WO2002062629A1 - Gas generator - Google Patents

Gas generator Download PDF

Info

Publication number
WO2002062629A1
WO2002062629A1 PCT/JP2002/000916 JP0200916W WO02062629A1 WO 2002062629 A1 WO2002062629 A1 WO 2002062629A1 JP 0200916 W JP0200916 W JP 0200916W WO 02062629 A1 WO02062629 A1 WO 02062629A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cylinder
housing
gas generator
flame
Prior art date
Application number
PCT/JP2002/000916
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Yoshida
Yoshiyuki Kishino
Ryoi Kodama
Yasushi Matsumura
Original Assignee
Nippon Kayaku Kabushiki-Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Kabushiki-Kaisha filed Critical Nippon Kayaku Kabushiki-Kaisha
Publication of WO2002062629A1 publication Critical patent/WO2002062629A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/26Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow
    • B60R21/268Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas
    • B60R21/272Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags characterised by the inflation fluid source or means to control inflation fluid flow using instantaneous release of stored pressurised gas with means for increasing the pressure of the gas just before or during liberation, e.g. hybrid inflators

Definitions

  • the present invention relates to a P background art related to a gas generator used for an airbag device of an automobile.
  • Airbags are known as one of the safety devices to protect the occupants of a car from the impact generated during a collision.
  • This airbag operates with a large amount of high-temperature, high-pressure gas generated by a gas generator.
  • a gas generator Conventionally, there are generally two types of methods for generating gas in this gas generator.
  • One is a pi-mouth system in which all generated gas is generated by the combustion of a solid gas generant.
  • the other is a cylinder holding high-pressure gas and a large amount of high temperature by a small amount of gunpowder composition to supply heat to the high-pressure gas in this cylinder. is there.
  • a gas generant composition for increasing the number of moles of gas generated by the gas generant a gas generant composition containing guanidine nitrate as a fuel and ammonium nitrate as an oxidant in the composition is effective. is there.
  • a guanidine derivative is used as a nitrogen-containing organic compound
  • phase-stabilized ammonium nitrate is used as an oxidizing agent
  • a pressure index regulator used as a detonation inhibitor
  • silicon compound is used as a detonation inhibitor
  • one of the problems is the low ignition rate of the gas generating agent in addition to the slow burning rate.
  • the time between the start of operation and the deployment of the airbag is about 30 to 6 Oms. Even a slight delay in the operation of the gas generator has a large effect, and it does not provide sufficient performance for occupant protection. If the ignitability of the gas generating agent is low, even if the igniter in the gas generator ignites, the time required for the gas generating agent to ignite becomes longer, resulting in a delay in ignition of the gas generator.
  • the hybrid type is suitable for miniaturization because only a small amount of gas generating agent is required.
  • the high-pressure gas may escape from the cylinder and may not be able to exhibit sufficient ⁇ fe capability. For this reason, it is necessary to seal the cylinder gas with a rupture disk with high mechanical breaking strength and high sealability because it is necessary to seal the gas in the cylinder for a long time.
  • This type of gas generator is disclosed in Japanese Patent Application Laid-Open No. 8-253010.
  • This gas generator uses a rupture diaphragm (rapture disk) with high breaking strength to increase the gas tightness of the first container (bomb) in which high-pressure gas is sealed. 5.
  • the rupture diaphragm of the first container is ruptured reliably by pushing the hollow piston provided in the second container provided with the combustion chamber by the ignition of the propulsion charge (ignition means). This ensures that the high-pressure gas in the first container is released. In this way, the rupture diaphragm can be ruptured without fail, but it is necessary to install a hollow biston, etc., and there has been a problem that the structure of the gas generator is complicated.
  • An object of the present invention is to provide a hybrid gas generator that satisfies both miniaturization and simplified structure.
  • the gas generator according to claim 1 of the present invention for solving the above-mentioned problem, comprises a cylinder filled with high-pressure gas, a cup-shaped housing containing a donut-shaped transfer charge and ignition means. A rupture disk that holds and seals the pressure of the cylinder, and a rupture disk that is in front of the cylinder so as to form a gas retention space between the cylinder and the housing. An outer tubular member for connecting and holding the housing and the housing, wherein the cylinder and the housing are connected and held such that the ignition means housed in the housing faces the ignition means. And
  • a hollow space is formed in the housing because the ignition means and the rupture disk that seals the high-pressure gas in the cylinder have a face-to-face structure, and the transfer agent has a donut shape. Therefore, the flame from the ignition means directly hits the rupture disk. Thereby, the rupture disk can be ruptured almost simultaneously with the ignition of the ignition means.
  • a gas retaining space is formed between the cylinder and the housing.
  • the cold gas discharged from the cylinder and adiabatically expanded mixes with the high-temperature heat flow discharged from the housing in this gas retaining space. As a result, the gas is discharged as a uniformly heated gas.
  • the gas generator according to claim 2 is the gas generator according to claim 1, wherein the housing has a flame discharge port formed at a bottom portion, and the flame discharge port is shrunk from inside to outside. It is formed so as to be centered on the center of the rupture disk.
  • the flame from the igniting means is concentrated on the center of the rupture disk. Therefore, the flame from the ignition means is not dispersed, and the rupture disc ruptures reliably. In addition, the rupture disk bursts and opens at the center, so the gas in the cylinder is reliably released.
  • the gas generator according to claim 3 is the gas generator according to claim 2, wherein a plurality of flame discharge holes toward the outer cylinder are formed in a bottom-side cylinder of the housing. is there.
  • the gas generator according to claim 4 is the gas generator according to claim 1, wherein the gas from the cylinder is agitated in the gas retaining space at the bottom of the housing, and is provided in the outer cylinder. A plurality of legs are provided so as to be released from the plurality of gas discharge holes.
  • the gas generator according to claim 5 is the gas generator according to claim 2, wherein the gas from the cylinder is agitated in the gas retaining space at the bottom of the housing, and the gas is supplied to the outer cylindrical member.
  • a plurality of legs are provided so as to be released from a plurality of provided gas discharge holes.
  • the leg provided on the housing is formed, for example, at the same predetermined angle as a gas discharge hole provided at a predetermined angle around the outer cylinder. In other words, the gas is released from between the legs to the portion of the outer cylinder where the gas discharge holes are not formed. This makes it easier for the gas released from the cylinder to stay in the gas storage space, and is heated by the heat flow from the housing side and released from the gas discharge holes.
  • the gas generator according to claim 6 is the gas generator according to claim 1, wherein the rupture disk is broken by a flame force from the ignition means.
  • the size of the gas generator can be reduced.
  • the gas generator according to claim 7, wherein the calorific value due to the combustion of the transfer charge is 400 J / g or more. It is.
  • the calorific value due to combustion of the transfer charge is usually at least 400 jZg, preferably at least 550jZg.
  • the gas released from the cylinder and having a low temperature due to adiabatic expansion can be heated to a high temperature gas.
  • the size of the gas generator can be reduced.
  • FIG. 1 is a diagram showing a cross section of an embodiment of a gas generator according to the present invention.
  • FIG. 2 (a) is a diagram showing a cross section of a housing used for the gas generator according to the present invention, and
  • FIG. 2 (b) is a diagram of the housing viewed from the bottom.
  • FIG. 3 is a schematic sectional view of the ignition means used in the gas generator according to the present invention, and a diagram showing an end face thereof.
  • FIG. 4 is a diagram showing a cross section of another embodiment of the gas generator according to the present invention.
  • FIG. 5 is a view showing a cross section of another embodiment of the gas generator according to the present invention.
  • FIG. 6 is a sectional view taken along the line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows a schematic sectional view of an example of an embodiment of the gas generator according to the present invention.
  • a gas generator P 1 is composed of a cylinder 1 containing high-pressure gas, a cup-shaped housing 4 containing explosive 2 and ignition means 3, a cylinder 1 and a housing 4. And an outer cylindrical member 5 for connecting and holding the outer cylinder.
  • Cylinder 1 is made of metal such as stainless steel, aluminum or iron, It has a cylindrical shape with a bottom, and the opening side is reduced in diameter in two stages.
  • argon or helium gas or the like is sufficient to inflate and operate the airbag, etc. (for example, 0.3 to 0.7 mol for the side and 0.8 for the air curtain). ⁇ 1.2 moles).
  • the cylinder is maintained at an internal pressure of usually 2 OMPa or more, preferably 25 MPa or more, and has an opening at one end sealed with a cylinder cap 23 having a rupture disk 6.
  • the rupture disk 6 is in contact with a leg 10 protruding from the bottom of the housing 4 and is pressed in a direction to close the cylinder 1.
  • the thickness of the rupture disk 6 is not particularly limited as long as it can be broken by the ignition means 3.
  • the preferred thickness of the rupture disk 6 is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm.
  • the housing 4 is formed in a cup shape, and is formed by projecting from the bottom portion 7 and the body portion 9 including the side cylindrical portion 8 at equal intervals in the circumferential direction. It consists of three legs 10 (see Fig. 2 (b)).
  • the bottom portion 7 is formed to be thicker than the side cylindrical portion 8 and has a stepped portion 11 formed on an outer peripheral portion thereof.
  • a flame discharge port 13 that opens from the inside of the combustion chamber 12 to the outside is formed. The diameter of the flame outlet 13 is reduced from the combustion chamber 12 to the outside. As a result, the flame power is increased, and the emitted flame can be concentrated on the center of the rupture disk 6.
  • a metal seal tape made of aluminum, stainless steel, iron, or the like is affixed to the bottom 7 side of the flame discharge port 13. This seal tape prevents moisture and the like from entering the combustion chamber 12 and prevents the transfer charge 2 stored in the combustion chamber 12 from becoming wet.
  • the thickness of the sealing tape is preferably 100 ⁇ or less. That is, it is instantaneously broken by the flame caused by the ignition of the ignition means 3 and does not hinder the progress of the flame.
  • a doughnut-shaped (hollow cylindrical) explosive charge 2 As shown in FIG. 1, inside the housing 4, a doughnut-shaped (hollow cylindrical) explosive charge 2, a first cushion material 14, a second cushion material 15, and an ignition means 3 are provided inside the housing 4.
  • the crimped holders 20 are loaded in this order. These are fixed such that the open end 21 of the housing 4 is bent inward to press the holder 20.
  • the center space in the housing 4 formed by the donut-shaped transfer charge 2 and the cushion materials 14 and 15 forms a combustion chamber 12.
  • the first and second cushion members 14 and 15 are made of ceramic fiber, silicon foam, or the like, and are formed in a donut shape like the transfer charge 2. These cushioning materials 14 and 15 absorb the vibration transmitted to the explosive 2 so that the explosive 2 is not crushed by vibration or the like.
  • the donut-shaped transfer charge may be formed by laminating one or more donut-shaped transfer charges, and a smaller-diameter granular transfer charge may be arranged in a donut shape via a support member.
  • the ignition means 3 is arranged coaxially with the housing 4 and has a structure facing the flame discharge port 13 formed at the bottom 7. For this reason, the flame from the ignition means 3 is released from the flame discharge port 13 without being blocked by an obstacle in the combustion chamber 12.
  • the igniting means 3 is made of, for example, an embolus made of resin such as polybutylene terephthalate, polyethylene terephthalate, nylon 6, nylon 66, polyphenylene phenol, polyphenylene oxide and glass fiber. 28 is caulked and fixed to a metal holder 20.
  • the ignition means 3 includes a glass tube 29b into which the ignition agent 27 is loaded and a glass tube covering the glass tube 29b.
  • a tube 29a made of metal such as stainless steel, aluminum or iron, an plug 28 into which the tubes 29a and 29b are fitted, an electrode pin 22 protruding from the plug 28, and a glass body insulating between the electrode pins 22 26 and a bridge line 25 connecting both electrodes 22 in the tube '29b.
  • a cross-shaped notch or the like is formed on the end face 24 of the tubular body 29a so that the flame is easily ruptured when the flame is emitted, and the flame is emitted from the central portion of the end face 24.
  • the igniting means 3 has an internal pressure rising force of 3 Msec or more and 4.7 MPa or more when ignited in a 10 cc tank. As a result, the rupture disk 6 can be broken by the flame force.
  • the wearing explosives 2 7 loaded in the ignition means 3 in order to generate such flame power for example, zirconium (Z r), tungsten (W), the Kariumu perchlorate (KC 10 4) to the component
  • Z r zirconium
  • W tungsten
  • KC 10 4 the composition ratio of the perchlorate potassium (weight ratio)
  • Z: W: KC1 ⁇ 43: 3.5: 3.5 is more preferable.
  • the igniting agent 27 increases the contact (contact area) with the bridge wire 25 so that the bridge wire 25 is not cut off when the tube 29 and the plug 28 are fitted (when the ignition means 3 is assembled). It is preferably in the form of powder or granules. Further, the loading amount of the igniting agent 27 can be appropriately set, and it is preferable that the igniting agent 27 is loaded more than usual in order to increase the flame power to be ejected. Also, the composition ratio of each component can be adjusted so that a high flame power can be obtained.
  • the two electrode pins 22 projecting from the embolus 28 are arranged in parallel with the axis of the embolus 28, and penetrate through the embolus 28.
  • Each electrode pin 22 has a shape that curves outward at the flange of the plug 28 and protrudes from both ends of the plug 28.
  • Each of these electrode pins 22 is formed of a single conductive round bar (stainless steel, iron-nickel alloy, etc.).
  • an electric wire 25 is welded by welding or the like to the protruding portion located in the tubular body 29 b as shown in FIG.
  • the bridge line 25 is laid between the electrode pins 22 in a relaxed prone state (a state in which no tension is applied). Thus, the bridge wire 25 generates heat by energizing each of the electrode pins 22.
  • the resistance value per unit length [ ⁇ / mmJ] is determined so that the calorific value can ignite the ignition agent 27.
  • the resistance value [ ⁇ / ⁇ ] is determined by the relationship between the shape (thickness) of the bridge wire 25 and the current value [ ⁇ ] conducted to each electrode 22.
  • the resistance value [ ⁇ / mm] is determined so that the tube 29 and the embolus 28 can be fitted so that the bridge 25 is not cut off.
  • the electric bridge wire 25 is made of, for example, a nickel chrome wire excellent in heat generation and strength.
  • the calorific value of combustion of the transfer charge 2 is usually at least 400 jZg, preferably at least 500 JZg.
  • Sodium or nitrate such as sodium nitrate can be used.
  • the calorific value due to combustion can be generally at least 400 jZg, preferably at least 500 j / g.
  • the rupture disk 6 that seals the cylinder 1 ruptures and the released gas cools down due to adiabatic expansion. It becomes difficult to sufficiently heat. For this reason, It becomes necessary to increase the amount of the transfer charge 2, and the gas generator P1 cannot be reduced in size.
  • the outer cylindrical member 5 is formed in a cylindrical shape from a metal material such as stainless steel, aluminum, or iron, and the housing 4 is fitted to one end side, and a step formed in the housing 4. It is swaged and fixed to part 11.
  • the other end of the outer cylinder member 5 is inscribed and fitted to the reduced-diameter first-step portion 9 of the cylinder 1 and is fixed by welding or the like.
  • the outer cylindrical member 5 is brought into contact with the cylinder 1 and the housing 4 with the rupture disk 6 provided at the open end of the cylinder 1 and the leg 10 of the housing 4 in contact with each other, as shown in FIG. Fixed.
  • the rupture disk 6 and the leg 10 of the housing 4 are in contact with each other to form a gas retaining space 16.
  • a filter material 18 is arranged on an outer peripheral portion of the gas retaining space 16, that is, on an inner peripheral portion of the outer cylindrical member 5.
  • the filter material 18 is formed into a cylindrical shape that is substantially the same as the inner diameter of the outer tubular member 5 by using, for example, a knitted wire mesh, a plain-woven wire mesh, or an aggregate of crimp-woven metal wires.
  • Gas release holes 17 are formed at predetermined intervals around the outer cylindrical member 5 where the filter member 18 contacts.
  • the cylinder 1 and the housing 4 are fitted and fixed by the outer cylindrical member 5 formed of the same cylinder, they are connected and held coaxially with their respective axes aligned.
  • the ignition means 3 the flame discharge port 13 and the center of the rupture disc 6 become coaxial, and the flame from the ignition means 3 intensively hits the center of the rupture disc 6.
  • the operation of the gas generator P1 will be described with reference to FIG. It is assumed that the gas generator P1 shown in FIG. 1 is directly or indirectly connected to the airbag device on the shaft end side of the housing 4.
  • the gas generator P1 energizes and ignites the ignition means 3, as shown in FIG.
  • the flame of the ignition means 3 ruptures along, for example, a cross-shaped notch provided on the end face 24, and is ejected into the combustion chamber 12 from the center of the end face 24 of the ignition means 3. .
  • the flame that has passed through the combustion chamber 12 has its flame power increased by the throttle of the flame outlet 13, instantaneously breaking the metal sealing tape provided at the outlet of the flame outlet 13, and the rupture disc 6.
  • the rupture disc 6 bursts at a stretch.
  • the gas released from the rupture disk 6 flows out into the gas retaining space 16. At this time, the released gas undergoes adiabatic expansion in the gas retaining space 16, so that the temperature rapidly decreases.
  • the flame from the ignition means 3 causes the transfer charge 2 in the combustion chamber 12 to burn.
  • the high-temperature heat flow generated thereby flows into the gas retaining space 16 and mixes with the cooled gas released from the cylinder 1.
  • the gas discharged from cylinder 1 is heated by this, and becomes one high-temperature gas.
  • the gas After passing through the filter material 18, the gas is discharged from the gas discharge holes 17 formed in the outer cylinder 5.
  • the airbag connected to the gas generator P1 is instantaneously inflated by the clean gas discharged from each gas discharge hole 17.
  • the legs 10 of the housing 4 are evenly arranged in the space 16. And since it is formed in the projection part of the gas discharge hole 17, it serves as a baffle when the gas retention space 16 is discharged from the gas discharge hole 17, and serves to diffuse gas, and It accelerates the mixing of one gas with the hot heat flow from combustion chamber 12.
  • the calorific value due to the combustion of the transfer charge 2 is usually not less than 400 j / g, preferably not more than 550 j Z g, Reduces the amount of charge 2 and reduces the size of combustion chamber 1 and 2 Can be This makes it possible to shorten the distance between the rupture disk 6 and the ignition means 3, and by making the rupture disk 6 and the ignition means 3 face-to-face, the flame of the ignition means 3 can be directly transferred to the Can be applied to disk 6. For this reason, the capacity of the combustion chamber is smaller than in the conventional case where the rupture disk is destroyed by increasing the pressure in the combustion chamber with the gas generated by burning the transfer charge stored in the combustion chamber. Can be reduced in size.
  • the flame outlet 13 is formed in the bottom 7 of the housing 4 so that the flame generated by the ignition means 3 strikes the center of the rupture disk 6 in a concentrated manner. Even if a mechanically high strength rupture disk 6 is used, it can be ruptured by a flame without using mechanical means such as tons. Therefore, the structure of the gas generator P1 can be simplified.
  • gas generator P1 of the present invention can be used not only for airbags but also for vehicle occupant restraint devices such as seatbelt pretensioners and vehicle battery power in the event of an accident that triggers a safety system. It can also be used as a separation safety switch for separating the net.
  • FIG. 4 is a schematic cross-sectional view of another embodiment of the gas generator according to the present invention.
  • the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description is omitted.
  • a plurality of flame discharge holes 30 facing the outer cylinder 5 are formed in the side cylinder 8 of the housing 4.
  • a gas discharge hole 17 is formed in the outer cylinder member 5 on the igniter 3 side. Therefore, the high-temperature heat flow generated by the ignition of the igniter 3 is released from the flame discharge port 13 and the flame discharge hole 30 into the gas retaining space 16 ⁇ . As a result, immediately after the ignition of the igniter 3, the flame from the flame outlet 13 causes the cylinder to fire.
  • the low-temperature gas released from the cylinder 1 and then adiabatically expanded in the gas retaining space 16 is cooled in the gas retaining space 16 by rupture of the rupture disk 6 of the cylinder cap 2 3 It can be heated by a high-temperature heat flow from the flame outlet 13 and the flame outlet 30.
  • the flame discharge holes 30 are formed toward the outer cylinder 5, the released heat flow first hits the inner walls of the filter material 18 and the outer cylinder 5, and the gas in the gas retention space 16 Is stirred. Therefore, the gas in the gas retaining space 16 can be reliably heated and released from the gas release holes 17.
  • FIG. 5 is a schematic cross-sectional view of another embodiment of the gas generator according to the present invention.
  • the same members as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description is omitted.
  • the gas generator P3 shown in FIG. 5 is formed so as to come into contact with the leg 10 force cylinder cap 23 formed on the housing 4. After the gas released from the cylinder 1 stays in the gas retaining space 16, it is ejected from the opening where the legs 101 3 ⁇ 4T are formed toward the outer cylinder 5, and the gas discharging hole is formed. It is to be released from 17.
  • the leg 1 ⁇ is formed with a gas discharge hole 1 It is formed at substantially the same position as 7. That is, it is provided from the bottom 7 of the housing 4 so that the opening 30 between the legs 10, 10 can be located in a portion of the outer cylinder 5 where the gas discharge hole 17 is not formed. Thereby, the gas from the cylinder 1 is discharged toward the outer cylinder 5 from the opening 30 formed between the legs 10. Since the gas discharge hole 17 is located closer to the igniter 3 than the opening 30, the gas from the cylinder is not immediately discharged from the gas discharge hole 17, but is discharged in the gas retaining space 16. It stays and is released after being stirred.
  • the gas released from the cylinder 1 by the legs 10 is reliably retained in the gas retaining space 16 and then released from the gas releasing holes 17. Therefore, the gas from the cylinder 1 is reliably heated by the high-temperature heat flow from the housing 4 in the gas retaining space 16.
  • the gas generator of the present invention breaks the rupture disk having high sealing strength and high breaking strength of the cylinder loaded with the high-pressure gas by the flame from the ignition means. Then, the high-pressure gas discharged from the cylinder and the high-temperature heat flow generated in the combustion chamber are mixed and discharged as a high-temperature, high-pressure gas. For this reason, it is not necessary to increase the amount of transfer charge or use mechanical means to destroy the rupture distor, so that the structure can be simplified and the miniaturization method can be realized. It can be a gas generator.

Abstract

A gas generator (P) comprising a cylinder (1) containing a high pressure gas, a cup-like housing (4) containing a transfer charge (2) and an ignition means (3), and an outer tube (5) for holding the cylinder (1) and the housing (4) while coupling, wherein the cylinder (1) and the housing (4) are held while being coupled such that a rapture disc (6) for hermetically sealing the cylinder (1) and keeping the pressure thereof faces the ignition means (3) contained in the housing (4) and the transfer charge (2) has a doughnut-like shape.

Description

明 細 書  Specification
ガス発生器 ' 技術分野 Gas Generators '' Technical Field
本発明は、 自動車のエアバッグ装置に用いられるガス発生器に関す る P 背景技術 The present invention relates to a P background art related to a gas generator used for an airbag device of an automobile.
自動車の乗員を衝突時に生じる衝撃から保護するための安全装置の 1つとして、 エアバックが知られている。 このエアバックは、 ガス発 生器が発生する多量の高温、 高圧ガスで作動するものである。 従来、 このガス発生器のガスを発生する方式として、 大きく分けて 2種類の ものが知られている。 1つは、 発生するガスを全て固体のガス発生剤 の燃焼により生成するパイ口方式である。 ·もう一つは、 高圧のガスが 保持されたボンベと、 このポーンべ中の高圧のガスに熱を供給するため の少量の火薬組成物により大量の高温 ·高圧ガスを放出せしめるハイ プリット方式である。  Airbags are known as one of the safety devices to protect the occupants of a car from the impact generated during a collision. This airbag operates with a large amount of high-temperature, high-pressure gas generated by a gas generator. Conventionally, there are generally two types of methods for generating gas in this gas generator. One is a pi-mouth system in which all generated gas is generated by the combustion of a solid gas generant. The other is a cylinder holding high-pressure gas and a large amount of high temperature by a small amount of gunpowder composition to supply heat to the high-pressure gas in this cylinder. is there.
近年、 ガス発生器に求められる性能として、 小型化があげられる。 前者のパイ口方式のものは、 ガス発生器の小型化を実現するために、 ガス発生器内のガス発生剤が、 燃焼により生ずるガス発生モル数を増 大させることが必要となる。 このガス発生剤のガス発生モル数を増大 させるガス発生剤組成物としては、 その組成物中に、 燃料として硝酸 グァニジンや、 酸化剤として硝酸アンモ-ゥムを含むガス発生剤組成 物が有効である。 例えば、 特開平 1 1一 2 9 2 6 7 8号公報のように 、 含窒素有機化合物としてグァ-ジン誘導体、 酸化剤として相安定化 硝酸アンモニゥム、 圧力指数調整剤、 爆ごう抑制剤として珪素化合物 をそれぞれ含有するガス発生剤組成物が開示されている。 しカゝし、 グ ァニジン誘導体や硝酸ァンモニゥムを多量に含有するため、 燃焼速度 が非常に遅く、 ガス発生器において十分な燃焼性能を得るためには、 より高圧下でガス発生剤を燃焼させる必要があった。 また、 ガス発生 器作動時の内部圧力が増大するために、 ガス発生器に高い強度を持た せるために大型化する傾向にある。 In recent years, the performance required for gas generators is downsizing. In the former pie-mouth system, it is necessary to increase the number of moles of gas generated by combustion of the gas generating agent in the gas generator in order to realize the downsizing of the gas generator. As a gas generant composition for increasing the number of moles of gas generated by the gas generant, a gas generant composition containing guanidine nitrate as a fuel and ammonium nitrate as an oxidant in the composition is effective. is there. For example, as disclosed in Japanese Patent Application Laid-Open No. 11-292678, a guanidine derivative is used as a nitrogen-containing organic compound, phase-stabilized ammonium nitrate is used as an oxidizing agent, a pressure index regulator, and a silicon compound is used as a detonation inhibitor Are disclosed, respectively. However, because it contains a large amount of guanidine derivatives and ammonium nitrate, the burning rate is extremely slow.In order to obtain sufficient combustion performance in a gas generator, it is necessary to burn the gas generating agent at a higher pressure. was there. In addition, since the internal pressure during operation of the gas generator increases, the size of the gas generator tends to increase in order to have high strength.
さらに、 グァニジン誘導体や、 硝酸アンモニゥムなど反応性の低い 原料を組成として含むガス発生剤組成物の場合、 燃焼速度の遅さに加 え、 ガス発生剤の着火性の低さも問題の一つである。 エアバックは、 作動し始めてから展開するまでの時間が 3 0〜6 O m sほどである。 ガス発生器のわずかな作動遅れであってもその影響は大きく、 乗員保 護という十分な性能が発揮できない。 ガス発生剤の着火性が低い場合 、 ガス発生器内の点火器が発火しても、 ガス発生剤の着火までにかか る時間が長くなり、 結果としてガス発生器の着火遅れを生じる。 ガス 発生器の伝火薬の薬量を多くすることで、 着火遅れの改善ほある程度 見込める。 しかしながら、 着火薬量が増加するために、 ガス発生器自 体の総発熱量が多くなる。 その結果、 高^ _ガスを冷却するための冷 却 ·フィルタ一部材の重量が増加し、 ガス発生器はより大きなものと なる。 ·  In addition, in the case of a gas generating composition containing a low-reactive material such as guanidine derivative or ammonium nitrate as a composition, one of the problems is the low ignition rate of the gas generating agent in addition to the slow burning rate. . The time between the start of operation and the deployment of the airbag is about 30 to 6 Oms. Even a slight delay in the operation of the gas generator has a large effect, and it does not provide sufficient performance for occupant protection. If the ignitability of the gas generating agent is low, even if the igniter in the gas generator ignites, the time required for the gas generating agent to ignite becomes longer, resulting in a delay in ignition of the gas generator. By increasing the dose of the transfer agent for the gas generator, an improvement in ignition delay can be expected to some extent. However, the total amount of heat generated by the gas generator itself increases due to the increase in ignition charge. As a result, the weight of the cooling / filter member for cooling the high gas is increased, and the gas generator becomes larger. ·
—方、 ハイブリッド方式のものは、 ガス発生剤が少量で済むため、 小型化には適している。 しかしながら、 ボンべ内のガスを長期間にわ たり、 高圧の状態で保持する必要がある。 一般的にガス発生器として 1 5年もの耐用年数を経るうちに、 高圧ガスがボンベから抜けていき 、 十分な ^fe能を発揮できないおそれがある。 このため、 ボンべ內のガ スを長期にわたって密封する必要から機械的な破壊強度が高く、 シー ル性の高いラプチヤーディスクによってボンべを密封する必要がある W —On the other hand, the hybrid type is suitable for miniaturization because only a small amount of gas generating agent is required. However, it is necessary to keep the gas in the cylinder at a high pressure for a long time. In general, after the useful life of the gas generator for 15 years has passed, the high-pressure gas may escape from the cylinder and may not be able to exhibit sufficient ^ fe capability. For this reason, it is necessary to seal the cylinder gas with a rupture disk with high mechanical breaking strength and high sealability because it is necessary to seal the gas in the cylinder for a long time. W
。 この種のガス発生器としては、 例えば、 特開平 8— 2 5 3 1 0 0号 公報に示されるものがある。 このガス発生器は、 高圧ガスが密閉され ている第 1の容器 (ボンべ) のガスの気密性を高める為に破壊強度の 高い破裂ダイヤフラム (ラプチヤーディスク) を用いている。 そして 5 、 この破裂ダイヤフラムを燃焼室 を備えた第 2の容器に設けられた 中空のピス トンを推進装入物 (点火手段) の点火によって押し進めて 、 第 1の容器の破裂ダイヤフラムを確実に破裂させ、 第 1の容器の高 圧ガスを確実に放出するものである。 このように、 確実に破裂ダイヤ フラムを破壌することができるが、 中空ビストン等を設置する必要が 10 あり、 ガス発生器の構造が複雑化するという問題があった。 . An example of this type of gas generator is disclosed in Japanese Patent Application Laid-Open No. 8-253010. This gas generator uses a rupture diaphragm (rapture disk) with high breaking strength to increase the gas tightness of the first container (bomb) in which high-pressure gas is sealed. 5. The rupture diaphragm of the first container is ruptured reliably by pushing the hollow piston provided in the second container provided with the combustion chamber by the ignition of the propulsion charge (ignition means). This ensures that the high-pressure gas in the first container is released. In this way, the rupture diaphragm can be ruptured without fail, but it is necessary to install a hollow biston, etc., and there has been a problem that the structure of the gas generator is complicated.
また、 ボンべを確実に密閉するラプチヤーディスクの破壌を、 特開 平 8— 2 5 3 1 0 0号公報等に示されるような中空ビストン等を使用 して破壌するのではなく、 伝火薬剤の暈を増やし点火手段を含む燃焼 室内の圧力を高めて破壌するものもある。 しかしながら、 伝火薬剤の 15 量を增やすため、 伝火薬を収鈉する室が必要となり、 ガス発生器の小 型化が困難であった。 また、 この場合、 点火手段の点火と同時にラブ チヤ一ディスクを破壊することも困難であった。  In addition, instead of using a hollow biston or the like as disclosed in Japanese Patent Application Laid-Open No. Hei 8-253100, the rupture of a rupture disk for securely sealing a cylinder is performed, In some cases, the halo of the transfer agent increases and the pressure in the combustion chamber, including the ignition means, increases, causing rupture. However, it was difficult to reduce the size of the gas generator because a room for storing the explosive was required to reduce the amount of the explosive. Also, in this case, it was also difficult to destroy the love disk simultaneously with the ignition of the ignition means.
本発明の目的は、 小型化及び構造の簡易化を同時に満足するハイプ リッド方式のガス発生器を提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to provide a hybrid gas generator that satisfies both miniaturization and simplified structure.
20  20
発明の開示  Disclosure of the invention
前記課題を解決するための本発明の請求の範囲第 1項に記載のガス 発生器は、 高圧ガスが装填されたボンベと、 ドーナツ形状の伝火薬及 び点火手段が収納されたコップ状のハウジングと、 前記ボンベの圧力 25 を保持するとともに密封するラプチヤーディスクと、 前記ボンベと前 記ハウジングとの間にガス滞留空間を形成するように前記ポンベと前 記ハウジングとを連結保持する外筒材と、 を備えてなり、 前記ボンべ と前記ハゥジングとが、 前記ハゥジング内に収納された前記点火手段 とが対面するように連結保持されていることを特徴とする。 The gas generator according to claim 1 of the present invention for solving the above-mentioned problem, comprises a cylinder filled with high-pressure gas, a cup-shaped housing containing a donut-shaped transfer charge and ignition means. A rupture disk that holds and seals the pressure of the cylinder, and a rupture disk that is in front of the cylinder so as to form a gas retention space between the cylinder and the housing. An outer tubular member for connecting and holding the housing and the housing, wherein the cylinder and the housing are connected and held such that the ignition means housed in the housing faces the ignition means. And
点火手段と、 ボンべ内の高圧ガスをシールするラプチヤーディスク とが対面構造をし、 伝火剤がドーナツ状をしているために、 ハウジン グ内に中空空間が形成される。 このため、 点火手段からの火炎が、 ラ プチヤーディスクに直接あたるようになる。 これにより、 点火手段の 点火と略同時にラプチヤーディスクを破裂させることができる。  A hollow space is formed in the housing because the ignition means and the rupture disk that seals the high-pressure gas in the cylinder have a face-to-face structure, and the transfer agent has a donut shape. Therefore, the flame from the ignition means directly hits the rupture disk. Thereby, the rupture disk can be ruptured almost simultaneously with the ignition of the ignition means.
また、 ボンベとハウジングとの間にガス滞留空間が形成されている 。 ボンベから放出され、 断熱膨張した冷たいガスは、 ハウジングから 放出される高温の熱流とこのガス滞留空間で混合する。 これによつて 、 均一に加熱されたガスとなって放出される。  Further, a gas retaining space is formed between the cylinder and the housing. The cold gas discharged from the cylinder and adiabatically expanded mixes with the high-temperature heat flow discharged from the housing in this gas retaining space. As a result, the gas is discharged as a uniformly heated gas.
'請求の範囲第 2項に記載のガス発生器は、 請求の範囲第 1項におい て、 前記ハウジングは、 底部に火炎放出口が形成され、 前記火炎放出 口が、 内部から外部に向かって縮径されて、 前記点火手段からの火炎' 力 前記ラプチヤーディスクの中央に集中するように形成されている ものである。  'The gas generator according to claim 2 is the gas generator according to claim 1, wherein the housing has a flame discharge port formed at a bottom portion, and the flame discharge port is shrunk from inside to outside. It is formed so as to be centered on the center of the rupture disk.
火炎放出口が内部から外部に向けて縮径されているため、 点火手段 からの火炎がラプチヤーディスクの中央部に集中してあたるようにな る。 このため、 点火手段からの火炎が分散せず、 ラプチヤーディスク が確実に破裂する。 また、 ラプチヤーディスクが中央部で破裂開口す るため、 ボンべ内のガスが確実に放出される。  Since the diameter of the flame outlet is reduced from the inside to the outside, the flame from the igniting means is concentrated on the center of the rupture disk. Therefore, the flame from the ignition means is not dispersed, and the rupture disc ruptures reliably. In addition, the rupture disk bursts and opens at the center, so the gas in the cylinder is reliably released.
請求の範囲第 3項に記載のガス発生器は、 請求の範囲第 2項におい て、 前記ハウジングの底部側筒部に、 前記外筒材に向かう複数の火炎 放出孔が形成されているものである。  The gas generator according to claim 3 is the gas generator according to claim 2, wherein a plurality of flame discharge holes toward the outer cylinder are formed in a bottom-side cylinder of the housing. is there.
ハゥジングの側筒部に複数の火炎放出孔が形成されているため、 該 火炎放出孔から火炎あるいは熱いガスがガス滞留空間内に放出される 。 そして、 ガス滞留空間内のガスを攪拌することができる。 このため 、 ボンベから放出された冷たいガスが、 ハウジングからの熱流によつ て加熱されて外筒材に設けられているガス放出孔から放出されるよう になる。 Since a plurality of flame discharge holes are formed in the side cylinder portion of the housing, The flame or hot gas is discharged from the flame discharge hole into the gas retaining space. Then, the gas in the gas retaining space can be stirred. For this reason, the cold gas released from the cylinder is heated by the heat flow from the housing and is released from the gas discharge holes provided in the outer cylinder.
請求の範囲第 4項に記載のガス発生 ¾は、 請求の範囲第 1項におい て、 前記ハウジングの底部に、 前記ボンベからのガスが前記ガス滞留 空間で攪拌されて前記外筒材に設けられている複数のガス放出孔から 放出されるように複数の脚部が設けられているものである。  The gas generator according to claim 4 is the gas generator according to claim 1, wherein the gas from the cylinder is agitated in the gas retaining space at the bottom of the housing, and is provided in the outer cylinder. A plurality of legs are provided so as to be released from the plurality of gas discharge holes.
また、 請求の範囲第 5項に記載のガス発生器は、 請求の範囲第 2項 において、 前記ハウジングの底部に、 前記ボンベからのガスが前記ガ ス滞留空間で攪拌されて前記外筒材に設けられている複数のガス放出 孔から放出されるように複数の脚部が設けられているものである。 ハウジングに設けられる脚部が、 例えば、 外筒材の周囲に所定角度 で設けられているガス放出孔と同一の所定角度で形成されている。 す なわち、 ボンベからガスが外筒材のガス放出孔が形成されていない部 分へ脚部間から放出されるようになっている。 これによつて、 ボンべ から放出されるガスが、 ガス滞留空間で滞留しやすくなり、 ハウジン グ側からの熱流によつて加熱されてガス放出孔から放出される。  The gas generator according to claim 5 is the gas generator according to claim 2, wherein the gas from the cylinder is agitated in the gas retaining space at the bottom of the housing, and the gas is supplied to the outer cylindrical member. A plurality of legs are provided so as to be released from a plurality of provided gas discharge holes. The leg provided on the housing is formed, for example, at the same predetermined angle as a gas discharge hole provided at a predetermined angle around the outer cylinder. In other words, the gas is released from between the legs to the portion of the outer cylinder where the gas discharge holes are not formed. This makes it easier for the gas released from the cylinder to stay in the gas storage space, and is heated by the heat flow from the housing side and released from the gas discharge holes.
請求の範囲第 6項に記載のガス発生器は、 請求の範囲第 1項におい て、 前記ラプチヤーディスクが、 前記点火手段からの火炎力で破断さ れるものである。  The gas generator according to claim 6 is the gas generator according to claim 1, wherein the rupture disk is broken by a flame force from the ignition means.
ラプチヤーディスクが点火手段からの火炎の火炎力によってのみ破 断されるため、 ガス発生器を小型化することが可能となる。  Since the rupture disk is broken only by the flame power of the flame from the ignition means, the size of the gas generator can be reduced.
請求の範囲第 7項に記載のガス発生器は、 請求の範囲第 1項におい て、 前記伝火薬の燃焼による発熱量が、 4 0 0 0 J / g以上であるも のである。 The gas generator according to claim 7, wherein the calorific value due to the combustion of the transfer charge is 400 J / g or more. It is.
伝火薬の燃焼による発熱量が、 通常 4 0 0 0 j Z g以上、 好ましく は 5 5 0 0 j Z g以上とする。 これによつて、 ボンベから放出され、 断熱膨張によって低温ィヒするガスを加熱して高温ガスとすることがで きる。 また、 伝火薬量を少量化することができるため、 ガス発生器を 小型化することが可能となる。 図面の簡単な説明  The calorific value due to combustion of the transfer charge is usually at least 400 jZg, preferably at least 550jZg. As a result, the gas released from the cylinder and having a low temperature due to adiabatic expansion can be heated to a high temperature gas. Also, since the amount of transfer charge can be reduced, the size of the gas generator can be reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明に係るガス発生器の一実施形態例の断面を示す図 である。 第 2図 (a ) は、 本発明に係るガス発生器に用いられるハウ ジングの断面を示す図であり、 第 2図 (b ) は、 ハウジングを底部か ら見た図である。 第 3図は、 本発明に係るガス発生器に用いられる点 火手段の概略断面図と、 その端面部を示す図である。 第 4図は、 本発 明に係るガス発生器の他の実施形態例の断面を示す図である。 第' 5図 は、 本発明に係るガス発生器の他の実施形態例の断面を示す図である 。 第 6図は、 第 5図における A-A線断面図を示す図である。 発明を実施するための最良の形態  FIG. 1 is a diagram showing a cross section of an embodiment of a gas generator according to the present invention. FIG. 2 (a) is a diagram showing a cross section of a housing used for the gas generator according to the present invention, and FIG. 2 (b) is a diagram of the housing viewed from the bottom. FIG. 3 is a schematic sectional view of the ignition means used in the gas generator according to the present invention, and a diagram showing an end face thereof. FIG. 4 is a diagram showing a cross section of another embodiment of the gas generator according to the present invention. FIG. 5 is a view showing a cross section of another embodiment of the gas generator according to the present invention. FIG. 6 is a sectional view taken along the line AA in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の実施形態におけるガス発生器について、 図面を参照しつつ 説明する。  A gas generator according to an embodiment of the present invention will be described with reference to the drawings.
第 1図に本発明に係るガス発生器の実施形態の一例の断面概略図を 示す。 第 1図において、 ガス発生器 P 1は、 高圧ガスが収納されたポ ンべ 1と、 伝火薬 2及び点火手段 3が収納されたコップ状のハゥジン グ 4と、 ボンべ 1とハウジング 4とを連結保持する外筒材 5とで構成 されている。  FIG. 1 shows a schematic sectional view of an example of an embodiment of the gas generator according to the present invention. In FIG. 1, a gas generator P 1 is composed of a cylinder 1 containing high-pressure gas, a cup-shaped housing 4 containing explosive 2 and ignition means 3, a cylinder 1 and a housing 4. And an outer cylindrical member 5 for connecting and holding the outer cylinder.
ボンべ 1は、 ステンレス、 アルミニウム又は鉄等の金属からなり、 有底の円筒形状をし、 開口側は、 2段階で縮径されている。 ボンべ 1 内には、 アルゴンやヘリウムガス等がエアバッグ等を膨張、 作動させ るに十分な量 (例えば、 サイ ド用には 0. 3〜0. 7モル、 エアカー テンには 0. 8〜1. 2モル等) が装填されている。 ボンべは、 内部 の圧力が通常 2 OMP a以上、 好ましくは 25MP a以上に維持され 、 一端側の開口部をラプチヤーディスク 6を有するボンべキャップ 2 3によって密封されている。 Cylinder 1 is made of metal such as stainless steel, aluminum or iron, It has a cylindrical shape with a bottom, and the opening side is reduced in diameter in two stages. In the cylinder 1, argon or helium gas or the like is sufficient to inflate and operate the airbag, etc. (for example, 0.3 to 0.7 mol for the side and 0.8 for the air curtain). ~ 1.2 moles). The cylinder is maintained at an internal pressure of usually 2 OMPa or more, preferably 25 MPa or more, and has an opening at one end sealed with a cylinder cap 23 having a rupture disk 6.
ラプチヤーディスク 6は、 ハウジング 4の底部に突出して設けられ た脚部 10と当接し、 ボンべ 1を閉じる方向に押さえ付けられている 。 このラプチヤーディスク 6の厚さは、 点火手段 3で破断できる程度 の厚さであれば特に限定はされない。 好ましいラプチヤーディスク 6 の厚さとしては、 好ましくは 0. 05~0. 5mmであり、 さらに好 ましくは 0. 1〜0. 3 mmである。  The rupture disk 6 is in contact with a leg 10 protruding from the bottom of the housing 4 and is pressed in a direction to close the cylinder 1. The thickness of the rupture disk 6 is not particularly limited as long as it can be broken by the ignition means 3. The preferred thickness of the rupture disk 6 is preferably 0.05 to 0.5 mm, and more preferably 0.1 to 0.3 mm.
ハウジング 4は、 第 2図 (a) に示すように、 コップ状をし、 底部 7と側筒部 8からなる胴部 9と、 底部 7から周方向に均等な間隔で突 出して形成された 3本の脚部 10から構成されている (第 2図 (b) 参照)。 底部 7は、 側筒部 8よりも肉厚に形成されるとともに、 その外 周部に段付部 1 1が形成されている。 また、 燃焼室 1 2内から外部に 向けて、 開口する火炎放出口 1 3が形成されている。 この火炎放出口 1 3は、 燃焼室 1 2から外部に向けて縮径されている。 これによつて 、 火炎力が高められるとともに、 放出する火炎をラプチヤーディスク 6の中心部に集中することができる。 また、 火炎放出口 13の底部 7 側にはアルミニウム、 スチンレス、 鉄等からなる金属製のシールテー プが貼付されている。 このシールテープは、 燃焼室 1 2内への水分等 の侵入を防ぎ、 燃焼室 1 2内に収納される伝火薬 2が湿気るのを防ぐ ものである。 また、 このシールテープは、 厚さ 100 μπι以下が好ま しく、 点火手段 3の点火による火炎によって瞬時に破かれ、 火炎の進 行の妨げとならないものである。 As shown in FIG. 2 (a), the housing 4 is formed in a cup shape, and is formed by projecting from the bottom portion 7 and the body portion 9 including the side cylindrical portion 8 at equal intervals in the circumferential direction. It consists of three legs 10 (see Fig. 2 (b)). The bottom portion 7 is formed to be thicker than the side cylindrical portion 8 and has a stepped portion 11 formed on an outer peripheral portion thereof. Further, a flame discharge port 13 that opens from the inside of the combustion chamber 12 to the outside is formed. The diameter of the flame outlet 13 is reduced from the combustion chamber 12 to the outside. As a result, the flame power is increased, and the emitted flame can be concentrated on the center of the rupture disk 6. Further, a metal seal tape made of aluminum, stainless steel, iron, or the like is affixed to the bottom 7 side of the flame discharge port 13. This seal tape prevents moisture and the like from entering the combustion chamber 12 and prevents the transfer charge 2 stored in the combustion chamber 12 from becoming wet. The thickness of the sealing tape is preferably 100 μπι or less. That is, it is instantaneously broken by the flame caused by the ignition of the ignition means 3 and does not hinder the progress of the flame.
第 1図に示すように、 ハウジング 4内には、 ド^ 7ナツ状 (中空の円 柱状) の伝火薬 2、 第 1のクッション材 1 4、 第 2のクッション材 1 5及び点火手段 3をカシメ固定したホルダ 2 0の順に装填されている 。 これらは、 ハウジング 4の開口端部 2 1を内側に折り曲げてホルダ 2 0を押し付けるようにして固定されている。 ドーナツ状の伝火薬 2 及ぴクッション材 1 4, 1 5によって形成されるハウジング 4内の中 央部の空間は、 燃焼室 1 2をなしている。 第 1、 第 2のクッション材 1 4, 1 5は、 セラミックファイバー、 シリ コンフォーム等からなり 、 伝火薬 2と同様にドーナツ状に形成されている。 これらグッシヨ ン 材 1 4, 1 5は、 伝火薬 2が、 振動等によって破砕しないように、 伝 火薬 2に伝わる振動を吸収している。 ドーナツ状の伝火薬は、 ドーナ ッ状に成形された伝火薬を 1又は 2以上を積層して用いてもよく、 よ り小径の粒状伝火薬を支持部材を介じてドーナツ状に配置してもよい 点火手段 3は、 ハウジング 4と同軸上に配置され、 底部 7に形成さ れた火炎放出口 1 3と対面した構造となる。 このため、 点火手段 3か らの火炎は燃焼室 1 2内で障害物に遮られることなく、 火炎放出口 1 3から放出されるようになる。 この点火手段 3は、 例えば、 ポリプチ レンテレフタート、 ポリエチレンテレフタート、 ナイロン 6、 ナイ口 ン 6 6、 ポリフエ二レンスノレフイ ド、 ポリフエエレン才キシド等の樹 脂にガラス繊維等を含有させたものからなる塞栓 2 8が、 金属製のホ ルダ 2 0にカシメ固定されている。  As shown in FIG. 1, inside the housing 4, a doughnut-shaped (hollow cylindrical) explosive charge 2, a first cushion material 14, a second cushion material 15, and an ignition means 3 are provided. The crimped holders 20 are loaded in this order. These are fixed such that the open end 21 of the housing 4 is bent inward to press the holder 20. The center space in the housing 4 formed by the donut-shaped transfer charge 2 and the cushion materials 14 and 15 forms a combustion chamber 12. The first and second cushion members 14 and 15 are made of ceramic fiber, silicon foam, or the like, and are formed in a donut shape like the transfer charge 2. These cushioning materials 14 and 15 absorb the vibration transmitted to the explosive 2 so that the explosive 2 is not crushed by vibration or the like. The donut-shaped transfer charge may be formed by laminating one or more donut-shaped transfer charges, and a smaller-diameter granular transfer charge may be arranged in a donut shape via a support member. The ignition means 3 is arranged coaxially with the housing 4 and has a structure facing the flame discharge port 13 formed at the bottom 7. For this reason, the flame from the ignition means 3 is released from the flame discharge port 13 without being blocked by an obstacle in the combustion chamber 12. The igniting means 3 is made of, for example, an embolus made of resin such as polybutylene terephthalate, polyethylene terephthalate, nylon 6, nylon 66, polyphenylene phenol, polyphenylene oxide and glass fiber. 28 is caulked and fixed to a metal holder 20.
また、 点火手段 3は 第 3図に示すように、 着火薬 2 7を装填する ガラス製の管体 2 9 bと、 このガラス製の管体 2 9 bを覆うようなス テンレス、 アルミニウム又は鉄等の金属製の管体 29 aと、 管体 29 a, bが嵌合する塞栓 28と、 塞栓 28から突出する電極ピン 22と 、 各電極ピン 22間を絶縁するガラス体 26と、 管体' 29 b内で両電 極 22を繋ぐ電橋線 25とで構成されている。 管体 29 aの端面 24 には、 火炎が放出する際に容易に破裂し、 火炎が端面 24の中心部分 から放出されるように、 例えば、 十字状の切り欠き等が形成されてい る。 Further, as shown in FIG. 3, the ignition means 3 includes a glass tube 29b into which the ignition agent 27 is loaded and a glass tube covering the glass tube 29b. A tube 29a made of metal such as stainless steel, aluminum or iron, an plug 28 into which the tubes 29a and 29b are fitted, an electrode pin 22 protruding from the plug 28, and a glass body insulating between the electrode pins 22 26 and a bridge line 25 connecting both electrodes 22 in the tube '29b. For example, a cross-shaped notch or the like is formed on the end face 24 of the tubular body 29a so that the flame is easily ruptured when the flame is emitted, and the flame is emitted from the central portion of the end face 24.
また、 点火手段 3は、 10 c cタンク中で発火させた時の内圧上昇 力 3m s e c以内で 4. 7 M P a以上のものが好ましい。 これによつ て、 碓実にラプチヤーディスク 6を火炎力によって破断することがで きる。  Further, it is preferable that the igniting means 3 has an internal pressure rising force of 3 Msec or more and 4.7 MPa or more when ignited in a 10 cc tank. As a result, the rupture disk 6 can be broken by the flame force.
このような火炎力を生成するために点火手段 3に装填されている着 火薬 2 7としては、 例えば、 ジルコニウム (Z r )、 タングステン (W)、 過塩素酸カリゥム (KC 104) を成分に持ち、 バインダーとし てフッ素ゴムやニートロセルロース等を用いたものを使用することが一好 ましい。 又、 ジルコニウム、 タングステン、 過塩素酸カリ ウムの組成 比 (重量比) は、 電橋線 25の発熱にて充分に発火できるように決め られ、 Z r : W: KC 104= 3 : 3, 0 4. 0 : 3. 0 4. 0が 好ましく、 Zて : W: KC 1〇4 3 : 3. 5 : 3. 5がより好ましい 。 また、 着火薬 27は、 電橋線 25との接触 (接触面積) を大きくし 、 管体 29と塞栓 28の嵌揷時 (点火手段 3の組立時) において電橋 線 25を切断しない様に、 粉状又は顆粒状とすることが好ましい。 さ らに、 着火薬 27の装填量は、 適宜設定することができ、 噴出される 火炎力を高める為に通常より多めに装填することが好ましい。 また、 各成分の組成比を調整して、 高い火炎力となるようにすることもでき る。 塞栓 2 8から突出する 2本の電極ピン 2 2は、 塞栓 2 8の軸心と並 列に配置されて、 塞栓 2 8内を貫通している。 又各電極ピン 2 2は塞 栓 2 8のフランジ部にて外側に湾曲する形状を有して、 塞栓 2 8の両 端から突出している。 これら各電極ピン 2 2としては、 単一の導電丸 棒材 (ステンレス鋼、 鉄 ·ニッケル合金等) で形成する。 また、 各電 極ピン 2 2において、 管体 2 9 b内に位置する突出部分には、 第 3図 にも示す如く電橋線 2 5が溶接等によって溶着されている。 The wearing explosives 2 7 loaded in the ignition means 3 in order to generate such flame power, for example, zirconium (Z r), tungsten (W), the Kariumu perchlorate (KC 10 4) to the component It is preferable to use a binder that uses fluororubber or netrocellulose as the binder. Also, zirconium, tungsten, the composition ratio of the perchlorate potassium (weight ratio), is determined so as to be sufficiently fire at heating of the bridge wire 25, Z r: W: KC 10 4 = 3: 3, 04.0: 3.04.0 is preferable, and Z: W: KC1〇43: 3.5: 3.5 is more preferable. In addition, the igniting agent 27 increases the contact (contact area) with the bridge wire 25 so that the bridge wire 25 is not cut off when the tube 29 and the plug 28 are fitted (when the ignition means 3 is assembled). It is preferably in the form of powder or granules. Further, the loading amount of the igniting agent 27 can be appropriately set, and it is preferable that the igniting agent 27 is loaded more than usual in order to increase the flame power to be ejected. Also, the composition ratio of each component can be adjusted so that a high flame power can be obtained. The two electrode pins 22 projecting from the embolus 28 are arranged in parallel with the axis of the embolus 28, and penetrate through the embolus 28. Each electrode pin 22 has a shape that curves outward at the flange of the plug 28 and protrudes from both ends of the plug 28. Each of these electrode pins 22 is formed of a single conductive round bar (stainless steel, iron-nickel alloy, etc.). In each of the electrode pins 22, an electric wire 25 is welded by welding or the like to the protruding portion located in the tubular body 29 b as shown in FIG.
電橋線 2 5は、 弛ませた伏態 (張力を作用しない状態) で各電極ピ ン 2 2間に架設されている。 これで、 電橋線 2 5は各電極ピン 2 2へ の通電によって発熱する。 又、 電橋線 2 5では、 着火薬 2 7を発火で きる発熱量となる如く、 単位長さの抵抗値 [Ω/mmJ を決定する。 抵 抗値 [Ω/πιπ は、 電橋線 2 5の形状 (太さ)、 各電極ピシ 2 2に通 電される電流値 〔Α〕 等との関係によって決定される。 又、 抵抗値 [Ω /mm) は、 管体 2 9と塞栓 2 8との嵌込みによって、 電橋線 2 5を 切断しない強度を得られるように決定される。' -電橋線 2 5としては、 例えば、 発熱、 強度に優れたニッケル 'クローム線材によって形成さ れる。  The bridge line 25 is laid between the electrode pins 22 in a relaxed prone state (a state in which no tension is applied). Thus, the bridge wire 25 generates heat by energizing each of the electrode pins 22. In the case of Denbashi Line 25, the resistance value per unit length [Ω / mmJ] is determined so that the calorific value can ignite the ignition agent 27. The resistance value [Ω / πιπ] is determined by the relationship between the shape (thickness) of the bridge wire 25 and the current value [Α] conducted to each electrode 22. The resistance value [Ω / mm] is determined so that the tube 29 and the embolus 28 can be fitted so that the bridge 25 is not cut off. '-The electric bridge wire 25 is made of, for example, a nickel chrome wire excellent in heat generation and strength.
伝火薬 2の燃焼による発熱量が、 通常 4 0 0 0 j Z g以上、 好まし くは 5 5 0 0 J Z g以上となるように、 例えば、 ボロン、 5—ァミノ テトラゾール又は硝酸力リウム、 硝酸ナトリウムもしくは硝酸スト口 ンチウム等の硝酸塩等を使用することができる。 このような組成とす ることによって、 燃焼による発熱量を、 通常 4 0 0 0 j Z g以上、 好 ましくは 5 5 0 0 j / g以上とすることが可能となる。 ここで、 燃焼 による発熱量が 4 0 0 0 J Z g未満の伝火薬の場合、 ボンべ 1を密閉 するラプチヤーディスク 6が破裂して、 放出されるガスが断熱膨張の 為に低温化した場合に十分に加熱することが困難となる。 このため、 伝火薬 2の量を多くする必要が生じ、 ガス発生器 P 1の小型化が達成 できない。 For example, boron, 5-aminotetrazole or potassium nitrate, nitric acid, so that the calorific value of combustion of the transfer charge 2 is usually at least 400 jZg, preferably at least 500 JZg. Sodium or nitrate such as sodium nitrate can be used. With such a composition, the calorific value due to combustion can be generally at least 400 jZg, preferably at least 500 j / g. Here, in the case of a transfer charge with a calorific value of less than 400 JZ g due to combustion, when the rupture disk 6 that seals the cylinder 1 ruptures and the released gas cools down due to adiabatic expansion. It becomes difficult to sufficiently heat. For this reason, It becomes necessary to increase the amount of the transfer charge 2, and the gas generator P1 cannot be reduced in size.
第 1図に示すように、 外筒材 5は、 ステンレス、 アルミニウム又は 鉄等の金属材料によって円筒状に形成され、 一端側にハウジング 4を 嵌合し、 ハウジング 4に形成されている段付.部 1 1にカシメ固定され ている。 外筒材 5の他端側は、 ボンべ 1の縮径された第 1段部分 Γ 9 と内接して嵌合され、 溶接等によって溶着固定されている。 この時、 前逑したように、 ボンべ 1の開口端に設けられたラプチヤーディスク 6とハウジング 4の脚部 1 0とが当接した状態で外筒材 5はボンべ 1 及びハウジング 4に固定されている。 そして、 このラプチヤーディス ク 6と、 ハウジング 4の脚部 1 0とが当接することによってガス滞留 空間 1 6が形成されている。 このガス滞留空間 1 6の外周部、 即ち、 外筒材 5の内周部には、 フィルター材 1 8が配置されている。 このフ ィルター材 1 8は、 例えば、 メリヤス編み金網、 平織り金網やクリン プ織り金属線材の集合体に—よって、 外筒材 5の内径と略同一な円筒状 に成形されている。 このフィルター材 1 8が当接する部分の外筒材 5 の周囲には、 所定間隔でガス放出孔 1 7が形成されている。  As shown in FIG. 1, the outer cylindrical member 5 is formed in a cylindrical shape from a metal material such as stainless steel, aluminum, or iron, and the housing 4 is fitted to one end side, and a step formed in the housing 4. It is swaged and fixed to part 11. The other end of the outer cylinder member 5 is inscribed and fitted to the reduced-diameter first-step portion 9 of the cylinder 1 and is fixed by welding or the like. At this time, the outer cylindrical member 5 is brought into contact with the cylinder 1 and the housing 4 with the rupture disk 6 provided at the open end of the cylinder 1 and the leg 10 of the housing 4 in contact with each other, as shown in FIG. Fixed. The rupture disk 6 and the leg 10 of the housing 4 are in contact with each other to form a gas retaining space 16. A filter material 18 is arranged on an outer peripheral portion of the gas retaining space 16, that is, on an inner peripheral portion of the outer cylindrical member 5. The filter material 18 is formed into a cylindrical shape that is substantially the same as the inner diameter of the outer tubular member 5 by using, for example, a knitted wire mesh, a plain-woven wire mesh, or an aggregate of crimp-woven metal wires. Gas release holes 17 are formed at predetermined intervals around the outer cylindrical member 5 where the filter member 18 contacts.
このように、 ボンべ 1とハウジング 4は、 同一円筒からなる外筒材 5によって、 嵌合して固定されているため、 それぞれの軸心を一にし た同軸上に連結保持される。 これによつて、 点火手段 3、 火炎放出口 1 3、 ラプチヤーディスク 6の中心部が同軸となり、 点火手段 3から の火炎がラプチヤーディスク 6の中心部に集中的に当たることになる 次に、 ガス発生器 P 1の作動を、 第 1図により説明する。 なお、 第 1図に示すガス発生器 P 1は、 ハウジング 4の軸端側でエアバッグ装 置に直接、 又は間接的に接続されているものとする。 衝突センサが自動車の衝突を検出すると、 第 1図に示すように、 ガ ス発生器 P 1は、 点火手段 3を通電発火させる。 点火手段 3の火炎は 、 端面 2 4に設けられている、 例えば十字状の切り欠き等に沿って破 裂し、 点火手段 3の端面 2 4の中心部より燃焼室' 1 2内に噴出される 。 燃焼室 1 2を通過した火炎は、 火炎放出口 1 3の絞りによって火炎 力が高められ、 火炎放出口 1 3の出口に設けられている金属製のシー ルテープを瞬時に破ってラプチヤーディスク 6の中心部に集中的にあ たり、 ラプチヤーディスク 6を一気に破裂させる。 ラプチヤーディス ク 6から放出されたガスは、 ガス滞留空間 1 6に流出してくる。 この 時、 放出されたガスは、 ガス滞留空間 1 6で断熱膨張するため、 急激 に温度が低下する。 As described above, since the cylinder 1 and the housing 4 are fitted and fixed by the outer cylindrical member 5 formed of the same cylinder, they are connected and held coaxially with their respective axes aligned. As a result, the ignition means 3, the flame discharge port 13 and the center of the rupture disc 6 become coaxial, and the flame from the ignition means 3 intensively hits the center of the rupture disc 6. The operation of the gas generator P1 will be described with reference to FIG. It is assumed that the gas generator P1 shown in FIG. 1 is directly or indirectly connected to the airbag device on the shaft end side of the housing 4. When the collision sensor detects the collision of the automobile, the gas generator P1 energizes and ignites the ignition means 3, as shown in FIG. The flame of the ignition means 3 ruptures along, for example, a cross-shaped notch provided on the end face 24, and is ejected into the combustion chamber 12 from the center of the end face 24 of the ignition means 3. . The flame that has passed through the combustion chamber 12 has its flame power increased by the throttle of the flame outlet 13, instantaneously breaking the metal sealing tape provided at the outlet of the flame outlet 13, and the rupture disc 6. The rupture disc 6 bursts at a stretch. The gas released from the rupture disk 6 flows out into the gas retaining space 16. At this time, the released gas undergoes adiabatic expansion in the gas retaining space 16, so that the temperature rapidly decreases.
一方、 点火手段 3からの火炎によって、 燃焼室 1 2内の伝火薬 2が 燃焼する。 これによつて発生した高温の熱流は、 ガス滞留空間 1 6に 流入し、 ボンべ 1から放出された低温化したガスと混合する。 ボンべ 1から 出されたガスは、 これによつて加熱され、 高温一ガスとなって On the other hand, the flame from the ignition means 3 causes the transfer charge 2 in the combustion chamber 12 to burn. The high-temperature heat flow generated thereby flows into the gas retaining space 16 and mixes with the cooled gas released from the cylinder 1. The gas discharged from cylinder 1 is heated by this, and becomes one high-temperature gas.
、 フィルター材 1 8を通過して外筒材 5に形成されたガス放出孔 1 7 から放出される。 これで、 このガス発生器 P 1に接続されているエア バッグは、 各ガス放出孔 1 7から放出される清浄なガスによって、 瞬 時に、 膨張される。 なお、 このとき、 ハウジング 4の脚部 1 0は、 空 間 1 6内に均等に配置されている。 そして、 ガス放出孔 1 7の投影部 分に形成されているため、 ガス滞留空間 1 6内がガス放出孔 1 7から 放出される際に邪魔板となり、 ガスを拡散する役目を果たし、 ボンべ 1力 らのガスと、 燃焼室 1 2からの高温の熱流との混合を早める。 このように、 本発明のガス発生器 P 1によれば、 伝火薬 2の燃焼に よる発熱量が、 通常 4 0 0 0 j / g以上、 好ましくは 5 5 0 0 j Z g であるだめ、 伝火薬 2の装填量を少なくでき、 燃焼室 1 2を小型化す ることができる。 これによつて、 ラプチヤーディスク 6と点火手段 3 との距離を短くすることが可能となり、 ラプチヤーディスク 6と点火 手段 3とを対面構造とすることで、 点火手段 3の火炎を直接ラブチヤ 一ディスク 6に当てることができる。 このため、 従来のように、 燃焼 室内に収納された伝火薬を燃焼して発生するガスによつて燃焼室内の 圧力を高めることによってラプチヤーディスクを破壊していた場合 比べて、 燃焼室の容量を小型化することが可能となる。 After passing through the filter material 18, the gas is discharged from the gas discharge holes 17 formed in the outer cylinder 5. Thus, the airbag connected to the gas generator P1 is instantaneously inflated by the clean gas discharged from each gas discharge hole 17. At this time, the legs 10 of the housing 4 are evenly arranged in the space 16. And since it is formed in the projection part of the gas discharge hole 17, it serves as a baffle when the gas retention space 16 is discharged from the gas discharge hole 17, and serves to diffuse gas, and It accelerates the mixing of one gas with the hot heat flow from combustion chamber 12. As described above, according to the gas generator P 1 of the present invention, the calorific value due to the combustion of the transfer charge 2 is usually not less than 400 j / g, preferably not more than 550 j Z g, Reduces the amount of charge 2 and reduces the size of combustion chamber 1 and 2 Can be This makes it possible to shorten the distance between the rupture disk 6 and the ignition means 3, and by making the rupture disk 6 and the ignition means 3 face-to-face, the flame of the ignition means 3 can be directly transferred to the Can be applied to disk 6. For this reason, the capacity of the combustion chamber is smaller than in the conventional case where the rupture disk is destroyed by increasing the pressure in the combustion chamber with the gas generated by burning the transfer charge stored in the combustion chamber. Can be reduced in size.
また、 点火手段 3で発生した火炎が、 ラプチヤーディスク 6の中心 部に集中して当たるように、 ハウジング 4の底部 7に火炎放出口 1 3 を形成しているため、 従来のように、 ピス トン等の機械的手段を用い ることなく火炎によって、 機械的に強度の高いラプチヤーディスク 6 を使用した場合であっても、 確実に破裂させることができる。 このた め、 ガス発生器 P 1の構造を簡易なものとすることができる。  In addition, the flame outlet 13 is formed in the bottom 7 of the housing 4 so that the flame generated by the ignition means 3 strikes the center of the rupture disk 6 in a concentrated manner. Even if a mechanically high strength rupture disk 6 is used, it can be ruptured by a flame without using mechanical means such as tons. Therefore, the structure of the gas generator P1 can be simplified.
なお、 本発明のガス発生器 P 1は、 エアバッグはもちろんであるが 、 シートベルトプリテンショナ等の享両搭乗者拘束装置や、 安全シス テムをトリガする事故の際に、 自動車バッテリーから車載電源網を切 り離す切り離し安全スィツチとしても利用することができる。  It should be noted that the gas generator P1 of the present invention can be used not only for airbags but also for vehicle occupant restraint devices such as seatbelt pretensioners and vehicle battery power in the event of an accident that triggers a safety system. It can also be used as a separation safety switch for separating the net.
第 4図に本発明に係るガス発生器の他の実施形態例の断面概略図を 示す。 第 4図において、 第 1図乃至第 3図と同一部材については同一 符晉を付して詳細な説明は割愛する。  FIG. 4 is a schematic cross-sectional view of another embodiment of the gas generator according to the present invention. In FIG. 4, the same members as those in FIGS. 1 to 3 are denoted by the same reference numerals, and detailed description is omitted.
第 4図に示すガス発生器 P 2は、 ハウジング 4の側筒部 8に外筒材 5に向う複数の火炎放出孔 3 0が形成されている。 そして、 ガス放出 孔 1 7が、 外筒材 5の点火器 3側に形成されている。 このため、 点火 器 3の点火によって、 発生する高温の熱流は、 火炎放出口 1 3及び火 炎放出孔 3 0からガス滞留空間 1 6內に放出される。 これによつて、 点火器 3の点火直後は、 火炎放出口 1 3からの火炎によって、 ボンべ 1のボンべキャップ 2 3のラプチヤーディスク 6が破壌され、 その後 、 ボンべ 1から放出されてガス滞留空間 1 6で断熱膨張する低温のガ スを、 該ガス滞留空間 1 6内で、 火炎放出口 1 3及び火炎放出孔 3 0 からの高温の熱流によって加熱することができる。 また、 火炎放出孔 3 0が外筒材 5に向かい形成されているため、 放出された熱流が、 ま ず、 フィルター材 1 8及び外筒材 5の内壁にあたり、 ガス滞留空間 1 6内のガスを攪拌する。 このため、 ガス滞留空間 1 6内のガスを確実 に加熱して、 ガス放出孔 1 7から放出することができる。 In the gas generator P2 shown in FIG. 4, a plurality of flame discharge holes 30 facing the outer cylinder 5 are formed in the side cylinder 8 of the housing 4. A gas discharge hole 17 is formed in the outer cylinder member 5 on the igniter 3 side. Therefore, the high-temperature heat flow generated by the ignition of the igniter 3 is released from the flame discharge port 13 and the flame discharge hole 30 into the gas retaining space 16 空間. As a result, immediately after the ignition of the igniter 3, the flame from the flame outlet 13 causes the cylinder to fire. The low-temperature gas released from the cylinder 1 and then adiabatically expanded in the gas retaining space 16 is cooled in the gas retaining space 16 by rupture of the rupture disk 6 of the cylinder cap 2 3 It can be heated by a high-temperature heat flow from the flame outlet 13 and the flame outlet 30. In addition, since the flame discharge holes 30 are formed toward the outer cylinder 5, the released heat flow first hits the inner walls of the filter material 18 and the outer cylinder 5, and the gas in the gas retention space 16 Is stirred. Therefore, the gas in the gas retaining space 16 can be reliably heated and released from the gas release holes 17.
また、 第 5図に本発明に係るガス発生器の他の実施形態例の断面概 略図を示す。 第 5 (11において、 第 1図乃至第 4図と同一部材について は同一符号を付して詳細な説明は割愛する。  FIG. 5 is a schematic cross-sectional view of another embodiment of the gas generator according to the present invention. In FIG. 5 (11), the same members as those in FIGS. 1 to 4 are denoted by the same reference numerals, and detailed description is omitted.
第 5図に示すガス発生器 P 3は、 ハウジング 4に形成されている脚 部 1 0力 ボンべキャップ 2 3に当接するように形成されている。 そ して、 ボンべ 1から放出されたガスが、 ガス滞留空間 1 6に滞留した 後、 脚部 1 0 1¾Tの形成される開口から外筒材 5に向つて噴出され -てガ ス放出孔. 1 7から放出されるようになっている。  The gas generator P3 shown in FIG. 5 is formed so as to come into contact with the leg 10 force cylinder cap 23 formed on the housing 4. After the gas released from the cylinder 1 stays in the gas retaining space 16, it is ejected from the opening where the legs 101 ¾T are formed toward the outer cylinder 5, and the gas discharging hole is formed. It is to be released from 17.
脚部 1◦は、 第 6図に示す第 5図の Α— Α線断面図の下半分の図に 示すように、 外筒材 5に所定角度を有して形成されているガス放出孔 1 7と略同一の位置に形成されている。 すなわち、 外筒材 5のガス放 出孔 1 7が形成されていない部分に、 脚部 1 0、 1 0間の開口 3 0が 位置できるように、 ハウジング 4の底部 7から設けられている。 これ によって、 ボンべ 1からのガスは、 脚部 1 0同士の間で形成される開 口 3 0から外筒材 5に向って放出される。 そして、 ガス放出孔 1 7が 、 該開口 3 0よりも点火器 3側に位置するため、 ボンベからのガスが すぐにガス放出孔 1 7から放出されることなく、 ガス滞留空間 1 6内 で滞留し、 攪拌されて放出される。 このよ.うに、 この脚部 1 0によって、 ボンべ 1から放出されたガス は、 ガス滞留空間 1 6で、 確実に滞留した後、 ガス放出孔 1 7から放 出される。 このため、 ガス滞留空間 1 6内で、 ボンべ 1からのガスは 、 ハウジング 4からの高温の熱流によって確実に加熱される。 産業上の利用可能性 As shown in the lower half of the cross-sectional view taken along the line III-III of FIG. 5 shown in FIG. 6, the leg 1 ◦ is formed with a gas discharge hole 1 It is formed at substantially the same position as 7. That is, it is provided from the bottom 7 of the housing 4 so that the opening 30 between the legs 10, 10 can be located in a portion of the outer cylinder 5 where the gas discharge hole 17 is not formed. Thereby, the gas from the cylinder 1 is discharged toward the outer cylinder 5 from the opening 30 formed between the legs 10. Since the gas discharge hole 17 is located closer to the igniter 3 than the opening 30, the gas from the cylinder is not immediately discharged from the gas discharge hole 17, but is discharged in the gas retaining space 16. It stays and is released after being stirred. As described above, the gas released from the cylinder 1 by the legs 10 is reliably retained in the gas retaining space 16 and then released from the gas releasing holes 17. Therefore, the gas from the cylinder 1 is reliably heated by the high-temperature heat flow from the housing 4 in the gas retaining space 16. Industrial applicability
本発明のガス発生器は、 以上のように、 点火手段からの火炎によつ て高圧ガスが装填されているボンベのシール性に優れた高レ、破壊強度 を有するラプチヤーディスク .を破壌し、 ボンべから放出される高圧ガ0 スと、 燃焼室で発生する高温の熱流とを混合して高温、 高圧ガスとし て放出する構造である。 このため、 ラプチヤーディスタを破壊するの に、 伝火薬量の増量や、 機械的な手段を使用する必要もないことから 、 構造を簡易化できるとともに、 小型化を実現できるハ,イブリツド方 式のガス発生器とすることが可能である。 As described above, the gas generator of the present invention breaks the rupture disk having high sealing strength and high breaking strength of the cylinder loaded with the high-pressure gas by the flame from the ignition means. Then, the high-pressure gas discharged from the cylinder and the high-temperature heat flow generated in the combustion chamber are mixed and discharged as a high-temperature, high-pressure gas. For this reason, it is not necessary to increase the amount of transfer charge or use mechanical means to destroy the rupture distor, so that the structure can be simplified and the miniaturization method can be realized. It can be a gas generator.
"5 "Five

Claims

請 求 の 範 囲 The scope of the claims
1 . 高圧ガスが装填されたボンベと、 ドーナツ形状の伝火薬及び点 火手段が収納されたコップ状のハウジングと、 前記ボンベの圧力を保 持するとともに密封するラプチヤーディスクと、 前記ボンベと前記ハ 1. A cylinder loaded with high-pressure gas, a cup-shaped housing containing a donut-shaped transfer charge and ignition means, a rupture disk for holding and sealing the pressure of the cylinder, the cylinder and the cylinder C
5 ウジングとの間にガス滞留空間を形成するように前記ボンベと前記ハ ウジングとを連結保持する外筒材と、 を備えてなり、 An outer cylinder member for connecting and holding the cylinder and the housing so as to form a gas retention space between the housing and the housing.
前記ボンべと前記ハゥジングとが、 前記ハゥジング内に収納された 前記点火手段とが対面するように連結保持されていることを特徴とす るガス発生器。 ■  A gas generator characterized in that the cylinder and the housing are connected and held so that the ignition means housed in the housing faces the ignition means. ■
10 2 . 前記ハウジングは、 底部に火炎放出口が形成され、 前記火炎放 '出口が、 内部から外部に向かって縮径されて、 前記点火手段からの火 炎が、 前記ラプチヤーディスクの中央に集中するように形成されてい る請求の範囲第 1項に記載のガス発生器。 10 2. The housing has a flame outlet at the bottom, the flame outlet is reduced in diameter from the inside to the outside, and the flame from the igniting means is centered on the rupture disk. 2. The gas generator according to claim 1, wherein the gas generator is formed so as to be concentrated.
3 . 前記ハウジングの底部側筒部に、 前記外筒材に向かう複数の火 15 炎放出孔が形成されている請求の範囲第 2項に記載のガス発生器。  3. The gas generator according to claim 2, wherein a plurality of flame discharge holes toward the outer cylinder material are formed in a bottom-side cylinder portion of the housing.
4 . 前記ハウジングの底部に、 前記ボンベからのガスが前記ガス滞 ' 留空間で攪拌されて前記外筒材に設けられている複数のガス放出孔か ら放出されるように複数の脚部が設けられている請求の範囲第 1項に 記載のガス発生器。  4. A plurality of legs are provided at the bottom of the housing so that the gas from the cylinder is stirred in the gas storage space and discharged from the plurality of gas discharge holes provided in the outer cylinder. The gas generator according to claim 1, which is provided.
20 5 . 前記ハウジングの底部に、 前記ボンベからのガスが前記ガス滞 留空間で攪拌されて前記外筒材に設けられている複数のガス放出孔か ら放出されるように複数の脚部が設けられている請求の範囲第 2項に 記載のガス発生器。  20 5. A plurality of legs are provided at the bottom of the housing so that the gas from the cylinder is stirred in the gas retaining space and discharged from the plurality of gas discharge holes provided in the outer cylinder. The gas generator according to claim 2, which is provided.
6 . 前記ラプチヤーディスクが、 前記点火手段からの火炎力で破断 25 される請求の範囲第 1項に記載のガス発生器。  6. The gas generator according to claim 1, wherein the rupture disk is broken by a flame force from the ignition means.
7 . 前記伝火薬の燃焼による発熱量が、 4 0 0 0 J g以上である 請求の範囲第 1項に記載のガス発生器。 7. The calorific value due to combustion of the transfer charge is more than 400 Jg The gas generator according to claim 1.
PCT/JP2002/000916 2001-02-07 2002-02-05 Gas generator WO2002062629A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-31046 2001-02-07
JP2001031046 2001-02-07
JP2001-150439 2001-05-21
JP2001150439A JP2002308040A (en) 2001-02-07 2001-05-21 Gas producer

Publications (1)

Publication Number Publication Date
WO2002062629A1 true WO2002062629A1 (en) 2002-08-15

Family

ID=26609062

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000916 WO2002062629A1 (en) 2001-02-07 2002-02-05 Gas generator

Country Status (2)

Country Link
JP (1) JP2002308040A (en)
WO (1) WO2002062629A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7721652B2 (en) 2004-03-02 2010-05-25 Nippon Kayaku Kabushiki Kaisha Gas generator
CN105413588A (en) * 2015-11-16 2016-03-23 宋波 Electrical positioning and abut pressing triggering mechanism thereof
US11155234B2 (en) * 2016-12-02 2021-10-26 Trw Airbag Systems Gmbh Gas generator, airbag module and motor vehicle safety system

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050044425A (en) 2001-11-15 2005-05-12 니폰 가야꾸 가부시끼가이샤 Gas generator
JP2006160049A (en) * 2004-12-07 2006-06-22 Daicel Chem Ind Ltd Compact inflator for airbag
US7883108B2 (en) * 2008-09-04 2011-02-08 Autoliv Asp, Inc. Inflator for an airbag

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263740A (en) * 1991-12-17 1993-11-23 Trw Inc. Hybrid air bag inflator
EP0715994A2 (en) * 1994-12-08 1996-06-12 TEMIC Bayern-Chemie Airbag GmbH Hybrid gas generator for safety systems in vehicles
US5601309A (en) * 1994-12-08 1997-02-11 Temic Bayern-Chemie Airbag Gmbh Hybrid gas generator for safety systems in road vehicles
JPH09240415A (en) * 1996-03-07 1997-09-16 Nissan Motor Co Ltd Hybrid inflator
EP0949126A2 (en) * 1998-04-08 1999-10-13 Takata Corporation Airbag inflator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0958394A (en) * 1995-08-29 1997-03-04 Matsushita Electric Ind Co Ltd Gas generator for air bag device
DE19532023A1 (en) * 1995-08-31 1997-03-06 Temic Bayern Chem Airbag Gmbh Device for filling a restraint device
JP3800445B2 (en) * 1996-12-26 2006-07-26 日本化薬株式会社 Airbag device
US6010153A (en) * 1997-02-21 2000-01-04 Breed Automotive Technology, Inc. Hybrid inflator for airbags
US6214138B1 (en) * 1997-08-18 2001-04-10 Breed Automotive Technology, Inc. Ignition enhancer composition for an airbag inflator
FR2788846B1 (en) * 1999-01-25 2001-10-26 Livbag Snc HYBRID GAS GENERATOR WITH PROFILE EXPLOSIVE LOADING INITIATOR

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5263740A (en) * 1991-12-17 1993-11-23 Trw Inc. Hybrid air bag inflator
EP0715994A2 (en) * 1994-12-08 1996-06-12 TEMIC Bayern-Chemie Airbag GmbH Hybrid gas generator for safety systems in vehicles
US5601309A (en) * 1994-12-08 1997-02-11 Temic Bayern-Chemie Airbag Gmbh Hybrid gas generator for safety systems in road vehicles
JPH09240415A (en) * 1996-03-07 1997-09-16 Nissan Motor Co Ltd Hybrid inflator
EP0949126A2 (en) * 1998-04-08 1999-10-13 Takata Corporation Airbag inflator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7721652B2 (en) 2004-03-02 2010-05-25 Nippon Kayaku Kabushiki Kaisha Gas generator
CN105413588A (en) * 2015-11-16 2016-03-23 宋波 Electrical positioning and abut pressing triggering mechanism thereof
US11155234B2 (en) * 2016-12-02 2021-10-26 Trw Airbag Systems Gmbh Gas generator, airbag module and motor vehicle safety system

Also Published As

Publication number Publication date
JP2002308040A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
JP2609404B2 (en) Igniters and expanders
JP2963086B1 (en) Gas generator and airbag device for airbag
JP4823907B2 (en) Gunpowder storage gas inflator
EP1658204B1 (en) Pyrotechnique side impact inflator
US7721652B2 (en) Gas generator
JP3817233B2 (en) Low-strength two-stage hybrid inflator
WO2000018618A1 (en) Gas generator for air bag and air bag device
US6196584B1 (en) Initiator for air bag inflator
WO2010126057A1 (en) Gas generator
KR101413168B1 (en) A hybrid type gas generator containing a metal charge
KR100669853B1 (en) Multiple stage inflator
US20060202455A1 (en) Gas generator
US5732972A (en) Cold deployment pyrotechnic inflator for air bag systems
JP2006306218A (en) Gas generator
JPH10315901A (en) Gas generating device
JP3905133B2 (en) Hybrid gas generator with internal gas injection
WO2002062629A1 (en) Gas generator
JP3891932B2 (en) Gas generator
JPH11348711A (en) Gas generator for air bag and air bag device
JP2001130368A (en) Gas generator for air bag
TW521052B (en) Air bag gas generator and air bag device
JP3910897B2 (en) Inflator
JP4248423B2 (en) Gas generator
JP4138178B2 (en) Gas generator for airbag and airbag device
JP4633918B2 (en) Gas generator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase