WO2002064847A1 - Nouveau systeme d'alliage ferromagnetique a memoire de forme - Google Patents

Nouveau systeme d'alliage ferromagnetique a memoire de forme Download PDF

Info

Publication number
WO2002064847A1
WO2002064847A1 PCT/US2002/004239 US0204239W WO02064847A1 WO 2002064847 A1 WO2002064847 A1 WO 2002064847A1 US 0204239 W US0204239 W US 0204239W WO 02064847 A1 WO02064847 A1 WO 02064847A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
crystal structure
actuator
composition
twin
Prior art date
Application number
PCT/US2002/004239
Other languages
English (en)
Original Assignee
University Of Maryland
Wuttig, Manfred, R.
Li, Jian
Craciunescu, Corneliu, M.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University Of Maryland, Wuttig, Manfred, R., Li, Jian, Craciunescu, Corneliu, M. filed Critical University Of Maryland
Publication of WO2002064847A1 publication Critical patent/WO2002064847A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/006Resulting in heat recoverable alloys with a memory effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/0302Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity characterised by unspecified or heterogeneous hardness or specially adapted for magnetic hardness transitions
    • H01F1/0306Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type
    • H01F1/0308Metals or alloys, e.g. LAVES phase alloys of the MgCu2-type with magnetic shape memory [MSM], i.e. with lattice transformations driven by a magnetic field, e.g. Heusler alloys
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials

Definitions

  • This invention relates to novel ferromagnetic shape memory alloys and actuator materials constructed therefrom; and more particularly relates to materials that can demonstrate an actuation response to an applied external stimulus such as an applied field stimulus.
  • actuation materials having large strains, appreciable force generation, and rapid time of response to an external stimulus.
  • Popular classes of actuation materials include piezoelectric, magnetostrictive, and shape memory actuation materials; each of these three classes has been found to exhibit both performance advantages as well as limitations in actuation capabilities.
  • Piezoelectric materials are typically ceramic materials, e.g., lead-zirconate-titanate, and are characterized by an ability to mechanically deform, i.e., expand and contract, in response to an applied electric field, in a demonstration of the inverse piezoelectric effect.
  • Piezoelectric ceramic actuation members conventionally employed in series in a stack form, exhibit an acceptable output energy density as well as a very high bandwidth, i.e., a relatively fast actuation stroke.
  • a piezoelectric stack structure is generally limited, however, to only a relatively small stroke, and can typically produce only a limited output force, largely due to the characteristic brittleness of piezoelectric materials.
  • stroke and force amplification mechanisms are often required of an actuator incorporating a piezoelectric actuation material; but for many applications, the limited piezoelectric actuation force cannot be rendered sufficient for the application as a practical matter.
  • Magnetostrictive actuation materials typically are characterized as being capable of producing an actuation force and an actuation stroke that are greater than that of piezoelectric materials.
  • Application of a magnetic field to a magnetostrictive material causes the material to be strained as the domain magnetization vectors of the material rotate to align with the direction of the applied magnetic field.
  • the unit cells of the material are strained by the magnetization rotation but their orientation is not changed.
  • magnetostrictive actuation elements While magnetostrictive actuation elements do exhibit a relatively high-frequency actuation response, they are fundamentally limited by their electrical conductivity, which precludes operation at very high actuation frequencies due to the formation of eddy currents in the material in response to a changing applied magnetic field, unless at least one of the material dimensions of the elements perpendicular to the field is small.
  • An additional limiting constraint of magnetostrictive materials is that they typically are characterized by an actuation stroke that, like that of piezoelectric actuation elements, is limited in its extent; here due to the domain elongation inherent in the actuation mechanism.
  • the class of actuator materials known as shape memory alloys is characterized in that, when plastically deformed at one temperature or stress condition in a phase known as the martensitic phase, the alloy can recover its original shape when subjected to an alloy-specific martensitic-austenitic transformation temperature or stress condition that reverts the material to a corresponding parent, austenitic phase. This effect is based on the restoration of twin variants of the martensite phase of the material to their austenitic shape. Such materials are capable of reversing a large stress-induced martensitic deformation when transformed back to the austenitic phase, and thus can enable a large actuation stroke mechanism. Furthermore, the recoverable strain accommodated by a shape memory alloy is generally considered to be the largest achievable for any actuation material, and can be as large as about 20%, for, e.g., the Cu-Al-Ni alloy.
  • shape memory alloys The large stroke generally characteristic of shape memory alloys is offset by the typically very slow actuation response time of the materials when the martensitic/austenitic transformation is thermally controlled. As a result, shape memory actuation can not accommodate applications requiring even moderately high actuation frequencies. Furthermore, the shape memory transformation is generally characterized as a poor energy conversion mechanism; i.e., much of the heat supplied to the material to drive the martensitic/austenitic transformation is uncontrollably lost to the surroundings. Thermal control of the shape memory effect also limits the allowable operational temperature range of an application for which a shape memory alloy can be employed.
  • shape memory alloys For many actuation applications, it is ideally preferred to combine the large actuation stroke provided by shape memory alloys with the fast actuation response time of magnetostrictive and piezoelectric materials. At the same time, the thermal constraints of shape memory, piezoelectric, and magnetostrictive materials would also preferably be eliminated. Previous attempts to arrive at such materials that embody all of these qualities have resulted in the introduction of such alloys as certain Ni-Mn-Ga, Ni-Fe-Co, Mn-Fe-Co and Ga-Si-Al alloys. None of these, however have proven entirely satisfactory.
  • FMSMA ferromagnetic shape memory alloys
  • NiMnGa, FePd and FePt have long been known to be SMAs [Dunne DP, Wayman M, Met. Trans.1973 ;4: 137; Kajiwara S, Owen W, Met. Trans. 1974;5:2047; Tadaki T, Shimizu K, Scripta Met. 1975;9:771; Oshima R, ScriptaMet. 1981;15:829; Oshima R, Suguyama M, Fujita FE, Met.
  • FMSMAs can potentially be used as magneto-mechanically controlled actuators.
  • x is a value such that the alloy exhibits an austenitic crystal structure above a characteristic phase transformation temperature and which exhibits a martensitic twinned crystal structure below the phase transformation temperature, and further being characterized by a magnetocrystalline anisotropy energy that is sufficient for enabling motion of twin boundaries of the martensitic twinned crystal structure in response to application of a magnetic field to the martensitic twinned crystal structure.
  • a further embodiment of the invention concerns an actuating element comprising an alloy as described above and a magnetic actuation field source disposed with respect to the actuator material in an orientation that applies to the alloy a magnetic actuation field in a direction that is substantially parallel with a selected twin boundary direction of the martensitic twinned crystal structure thereof.
  • a final embodiment of the invention concerns a method for controlling the orientation of the twin structure in a ferromagnetic shape memory alloy having the composition: wherein x is a value such that the alloy exhibits an austenitic crystal structure above a characteristic phase transformation temperature and which exhibits a martensitic twinned crystal structure below the phase transformation temperature, and further being characterized by a magnetocrystalline anisotropy energy that is sufficient for enabling motion of twin boundaries of the martensitic twinned crystal structure in response to application of a magnetic field to the martensitic twinned crystal structure, or an actuating element comprising the alloy; the method comprising applying to the material a magnetic field which is of a direction and of a magnitude enough for reorienting the twin structure of the material, to produce thereby shape changes of the material and motion and/or force.
  • Fig. 1 is a diagram depicting representative alloys of the invention positioned in martensite, ferromagnetic and special lattice groups.
  • Fig.2 is a micrograph of an alloy of the invention.
  • Fig. 3 depicts temperature dependence relationships of several properties of several alloys of the invention.
  • Fig. 4 depicts magnetization curves of an alloy of the invention.
  • Co 2 Ni 1 . x Ga 1+x wherein x has certain values are ferromagnetic shape memory alloys.
  • their martensite start temperatures vary in the range 20°C ⁇ T ⁇ 60°C as the concentration parameter x decreases.
  • the high and low temperature phases are body centered cubic and orthorhombic and/or monoclinic, respectively.
  • the transformation hysteresis i.e., the difference between the martensite and austenite start temperatures equals approximately 30 degrees.
  • the saturation magnetization of the alloys resembles that of nickel while their coercive force is less than lOOmT.
  • Diffusionless, i.e. martensitic, transformations occur at certain critical average electron concentrations.
  • martensitic transformations in Cu-based alloys systems occur at ⁇ s>)1.4 [Mott NP, Jones H, The Theory of the Properties of Metals and Alloys, New York, Dover, 1958] while those in Fe-based alloys occur at ⁇ s+d>.8.5 [Wassermann EF, Kaestrier J, Acet M, Entel P, Proc Intntl Conf On Solid-Solid Phase Transformations, Koiwa M, Otsuka K, Miyazaki T, eds, Kyoto, The Japan Institute of Metals, Sendai, 1999:807].
  • a search for new Co-based FMSMAs can thus start by identifying a potential Co-based Heusler alloy with an average valence electron concentration of approximately 7.3. Of those CoNiGa is similar to NiMnGa in that ⁇ s+p+d>.10. Thus, Co Nii- x Gai +x alloys should be ferromagnetic and display SMA characteristics. The present invention identifies which of these alloys behave thusly.
  • Four alloys of nominal composition, Co 2 Ni 1 _ ⁇ Ga 1+x , x 0.06, 0.09, 0.12, 0.15, were prepared by arc melting.
  • the microstructure displayed in Fig. 2 is typical of a SMA martensite as the domain boundaries are straight indicating only elastic distortions in the product phase.
  • the modulus defect and internal friction data displayed in Fig. 3 point toward a SMA-type martensitic transformation as well [Colluzi B, Biscarini A, Campanella R, Trotta L, Mazzolai G, Tuissi A, Mazzolai FM, Acta Mater. 1999;47: 1965; Roytburd A, Su Q, Slutsker JS. Wuttig M, Acta Mater. 1998;46:5095; Wuttig M, overallescu C, Li J, Mat. Trans. JTM 2000;4 1:933].
  • the magnetization curve of Co 2 Ni 0 . 88 Gau 2 is presented in Fig. 4. It can be seen that the saturation magnetization in the quenched state is comparable to that of nickel, as expected, and that the coercive force equals approximately 200 mT. Furthermore, the saturation magnetization depends on the state of the alloy. This agrees with previous observations on the ferromagnetic properties of Co 2 Ni 1 . x Ga 1+ ⁇ , l>x>0.3 [Booth et al, J. Magn. Matls. 1978; 7 :127. These indicated that the quenched alloys are ferro magnetic for x ⁇ 0.5 and that the saturation magnetization depends on the composition as well as the state of anneal. They also showed that the alloys possess an ordered B2 structure.
  • the alloys can be prepared according to methods other than those described above, such methods being well known to those skilled in the art.
  • the alloys of the invention may be employed as single crystals that would need to be grown in a manner similar to Ni-alloy turbine blades.
  • single crystals can be produced according to the methods described in U.S. patents nos. 5,154,884 and 5,413,648, the entire contents and disclosures of which are incorporated herein by reference.
  • they can be used as polycrystals (regular metals) in which case they need to be hot and/or cold rolled to achieve a texture.
  • the alloys of the invention are particularly suitable for use as the latter, contrary to NiMnAl, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

Cette invention concerne un alliage ferromagnétique à mémoire de forme représenté par la formule Co2Ni1-xGa1+x dans laquelle x est une valeur telle que l'alliage présente d'une part une structure cristalline austénitique au-dessus d'une température de transformation de phase caractéristique, d'autre part une structure à cristal jumelé martensitique au-dessous de la température de transformation de phase, et qui se caractérise en outre par une énergie anisotropique magnétocristalline suffisante pour permettre le déplacement des limites jumelées de la structure à cristal jumelé martensitique en réponse à l'application d'un champ magnétique à cette structure et un élément actionneur comprenant l'alliage.
PCT/US2002/004239 2001-02-13 2002-02-13 Nouveau systeme d'alliage ferromagnetique a memoire de forme WO2002064847A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US26834301P 2001-02-13 2001-02-13
US60/268,343 2001-02-13

Publications (1)

Publication Number Publication Date
WO2002064847A1 true WO2002064847A1 (fr) 2002-08-22

Family

ID=23022545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/004239 WO2002064847A1 (fr) 2001-02-13 2002-02-13 Nouveau systeme d'alliage ferromagnetique a memoire de forme

Country Status (1)

Country Link
WO (1) WO2002064847A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004078367A1 (fr) * 2003-03-03 2004-09-16 Adaptive Materials Technology Oy Appareil amortisseur et actionneur utilisant un materiau magnetostrictif, et dispositif amortisseur de vibrations et son utilisation
US7063752B2 (en) * 2001-12-14 2006-06-20 Exxonmobil Research And Engineering Co. Grain refinement of alloys using magnetic field processing
WO2008104961A2 (fr) * 2007-03-01 2008-09-04 Consejo Superior De Investigaciones Científicas Fils ferromagnétiques à mémoire de forme, leur procédé d'obtention et leurs applications
WO2009147135A1 (fr) * 2008-06-02 2009-12-10 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Composant en matériau ferromagnétique à mémoire de forme et son utilisation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958154A (en) * 1996-08-19 1999-09-28 Massachusetts Institute Of Technology High-strain, magnetic field-controlled actuator materials

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5958154A (en) * 1996-08-19 1999-09-28 Massachusetts Institute Of Technology High-strain, magnetic field-controlled actuator materials

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BOOTH, J.G.: "Magnetic and structural phases of nickel and copper substituted CoGa alloys", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 7, 1978, pages 127 - 130, XP002950318 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7063752B2 (en) * 2001-12-14 2006-06-20 Exxonmobil Research And Engineering Co. Grain refinement of alloys using magnetic field processing
WO2004078367A1 (fr) * 2003-03-03 2004-09-16 Adaptive Materials Technology Oy Appareil amortisseur et actionneur utilisant un materiau magnetostrictif, et dispositif amortisseur de vibrations et son utilisation
WO2008104961A2 (fr) * 2007-03-01 2008-09-04 Consejo Superior De Investigaciones Científicas Fils ferromagnétiques à mémoire de forme, leur procédé d'obtention et leurs applications
WO2008104961A3 (fr) * 2007-03-01 2008-11-27 Consejo Superior Investigacion Fils ferromagnétiques à mémoire de forme, leur procédé d'obtention et leurs applications
ES2333755A1 (es) * 2007-03-01 2010-02-26 Consejo Superior Investig. Cientificas Hilos ferromagneticos con memoria de forma, su procedimiento de obtencion y sus aplicaciones.
WO2009147135A1 (fr) * 2008-06-02 2009-12-10 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. Composant en matériau ferromagnétique à mémoire de forme et son utilisation
US8786276B2 (en) 2008-06-02 2014-07-22 Leibniz-Institut Fuer Festkoerper-Und Werkstoffforschung Dresden E.V. Construction element made of a ferromagnetic shape memory material and use thereof

Similar Documents

Publication Publication Date Title
Wuttig et al. A new ferromagnetic shape memory alloy system
EP0958618B1 (fr) Materiaux d'actionneur a haute contrainte commandes par champ magnetique
Ullakko et al. Large magnetic‐field‐induced strains in Ni2MnGa single crystals
Liu Sm–Co high-temperature permanent magnet materials
Klemmer et al. Magnetic hardening and coercivity mechanisms in L10 ordered FePd ferromagnets
Söderberg et al. Giant magnetostrictive materials
Li et al. Martensitic transformation and magnetization of Ni–Fe–Ga ferromagnetic shape memory alloys
Liu et al. Giant magnetostrictive materials
Xu et al. Cooling-induced shape memory effect and inverse temperature dependence of superelastic stress in Co2Cr (Ga, Si) ferromagnetic Heusler alloys
Craciunescu et al. New ferromagnetic and functionally graded shape memory alloys
Buchelnikov et al. Magnetic shape-memory alloys: phase transitions and functional properties
Liu Detwinning process and its anisotropy in shape memory alloys
EP1460139B1 (fr) Alliage Co-Ni-Al mémoire et procédé de sa fabrication
JP2002069596A5 (fr)
JP2001279360A (ja) Mn系合金
Oikawa et al. Development of the Co-Ni-AI ferromagnetic shape memory alloys
Murray et al. Magnetic and mechanical properties of FeNiCoTi and NiMnGa magnetic shape memory alloys
WO2002064847A1 (fr) Nouveau systeme d'alliage ferromagnetique a memoire de forme
JP2007211350A (ja) 磁場応答アクチュエーターあるいは磁性利用センサーに用いる強磁性形状記憶合金
Annadurai et al. Stress analysis, structure and magnetic properties of sputter deposited Ni–Mn–Ga ferromagnetic shape memory thin films
Liu et al. Shape-memory materials and phenomena-Fundamental aspects and applications; Proceedings of the Symposium, Boston, MA, Dec. 3-5, 1991
JP2002285269A (ja) 強磁性形状記憶合金
Yasuda et al. Microstructure control for developing Fe–Pd ferromagnetic shape memory alloys
Shevyrtalov et al. Post-Annealing Influence on Magnetic Properties of Rapidly Quenched Ni–Mn–Ga Glass-Coated Microwires
Kaplan et al. Jahn-Teller crystals–new class of smart materials

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP