である。 ( F i g 8 — 2 ) は失速を生ず る捩り角状態のプレー ドに作用する揚力、抗力の関係図である F i g' 9 は本発明の風力発電装置におけるプレー ドの捩じ り と フラ ップ角が大きい時の合成風と制御用風車の作用関係図 を示し、 ( F i g 9 — 1 ) はプレー ド側面から見た説明図であ る。 ( F i g 9 — 2 ) はプレー ドの平面及ぴ断面から見た説明 図である。 F i g 1 0 はフラ ップ角が大きい時の合成風と制御 用風車の作用関係図を示す。 F i g 1 1 は本発明の風力発電装 置におけるブレー ド翼端渦と制御用風車の回転方向との関係 図である。 ( F i g 1 1 一 1 ) は翼端渦を持つ.ブレー ドの説明 図である。 ( F i g 1 1 - 2 ) は後流に渦を曳く 単体の制御用 風車の説明図である。 ( F i g 1 1 - 3 ) は翼端渦の弱いプレ ー ドの他の実施の形態を説明する.。 F i g 1 2 は本発明の風力 発電装置の実施例 1 の概要を示す側面図である。 F i g 1 3 は F i g 1 2の実施例 1 の詳細をしめすもので、 ( a ) は F i g 1 2 のプレー ドの翼端の斜視図、 ( b ) は F i g 1 2 のプレー ドの取付機構を示す要部拡大説明図である。 F i g 1 4は本発 明の風力発電装置の実施例' 2の概要を示すもので、 ( a ) は側 面図、 ( b ) はプレー ドの翼端の斜視図である。 発明を実施するための最良の形態 (Fig. 8-11) shows the relationship between lift and drag acting on a blade in a torsion angle state without stall. (Fig. 8-2) is a diagram showing the relationship between lift and drag acting on a blade in a torsion angle state that causes stall. Fig. 9 shows the torsion of the blade and the flange in the wind turbine generator of the present invention. Fig. 9 shows the relationship between the combined wind and the control wind turbine when the tip angle is large. (Fig 9-2) is the explanation from the plane and cross section of the plate. FIG. Fig. 10 shows the relationship between the combined wind and the control wind turbine when the flap angle is large. FIG. 11 is a diagram showing the relationship between the blade tip vortex and the rotation direction of the control wind turbine in the wind turbine generator of the present invention. (Fig 11 1 1 1) has a tip vortex. (Fig. 11-2) is an illustration of a single control windmill that draws a vortex in the wake. (Fig 11-3) describes another embodiment of a blade with weak tip vortex. FIG. 12 is a side view showing an outline of Embodiment 1 of the wind turbine generator of the present invention. Fig. 13 shows details of Example 1 of Fig. 12; (a) is a perspective view of the tip of the blade of Fig. 12; (b) is a view of the blade of Fig. 12; It is a principal part enlarged explanatory drawing which shows an attachment mechanism. FIG. 14 shows the outline of the embodiment '2 of the wind turbine generator of the present invention, where (a) is a side view and (b) is a perspective view of the blade tip of the blade. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の風力発電装置について、 以下、 具体的に説明する。 基本手段を F i g 2 に示す。  Hereinafter, the wind turbine generator of the present invention will be specifically described. Figure 2 shows the basic means.
ブレー ド 1 は弾性捩れ変形によってスパン方向にピ .ッチ角 0 を変え得る もの、 例えば円弧翼状の一枚構造の薄翼が用いら れる。 そのプレ^" ド 1 をボス部 7 に対してブレー ド 1 のフ ラ ッ プ方向にのみ回転自 由に取付ける( F i g l b , F i g 1 c )。 ここで、 フラ ップ軸は必ずしも回転面内にある必要はない。 風速の増加と共にブレー ド 1 が風下方向に傾きを増す; と によって回転数を制御できるよ う に、 プレ^" ド 1 の翼端の後縁 部に付加質量体 2 を置く 力 、翼端の前縁あるいは後縁部に制御 部材と してのプレー ド 1 の進行方向に概ね正対 して回転する 付加質量体 2 を兼ねる小型の制御用風車 3 を設ける。 回転作動中にプレー ド 1 に対して所要の弾性捩れ変形を与 える こ とが本発明の要点の一つであるので、 プレー ド 1の材料 は強靭 ·軽量でかつ弾性変形範囲の広いアルミ合金や F R P等 の複合材が望ま しい。 本発明.におけるプレー ド 1 は、 全長に亘 り 中空あるいは中実構造をもつ従来型風車のプレー ド 1 よ り も遥かに捩れやすい性質をもたねばならぬが、 捩れ剛さ (こわ さ) に上下限を有する。 Blade 1 is capable of changing pitch angle 0 in the span direction by elastic torsional deformation. For example, a thin blade having a single-arc-shaped structure is used. The blade 1 is freely rotatable with respect to the boss 7 only in the direction of the blade 1 flap (Figlb, Fig1c). Here, the flap shaft is not necessarily the rotating surface. As the wind speed increases, the blade 1 increases in the leeward direction; and the additional mass 2 is attached to the trailing edge of the wing tip of the pre- At the leading edge or trailing edge of the wing tip, a small control wind turbine 3 serving also as an additional mass body 2 that rotates substantially directly in the direction of travel of the blade 1 as a control member is provided. It is one of the main points of the present invention to impart the required elastic torsional deformation to the plate 1 during the rotation operation. Therefore, the material of the plate 1 is a tough, lightweight aluminum alloy having a wide elastic deformation range. Composite materials such as and FRP are desirable. The blade 1 in the present invention must have a property that it is much easier to twist than the blade 1 of a conventional wind turbine having a hollow or solid structure over its entire length, but the torsional rigidity (stiffness) is high. Has upper and lower limits.
本発明の機能を発揮させるためにプレー ド 1 が満足すべき 捩れ剛'さの条件は、 プレー ド 1 固有の捩り剛性、 総質量、 質量 分布、 ブレー ド 1およぴ制御用風車 3 の発生する空気力さ らに は回転数等によって異なって く るため絶対値と して定める こ とは困難であるが、 これら諸要因の相互関係の結果と して現わ れる現象を用いて以下のよ う に記述できる。  The conditions of torsional rigidity that the blade 1 should satisfy in order to exert the function of the present invention include the inherent torsional rigidity of the blade 1, the total mass, the mass distribution, the generation of the blade 1 and the control windmill 3. It is difficult to determine the absolute value of the aerodynamic force, which varies depending on the number of revolutions, etc., but using the phenomenon that appears as a result of the interrelation of these factors, It can be described as follows.
取付け状態でのプレー ド 1 の翼端ピッチ角 0 すなわち回転、 面と翼弦が成す角を正にと る と、 ブレー ド 1 の捩れ剛さの上限 は付加質量体を含むブ レー ド 1 各要素に発生する遠心力によ るモーメ ン トおよびプレー ド 1 な らぴに制御用風車 3 によつ て発生する空気力によって発生する捩り モーメ ン トによ って 定格風速以上、設計最大風速以下の範囲で翼端ピツチ角 0 が少 なく と も負の値 (逆回転の起動 トルクを与える ピッチ角) にま で変化できなく てはならないという条件から定められる。 また、 捩れ剛さの下限は翼根部の片持ち梁支持状況において重力あ るいは起動風速以下の風圧に抗して自 己の形状を維持出来な ければならぬ条件から定められる。 条件を満たし得る典型例が、 自重で橈むこ との無い程度にまで板厚をそいだ薄い一枚構造 の円弧翼である。  When the blade tip pitch angle of the blade 1 in the mounted state is 0, that is, the angle between the rotation and the plane and the chord is positive, the upper limit of the torsional rigidity of the blade 1 is the blade 1 including the additional mass. Moment due to centrifugal force generated in the element and torsion moment generated by the blade 1 and the wind force generated by the control wind turbine 3 It is determined from the condition that the blade tip pitch angle 0 must be able to change to at least a negative value (pitch angle that gives the reverse rotation starting torque) in the following range. The lower limit of torsional stiffness is determined by the condition that the shape of the wing must be able to maintain its own shape against the gravity or the wind pressure below the starting wind speed in the cantilever support condition of the blade root. A typical example that satisfies the conditions is a thin, single-sheet arc wing with a thickness that is as small as possible without bending under its own weight.
なお、本発明が適用できるブレー ド 1 は F i g 1 bに示され る よ う なスパン方向全体に薄い断面を持つ翼に限定される も のではない。 弾性捩れ変形に関する条件は、 通常の翼型であれ ば略確実に失速に陥る迎え角に相当する 3 0度程度を先端で 捩っても弹性範囲内にあるこ とだけであるから、 スパン方向す なわち半径方向の断面が一様に薄板構造である必要はなく F i g 1 c に示すよ う に、例えば略 1 / 2半径の外側は通常の閉 じた断面を持つた翼型と し、残り 略 1 Z 2半径の内側を薄板構 造にして、 捩り を薄板構造部分で受け持たせても良い。 Blade 1 to which the present invention can be applied is shown in Fig 1b. It is not limited to wings that have a thin cross section throughout the span direction. The condition for the elastic torsional deformation is that if the tip is twisted by about 30 degrees, which corresponds to the angle of attack at which stall will almost certainly occur with a normal airfoil, it is only within the elasticity range. That is, the cross section in the radial direction does not need to be a uniform thin plate structure, and as shown in Fig 1c, for example, the outside of the radius of approximately 1/2 is assumed to be an airfoil with a normal closed cross section, The inside of the remaining radius of approximately 1 Z 2 may be a thin plate structure, and the torsion may be handled by the thin plate structure.
また、捩れを分担する薄翼部分においても断面は必ずしも円 弧翼である必要は無く , 空力特性に優れかつ捩れやすい断面で あれば良い。  Also, the cross section of the thin wing portion sharing twist is not necessarily an arc wing, but may be a cross section having excellent aerodynamic characteristics and easy to twist.
さて、 ブレー ド 1 はフラ ップ方向に回転自由な取付けなので、 無風状態において回転軸上方にあるブレー ド 1 が倒れないよ う に、 かつ風が吹いた時に回転 ¾:始める前に下流側に流されて しまわないよ う に、 F i g 3 、 F i g 4 に示すよ う にブレー ド 1 の翼根部を板バネ B、 あるいは板パネ Dなどで支える。 こ こ で、 板バネ Aを S字形状にして'おく と、 この板バネ Aは、 最も 変形の大きい、 ブレー ド 1 が完全に風下側に流される時でも S 字が押しつぶされたよ うな形状を保つので、 ブレー ド 1への接 合面には概ね圧縮力と して作用 し、 プレー ド 1 と の接合部の強 度設計上好ま しい効果を持つ。  Now, blade 1 is freely rotatable in the flap direction, so that blade 1 above the rotating shaft does not fall down in the absence of wind and rotates when the wind blows. As shown in Fig. 3 and Fig. 4, the blade root of blade 1 is supported by leaf spring B or panel D to prevent it from being washed away. Here, if the leaf spring A is formed into an S-shape, the leaf spring A has a shape that is the most deformed, such that the S-shape is crushed even when the blade 1 is completely swept downwind. Therefore, it acts as a compressive force on the joint surface to the blade 1 and has a favorable effect on the strength design of the joint with the blade 1.
また、 強風下で完全に風に流されてしま う とプレー ド 1 は回 転力を失い、 遠心力による見かけの剛性も消え、 風圧の強い中 で自己形状の保持が出来なく なる可能性がある。 そこで、 F i g 5 に示すよ う に下流側へのブレー ド 1 の倒れに対して制限 する装置を設けることが望ま しい。 例えば、 ス ト ッパー 8や板 パネ Cを取り付ける。 さ らに、 本発明の風力発電装置の風車を 風見安定板のないダウン · ウィ ン ド型と して機能させるために は.、 確実な風見安定効果がなければならないので、 F i g 6 に 示すよ う な板パネ Dな どによるス ト ッパーを設ける こ と が望 ま しい。 Also, if it is completely swept away by strong winds, the plate 1 loses its rotational force, the apparent rigidity due to centrifugal force also disappears, and it may be impossible to maintain its own shape under strong wind pressure. is there. Therefore, it is desirable to provide a device to limit the blade 1 from falling to the downstream side as shown in Fig5. For example, a stopper 8 or a panel C is attached. Furthermore, the wind turbine of the wind power generator of the present invention is In order to function as a downwind type without a weather vane, there must be a certain weather vane stabilizing effect, so a stopper such as a panel D as shown in Fig 6 must be used. It is desirable to provide.
本発明を風力発電装置に適用 した時の稼動状況概要を F i g 7に示す。  Fig. 7 shows an outline of the operation status when the present invention is applied to a wind power generator.
風が吹く と プレー ド 1 は風圧によって板パネ等の弾性部材 の拘束に逆らってフ ラ ップ軸回 り に回転し風下側に流される が ( F i g 7 - 2 ) 、 各断面は回転面に対してピッチ角 0 を持 つて取付けられているため、完全に風に流される前に自 らが発 生する空気力の トルク成分によって回転を始める。 回転を始め る と遠心力によって風上側にフラ ップ角 が戻り 、安定した回 転を行う ( F i g 7 - 3 ) 。 ブレー ド回転の制御部材と して制 御用風車 3 を設ける場合、制御用風車 3がプレー ド回転の抵抗 にはなるが、 制御用風車 3のピッチ角 Θ を深く設定するこ とで ローター ·プレー ド全体の空力性能を大き く 阻害しないよ う に 出来る。 また、 F i g 5 に示すよ う に本来の稼動状態'での風向 と逆向きに風が吹く 場合には、 ブレー ド 1 はス ト ッパー 8 に当 たり、 傾きを変えない。 従ってブレー ド 1 への空気抵抗は風車 支柱軸 1 1 まわり の回転モーメ ン ト と して作用するため、 プレ ー ド 1 は風見安定を示す。  When the wind blows, the plate 1 rotates around the flip axis against the restraint of the elastic members such as the panel panel by the wind pressure and flows downwind (Fig. 7-2). Since it is installed with a pitch angle of 0, it starts to rotate due to the torque component of its own aerodynamic force before it is completely swept away by the wind. When rotation starts, the flap angle returns to the windward side due to centrifugal force, and stable rotation is performed (Fig. 7-3). When the control wind turbine 3 is provided as a blade rotation control member, the control wind turbine 3 provides resistance to blade rotation.However, by setting the pitch angle の of the control wind turbine 3 deep, the rotor play is performed. The aerodynamic performance of the entire aircraft can be prevented from being significantly impaired. When the wind blows in a direction opposite to the wind direction in the 'operating state' as shown in Fig. 5, the blade 1 hits the stopper 8 and does not change its inclination. Therefore, the air resistance to blade 1 acts as a rotation moment about the windmill support shaft 11, so that blade 1 shows stable weather vane.
風速が增すと ローターは回転数を増すが、 回転数の増加に伴 い板状のプレー ド 1 はその各部に作用する遠心力によってプ レー ド軸回 り にピッチ角 0 をフラ ッ ト にする よ う なモーメ ン トを発生する ( F i g 8 - 1 ) 。 この効果はテニス ' ラケッ ト 効果と してよ く 知られ、モーメ ン トによって翼端部は頭(前縁) 上げの方向に捩られるため、捩れやすい特性を有する'プレー ド 1 は翼端のピッチ角 0 を浅くする よ う になる。 また翼端の後縁 部に付加質量体を持つと、 その翼端部 (付加質量体部) は遠心 力によって常に回転面上にあろ う とするので、 回転数に応じて 生ずる、'ブレー ド翼端の後縁を回転面に向けて強制的に下げる よ う な捩り モーメ ン トを付加質量体の大き さで調整する事が 出来る。 ピッチ角 0 が浅く なる と迎え角 αが増し、 プレー ド 1 に作用する風圧すなわち回転面に直角方向の力が増 してフラ ップ角 を大き くする よ う に作用 し、風に正対する回転面積を 減少させる。 回転面積の減少は風から吸収するエネルギーの減 少につながり 回転数の増え方の減少に寄与するので、結果的に 当該ローターは回転数を殆ど増さずにフラ ップ角 の変化で 風速の増加に対応するこ と になる。 , When the wind speed increases, the rotor speed increases, but as the speed increases, the plate-like plate 1 flattens at a pitch angle of 0 around the blade axis due to centrifugal force acting on each part. (Fig. 8-1). This effect is often known as the tennis 'racquet effect', where the wing tip is twisted in the direction of raising the head (leading edge) due to the moment, which makes it easy to twist. 1 makes the pitch angle 0 of the wing tip shallower. Also, if an additional mass is provided at the trailing edge of the wing tip, the wing tip (additional mass body) always tries to stay on the rotating surface due to centrifugal force. The torsional moment, which forcibly lowers the trailing edge of the wing tip toward the rotating surface, can be adjusted by the size of the additional mass. When the pitch angle 0 becomes shallower, the angle of attack α increases, and the wind pressure acting on the plate 1, that is, the force in the direction perpendicular to the rotating surface increases, acting to increase the flap angle, and confronting the wind Reduce the rotating area. A decrease in the rotating area leads to a decrease in the energy absorbed from the wind, which contributes to a decrease in the number of rotations, and consequently, the rotor does not increase the rotation speed and the change in the flap angle changes the wind speed. This will correspond to the increase. ,
F i g 8 _ 2 に示すよ う にプレー ド 1 がある程度以上捩れ てく る と、変形の大きいブレー ド 1 の翼端部はゼロに近いピッ チ角 Θ あるいは負のピッチ角 Θ に至り、迎え角 αが大き く なり 過ぎて翼端部で失速を生ずるよ う になる。 この失速,はプレー ド 1 の回率 を減速させるので、 回転数の上昇は抑えられフラ ップ 角 ]3 はさ らに大き く なる ( F i g 7 — 4 ) 。  As shown in Fig 8 _ 2, when blade 1 is twisted more than a certain degree, the blade tip of blade 1 with large deformation reaches pitch angle 近 い close to zero or negative pitch angle 、, and the angle of attack α becomes too large and stall occurs at the tip of the wing. Since this stall slows down the rotation rate of the plate 1, the increase in the number of revolutions is suppressed and the flap angle] 3 is further increased (Fig 7-4).
さて、 付加質量がプレー ド翼端後縁部に取付はられていて、 なおかつプレー ドの捩れ剛性が適切に設定されている と、風速 がさ らに増しても、 ブラ ップ角が自動的に大き く なって風圧を 逃げ結果的に回転数が殆ど増さないよ う にでき る こ と を説明 する。  If the additional mass is attached to the trailing edge of the blade wing and the torsional stiffness of the blade is set appropriately, the lap angle will automatically increase even if the wind speed further increases. Explain that it is possible to increase the wind pressure to escape the wind pressure and consequently to increase the rotation speed little.
ある風速である程度以上のフラ ップ角、すなわち翼端の付加質 量体が回転面から外れて風下側に位置している状態で釣合つ ているものとする ( F i g 9 - 1 ) 。 この状態で風速が増すと プレー ドに作用する空気力は大き く なるので一時的に回転数 を增すが、それに対応する遠心力増分によって翼端の付加質量 体が回転面に近づこ う とする捩りモーメ ン トが発生し、 プレー ドの捩り剛性に抗して釣合い状態からの捩り角を増し、 翼端部 の迎え角をよ り増すこ とになる ( F i g 9 - 2 ) 。 後述のよ う に、 フラ ップ角 ]3 が大きい時は翼根側斜め前方から風を受けて いるので ( F i g 1 0 ) 、 捩れ角が増すことは失速迎え角が翼 根側に移るこ とを意味する。 すなわち、 ブレー ドの失速領域は さ らに増して、 回転 トルク を与える揚力成分は減少する。 従つ て、 一度増した回転数が減少するこ とになつて、 結局安定した 釣合い状態では回転数の増加、 すなわち遠心力の增加が抑制さ れる ことになる。 一方、 遠心力に抗してフラ ップ角 を増そ う とする、揚力成分と抗カ成分からなる空気力は抗カ成分の増加 によって全体と して増加するので、 空気力と遠心力の比で決ま るフラ ップ角 ]3 は増して風下側にブレー ド 1 が流される よ う な形で釣合う こ と に.なる。 At a certain wind speed, it is assumed that the flank angle is equal to or greater than a certain value, that is, the additional mass at the tip of the wing is balanced on the leeward side of the plane of rotation (Fig. 9-1). When the wind speed increases in this state, the aerodynamic force acting on the blade increases, so the rotation speed temporarily changes. However, due to the corresponding increase in centrifugal force, a torsional moment occurs in which the additional mass at the blade tip approaches the rotating surface. And the angle of attack at the tip of the wing will be further increased (Fig 9-2). As described later, when the flapping angle is large, the wind is obliquely received from the front of the blade root side (Fig. 10), so increasing the twist angle shifts the stall attack angle to the blade root side. Means this. In other words, the stall region of the blade further increases, and the lift component that gives the rotational torque decreases. Therefore, once the increased rotation speed decreases, the rotation speed increases, that is, the increase in the centrifugal force is suppressed in a stable and balanced state. On the other hand, the aerodynamic force consisting of the lift component and the anti-power component, which tries to increase the flap angle against the centrifugal force, increases as a whole due to the increase in the anti-power component. The flapping angle [3] determined by the ratio increases, and the blade 1 balances in such a way that the blade 1 flows downwind.
このよ う に、原理的には翼端後縁部においた付加質量体の位置. 大き さ とプレー ドの捩り 剛性の組合せだけで回'転数の上昇は 抑制できるが、現実問題と してこれらの組合せを自由に与えら れない場合がある。 その場合には、 翼端の制御用風車を設け、 風速の増加に対してフラ ップ角増加機能を分担させる よ う に する事が出来る。 Thus, in principle, the position of the additional mass body at the trailing edge of the wing tip. Although the combination of the size and the torsional rigidity of the blade alone can suppress the increase in the number of revolutions, it is a real problem. These combinations may not be given freely. In that case, a wind turbine for controlling the wing tip can be provided to share the function of increasing the flap angle with the increase in wind speed.
以下に、 制御用風車の機能を説明する。 The function of the control wind turbine is described below.
ブレー ド 1 の剛性を低く して、付加質量体 3 を翼端に取付ける と、 風速増による回転数増に応じて捩れ角を大き く な り 、 失速 領域が増す。 失速領域が増すとプレー ドの回転抵抗は増し; 回 転数は元に近い値に下がり 、 遠心力も大き く 変わらない。 一方 回転軸方向に受ける風圧は風速増および失速によって増 して いるから、遠心力と回転軸方向風圧の釣り合いで決まるブレー ドの下流への傾き角、 すなわちフラ ップ角 ]3 は増加する。 風速 が增すと回転数は,余り 変わらず、 フラ ップ角 ]3が増したと ころ で釣り合う こ とになる。 それで充分フラ ップ 制御が可能なと き もある。捩れ過ぎる とプレー ド 1 は回転面内の動きに対する 剛性を失う こ とによって折れ曲がってしま う可能性が"ある。 こ のよ う な場合には動的に不安定な動きを示すよ う になるため、 一定以上の捩れ角あるいはフラ ップ角においてはブレー ド 1 の捩じり 変形以外の方法で回転数を制御でき る こ とが望ま し い。 この機能を果たすのが制御用風車 3である。 フラ ップ角 が大き く なる と、 この制御用風車 3 は空力的な特性のみによつ てフラ ップ角 β の増加機能を果 すのである。 If the rigidity of the blade 1 is reduced and the additional mass 3 is attached to the blade tip, the torsion angle increases in accordance with the increase in the rotation speed due to the increase in wind speed, and the stall area increases. As the stall area increases, the rotational resistance of the plate increases; the rotational speed drops to a value close to the original value, and the centrifugal force does not change much. On the other hand, the wind pressure received in the direction of the rotation axis increases due to wind speed increase and stall. Therefore, the angle of inclination of the blade downstream, which is determined by the balance between the centrifugal force and the wind pressure in the direction of the rotating shaft, that is, the flapping angle] 3 increases. When the wind speed increases, the rotation speed does not change much and balances when the flapping angle] 3 increases. In some cases, flap control can be sufficiently performed. Too much twisting could cause blade 1 to bend by losing stiffness to movement in the plane of rotation. In such a case, it would exhibit dynamically unstable movement. Therefore, when the torsion angle or flap angle exceeds a certain value, it is desirable that the rotation speed can be controlled by a method other than the torsional deformation of the blade 1. The control wind turbine 3 performs this function. When the flapping angle increases, the control wind turbine 3 performs the function of increasing the flapping angle β only by aerodynamic characteristics.
F i g 1 0 はフラ ップ角が大きい時の合成風の方向 と制御 用風車との関係図である。  FIG. 10 shows the relationship between the direction of the synthetic wind and the control wind turbine when the flap angle is large.
フラ ップ角 ]3が大き く なる と、 プレー ド 1 はあたかも後退翼 のよ う にプレー ド面に対して翼根側斜め前方から風を受ける よ う になり 、翼端部に置かれた制御用風車 3 も斜めに風を受け る よ う になる ( F i g 1 0 a ) 。 斜めの風を受ける制御用風車 3 は、 その回転面で出来た円盤翼のよ う に、 相対風に対して抗 力だけでなく その直角方向に揚力 ( F i g 1 0 b左側) も発生 するので、 その合成力は少なからぬものとなり 、 共にブレー ド 1 の回転にと って抵抗力 ( F i g 1 0 b右側) と して作用する よ う になる。  When the flapping angle [3] increases, blade 1 receives wind from obliquely forward on the blade root side with respect to the blade surface like a swept wing, and is placed at the tip of the blade. The control windmill 3 also receives the wind diagonally (Fig. 10a). The control wind turbine 3 that receives oblique wind generates not only drag against the relative wind but also lift (Fig 10b left side) in the direction perpendicular to the relative wind, like a disk wing formed on the rotating surface. Therefore, the resultant force becomes considerable, and both of them act as a resistance force (fig 10b right side) against the rotation of the blade 1.
この場合の Ωは回転角速度で、 r はプレー ドの半径である。 その結果、風速が増してもプレー ド 1 の回転数は上がらなく な り遠心力も増えなく なる。 一方プレー ド 1 のフラ ップ角 i3 を増 やす力はプレー ド 1 に発生する揚力 と抗力の合成力に依存す る。 制御用風車 3はプレー ド 1 のフラ ップ方向には大きな力を 発生しないので、 フラ ップ角 β を増そう とする力は減少せず、 結果的にブレー ド 1 は遠心力に打ち克ってさ らにフラ ップ角 J3 を増すこ と になる ( F i g 7 — 5 ) 。 In this case, Ω is the rotational angular velocity, and r is the radius of the plate. As a result, even if the wind speed increases, the rotation speed of the plate 1 does not increase and the centrifugal force does not increase. On the other hand, the force that increases the flap angle i3 of the plate 1 depends on the combined force of the lift and drag generated in the plate 1. You. Since the control wind turbine 3 does not generate a large force in the flap direction of the blade 1, the force for increasing the flap angle β does not decrease, and as a result, the blade 1 overcomes the centrifugal force. Therefore, the flapping angle J3 is further increased (Fig. 7-5).
風車の位置は前縁部にあっても、 同様の機能を発揮する。 こ の制御用風車 3 による回転減速効果はフラ ップ角 に応 じて大き く なるが、それが.回転し'ている限.り フラ ップ角 β が大 き く なつても回転面の揚力発生効果によって衰えず、 フラ ップ 角 j3 力 S 9 0度近く になるまで有効である所に特徴がある。 すな わち、 傘で言えば完全に折畳まれた状態に至る直前まで、 風車 ブレー ドは回転を継続しつつフラ ップ角 を増 し続ける こ と になる。 高風速下においては、 回転を継続させる方がプレー ド 形状を維持させやすいので、 ブレー ド 1 の動きはフラ ップ角 力 S 9 0度近いと ころで F i g 4 に示すス ト ッ ノ 一 8 によって 止められる。  Even if the windmill is located at the leading edge, it performs the same function. The rotation deceleration effect of the control wind turbine 3 increases with the flap angle, but as long as it is rotating, the rotation surface can be reduced even if the flap angle β increases. The feature is that it does not decline due to the effect of lift generation, and is effective until the flapping angle j3 force approaches S90 degrees. In other words, the wind turbine blade will continue to rotate and increase its flap angle until just before the umbrella is completely folded. At high wind speeds, it is easier to maintain the blade shape by continuing rotation, so blade 1 moves near the flapping angle force S 90 degrees and the sting shown in Fig 4 Stopped by eight.
以上のよ う に、弾性捩れ変形によってスパン方向にピッチ角 Θ を変え得、 かつ翼端後縁部に付加質量体をもつブレー ド 1 を 用いる こ とで、 自身の発生する回転慣性力による 自身への捩り モーメ ン トを利用 し、翼端部後縁に設けた付加質量体 3 による 付加的モーメ ン ト あるいは前縁または後縁部にブレー ド 1 の 進行方向に概ね正対する回転面を持つよ う に取付けられた制 御用風車 3 の空力特性を制御部材と して使用または併用する こ と によ り 、 大きな角度範囲にわたって風速に応じてフラ ップ 角 /3 を増 して回転数の上昇を抑えかつ安定した回転を継続で きる ローター ■ プレー ドを実現する こ とが出来る こ と になる。 制御用風車 3 の回転方向は任意であるが、翼端渦を拡.散させ る方向の回転が翼端渦による誘導抵抗減少上おょぴ騒音緩和 上望ま しい ( F i g 1 1 ) 。 制御用風車 3 のサイズは小さいほ ど風車全体の効率は向上する。 As described above, the pitch angle Θ can be changed in the span direction by the elastic torsional deformation, and by using the blade 1 with the additional mass at the trailing edge of the wing tip, The additional moment by the additional mass body 3 provided at the trailing edge of the wing tip using the torsional moment, and the leading or trailing edge has a rotating surface generally facing the travel direction of the blade 1. By using or using the aerodynamic characteristics of the control wind turbine 3 mounted as described above as a control member, the flap angle / 3 is increased according to the wind speed over a large angle range, and the rotation speed is increased. Rotor that can suppress rising and maintain stable rotation ■ A blade can be realized. The rotation direction of the control wind turbine 3 is arbitrary, but the rotation in the direction to spread and diffuse the tip vortex reduces induction resistance due to the tip vortex and reduces noise. It is more desirable (Fig 11). The smaller the size of the control wind turbine 3, the better the overall efficiency of the wind turbine.
以上のよ う に、 弾性捩れ変形によってスパン方向にピッチ角 0 を変え得るプレー ド 1 を用いる こ とで、 自身の発生する回転慣 性力による 自身への捩りモーメ ン ト と、前縁または後縁部にプ レー ド 1 の進行方向に概ね正対する回転面を持つよ う に取付 けられた制御用風車 3 の空力特性を併用するこ と によ り 、 大き な角度範囲にわたって風速に応じてフラ ップ角 を増 して回 転数の上昇を抑えかつ安.定した回転を継続できる ローター ·ブ レー ドを実現するこ とが出来る こ と になる。 As described above, by using the plate 1 that can change the pitch angle 0 in the span direction by elastic torsional deformation, the torsional moment to the self due to the rotational inertia generated by the self and the leading or trailing edge By using the aerodynamic characteristics of the control wind turbine 3 mounted on the edge so as to have a rotating surface that roughly faces the direction of travel of the blade 1, it is possible to respond to the wind speed over a large angle range. By increasing the flap angle, it is possible to realize a rotor blade that can suppress a rise in the number of rotations and continue stable rotation.
制御用風車 3 の回転方向は任意であるが、翼端渦を拡散させ る方向の回転が翼端渦による誘導抵抗減少上および騒音緩和 上望ま しい ( F i g 1 1 ) 。 制御用風車 3 のサイズは小さいほ ど風車全体の効率は向上する。  The direction of rotation of the control wind turbine 3 is arbitrary, but rotation in the direction of spreading the tip vortex is desirable for reducing induced resistance and noise mitigation due to the tip vortex (Fig 11). The smaller the size of the control wind turbine 3, the higher the overall efficiency of the wind turbine.
さて、 軽量化と低コス ト化を図るためには、 プレー ド 1 は一 枚構造の単純な断面形状をもつ薄翼である こ とが望ま しい。 例 えば円弧翼は、 ボス部 7 に対するフラ ップ ' ヒ ンジ結合が容易 である。 しかも閉じた断面を持たないので捩れやすい特徴をも ち本発明の適用に好都合である。 また、 性能上レイ ノ ルズ数の 影響を受けないので、従来型小型風力発電装置の本質的な問題 と されていたレイ ノ ルズ数の小さい時の性能の劣化対策と し て有用である という別のメ リ ッ ト も もつ。  By the way, in order to reduce the weight and cost, it is desirable that the blade 1 is a thin wing with a simple sectional shape of a single piece. For example, the arc wing is easily flap-hinged to the boss 7. Moreover, since it does not have a closed cross section, it has the characteristic of being easily twisted, which is convenient for application of the present invention. In addition, because the performance is not affected by the number of Reynolds, it is useful as a countermeasure for performance degradation when the number of Reynolds is small, which is an essential problem of conventional small wind turbines. It also has the advantage of
実施例 1  Example 1
F i g 1 2 に風力発電機の風車に本発明の風力発電装置の プレー ド機構を適用 した例を示す。  Fig. 12 shows an example in which the blade mechanism of the wind power generator of the present invention is applied to a wind turbine of a wind power generator.
ブレー ド 1 は円弧状のプレー ド 1 の薄翼で翼端部後縁に棒 状の付加質量体 2が取付けられている。 風車のプレー ド 1 はフラ ップ角 j3 (プレー ドの風下方向への 流され角度) のみが自由に回転できる よ う に、 かつ起動 トルク を発生でき る よ う にフラ ップ軸は回転面に対して約 2 0度の ピッチ角 0 をもって取付けられている。 Blade 1 is an arc-shaped blade of blade 1 and a bar-shaped additional mass 2 is attached to the trailing edge of the blade tip. The rotation axis of the flap shaft of the wind turbine blade 1 is set so that only the flap angle j3 (the leeward angle of the blade) can rotate freely and the starting torque can be generated. It is mounted with a pitch angle 0 of about 20 degrees.
また、 プレー ド 1 のフラ ップ運動を許容する と と もに、 正負 両側に過大に動かぬよ う に板パネ A、 Bが結合ヒ ンジ 5 を介し てプレー ド 1 とボス部 7 に取付けられている。 なお、 プレー ド 1 にはプレー ド 1 が一定角以上流される とボス部 7 に突き当 る よ う にス ト ッパーが取付けられている。 実施例ではフラ ップ 角 ]3 8 0度を上限と している。  Plate panels A and B are attached to plate 1 and boss 7 via coupling hinge 5 to allow the flap movement of plate 1 and to prevent excessive movement on both the positive and negative sides. Have been. Note that a stopper is attached to the plate 1 so that the plate 1 hits the boss 7 when the plate 1 flows over a certain angle. In the embodiment, the upper limit is a flapping angle of] 380 degrees.
実施例 1 では、正規の設置形態で無風状態では最高所にある ブレー ド 1 がフラ ップ角 3 0度程度になるよ う に、 そしてロー ター面が仮に水平になったと きにブレー ド 1 のフラ ップ角 ]3 が 0度を維持でき る程度に板パネの形状と強さが調整されて いる。 また、 尾翼なしで風見安定を得るため稼動状態でロータ 一面が風下側になるよ う にプレー ド 1 が取付けられている。  In the first embodiment, the blade 1 at the highest point is set to a flapping angle of about 30 degrees in a normal installation mode and no wind, and when the rotor surface becomes horizontal, the blade 1 The shape and strength of the panel are adjusted so that the flapping angle] 3 can be maintained at 0 degrees. In addition, the blade 1 is mounted so that one side of the rotor is on the leeward side during operation to obtain weather vane stability without the tail.
無風の設置状態では、 プレー ド 1 は上述のスプリ ングによつ てフラ ップ角 3 0度から 0度の範囲に収まっている (F i g 7 一 1 ) 。  In the windless installation state, the plate 1 is within the range of the flapping angle of 30 ° to 0 ° due to the above-mentioned spring (FIG. 11).
' ブレー ド 1 の凸面側からの風、すなわち風車でいえば風下側 からの風に対しては、 プレー ド 1 はフラ ップ角 を小さ く しょ う とするがスプリ ングによって動きを拘束されているので、通 常のダウン ' ウィン ド方式のプロペラ型風車と同様の風見安定 を示す。  '' For the wind from the convex side of blade 1, that is, the wind from the leeward side of the windmill, blade 1 attempts to reduce the flap angle, but its movement is restrained by the spring. Therefore, it shows the same weather vane stability as a normal down-wind propeller type wind turbine.
プレー ド 1 の凹面側からの風に対しては、 ブレー ド 1 はフラ ップ角 3 0度程度であったものが風圧によって一時 4 5度程 度にまでフラ ップ角 ]3 を増すが、各プレー ド 1 がピッチ角 Θ を もって取付け られているため空力的な トルク を発生し回転を 始める よ う になる ( F i g 7 - 2 ) 。 回転を始める と、 遠心力 によってフラ ップ角 e を減じ始め、釣合い状態.で回転を続けるWith respect to the wind from the concave side of blade 1, blade 1 had a flap angle of about 30 degrees, but the flap angle increased to about 45 degrees temporarily due to wind pressure. And each plate 1 has a pitch angle Θ Since it is installed in the center, it generates aerodynamic torque and starts to rotate (Fig. 7-2). When rotation starts, the flap angle e begins to decrease due to centrifugal force, and continues to rotate in a balanced state.
( F i g 7 - 3 ) 。 (Fig 7-3).
この状態を設計点にすれば、従来風車と全く 同 じ性能を発揮 できるこ とになる。 '  If this state is taken as the design point, the same performance as the conventional wind turbine can be achieved. '
以下前述に説明 した通り、 風速の増加に対して、 回転数を大 き く 増すこ と なく フラ ップ角 /3 を大き く しなが ら当該風車は 回転を継続する。 プレー ド 1 の失速が始まる と、 風速増加に'伴 い翼端の付加質量体に作用する捩り モーメ ン トが大き く なる だけでなく 、 そのモーメ ン トによって、 よ り迎え角が增し失速 領域が增える という循環作用が生じ、風速が増すにつれてフラ ップ角を増すが回転数は増えないという傾向が継続する。 . 風速がさ らに増 してく る とブレー ド 1 はフラ ップ角 /3 上限 のス ト ッパーに当たったまま回転を維持するこ とになる。 フラ ップ角 ]3 の上限を 8 0度にする と ローターの前面面積はフラ ップ角 ゼロの時の約 1 / 3 6 とな り、 受け止める動圧も 1 / 3 6 になる。 これは 1 0 m / s を定格風速とする と、 6 0 m Z s の強風下でも定格運転時に受ける風圧と 同程度である こ と を意味し、通常しかるべき'安全率をもって強度設計をする こ と を考える と実用上如何なる風速に対しても回転を停止する こ となく稼動できるよ う に設計するこ とが可能となる。  As described above, the wind turbine continues to rotate while increasing the flapping angle / 3 without increasing the number of rotations significantly, as the wind speed increases. When the stall of the blade 1 starts, not only does the torsional moment acting on the additional mass on the wing tip increase with the wind speed, but also the angle of attack further decreases due to the moment. The circulation effect that the area is increased occurs, and the tendency that the flap angle increases as the wind speed increases but the rotation speed does not increase continues. As the wind speed further increases, blade 1 will keep rotating while hitting the stopper with the upper limit of flapper angle / 3. If the upper limit of the flap angle] 3 is set to 80 degrees, the frontal area of the rotor will be about 1/36 when the flap angle is zero, and the received dynamic pressure will also be 1/36. This means that if the rated wind speed is 10 m / s, the wind pressure is the same as that received during the rated operation even under a strong wind of 60 mZ s, and the strength is usually designed with an appropriate safety factor. In view of this, it is possible to design so that it can be operated without stopping rotation at practically any wind speed.
実施例 2  Example 2
F i g 1 4 本発明の他の実施例を示す。  Fig 14 shows another embodiment of the present invention.
実施例 1 と異なるのは、 プレー ド翼端の後縁にフラ ップ角の制 御をよ り容易なら しめる よ う に制御用風車を取付けたと ころ にある。 既に制御用風車の作用を詳しく説明をしたよ う に、 ブレー ドの 捩り剛性と付加質量体の組合せに強く依存するこ となく 、 それ 自体で独立に、 フラ ップ角 が大きいと ころでは風速増に対し て回転数を増加させずフラ ップ角 ]3 を増す機能を有するので、 ブレー ド · システムの設計が容易になる と言う メ リ ッ トを有す る。 発明の効果 The difference from the first embodiment is that a control windmill is attached to the trailing edge of the blade tip so as to make the control of the flap angle easier. As already described in detail for the operation of the control wind turbine, the wind speed does not depend strongly on the combination of the torsional stiffness of the blade and the additional mass, but is independent of itself when the flap angle is large. It has the advantage that it has the function of increasing the flap angle without increasing the number of revolutions, thereby facilitating the design of the blade system. The invention's effect
本発明の風力発電装置は、従来の風車には装備が必須と され ているブレー ドのピッチ角制御装置を設ける こ となく 強風に 対して過回転にならない方法が実現可能となった。  The wind power generator of the present invention can realize a method that does not cause over-rotation against a strong wind without providing a blade pitch angle control device, which is essential for a conventional wind turbine.
また、本発明のコンセプトはプレー ドの構造をシンプルにす るので、 在来の風車にく らベて著しいコス ト低減を可能と し、 なおかつ可搬性および組立ての容易性についても格段の向上 が期待できる。 '  In addition, the concept of the present invention simplifies the structure of the blade, thus enabling significant cost reductions compared to conventional wind turbines, and significantly improving portability and ease of assembly. Can be expected. '
また、 プレー ドには薄板構造も許容されるので品質の確保が 容易となり、 かつ曲げ負荷が従来方式のブレー ドに比して大幅 に軽滅さ.れる上、 プレ^ " ドに作用する応力も一様性を有する よ う になるので疲労強度を確保する上でも従来型に比軟して優 位になる とい う大きなメ リ ッ トを与える。 , 本発明を応用 した風車にはカ ツ ト ·ァゥ トすなわちプレー ド. を停止する という概念が存在しないので、 強風中でも常に定格 に近い発電を継続できる という特徴を持つ。  In addition, since a thin plate structure is acceptable for the blade, it is easy to ensure the quality, and the bending load is greatly reduced as compared with the conventional blade, and the stress acting on the blade is also reduced. Therefore, the present invention has a great advantage that it is superior to the conventional type in securing the fatigue strength, and has a great advantage in securing the fatigue strength. Since there is no concept of stopping a boat, that is, a blade, it has the feature that power generation near rated power can be continued even in strong winds.
また、 円弧翼等の薄翼ブレー ドは流線形状の翼断面を持つ風 車ブレー ドの必然であった低レイ ノルズ数における性能の極 端な低下がないので、 これを.用いる場合には直径 1 0 m以下の 風車の性能を格段に向上させる こ とが可能と な り 用途拡大の 道を拓く 。 産業上の利用可能性 In addition, thin blades such as arc blades do not have a drastic reduction in performance at low Reynolds numbers, which was inevitable for wind turbine blades with streamlined blade cross sections. It is possible to significantly improve the performance of wind turbines with a diameter of 10 m or less. Open the way. Industrial applicability
この発明の風力発電装置は、 ク リ ーンな自然エネルギーを利 用 してエネルギー コ ス トがもつ と も安い風力発電を提供する のである。 従来の風力発電の多く の欠点を改善して、 効率的風 力発電装置である。  The wind turbine generator of the present invention provides clean wind energy by using clean renewable energy, even if the energy cost is low. It is an efficient wind turbine, improving many disadvantages of conventional wind turbines.

Claims

」請求の範囲 "The scope of the claims
' 1  '1
プロペラ型風力発電装置においてローターのポス部に、 弾性捩 れ変形によってス パン方向にピッチ角を変え得るブレー ドが その翼断面の上下方向への回転を自 由に とれる よ う に取付け られ、 ブレー ドの翼端を含む翼端近傍の後縁部に付加質量体が 取付けられている こ と を特徴とする風力発電装置。 ' In the propeller type wind power generator, a blade capable of changing the pitch angle in the span direction by elastic torsional deformation is attached to the rotor post so that the blade section can freely rotate in the vertical direction. A wind power generator, characterized in that an additional mass is attached to the trailing edge near the wing tip including the wing tip. '
i'2  i'2
ブレー ドの翼端部にプレー ドの進行方向に概ね正対する よ う な回転面をもつ小型の制御用風車が取付け られている'こ どを 特微とする請求項 1記載の風力発電装置。2. The wind power generator according to claim 1, wherein a small control wind turbine having a rotating surface substantially facing the traveling direction of the blade is attached to the blade tip of the blade.
;  ;
プ レー ドと ボス部にそれぞれ S字状板バネ と ほぼ直線状の板 バネを固定して取付け、 それらを一つのヒ ンジで結合して無風 時にプレー ドが倒れず、 かつ起動時にブレー ドが風下側に流さ れないよ う にする こ と を特徴とする請求項 1 および 2記載の 風力発電装置。 An S-shaped leaf spring and a substantially linear leaf spring are fixed and attached to the blade and boss, respectively, and they are connected with a single hinge so that the blade does not fall down when there is no wind, and the blade does not fall when starting up. 3. The wind power generator according to claim 1, wherein the wind power generator is prevented from flowing downwindward.
! L4  ! L4
プレー ドとボス部をフラ ップ■ ヒ ンジと同軸にあるコイル状の パネでつなぎ無風時にプレー ドが倒れず、 かつ起動時にブレー ドが風下側に流されないよ う にする こ と を特徴とする請求項The blade and the boss are connected by a coil-shaped panel coaxial with the flap hinge so that the blade does not fall down when there is no wind and the blade does not flow downwind during startup. Claims
1 および 2記載の風力発電装置。 Wind turbine generator according to 1 and 2.
5  Five
プレー ドあるいはボス部にコマ状の突起あるいは板バネによ るス ト ッパーを設け、 そのス ト ッパーと プレー ドあるいはボス 部の干.渉によってプレー ドが完全に風下側に流されないよ う に して回転力を保持するこ と を特徴とする請求項 1 および 2 記載の風力発電装置。 Provide a stopper in the form of a top projection or a leaf spring on the blade or boss so that it does not flow completely downwind due to interference between the stopper and the blade or boss. Claims 1 and 2 wherein the rotational force is maintained by A wind power generator as described.
;6  ; 6
ポス部に板バネを取付け、その板パネとプレー ドの干渉によ つて、 ブレー ドの凹側断面方向の動きを拘束し、 ローターに風 見安定を与える こ と を特徴とする請求項 1 および 2記載の風 力発電装置。  Claims 1 and 2 characterized in that a leaf spring is attached to the pos part, and the movement of the blade in the concave cross-sectional direction is restrained by the interference between the leaf panel and the plate, thereby giving the rotor a stable weather vane. 2. The wind power generator according to 2.
PCT/JP2002/001122 2001-02-13 2002-02-12 Wind power generating device WO2002064974A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-35656 2001-02-13
JP2001035656A JP3435540B2 (en) 2001-02-13 2001-02-13 Wind power generator

Publications (1)

Publication Number Publication Date
WO2002064974A1 true WO2002064974A1 (en) 2002-08-22

Family

ID=18899072

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001122 WO2002064974A1 (en) 2001-02-13 2002-02-12 Wind power generating device

Country Status (2)

Country Link
JP (1) JP3435540B2 (en)
WO (1) WO2002064974A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051079A1 (en) * 2002-12-05 2004-06-17 Ernst Buttler Submerged run of river turbine
CN1308594C (en) * 2004-03-18 2007-04-04 上海交通大学 Horizontal shaft wind mill with small sharp wing
US11319921B2 (en) 2018-06-14 2022-05-03 Vestas Wind Systems A/S Wind turbine with hinged blades having a hinge position between inner and outer tip end of the blades

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071122A (en) * 2005-09-07 2007-03-22 Onwave Corp Bracing strut in micro wind turbine generator
JP4533991B1 (en) * 2009-09-11 2010-09-01 学校法人文理学園 Small propeller windmill
WO2013001647A1 (en) 2011-06-30 2013-01-03 学校法人文理学園 Propeller windmill for comapact electricity generating machine
DE102013008218A1 (en) * 2013-05-14 2014-11-20 Erhard Frase Automatic mechanical rotor blade angle adjustment with overspeed protection for small wind turbines.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS253964B1 (en) * 1948-09-30 1950-11-20
JPS298608B1 (en) * 1952-06-30 1954-12-27
US4291235A (en) * 1979-02-26 1981-09-22 Bergey Jr Karl H Windmill
WO1984000053A1 (en) * 1982-06-15 1984-01-05 Conort Eng Ab Device for controlling the vane of a wind turbine
JPH08219005A (en) * 1995-02-17 1996-08-27 Mitsubishi Heavy Ind Ltd Wind mill

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS253964B1 (en) * 1948-09-30 1950-11-20
JPS298608B1 (en) * 1952-06-30 1954-12-27
US4291235A (en) * 1979-02-26 1981-09-22 Bergey Jr Karl H Windmill
WO1984000053A1 (en) * 1982-06-15 1984-01-05 Conort Eng Ab Device for controlling the vane of a wind turbine
JPH08219005A (en) * 1995-02-17 1996-08-27 Mitsubishi Heavy Ind Ltd Wind mill

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051079A1 (en) * 2002-12-05 2004-06-17 Ernst Buttler Submerged run of river turbine
US7487637B2 (en) 2002-12-05 2009-02-10 Stein Ht Gmbh Spezialtiefbau Submerged run of river turbine
CN1308594C (en) * 2004-03-18 2007-04-04 上海交通大学 Horizontal shaft wind mill with small sharp wing
US11319921B2 (en) 2018-06-14 2022-05-03 Vestas Wind Systems A/S Wind turbine with hinged blades having a hinge position between inner and outer tip end of the blades

Also Published As

Publication number Publication date
JP3435540B2 (en) 2003-08-11
JP2002242816A (en) 2002-08-28

Similar Documents

Publication Publication Date Title
JP3996945B1 (en) Vertical axis windmill
TWI231840B (en) Windmill for wind power generation
CA2378607C (en) Rotor with a split rotor blade
US6688842B2 (en) Vertical axis wind engine
EP2647835B1 (en) Flexible flap arrangement for a wind turbine rotor blade
CA2533426C (en) Vertical-axis wind turbine
US8905706B2 (en) Vortex propeller
JP4690776B2 (en) Horizontal axis windmill
JPS63502044A (en) Wind turbine with Savonius rotor
EP2906819B1 (en) Joined blade wind turbine rotor
US6602045B2 (en) Wingtip windmill and method of use
CA2425447C (en) Wind turbine blade unit
EP2840256B1 (en) Wind turbine blade
CN101592122B (en) Wind turbine blade with twisted tip
US20150354530A1 (en) Multiple airfoil wind turbine blade assembly
US20170284363A1 (en) Multiple airfoil wind turbine blade assembly
WO2002064974A1 (en) Wind power generating device
CN112703313B (en) Hinged wind turbine blade with defined angle in flap direction
US20220128032A1 (en) Horizontal-axis turbine for a wind generator, and wind generator comprising said turbine
SU1747742A2 (en) Blade of windmill
JP2024080149A (en) Wind power generation equipment
JP2004183531A (en) Wind receiving blade for vertical axis wind turbine
KR20020005550A (en) Savonius Rotor Blade with Air-foil type Muliti-Damper
JP2004183544A (en) Wing tip propulsion device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase