WO2002061106A2 - Method for producing cysteine, cystine and glutathione by fermentation - Google Patents

Method for producing cysteine, cystine and glutathione by fermentation Download PDF

Info

Publication number
WO2002061106A2
WO2002061106A2 PCT/EP2002/001122 EP0201122W WO02061106A2 WO 2002061106 A2 WO2002061106 A2 WO 2002061106A2 EP 0201122 W EP0201122 W EP 0201122W WO 02061106 A2 WO02061106 A2 WO 02061106A2
Authority
WO
WIPO (PCT)
Prior art keywords
cysteine
sat
seq
glutathione
dna sequences
Prior art date
Application number
PCT/EP2002/001122
Other languages
German (de)
French (fr)
Other versions
WO2002061106A3 (en
Inventor
Markus Wirtz
Rüdiger HELL
Original Assignee
Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung filed Critical Ipk - Institut Für Pflanzengenetik Und Kulturpflanzenforschung
Priority to AU2002244700A priority Critical patent/AU2002244700A1/en
Publication of WO2002061106A2 publication Critical patent/WO2002061106A2/en
Publication of WO2002061106A3 publication Critical patent/WO2002061106A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • C12P13/12Methionine; Cysteine; Cystine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione

Definitions

  • the present invention relates to a method for finding genes and DNA sequences which code for the enzyme serine acetyltransferase (SAT) and are suitable for the fermentative production of cysteine.
  • the invention further relates to a method for producing sulfur-containing compounds such as cysteine, cystine and glutathione in bacteria and other host organisms by means of overexpression of SAT genes, the host organism being disturbed in its own glutathione synthesis.
  • the sulfur-containing amino acid cysteine is the end product of assimilatory sulfate reduction in bacteria, fungi and plants. In addition to its role in proteins, cysteine acts essentially and ubiquitously in all organisms as a donor of reduced sulfur for the biosynthesis of other compounds such as methionine, Fe / S clusters and various vitamins (e.g. biotin). Direct relatives of cysteine are its oxidation product cystine and the tripeptide glutathione ( ⁇ -glutamylcysteinylglycine). In addition, cysteine, glutathione and related thiol compounds have important functions in the defense against stress from humans and animals. Cysteine also partially compensates for the need for the essential amino acid methionine.
  • the system biosynthesis takes place in bacteria and in plants in a two-stage process.
  • serine acetyltransferase (SAT; EC 2.3.1.30) ensures the formation of the activated thioester O-acetylserine (OAS) from serine and acetyl-coenzyme A.
  • OAS-TL O-acetylserine
  • OAS-TL O-acetylserine
  • SAT represents the speed-limiting component, the activity of this enzyme being found only in connection with O-acetylserine (thiol) lyase in the cysteine synthase complex.
  • OAS-TL is present in large excess due to the activity of SAT-free homodimers (Kredich et al. (1969) J. Biol. Chem. 244, 2428-2439; Droux et al. (1998) Eur. J. Biochem. 255 , 235-245; Saito (2000) Curr. Opin. Biol. 3, 188-195).
  • Cysteine is almost the only compound where reduced sulfur enters cell metabolism, although sulfur is needed for the biosynthesis of essential compounds, including methionine, biotin, and Fe / S clusters.
  • sulfur-containing compounds such as cysteine, cystine and glutathione is therefore of great biotechnological interest for pharmacological processes and for nutritional supplements.
  • Cysteine can be obtained by chemical synthesis or by extraction from animal
  • Sources such as keratin are made or extracted.
  • the large-scale production of cysteine in microorganisms is mainly influenced by regulatory mechanisms of the cys regulon (Kredich (1996) In Escherichia coli and Salmonella tyhpimurium. Cellular and molecular biology (Neidhardt et al., Eds.), Pp. 514 - 527. ASM Press, Washington DC, USA) and its toxicity at higher levels
  • E. coli SAT CYSE protein, encoded by the cy-sE gene
  • cysteine has an inhibition constant (K;) of approximately 10 "6 M in Salmonella typhimurium and E. coli (Kredich et al. (1969) vide supra; Kredich (1996) vide supra) and thus effectively controls the flow rate reduced sulfur in a feedback loop (end product inhibition).
  • K inhibition constant
  • SAT proteins are used, which are found in higher plants and are structurally closely related to the bacterial enzyme. Plants generally contain at least three core-coded SAT isoforms, which are found in the plastids, the cytosol and in the
  • a new E. co / z strain is used in which the cysE gene, which codes for the bacterial SAT, is inactivated by mutation.
  • SAT genes with less pronounced feedback inhibition can be selected using such a SAT-free E. co z mutant.
  • the invention therefore relates to a method for finding DNA sequences which code for cysteine-insensitive serine acetyltransferases, characterized by the use of a cy5E " bacterial strain for functional complementation.
  • the bacterial strain is preferably an Escherichia co / z- Tribe.
  • the method according to the invention is thus particularly useful for identifying naturally occurring, cysteine-insensitive S ATs from plants, microorganisms or other sources which are suitable for microbial fermentation of cysteine.
  • the I 0 value is defined here as the cysteine concentration at which, under otherwise optimal conditions, there is a 50% inhibition of the SAT activity.
  • the I 50 value is determined by determining the SAT activity with increasing cysteine
  • the term "functional complementation" means that a certain enzyme activity of a bacterial strain deficient in this enzyme activity restores the enzyme activity in the bacterial strain by expression of a heterologous gene which codes for this enzyme activity under the control of a suitable bacterial promoter.
  • the restoration of the enzyme activity permits the prototrophic growth of the otherwise auxotrophic, deficient bacterial strain under suitable conditions (in the context of the present invention in the absence of cysteine).
  • the bacterial cysE gene codes for the bacterial serine acetyltransferase; the DNA sequence of the cysE gene is described in the prior art, e.g. in Denk and Bock (1987) J. Gen. Microbiol. 133, 515-525.
  • bacterial strains according to the invention which are suitable for screening for cys-insensitive SAT genes by means of functional complementation due to the inactivation in the cysE gene is described in the examples. These bacterial strains are referred to as SAT-deficient or SAT-free in the context of this invention.
  • the SAT-deficient strains produced in the context of this invention are distinguished by the fact that they show practically no reversion of the phenotype. These genetically extremely stable strains are particularly useful for functional complementation for the discovery of genes which code for cysteine-insensitive SATs.
  • strain MW1 described in the examples which shows no reversion whatsoever, can also be used to remove existing bacterial strains with MW1 transduce. In this way, further cysteine auxotrophic strains are produced which are distinguished by the desired genetic stability.
  • genotypes were verified in the context of the invention i) biochemically by enzyme tests, ii) genetically by DNA-DNA hybridization and iii) physiologically by complementation with known plant cDNAs.
  • cDNA libraries are now commercially available from almost any organism, e.g. from companies like Stratagene, La Jolla, USA.
  • the invention also relates to genes which code for cysteine-insensitive SAT enzymes and isoforms and which are isolated on the basis of functional complementation by means of the screening method described above.
  • these SAT gene sequences are sequences from plants, in particular from Nicotiana tabacum.
  • cDNA sequences of the Nicotiana tabacum SAT genes 1, 4 and 7, which are added as sequences, are particularly preferred: cDNA sequence of SAT 1 as SEQ ID NO. 1, the derived amino acid sequence as SEQ ID NO. 2; the cDNA sequence of SAT 4 as SEQ ID NO. 3, the amino acid sequence derived therefrom as SEQ ID NO. 4; the cDNA sequence of SAT 7 as SEQ ID NO. 5 and the amino acid sequence derived therefrom as SEQ ID NO. 6th
  • the invention thus also relates to a DNA sequence which codes for a protein with the enzymatic activity of a serine acetyltransferase from Nicotiana tabacum, selected from the group consisting of: a) DNA sequences which comprise a nucleotide sequence which comprises the sequence shown in SEQ ID NO. 2, SEQ TD NO. 4 or SEQ ID NO. 6 encode specified amino acid sequence or fragments thereof, b) DNA sequences which the SEQ ID NO. 1, SEQ ID NO. 3 or SEQ ID NO.
  • DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or comprise parts of this nucleotide sequence, e) DNA sequences which are a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
  • hybridization means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2nd edition, Coldspring Harbor, Laboratory Press, Coldspring Harbor, New York.
  • the SAT nucleic acid molecules which can be used in the context of the invention also comprise fragments, derivatives and allelic variants of the DNA sequences described above which code for SAT or a biologically, ie enzymatically active, fragment thereof. Fragments are parts of the nucleic acid molecules understood that are long enough to encode a polypeptide or protein with the enzymatic activity of a SAT or a comparable enzymatic activity.
  • the term derivative means that the sequences of these molecules differ from the sequences of the abovementioned nucleic acid molecules at one or more positions and have a high degree of homology to these sequences.
  • Homology means a sequence identity of at least 70%, preferably 80%, in particular an identity of at least 85% and 90%, preferably at least 92% and particularly preferably at least 95%, 98%, 99%, or that the homologous sequence under stringent conditions , which are known to the person skilled in the art, hybridized with the above-mentioned SAT sequences.
  • the deviation from the nucleic acid molecules described above may have resulted from deletion, addition, substitution, insertion or recombination.
  • Homology also means that there is functional and / or structural equivalence between the nucleic acid molecules concerned and the proteins encoded by them.
  • the invention also relates to sequences from other plants coding for SAT which are identified by the sequence shown in SEQ ID 1, 3 and 5 nucleic acid sequences shown in the coding region show an identity of at least 80%, 85%, 90% and in particular at least 94%, 96%.
  • sequences from other plants coding for SAT which are identified by the sequence shown in SEQ ID 1, 3 and 5 nucleic acid sequences shown in the coding region show an identity of at least 80%, 85%, 90% and in particular at least 94%, 96%.
  • Sequence listing sequences can be determined using conventional algorithms.
  • the program for determining sequence identity is suitable here, which is available at http://www.ncbi.nhn.nih.gov/BLAST (on this page, for example, the link "Standard nucleotide-nucleotide BLAST [blastn]").
  • Figure 2 shows a comparison of the SAT sequences from tobacco isolated in the context of this application with five known SAT sequences from Arabidopsis thaliana (in the MIPS genome nomenclature) and the known SAT sequence from E. coli.
  • cysteine-insensitive SAT 4 from tobacco which could be isolated in the context of this invention, interestingly differs from the known SAT sequences in two positions: i) an insertion of two residues, a cysteine and a serine, at position 63 and 64 within the amino acid sequence of the SAT 4; and ii) a three amino acid deletion near the C-terminus; both places are highlighted in Figure 2.
  • the invention thus also relates to DNA sequences which code for SAT and which have a deletion or insertion corresponding to the deletion or insertion marked in FIG. 2, or both features, the position of course varying relative to SAT 4 from tobacco.
  • the SAT sequences additionally have a strong homology to the entire coding sequence of SAT 4 (SEQ ID No. 3).
  • the insertion mentioned does not necessarily have to include two amino acid residues, but only one residue or more than two residues can be inserted in comparison to other SAT sequences.
  • the insertion is within the conserved motif: LF / L / MY E / DL / IFXXV / T / A / IDLXAF / V / AK / RXRDPACI / L / NSY / F (where X is any amino acid), see Figure 2 , corresponds to the motif between position 63 and position 98 of the SAT gene from E. coli.
  • the deletion mentioned does not necessarily have to include three amino acid residues, it can also be only one residue, two residues or more than three residues in the Deleted unlike other SAT sequences.
  • the deletion is within the last 20 C-terminal amino acids, especially in the conserved motif:
  • a SAT sequence he has isolated by means of the method according to the invention is one of the features observed for SAT 4 from tobacco, that is to say the deletion and / or insertion, at a position corresponding to the position within SAT 4.
  • the identical amino acids need not necessarily be deleted or inserted, the decisive factor is whether there is a deletion and / or insertion in the corresponding positions at all.
  • the invention also relates to a method for producing sulfur-containing compounds, in particular cysteine, cystine and glutathione, in host organisms, in particular microorganisms, by overexpressing the Screening method described above by means of functional complementation found cysteine-insensitive SAT genes or other SAT genes with the desired cysteine insensitivity in host organisms.
  • Figure 3 shows the accumulation of cysteine in E. co / z ' cultures that express the SAT sequences from tobacco.
  • the sequences SAT1, SAT4 and SAT7 from tobacco were expressed in the strain MW1.
  • Cell density (black dots) and cysteine levels in the culture medium were determined during growth as indicated.
  • C600 is the wild type.
  • the invention thus also relates to a process for the fermentative production of cysteine, in which cysteine contents in the growth medium of the bacteria are achieved which are at least 20 mg / 1, preferably at least 50 mg / 1 and particularly preferably at least 100, 200 mg / 1 culture medium ,
  • cysteine contents in the growth medium of the bacteria are achieved which are at least 20 mg / 1, preferably at least 50 mg / 1 and particularly preferably at least 100, 200 mg / 1 culture medium
  • an increase in the cysteine content in the growth medium of at least 3-fold, preferably at least 5-fold and particularly preferably of at least 10-fold, 20-fold is achieved by means of the method according to the invention expressing a cysteine-insensitive SAT.
  • the microorganism which is used for the overexpression of the cysteine-insensitive SAT gene sequences is a glutathione-deficient strain.
  • the glutathione-deficient bacterial strain is preferably the E. co / z ' strain JTG10 with the chromosomal marker gshA20 :: Tnl0kan, which is available, for example, from the E. coli Genetic Stock Center, Yale University, New Haven, CT, USA, can be obtained (CGSC # 6926) and was originally described by Greenberg & Demple (1986, J. Bacteriol. 168, 1026).
  • Another suitable glutathione-deficient bacterial strain is, for example, the E.
  • the use of a glutathione deficient strain has the advantage that the absence of glutathione as a control agent for the accumulation of cysteine in the bacterial cell results in the secretion of cysteine from the bacterial cell into the growth medium. This effect leads to a considerable increase in the total cysteine accumulation.
  • the invention thus relates to a process for the production of cysteine, cystine and glutathione in microorganisms, in particular bacteria, characterized in that a DNA sequence which codes for a cysteine-insensitive serine acetyltransferase is expressed in the microorganism, and it is present in the microorganism is a glutathione-deficient cell.
  • the DNA sequences for SAT expressed in the glutathione-deficient microorganism are generally selected so that they show the desired overproduction of cysteine in the microorganism.
  • cystine and glutathione arise as a result of cysteine overproduction or can be formed preferentially through targeted measures.
  • SAT gene which is identified by means of functional complementation using the inventive screening method described above.
  • These are preferably plant SAT genes, particularly preferably from Nicotiana tabacum.
  • sequences disclosed in this application code for vegetable SAT enzymes which are distinguished from SAT proteins from the literature by greatly reduced sensitivity to cysteine.
  • further suitable coding sequences in particular from plants, can be identified and their suitability for the overproduction of cysteine in microorganisms can be examined.
  • even more suitable SAT genes can be found, that is to say genes which code for protein and which show an even more pronounced cysteine insensitivity. If cDNA clones are isolated as described here, the coded SAT proteins can be expressed in bacteria by standard methods and introduced into existing strains to improve cysteine production, preference being given to using glutathione-deficient strains.
  • the microorganism is a glutathione-deficient bacterial strain, in particular a bacterial strain which is inactivated by mutation in the first glutathione synthesis step (gshl ⁇ ).
  • the particularly preferred strain JTG10 contains a gshA gene which is inactivated by transposon TnlOkan and which codes for the first enzyme of glutathione synthesis, ⁇ -glutamylcysteine synthetase. Any inactivation of this gene leads to complete or partial reduction of the enzyme activity, is suitable for the cysteine production according to the invention.
  • the expression of the cysteine-insensitive SAT genes in a glutathione-deficient bacterial strain leads to the fact that the cysteine formed is discharged from the cell and accumulates in high concentrations in the surrounding culture medium as cysteine and cystine.
  • the enriched sulfur-containing compounds can then be purified using standard procedures.
  • the purification of cysteine from aqueous solutions is e.g. in JP56140966A2 (Preparation of purified cysteine) and JP61057549 (Method of purifying cysteine).
  • Principal methods for the purification of amino acid with cation exchange chromatography are e.g. described by T. G. Cooper (Biochemical Working Methods, W. de Gryuter Verlag, Berlin, 1980).
  • suitable expression vectors for the overexpression of heterologous genes in bacteria are also commercially available, e.g. from the company Qiagen, Hilden Germany.
  • the cDNA library from N. tabacum cv used. Samsun was created in ⁇ -ZAPII according to specifications and with materials from the manufacturer, Stratagene. In vivo excision was also carried out according to the manufacturer's instructions (Stratagene) in order to obtain recombinant plasmids from the phage bank. These can be used to transform the SAT-deficient E.co/t standard.
  • the insertional inactivation of the wild-type cysE gene from E. coli C600 was carried out as described by Hamilton et al. (1989) J. Bacteriol. 171, 4617-4622. This should create an S AT-deficient strain that has increased stability compared to currently available strains.
  • the wild-type cysE gene was including its flanking regions using PCR with genomic DNA from strain C600 and the primers
  • ECS 155 5'-CGTGGATCCTTAGGCGATCAAATTCC-3 'and ECS156 5'-GGGGAGTCGACGGCGCTGTATGTACTCCCT-3'
  • the PCR protocol was as follows:
  • the resulting 2.2 kb DNA fragment was ligated into the Sall and BamHI restriction sites of linearized pUC18.
  • the cysE gene was cut with Clal at position 522, based on the open reading frame, and inactivated by inserting a 2.2 kb Clal / Clal fragment from p AC YC 184-Gm.
  • This fragment from the plasmid pACYC184-Gm (Chang and Cohen (1978) J. Bacteriol. 134, 1141-1156) carries a gentamycin resistance gene; the resulting pUC plasmid was named pUC18cys ⁇ -Gm.
  • co / z-SAT enzyme can thus be translated in this plasmid.
  • the cysE-Gm cassette was cut out with Sall and BamHI and ligated as a 4.4 kb fragment into the same sites of the plasmid pMAK705, which carries a kanamycin resistance gene and a temperature-sensitive origin of replication (pHOl; Hashimoto-Gotoh and Sekiguchi (1977 ) J. Bacteriol. 131, 405-412).
  • the resulting plasmid pMW1 was used for gene exchange using homologous recombination.
  • strain C600 transformed with pMWl to select kanamycin resistant colonies at 44 ° C (non-permissive temperature).
  • Cointegrates were first purified from the plasmid by culturing at 30 ° C (permissive temperature) followed by non-permissive conditions and the resulting cysteine auxotrophic strain was named MW1 (fhr leu thi lac ( ⁇ ) -PH-F 'cysE GmX) , In this way, the inactivated cysE gene was introduced into the genome of E. coli C600 via homologous recombination.
  • SAT enzymes were induced in all constructs with isopropyl thiogalactoside in full medium (LB) or minimal medium (M9) supplemented with ampicillin or gentamycin or both (Bogdanova et al. (1995) vide supra; Wirtz et al. ( 2000) hi Brunold et al., Eds, Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. P. Haupt Bern, pages 297-298).
  • the cells were harvested and disrupted by ultrasound treatment (Sonicator Bandelin, Berlin, Germany), then the soluble supernatant (10 min at 30,000 xg) was desalted by gel filtration on a PD 10 column (Amersham, Freiburg, Germany) and at -80 ° C stored. The protein contents were determined according to Bradford (1976).
  • the SAT activity of purified fractions and crude fractions was determined in 250 ⁇ l, containing 50 mM Tris HC1, pH 7.5, 0.2 mM acetyl-CoA, 2 mM dithiothreitol and 5 mM serine in the presence or absence of varying cysteine concentrations were examined.
  • the content of cysteine and glutathione in the medium or in the cells after extraction with 0.1 N HCl was determined in a 1: 5 ratio.
  • the sulfhydryl groups were derivatized with monobromobimane (Calbiochem, Darmstadt, Germany).
  • the separation, detection and quantification of the fluorescent adducts was carried out by means of HPLC (reversed-phase column Waters Nova-Pak C18, 4.6 x 250 mm; Waters HPLC system; Hell and Bergmann (1990) Planta 180, 630 -612) ,
  • Electroporation-competent cells from MW1 were transformed with a plasmid cDNA library (obtained by in vivo excision of the ⁇ ZAPII library) from Nicotiana tabacum var. SNN. The cells were regenerated in 1 ml of LB
  • the cysteine insensitivity was checked in two ways:
  • the plasmids of selected colonies were again transformed into MWl as above and checked for growth in the absence of cysteine. Growth of all plated cells was interpreted as positive functional complementation.
  • the cDNA inserts of the plasmids in question were then subjected to DNA sequencing.
  • cysteine and glutathione For the production of cysteine, cystine and glutathione in MWl, 200 ml shake cultures with M9 medium, supplemented with IPTG (ImM), ampicillin (100 ⁇ g / ml) and the 18 proteinogenic amino acids in addition to cysteine and methionine with an inoculum of 0.05 OD from MWl were inoculated with a plasmid with a SAT-encoding cDNA insert. The formation of cysteine and glutathione was followed in the course of the culture. The values after 18 hours of growth are shown in Table 2. Cystine was created as an oxidation product of cysteine in the medium and was not determined separately.
  • Organism from which the gene complementing the mutation originates is genetically very complex.
  • the mutant E. co / z strain MW1 described above, which was produced for the efficient screening of SAT cDNAs, was the already known cysE-E.
  • Co / z ' mutants EC1801 and JM39 consider that MWI showed no reversion of the phenotype. This means that the screening for SAT genes from heterologous sources can be carried out under any conditions without being affected by undesired genetic events.
  • the functional identity of the genotype was verified (i) biochemically using enzyme assays, (ii) genetically using DNA-DNA hybridization and (iü) physiologically using complementation with known cDNA clones from plants.
  • the MW1 strain showed no detectable SAT activity (see Table 1).
  • Table 1 SAT enzymatic activity in crude extracts from E. coli wild-type strain C600 and mutant MWl
  • Genome at 81.44 min. equivalent The insertion of the 2.2 kb gentamycin cassette would enlarge the ⁇ coRV genomic fragment to 6.8 kb.
  • an internal ⁇ coRV interface in the cassette leads to signals of 4.7 kb and 2.1 kb in the DNA-DNA hybridization, which confirms the position, orientation and identity of the insertion.
  • the specific identity of the MWl strain was demonstrated by complementation with a cDNA coding for SAT from Arabidopsis thaliana (Wirtz, diploma thesis 1998, Ruhr University Bochum, investigation of cysteine biosynthesis by mutagenesis of plant serine acetyltransferase) on minimal medium without cysteine ,
  • the SAT deficiency in the MWl strain was characterized by low and medium strength
  • Plant cysteine synthesis was thus implemented in E. coli without any endogenous background. - 24 '
  • SAT7 and SAT1 from tobacco correspond to the SAT-A from E. coli with an I 50 value of approximately 45 ⁇ M (Noji et al. (1998) vide supra), the values of SAT7 and SAT1 being clear lie above the inhibition constant of the bacterial SAT (Ki 1.1 ⁇ M, Kredich et al. (1969) vide supra).
  • SAT4 is essentially msensitive to cysteine, ie an I 50 value cannot be measured for SAT4 (see Figure 1). Such complete insensitivity to cysteine has never been described for a cloned or biochemically isolated SAT from any organism.
  • E. cot ⁇ cells with or without pBS-SK plasmids with tobacco cDNA clones for SAT were cultivated in supplemented M9 minimal medium without a reduced sulfur source; cysteine levels were determined after 18 hours of growth, as determined from inoculation of the culture.
  • the GSH content in the medium of C600 and MWl is essentially in the order of magnitude of the cysteine content. It can be assumed that cystine is also present in the medium since the medium is continuously aerated by shaking, which promotes cysteine oxidation.
  • the cysteine content in the medium is approximately 10-fold higher for MW1, which expresses the SAT cDNA clones from tobacco, compared to C600, which carries the wild-type cs-E gene.
  • a further 10-fold increase in the secretion of cysteine is achieved by expression of the tobacco SAT in the E. co z strain JTG10.
  • the lack of glutathione as a control agent for the accumulation of cysteine in the bacterial cell thus results in the secretion of the cysteine.
  • the combination of feedback-insensitive SAT enzymes with glutathione-deficient cell lines allows the production of cysteine in amounts 3 to 10 times higher than has been achieved in the prior art using other strategies (DBAler et al. (2000) vide supra ; Takagi et al. (1999) vide supra; Nakamori et al. (1998) vide supra).
  • Figure 1 shows the inhibition of plant SAT enzymes by cysteine.
  • SAT1, SAT4 and SAT7 from tobacco were expressed in the MW1 strain and examined for their SAT activity with increasing cysteine concentrations.
  • SEQ ID NO. 1 cDNA sequence from SAT 1 from Nicotiana tabacum
  • PJPTLSDMPAGEY1 ATPATPHPPTDTAEESTWLWTQIKAEARRDAEAEPAL ASYLYSTILSHSSLERSLSFHLGNKLCSSTLLSTLLYDLFLNTFSNEPELRAAA SADLLAA-RYRDPACVSFSHCLLNYKGFLACQAHRVAHKLWTQSRRPLALAL QSRISDVFAVD ⁇ HPAAKIGKGILFDHATGVVVGETAVIGNNVSILHHVTLGGT GKIGGDRHPKIGDGVLIGAGATILGNVRIGEGAKIGAGSVVLIDVPPRTTAVG NPARLVGGKEQPTKHEECPGESMDHTSFISEWSDY ⁇

Abstract

The invention relates to a method for detecting genes and DNA- sequences which code for the enzyme serine acetyltransferase (SAT) and are suitable for the production of cysteine by fermentation. The invention relates to a method for producing compounds containing sulphur such as cysteine, cystine and glutathione in bacteria and other host organisms by overexpression of SAT genes, wherein the host organism is disturbed in their own glutathoine synthesis.

Description

Verfahren zur fermentativen Herstellung von Cystein, Cystin und Glutathion Process for the fermentative production of cysteine, cystine and glutathione
Die vorliegende Erfindung betrifft ein Verfahren zur Auffindung von Genen und DNA-Sequenzen, die für das Enzym Serin- Acetyltransferase (SAT) kodieren und für die fermentative Herstellung von Cystein geeignet sind. Weiter betrifft die Erfindung ein Verfahren zur Herstellung schwefelhaltiger Verbindungen wie Cystein, Cystin und Glutathion in Bakterien und anderen Wirtsorganismen mittels Überexpression von SAT-Genen, wobei der Wirtsorganismus in seiner eigenen Glutathionsynthese gestört ist.The present invention relates to a method for finding genes and DNA sequences which code for the enzyme serine acetyltransferase (SAT) and are suitable for the fermentative production of cysteine. The invention further relates to a method for producing sulfur-containing compounds such as cysteine, cystine and glutathione in bacteria and other host organisms by means of overexpression of SAT genes, the host organism being disturbed in its own glutathione synthesis.
Die schwefelhaltige Aminosäure Cystein stellt das Endprodukt der assimilatorischen Sulfatreduktion in Bakterien, Pilzen und Pflanzen dar. Über seine Rolle in Proteinen hinaus fungiert Cystein essentiell und ubiquitär in allen Organismen als Donor von reduziertem Schwefel für die Biosynthese weiterer Verbindungen wie Methionin, Fe/S-Cluster und verschiedene Vitamine (z.B. Biotin). Direkte Verwandte des Cysteins sind sein Oxidationsprodukt Cystin und das Tripeptid Glutathion (γ- Glutamylcysteinylglycin). Darüber hinaus haben Cystein, Glutathion und verwandte Thiolverbindungen wichtige Funktionen bei der Stressabwehr von Mensch und Tier. Cystein kompensiert zudem teilweise den Bedarf an der essentiellen Aminosäure Methionin.The sulfur-containing amino acid cysteine is the end product of assimilatory sulfate reduction in bacteria, fungi and plants. In addition to its role in proteins, cysteine acts essentially and ubiquitously in all organisms as a donor of reduced sulfur for the biosynthesis of other compounds such as methionine, Fe / S clusters and various vitamins (e.g. biotin). Direct relatives of cysteine are its oxidation product cystine and the tripeptide glutathione (γ-glutamylcysteinylglycine). In addition, cysteine, glutathione and related thiol compounds have important functions in the defense against stress from humans and animals. Cysteine also partially compensates for the need for the essential amino acid methionine.
Die Cystem-Biosynthese erfolgt in Bakterien wie in Pflanzen in einem zweistufigen Prozess. hn ersten Schritt sorgt Serin- Acetyltransferase (SAT; EC 2.3.1.30) für die Bildung des aktivierten Thioesters O-Acetylserin (OAS) aus Serin und Acetyl- Coenzym A. Im zweiten Schritt wird freies Sulfid mittels enzymatischer Katalyse durch O-Acetylserin (Thiol)-Lyase (OAS-TL; EC 4.2.99.8) in O-Acetylserin eingefügt, um Cystein und Acetat zu erhalten. SAT stellt hierbei die geschwindig- keitslimitierende Komponente dar, wobei die Aktivität dieses Enzyms ausschließlich in Verbindung mit O-Acetylserin (Thiol)-Lyase in dem Cysteinsynthase-Komplex gefunden wird. OAS-TL ist bedingt durch die Aktivität SAT-freier Homodimere in großem Überschuss vorhanden (Kredich et al. (1969) J. Biol. Chem. 244, 2428-2439; Droux et al. (1998) Eur. J. Biochem. 255, 235-245; Saito (2000) Curr. Opin. Biol. 3, 188 - 195). Cystein ist beinahe die einzige Verbindung, in der reduzierter Schwefel in den Zellstoffwechsel Eingang findet, obwohl Schwefel für die Biosynthese essentieller Verbindungen, einschließlich Methionin, Biotin und Fe/S-Cluster, benötigt wird.The system biosynthesis takes place in bacteria and in plants in a two-stage process. In the first step, serine acetyltransferase (SAT; EC 2.3.1.30) ensures the formation of the activated thioester O-acetylserine (OAS) from serine and acetyl-coenzyme A. In the second step, free sulfide is enzymatically catalysed by O-acetylserine (thiol ) Lyase (OAS-TL; EC 4.2.99.8) inserted in O-acetylserine to obtain cysteine and acetate. SAT represents the speed-limiting component, the activity of this enzyme being found only in connection with O-acetylserine (thiol) lyase in the cysteine synthase complex. OAS-TL is present in large excess due to the activity of SAT-free homodimers (Kredich et al. (1969) J. Biol. Chem. 244, 2428-2439; Droux et al. (1998) Eur. J. Biochem. 255 , 235-245; Saito (2000) Curr. Opin. Biol. 3, 188-195). Cysteine is almost the only compound where reduced sulfur enters cell metabolism, although sulfur is needed for the biosynthesis of essential compounds, including methionine, biotin, and Fe / S clusters.
Die Herstellung von Schwefel-haltigen Verbindungen wie Cystein, Cystin und Glutathion ist daher von großem biotechnologischem Interesse für pharmakologische Prozesse und für die Nahrungsergänzung.The production of sulfur-containing compounds such as cysteine, cystine and glutathione is therefore of great biotechnological interest for pharmacological processes and for nutritional supplements.
Cystein kann durch chemische Synthese oder durch Extraktion aus tierischenCysteine can be obtained by chemical synthesis or by extraction from animal
Quellen wie Keratin hergestellt bzw. gewonnen werden. Die Produktion von Cystein in Mikroorganismen im Großmaßstab wird hauptsächlich durch regulatorische Mechanismen des cys-Regulons (Kredich (1996) In Escherichia coli and Salmonella tyhpimurium. Cellular and molecular biology (Neidhardt et al., Eds.), pp. 514 - 527. ASM Press, Washington D.C., USA) und seine Toxizität bei höherenSources such as keratin are made or extracted. The large-scale production of cysteine in microorganisms is mainly influenced by regulatory mechanisms of the cys regulon (Kredich (1996) In Escherichia coli and Salmonella tyhpimurium. Cellular and molecular biology (Neidhardt et al., Eds.), Pp. 514 - 527. ASM Press, Washington DC, USA) and its toxicity at higher levels
Konzentrationen (Harris (1983) J. Bacteriol. 145, 115 - 132; Soerensen and Pedersen (1991) J. Bacteriol. 173, 5244-5246) erschwert. Verschiedene Ansätze wurden verfolgt, um diese Beschränkungen zu umgehen. So kann eine hohe Ausbeute an Cystein im Kulturmedium durch Überexpression einer Exportpumpe für verschiedene Metabolite des Cystein-Stoffwechsels erreicht werden, wie für das -fe-D-Genprodukt von E. coli gezeigt werden konnte (Daßler et al. (2000) Mol. Microbiol. 36, 1101 - 1112).Concentrations (Harris (1983) J. Bacteriol. 145, 115-132; Soerensen and Pedersen (1991) J. Bacteriol. 173, 5244-5246) are more difficult. Various approaches have been taken to circumvent these restrictions. A high yield of cysteine in the culture medium can be achieved by overexpressing an export pump for various metabolites of the cysteine metabolism, as has been shown for the -fe-D gene product of E. coli (Daßler et al. (2000) Mol. Microbiol 36, 1101-1112).
Die Inhibition von konstitutiv exprimierter E. coli SAT (CYSE-Protein, kodiert durch das cy-sE-Gen) durch Cystein ist für die Funktion des cys-Regulons essentiell. Die Inhibition der SAT durch Cystein hat eine Inhibitionskonstante (K;) von ungefähr 10"6 M in Salmonella typhimurium und E. coli (Kredich et al. (1969) vide supra; Kredich (1996) vide supra) und kontrolliert somit effektiv die Flussgeschwindigkeit von reduziertem Schwefel in einer Feedback-Schleife (Εndprodukthemmung). Es sind Versuche unternommen worden, diesen Mechanismus durch Screenen nach Cystein-insensitiven Serin- Acetyltransferasen aus E. coli mittels zufälliger Mutagenese (random mutagenesis) zu überwinden (Denk and Bock (1987) J. Gen. Microbiol. 133, 515 - 525; Takagi et al. (1999) FEBS Lett. 452, 323 - 327). Alternativ wurde zielgerichtete Mutagenese angewandt, wobei hierbei Aminosäurepositionen innerhalb des SAT-Enzyms ausgetauscht wurden, die in der Nähe der aus dem zufälligen Screening erhaltenen Positionen liegen (Nakamori et al. (1998) J. Appl. Environ. Microbiol. 64, 1607-1611). Obwohl im Rahmen dieser Untersuchungen keine kinetischen Inhibitionskonstanten bestimmt wurden, war es den Autoren möglich, Mutanten mit einer 15-fach weniger sensitiven Feedback-Hemmung zu identifizieren und die Akkumulation beträchtlicher Mengen von Cystein und Cystin im Wachstumsmedium zu erzielen. Weitere Verbesserungen auf der Grundlage von Aminosäureaustauschen scheinen allerdings kaum möglich, da weder die dreidimensionale Struktur der SAT bekannt ist, noch ausreichende Sequenzdaten von Cystein-insensitiven SAT-Formen aus anderen Organismen erhältlich sind.The inhibition of constitutively expressed E. coli SAT (CYSE protein, encoded by the cy-sE gene) by cysteine is essential for the function of the cys regulon. The inhibition of SAT by cysteine has an inhibition constant (K;) of approximately 10 "6 M in Salmonella typhimurium and E. coli (Kredich et al. (1969) vide supra; Kredich (1996) vide supra) and thus effectively controls the flow rate reduced sulfur in a feedback loop (end product inhibition). Attempts have been made to address this Mechanism to be overcome by screening for cysteine-insensitive serine acetyltransferases from E. coli by means of random mutagenesis (Denk and Bock (1987) J. Gen. Microbiol. 133, 515-525; Takagi et al. (1999) FEBS Lett. 452, 323-327). Alternatively, targeted mutagenesis was used, whereby amino acid positions within the SAT enzyme were exchanged that are close to the positions obtained from the random screening (Nakamori et al. (1998) J. Appl. Environ. Microbiol. 64, 1607-1611 ). Although no kinetic inhibition constants were determined in the course of these investigations, the authors were able to identify mutants with a 15-fold less sensitive feedback inhibition and to achieve the accumulation of considerable amounts of cysteine and cystine in the growth medium. However, further improvements based on amino acid exchanges hardly seem possible, since neither the three-dimensional structure of the SAT is known, nor is sufficient sequence data from cysteine-insensitive SAT forms available from other organisms.
In einem alternativen Ansatz werden natürlicherweise vorkommende SAT-Proteine genutzt, die in höheren Pflanzen zu finden sind und strukturell mit dem bakteriellen Enzym eng verwandt sind. Pflanzen enthalten im allgemeinen mindestens drei Kern- kodierte SAT-Isoformen, die in den Piastiden, dem Cytosol und in denIn an alternative approach, naturally occurring SAT proteins are used, which are found in higher plants and are structurally closely related to the bacterial enzyme. Plants generally contain at least three core-coded SAT isoforms, which are found in the plastids, the cytosol and in the
Mitochondrien lokalisiert sind. Diese SAT-Enzyme unterscheiden sich beträchtlich hinsichtlich ihrer Feedback-Sensitivität gegenüber Cystein, was mittels heterologer Expression in E. coli gezeigt werden konnte (Noji et al. (1998) J. Biol. Chem. 273, 32739 - 32745; h oue et al. (1999) Eur. J. Biochem. 266, 220 - 227; Saito (2000) vide supra). Trotz der relativ großen Unterschiede in der Cystein-Empfindlichkeit sind sämtliche SAT-Enzyme in der Lage, einen aktiven Cysteinsynthase-Komplex mit bakterieller OAS-TL zu bilden (Droux et al. (1998), Eur. J. Biochem. 255, 235 - 245). Verschiedene Determinanten für die Cysteinhemmung wurden in Analogie zu SAT aus E. coli gemappt (Noji et al. (1998) vide supra; Inoue et al. (1999) vide supra). Ein erster Bericht zeigt, dass die heterologe Expression von SAT- kodierenden cDNA-Klonen aus Arabidopsis thaliana (Bogdanova et al. (1995) FEBS Lett. 358, 43 - 47; Murillo et al. (1995) Cell. Mol. Biol. Res. 41, 425 - 433) in einer effizienten Akkumulation von Cystein im Wachstumsmedium von E. coli resultiert (Tagaki et al. (1999) FEMS Microbiol. Lett. 179, 453 - 459).Mitochondria are localized. These SAT enzymes differ considerably in their feedback sensitivity to cysteine, which could be shown by heterologous expression in E. coli (Noji et al. (1998) J. Biol. Chem. 273, 32739 - 32745; h oue et al . (1999) Eur. J. Biochem. 266, 220-227; Saito (2000) vide supra). Despite the relatively large differences in cysteine sensitivity, all SAT enzymes are able to form an active cysteine synthase complex with bacterial OAS-TL (Droux et al. (1998), Eur. J. Biochem. 255, 235 - 245). Various determinants for cysteine inhibition were mapped from E. coli in analogy to SAT (Noji et al. (1998) vide supra; Inoue et al. (1999) vide supra). A first report shows that the heterologous expression of SAT encoding cDNA clones from Arabidopsis thaliana (Bogdanova et al. (1995) FEBS Lett. 358, 43 - 47; Murillo et al. (1995) Cell. Mol. Biol. Res. 41, 425 - 433) in an efficient accumulation of Cysteine in the growth medium of E. coli results (Tagaki et al. (1999) FEMS Microbiol. Lett. 179, 453-459).
Angesichts des Bedarfs für effiziente Verfahren zur Herstellung von Cystein ist es eine Aufgabe der vorliegenden Erfindung, neue Feedback-insensitive SAT-Gene und -Isofoπnen bereitzustellen, die in leistungsstarken Verfahren zur Herstellung von großen Mengen von Cystein und verwandten schwefelhaltigen Verbindungen in Bakterien und anderen Organismen eingesetzt werden können.In view of the need for efficient processes for the production of cysteine, it is an object of the present invention to provide new feedback-insensitive SAT genes and isofoπnen which are used in high-performance processes for the production of large amounts of cysteine and related sulfur-containing compounds in bacteria and other organisms can be used.
Weitere Aufgaben liegen in der Bereitstellung eines Verfahrens zur Selektion Cystein-insensitiver SAT-Gene sowie in der Bereitstellung eines Verfahrens zur Herstellung von Cystein, Cystin und Glutathion in Mikroorganismen.Further tasks are the provision of a method for the selection of cysteine-insensitive SAT genes and the provision of a method for the production of cysteine, cystine and glutathione in microorganisms.
Die Lösungen dieser Aufgaben sind in den beigefügten unabhängigen Patentansprüchen angegeben. Bevorzugt Ausführungsformen werden in den Unteransprüchen beschrieben. Weitere Aufgaben und Lösungen ergeben sich aus der nachfolgenden Beschreibung.The solutions to these problems are given in the attached independent claims. Preferred embodiments are described in the subclaims. Further tasks and solutions result from the following description.
Es ist überraschenderweise gelungen, einen neuen erfolgreichen Screening- Ansatz für cDNA-Klone, die für Cystein-insensitive SAT-Isoformen kodieren, aufzuzeigen. Dabei wird ein neuer E. co/z-Stamm verwendet, in dem das cysE-Gen, welches für die bakterielle SAT kodiert, durch Mutation inaktiviert ist. Mittels funktionaler Komplementation können unter Einsatz einer solchen SAT-freien E. co z-Mutante SAT-Gene mit weniger ausgeprägter Feedback-Hemmung selektioniert werden. Die Erfindung betrifft daher ein Verfahren zur Auffindung von DNA-Sequenzen, die für Cystein-insensitive Serin- Acetyltransferasen kodieren, gekennzeichnet durch die Verwendung eines cy5E"-Bakterienstammes für funktionale Komplementation. Bei dem Bakterienstamm handelt es sich bevorzugt um einen Escherichia co/z-Stamm. Das erfindungsgemäße Verfahren ist somit besonders nützlich zur Identifizierung von natürlich vorkommenden, Cystein-insensitiven S ATs aus Pflanzen, Mikroorganismen oder anderen Quellen mit Eignung zur mikrobiellen Fermentierung von Cystein.Surprisingly, it has been possible to demonstrate a new successful screening approach for cDNA clones which code for cysteine-insensitive SAT isoforms. A new E. co / z strain is used in which the cysE gene, which codes for the bacterial SAT, is inactivated by mutation. By means of functional complementation, SAT genes with less pronounced feedback inhibition can be selected using such a SAT-free E. co z mutant. The invention therefore relates to a method for finding DNA sequences which code for cysteine-insensitive serine acetyltransferases, characterized by the use of a cy5E " bacterial strain for functional complementation. The bacterial strain is preferably an Escherichia co / z- Tribe. The method according to the invention is thus particularly useful for identifying naturally occurring, cysteine-insensitive S ATs from plants, microorganisms or other sources which are suitable for microbial fermentation of cysteine.
Unter dem Begriff "Cystein-insensitive Serin- Acetyltransferase" wird im Rahmen dieser Erfindung eine Serin- Acetyltransferase verstanden, die einen Iso-Wert (I5o = halbmaximale Inhibition) von mindestens 30 μM, bevorzugt von mindestens 35, 40 μM und besonders bevorzugt von mindestens 45 μM, 50μM, und am meisten bevorzugt von mindestens 55μM, 60 μM aufweist.In the context of this invention, the term “cysteine-insensitive serine acetyl transferase” is understood to mean a serine acetyl transferase which has an iso value (I 5 o = half-maximum inhibition) of at least 30 μM, preferably of at least 35, 40 μM and particularly preferably of at least 45 uM, 50 uM, and most preferably of at least 55 uM, 60 uM.
Der I 0-Wert ist hier als die Cystein-Konzentration definiert, bei der unter ansonsten optimalen Bedingungen eine 50%-ige Hemmung der SAT-Aktivität eintritt. Der I50- Wert wird durch Bestimmung der SAT-Aktivität unter steigenden Cystein-The I 0 value is defined here as the cysteine concentration at which, under otherwise optimal conditions, there is a 50% inhibition of the SAT activity. The I 50 value is determined by determining the SAT activity with increasing cysteine
Konzentrationen bestimmt. Durch Auftragung der Aktivität gegen die Cystein- Konzentration erhält man eine hyperbolische Funktion, aus der durch curve-fitting oder manuell der I50-Wert ermittelt wird. Die Inhibitorkonstante Ki ist, unabhängig vom Hemmtyp, zunächst als Dissoziationskonstante eines Enzym-Inhibitor- Komplexes definiert (Ki = [E] [I]/[EI], nach A. L. Lehninger, Verlag Chemie 1977) und hat keine direkte Beziehung zum I50-Wert. Prinzipiell korreliert aber ein niedriger Kr Wert mit einem niedrigen I5o-Wert für einen Inhibitor.Concentrations determined. By plotting the activity against the cysteine concentration, a hyperbolic function is obtained, from which the I 50 value is determined by curve fitting or manually. The inhibitor constant Ki, regardless of the type of inhibitor, is initially defined as the dissociation constant of an enzyme-inhibitor complex (Ki = [E] [I] / [EI], according to AL Lehninger, Verlag Chemie 1977) and has no direct relationship to I 50 - Value. In principle, however, a low Kr value correlated with a low I 5 o-value for an inhibitor.
Der Begriff "funktionale Komplementation" bedeutet, dass eine bestimmte Enzymaktivität eines bezüglich dieser Enzymaktivität defizienten Bakterienstammes durch Expression eines heterologen Gens, das für diese Enzymaktivität kodiert, unter Kontrolle eines geeigneten bakteriellen Promotors die Enzymaktivität in dem Bakterienstamm wiederherstellt. Die Wiederherstellung der Enzymaktivität erlaubt unter geeigneten Bedingungen (im Rahmen der vorliegenden Erfindung in Abwesenheit von Cystein) das prototrophe Wachstum des ansonsten auxotrophen, defizienten Bakterienstammes.The term "functional complementation" means that a certain enzyme activity of a bacterial strain deficient in this enzyme activity restores the enzyme activity in the bacterial strain by expression of a heterologous gene which codes for this enzyme activity under the control of a suitable bacterial promoter. The restoration of the enzyme activity permits the prototrophic growth of the otherwise auxotrophic, deficient bacterial strain under suitable conditions (in the context of the present invention in the absence of cysteine).
Das bakterielle cysE-Gen kodiert, wie bereits oben erwähnt, für die bakterielle Serin- Acetyltransferase; die DNA-Sequenz des cysE-Gens ist im Stand der Technik beschrieben, z.B. in Denk und Bock (1987) J. Gen. Microbiol. 133, 515 - 525.As already mentioned above, the bacterial cysE gene codes for the bacterial serine acetyltransferase; the DNA sequence of the cysE gene is described in the prior art, e.g. in Denk and Bock (1987) J. Gen. Microbiol. 133, 515-525.
Die Herstellung erfindungsgemäßer Bakterienstämme, die aufgrund der Inaktivierung im cysE-Gen für das Screenen nach cys-insensitiven SAT-Genen mittels funktionaler Komplementation geeignet sind, wird in den Beispielen beschrieben. Diese Bakterienstämme werden im Rahmen dieser Erfindung als SAT- defizient oder SAT-frei bezeichnet.The preparation of bacterial strains according to the invention which are suitable for screening for cys-insensitive SAT genes by means of functional complementation due to the inactivation in the cysE gene is described in the examples. These bacterial strains are referred to as SAT-deficient or SAT-free in the context of this invention.
Dem Fachmann sind die für die Inaktivierung bakterieller Gene mittels Mutation erforderlichen Techniken bekannt, z.B. aus dem Standardwerk von Sambrook et al. (1989) Molecular cloning: Laboratory Manual, 2. Auflage, Coldspring Harbour Laboratory Press, Coldspring Harbour, New York. Darüber hinaus sind SAT-freie Bakterienstämme von Stammsammlungen erhältlich, z.B. die E. co/z-Stämme EC1801 und JM39, die vom E. coli Genetic Stock Center, Yale Univerity, New Haven, CT, USA, bezogen werden können.The techniques required to inactivate bacterial genes by mutation are known to those skilled in the art, e.g. from the standard work by Sambrook et al. (1989) Molecular cloning: Laboratory Manual, 2nd edition, Coldspring Harbor Laboratory Press, Coldspring Harbor, New York. In addition, SAT-free bacterial strains are available from strain collections, e.g. the E. co / z strains EC1801 and JM39, available from the E. coli Genetic Stock Center, Yale University, New Haven, CT, USA.
Wie in den nachfolgenden Beispielen erläutert, folgte die Erzeugung der SAT-freien E. co/t-Mutante MW1 einem mikrobiologischen Standardverfahren (Hamilton et al. (1989) J. Bacteriol. 171, 4617 - 4622). Dieses und ähnliche Verfahren zur frisertionsmutagenese durch homologe Rekombination sind vielfach beschrieben (z.B. Walkenhorst et al. (1995) Microbiol. Res. 150, 347 - 361; Link et al. (1997) J. Bacteriol. 179, 6228 - 6237; Selbischka et al. (1993) Appl. Microbiol. Biotechnol. 38, 615 - 618). Das biologische Prinzip ist in Standardwerken beschrieben (H.A. Nash, In: Escherichia coli and Salmonella. Cellular and Molecular Biology, Vol. I. F.C. Neidhardt et al., eds., ASM Press, Washington DC, 1996, Seiten 2363 - 2376).As explained in the examples below, the generation of the SAT-free E. co / t mutant MW1 followed a standard microbiological method (Hamilton et al. (1989) J. Bacteriol. 171, 4617-4622). This and similar methods for hairdressing mutagenesis by homologous recombination have been described many times (e.g. Walkenhorst et al. (1995) Microbiol. Res. 150, 347-361; Link et al. (1997) J. Bacteriol. 179, 6228 - 6237; Selbischka et al. (1993) Appl. Microbiol. Biotechnol. 38, 615-618). The biological principle is described in standard works (HA Nash, In: Escherichia coli and Salmonella. Cellular and Molecular Biology, Vol. IFC Neidhardt et al., Eds., ASM Press, Washington DC, 1996, pages 2363-2376).
Für die Herstellung eines genetisch stabilen SAT-defizienten Stammes wird die in den angefügten Beispielen beschriebene Mutagenese durch homologeFor the production of a genetically stable SAT-deficient strain, the mutagenesis described in the attached examples is carried out by homologous
Rekombination, wie z. B. von Hamilton et al. (1989, vide supra) beschrieben, bevorzugt.Recombination such as B. Hamilton et al. (1989, vide supra).
Das Screenen nach Genen mittels funkionaler Komplementation ist sehr stark von der genetischen Stabilität des Wirtsorganimus, also der Stabilität der für dieThe screening for genes by means of functional complementation is very much dependent on the genetic stability of the host organism, that is, the stability of that for
Selektion ausgenutzten Mutation abhängig. Dies gilt insbesondere für die heterologe Komplementation zwischen entfernten Taxa und den Fall, dass wegen der ausgeprägten genomischen Komplexität des Donororganimus, z.B. eine höhere Pflanze, sehr viele Klone durchmustert werden müssen. Die im Stand der Technik beschriebenen SAT-defizienten Bakterienstämme sind in einigen Fällen aufgrund ihrer genetischen Instabilität nicht für das erfindungsgemäße Verfahren geeignet. Zum einen müssen sehr viele Klone der pflanzlichen cDNA-Banken gescreent werden, zum anderen ist der Hemmtest auf Cystein-Sensitivität nur ohne endogenen SAT-Hintergrund durchführbar, da bakterielle SAT- Aktivitäten extrem sensitiv gegenüber Cystein sind.Selection of mutation used. This applies in particular to the heterologous complementation between distant taxa and the case that due to the pronounced genomic complexity of the donor organism, e.g. a higher plant, many clones have to be screened. In some cases, the SAT-deficient bacterial strains described in the prior art are not suitable for the method according to the invention due to their genetic instability. On the one hand, a large number of clones from the plant cDNA banks have to be screened, on the other hand, the inhibition test for cysteine sensitivity can only be carried out without an endogenous SAT background, since bacterial SAT activities are extremely sensitive to cysteine.
Die im Rahmen dieser Erfindung erzeugten SAT-defizienten Stämme zeichnen sich dadurch aus, dass sie praktisch keine Reversion des Phänotyps zeigen. Diese genetisch äußerst stabilen Stämme sind besonders nützlich für die funktionale Komplementation zur Auffindung von Genen, die für Cystein-insensitive SATs kodieren.The SAT-deficient strains produced in the context of this invention are distinguished by the fact that they show practically no reversion of the phenotype. These genetically extremely stable strains are particularly useful for functional complementation for the discovery of genes which code for cysteine-insensitive SATs.
Der in den Beispielen beschriebene Stamm MW1, der keinerlei Reversion zeigt, kann auch eingesetzt werden, um existierende Bakterienstämme mit MW1 zu transduzieren. Auf diese Weise werden weitere Cystein-auxotrophe Stämme erzeugt, die sich durch die gewünschte genetische Stabilität auszeichnen.The strain MW1 described in the examples, which shows no reversion whatsoever, can also be used to remove existing bacterial strains with MW1 transduce. In this way, further cysteine auxotrophic strains are produced which are distinguished by the desired genetic stability.
Die funktionale Identität der Genotypen wurde im Rahmen der Erfindung verifiziert i) biochemisch durch Enzymtests, ii) genetisch durch DNA-DNA-Hybridisierung und iii) physiologisch durch Komplementation mit bekannten pflanzlichen cDNAs.The functional identity of the genotypes was verified in the context of the invention i) biochemically by enzyme tests, ii) genetically by DNA-DNA hybridization and iii) physiologically by complementation with known plant cDNAs.
Das Screening mittels funktionaler Komplementation ist dem Fachmann geläufig und z.B. beschrieben in Howarth et al. (1997) Biochim. Biophys. Acta 1350, 123 - 127; Noji et al. (1994) Mol. Gen. Genet. 244, 57 - 66, und Setya et al. (1996) Proc. Natl. Acad. Sei. USA 93, 13383 - 13388.The screening by means of functional complementation is familiar to the person skilled in the art and e.g. described in Howarth et al. (1997) Biochim. Biophys. Acta 1350, 123-127; Noji et al. (1994) Mol. Gen. Genet. 244, 57-66, and Setya et al. (1996) Proc. Natl. Acad. Be. USA 93, 13383-13388.
Schließlich benötigt man für das Screening mittels funktionaler Komplementation eine geeignete cDNA-Bibliothek aus dem Organismus, aus dem Cystein-insensitive SAT-Gensequenzen isoliert werden sollen. Die Herstellung von cDNA-Bibliotheken ist dem Fachmann ebenfalls geläufig und mittels molekularbiologischer Routinemethoden möglich. Darüber hinaus sind cDNA-Bibliotheken heutzutage aus fast jedem Organismus kommerziell erhältlich, z.B. von Firmen wie Stratagene, La Jolla, USA.Finally, screening for functional complementation requires a suitable cDNA library from the organism from which cysteine-insensitive SAT gene sequences are to be isolated. The preparation of cDNA libraries is also familiar to the person skilled in the art and is possible using routine molecular biological methods. In addition, cDNA libraries are now commercially available from almost any organism, e.g. from companies like Stratagene, La Jolla, USA.
Die Erfindung betrifft auch Gene, die für Cystein-insensitive SAT-Enzyme und - Isoformen kodieren und mittels des oben beschriebenen Screeningverfahrens auf der Grundlage der funktionalen Komplementation isoliert werden.The invention also relates to genes which code for cysteine-insensitive SAT enzymes and isoforms and which are isolated on the basis of functional complementation by means of the screening method described above.
In einer bevorzugten Ausführungsform handelt es sich bei diesen SAT-Gensequenzen um Sequenzen aus Pflanzen, insbesondere aus Nicotiana tabacum.In a preferred embodiment, these SAT gene sequences are sequences from plants, in particular from Nicotiana tabacum.
Besonders bevorzugt sind dabei die cDNA-Sequenzen der Nicotiana tabacum SAT- Gene 1, 4 und 7, die als Sequenzen beigefügt sind: cDNA-Sequenz von SAT 1 als SEQ ID NO. 1, die davon abgeleitete Aminosäuresequenz als SEQ ID NO. 2; die cDNA-Sequenz von SAT 4 als SEQ ID NO. 3, die davon abgeleitete Aminosäuresequenz als SEQ ID NO. 4; die cDNA-Sequenz von SAT 7 als SEQ ID NO. 5 und die davon abgeleitete Aminosäuresequenz als SEQ ID NO. 6.The cDNA sequences of the Nicotiana tabacum SAT genes 1, 4 and 7, which are added as sequences, are particularly preferred: cDNA sequence of SAT 1 as SEQ ID NO. 1, the derived amino acid sequence as SEQ ID NO. 2; the cDNA sequence of SAT 4 as SEQ ID NO. 3, the amino acid sequence derived therefrom as SEQ ID NO. 4; the cDNA sequence of SAT 7 as SEQ ID NO. 5 and the amino acid sequence derived therefrom as SEQ ID NO. 6th
Die Erfindung betrifft somit auch eine DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer Serin- Acetyltransferase aus Nicotiana tabacum kodiert, ausgewählt aus der Gruppe bestehend aus: a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ ID NO. 2, SEQ TD NO. 4 oder SEQ ID NO. 6 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID NO. 1, SEQ ID NO. 3 oder SEQ ID NO. 5 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen.The invention thus also relates to a DNA sequence which codes for a protein with the enzymatic activity of a serine acetyltransferase from Nicotiana tabacum, selected from the group consisting of: a) DNA sequences which comprise a nucleotide sequence which comprises the sequence shown in SEQ ID NO. 2, SEQ TD NO. 4 or SEQ ID NO. 6 encode specified amino acid sequence or fragments thereof, b) DNA sequences which the SEQ ID NO. 1, SEQ ID NO. 3 or SEQ ID NO. 5 specified nucleotide sequence or parts thereof, c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or comprise parts of this nucleotide sequence, e) DNA sequences which are a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
Der Begriff "Hybridisierung" bedeutet im Rahmen der vorliegenden Erfindung eine Hybridisierung unter konventionellen Hybridisierungsbedingungen, vorzugsweise unter stringenten Bedingungen, wie sie beispielsweise in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2. Auflage, Coldspring Harbour, Laboratory Press, Coldspring Harbour, New York, beschrieben sind.In the context of the present invention, the term “hybridization” means hybridization under conventional hybridization conditions, preferably under stringent conditions, as described, for example, in Sambrook et al. (1989), Molecular Cloning: A Laboratory Manual, 2nd edition, Coldspring Harbor, Laboratory Press, Coldspring Harbor, New York.
Die im Rahmen der Erfindung einsetzbaren SAT-Nukleinsäuremoleküle umfassen auch Fragmente, Derivate und allelische Varianten der oben beschriebenen DNA- Sequenzen, die für SAT kodieren oder ein biologisch, d.h. enzymatisch aktives Fragment davon. Unter Fragmenten werden dabei Teile der Nukleinsäuremoleküle verstanden, die lang genug sind, um ein Polypeptid oder Protein mit der enzymatischen Aktivität einer SAT oder einer vergleichbaren enzymatischen Aktivität zu kodieren. Der Ausdruck Derivat bedeutet in diesem Zusammenhang, dass die Sequenzen dieser Moleküle sich von den Sequenzen der oben genannten Nukleinsäuremoleküle an einer oder mehreren Positionen unterscheiden und einen hohen Grad an Homologie zu diesen Sequenzen aufweisen. Homologie bedeutet dabei eine Sequenzidentität von mindestens 70%, bevorzugt 80%, insbesondere eine Identität von mindestens 85% und 90%, vorzugsweise mindestens 92% und besonders bevorzugt mindestens 95%, 98%, 99%, oder dass die homologe Sequenz unter stringenten Bedingungen, die dem Fachmann geläufig sind, mit den vorstehend genannten SAT-Sequenzen hybridisiert. Die Abweichung zu den oben beschriebenen Nukleinsäuremolekülen können dabei durch Deletion, Addition, Substitution, Insertion oder Rekombination entstanden sein. Homologie bedeutet ferner, dass funktionelle und/oder strukturelle Äquivalenz zwischen den betroffenen Nukleinsäuremolekülen und den durch sie kodierten Proteinen besteht.The SAT nucleic acid molecules which can be used in the context of the invention also comprise fragments, derivatives and allelic variants of the DNA sequences described above which code for SAT or a biologically, ie enzymatically active, fragment thereof. Fragments are parts of the nucleic acid molecules understood that are long enough to encode a polypeptide or protein with the enzymatic activity of a SAT or a comparable enzymatic activity. In this context, the term derivative means that the sequences of these molecules differ from the sequences of the abovementioned nucleic acid molecules at one or more positions and have a high degree of homology to these sequences. Homology means a sequence identity of at least 70%, preferably 80%, in particular an identity of at least 85% and 90%, preferably at least 92% and particularly preferably at least 95%, 98%, 99%, or that the homologous sequence under stringent conditions , which are known to the person skilled in the art, hybridized with the above-mentioned SAT sequences. The deviation from the nucleic acid molecules described above may have resulted from deletion, addition, substitution, insertion or recombination. Homology also means that there is functional and / or structural equivalence between the nucleic acid molecules concerned and the proteins encoded by them.
Die Erfindung betrifft auch für SAT kodierende Sequenzen aus anderen Pflanzen, die mit den in SEQ ID No. 1, 3 und 5 gezeigten Nukleinsäuresequenzen in der kodierenden Region eine Identität von mindestens 80%, 85%, 90% und insbesondere mindestens 94%, 96% zeigen. Besonders bevorzugt handelt es sich dabei um DNA- Sequenzen, die mit der in SEQ ID No. 3 (SAT 4 aus Tabak) gezeigten Nukleinsäuresequenz in der kodierenden Region eine Identität von mindestens 80%>, 85%), 90%o und insbesondere mindestens 94%, 96% aufweisen.The invention also relates to sequences from other plants coding for SAT which are identified by the sequence shown in SEQ ID 1, 3 and 5 nucleic acid sequences shown in the coding region show an identity of at least 80%, 85%, 90% and in particular at least 94%, 96%. These are particularly preferably DNA sequences which have the sequence shown in SEQ ID No. 3 (SAT 4 from tobacco) shown nucleic acid sequence in the coding region have an identity of at least 80%>, 85%), 90% o and in particular at least 94%, 96%.
Der Grad der Sequenzidentität eines Nukleinsäuremoleküls mit den imThe degree of sequence identity of a nucleic acid molecule with the im
Sequenzprotokoll angegebenen Sequenzen kann mit üblichen Algorithmen bestimmt werden. Geeignet ist hier beispielsweise das Programm zur Bestimmung der Sequenzidentität, das unter http://www.ncbi.nhn.nih.gov/BLAST (auf dieser Seite z.B. der Link „Standard nucleotide-nucleotide BLAST [blastn]") zugänglich ist. Abbildung 2 zeigt einen Vergleich der im Rahmen dieser Anmeldung isolierten SAT-Sequenzen aus Tabak mit fünf bekannten SAT-Sequenzen aus Arabidopsis thaliana (in der MIPS Genom-Nomenklatur) und der bekannten SAT-Sequenz aus E. coli. Aus diesem Aminosäure- Alignment ist erkennbar, dass sich die Cystein- insensitive SAT 4 aus Tabak, die im Rahmen dieser Erfindung isoliert werden konnte, von den bekannten SAT-Sequenzen interessanterweise in zwei Positionen unterscheidet: i) eine Insertion von zwei Resten, einem Cystein und einem Serin, in Position 63 und 64 innerhalb der Aminosäuresequenz der SAT 4; und ii) eine Deletion von drei Aminosäuren in der Nähe des C-Terminus; beide Stellen sind in Abbildung 2 unterlegt.Sequence listing sequences can be determined using conventional algorithms. For example, the program for determining sequence identity is suitable here, which is available at http://www.ncbi.nhn.nih.gov/BLAST (on this page, for example, the link "Standard nucleotide-nucleotide BLAST [blastn]"). Figure 2 shows a comparison of the SAT sequences from tobacco isolated in the context of this application with five known SAT sequences from Arabidopsis thaliana (in the MIPS genome nomenclature) and the known SAT sequence from E. coli. From this amino acid alignment it can be seen that the cysteine-insensitive SAT 4 from tobacco, which could be isolated in the context of this invention, interestingly differs from the known SAT sequences in two positions: i) an insertion of two residues, a cysteine and a serine, at position 63 and 64 within the amino acid sequence of the SAT 4; and ii) a three amino acid deletion near the C-terminus; both places are highlighted in Figure 2.
Die Erfindung betrifft somit auch DNA-Sequenzen, die für SAT kodieren und eine der in Abbildung 2 markierten Deletion oder Insertion entsprechende Deletion oder Insertion, oder beide Merkmale, aufweisen, wobei die Position natürlich relativ zu SAT 4 aus Tabak variieren kam . Besonders bevorzugt weisen die SAT-Sequenzen neben den genannten zwei Merkmalen, die sie von bekannten SAT-Genen unterscheiden, zusätzlich eine starke Homologie zu der gesamten kodierenden Sequenz von SAT 4 (SEQ ID No. 3) auf.The invention thus also relates to DNA sequences which code for SAT and which have a deletion or insertion corresponding to the deletion or insertion marked in FIG. 2, or both features, the position of course varying relative to SAT 4 from tobacco. Particularly preferably, in addition to the two features mentioned, which distinguish them from known SAT genes, the SAT sequences additionally have a strong homology to the entire coding sequence of SAT 4 (SEQ ID No. 3).
Die genannte Insertion muss auch nicht zwangsläufig zwei Aminosäurereste umfassen, es kann auch nur ein Rest oder mehr als zwei Reste im Vergleich zu anderen SAT-Sequenzen inseriert sein. Die Insertion befindet sich dabei innerhalb des konservierten Motivs: L F/L/MY E/D L/I F X X V/T/A/I D L X A F/V/A K/R X R D P A C I/L/N S Y/F (worin X eine beliebige Aminosäure ist), siehe Abbildung 2, entspricht dem Motiv zwischen Position 63 und Position 98 des SAT-Gens aus E. coli.The insertion mentioned does not necessarily have to include two amino acid residues, but only one residue or more than two residues can be inserted in comparison to other SAT sequences. The insertion is within the conserved motif: LF / L / MY E / DL / IFXXV / T / A / IDLXAF / V / AK / RXRDPACI / L / NSY / F (where X is any amino acid), see Figure 2 , corresponds to the motif between position 63 and position 98 of the SAT gene from E. coli.
Die genannte Deletion muss auch nicht zwangsläufig drei Aminosäurereste umfassen, es kann auch nur ein Rest, zwei Reste oder mehr als drei Reste im Nergleich zu anderen SAT-Sequenzen deletiert sein. Die Deletion befindet sich dabei innerhalb der letzten 20 C-terminalen Aminosäuren, insbesondere in dem konservierten Motiv:The deletion mentioned does not necessarily have to include three amino acid residues, it can also be only one residue, two residues or more than three residues in the Deleted unlike other SAT sequences. The deletion is within the last 20 C-terminal amino acids, especially in the conserved motif:
C/G/S L/E/M X M D/K/E H/Q X S/A/E X X X E/F W/F S/R D/H N/Y (worin X eine beliebige Aminosäure ist), siehe Abbildung 2, entspricht dem Motiv zwischen Position 259 und Position 274 des SAT-Gens aus E. coli.C / G / SL / E / MXMD / K / EH / QXS / A / EXXXE / FW / FS / RD / HN / Y (where X is any amino acid), see Figure 2, corresponds to the motif between position 259 and position 274 of the E. coli SAT gene.
In jedem Fall kann der Fachmann durch einen Sequenzvergleich, wie in Abbildung 2 dargestellt, ohne Probleme feststellen, ob eine von ihm mittels dem erfindungs- gemäßen Verfahren isolierte SAT-Sequenz eines der für SAT 4 aus Tabak beobachteten Merkmale, also die genannte Deletion und/oder Insertion, an einer der Position innerhalb von SAT 4 entsprechenden Stelle aufweist. Dabei müssen nicht zwangsläufig die identischen Aminosäuren deletiert bzw. inseriert sein, entscheidend ist, ob sich überhaupt eine Deletion und/oder Insertion in den entsprechenden Positionen befindet.In any case, the person skilled in the art can easily determine by means of a sequence comparison, as shown in FIG. 2, whether a SAT sequence he has isolated by means of the method according to the invention is one of the features observed for SAT 4 from tobacco, that is to say the deletion and / or insertion, at a position corresponding to the position within SAT 4. The identical amino acids need not necessarily be deleted or inserted, the decisive factor is whether there is a deletion and / or insertion in the corresponding positions at all.
Die Auffindung pflanzlicher SAT-Sequenzen, die eine starke Homologie zu den in dieser Anmeldung offenbarten Sequenzen aus Tabak haben und sich deshalb aufgrund einer stark ausgeprägten Cystein-Insensitivität besonders gut zur Herstellung von Cystein in Mikroorganismen eignen, kann zum einen mittels funktionaler Komplementation, wie hier beschrieben, erfolgen. Zum anderen aber auch mittels klassischer Verfahren, wie Hybridisierung oder PCR. Dabei können die im beigefügten Sequenzprotokoll offenbarten Sequenzen oder Teile davon als Hybridisierungssonde eingesetzt werden. Ebenso kann der Fachmann natürlich anhand der offenbarten Sequenzen geeignete PCR-Primer entwerfen und für die Amplifizierung von SAT-kodierenden Sequenzen einsetzen.The discovery of plant SAT sequences which have a strong homology to the sequences from tobacco disclosed in this application and are therefore particularly suitable for producing cysteine in microorganisms due to a pronounced cysteine insensitivity can, on the one hand, by means of functional complementation, as here described. On the other hand, it can also be done using traditional methods such as hybridization or PCR. The sequences disclosed in the attached sequence listing or parts thereof can be used as a hybridization probe. Likewise, the person skilled in the art can of course use the disclosed sequences to design suitable PCR primers and use them for the amplification of SAT-coding sequences.
Die Erfindung betrifft auch ein Verfahren zur Herstellung Schwefel-haltiger Verbindungen, insbesondere von Cystein, Cystin und Glutathion, in Wirtsorganismen, insbesondere Mikroorganismen durch Überexpression der nach oben beschriebenem Screeningverfahren mittels funktionaler Komplementation aufgefundenen Cystein-insensitiven SAT-Gene oder anderer SAT-Gene mit der gewünschten Cystein-Insensitivität in Wirtsorganismen.The invention also relates to a method for producing sulfur-containing compounds, in particular cysteine, cystine and glutathione, in host organisms, in particular microorganisms, by overexpressing the Screening method described above by means of functional complementation found cysteine-insensitive SAT genes or other SAT genes with the desired cysteine insensitivity in host organisms.
In Abbildung 3 ist die Akkumulation von Cystein in E. co/z'-Kulturen, die die SAT- Sequenzen aus Tabak exprimieren gezeigt. Dabei wurden die Sequenzen SAT1, SAT4 und SAT7 aus Tabak in dem Stamm MW1 exprimiert. Die Zelldichte (schwarze Punkte) und Cysteingehalte im Kulturmedium wurden während des Wachstums, wie angegeben, bestimmt. C600 ist der Wildtyp.Figure 3 shows the accumulation of cysteine in E. co / z ' cultures that express the SAT sequences from tobacco. The sequences SAT1, SAT4 and SAT7 from tobacco were expressed in the strain MW1. Cell density (black dots) and cysteine levels in the culture medium were determined during growth as indicated. C600 is the wild type.
Durch Expression der SAT4 aus Tabak konnten Gesamt-Cystein-Gehalte von bis zu 300 mg/1 Kulturmedium erhalten werden.Expression of the SAT4 from tobacco resulted in total cysteine contents of up to 300 mg / 1 culture medium.
Die Erfindung betrifft somit auch ein Verfahren zur fermentativen Herstellung von Cystein, bei dem Cysteingehalte im Wachstumsmedium der Bakterien erreicht werden, die bei mindestens 20 mg/1, vorzugsweise mindestens 50 mg/1 und besonders bevorzugt bei mindestens 100, 200 mg/1 Kulturmedium liegen. Im Vergleich zum Wildtyp-Stamm wird mittels des erfindungsgemäßen Verfahrens unter Expression einer Cystein-insensitiven SAT eine Erhöhung des Cystein-Gehalts im Wachstumsmedium von mindestens 3fach, vorzugsweise mindestens 5fach und besonders bevorzugt von mindestens lOfach, 20fach erreicht.The invention thus also relates to a process for the fermentative production of cysteine, in which cysteine contents in the growth medium of the bacteria are achieved which are at least 20 mg / 1, preferably at least 50 mg / 1 and particularly preferably at least 100, 200 mg / 1 culture medium , In comparison to the wild-type strain, an increase in the cysteine content in the growth medium of at least 3-fold, preferably at least 5-fold and particularly preferably of at least 10-fold, 20-fold is achieved by means of the method according to the invention expressing a cysteine-insensitive SAT.
hl einer bevorzugten Aus-ü nringsform handelt es sich bei dem Mikroorganismus, der für die Überexpression der Cystein-insensitiven SAT-Gensequenzen eingesetzt wird, um einen Glutathion-defizienten Stamm. Bevorzugt handelt es sich bei dem Glutathion-defizienten Bakterienstamm um den E. co/z'-Stamm JTG10 mit dem chromosomalen Marker gshA20::Tnl0kan, der beispielsweise vom E. coli Genetic Stock Center, Yale University, New Haven, CT, USA, bezogen werden kann (CGSC# 6926) und ursprünglich beschrieben wurde von Greenberg & Demple (1986, J. Bacteriol. 168, 1026). Ein weiterer geeigneter Glutathion-defizienter Bakterienstamm ist beispielsweise der E. co/t-Stamm 821, ID # 9836 mit der Mutation gshA2 (Apontoweil und Behrends (1975) Mol. Gen. Genet. 141, 91 - 95), der ebenfalls vom E. coli Genetic Stock Center, Yale University, New Haven, CT, USA, bezogen werden kann.In a preferred embodiment, the microorganism which is used for the overexpression of the cysteine-insensitive SAT gene sequences is a glutathione-deficient strain. The glutathione-deficient bacterial strain is preferably the E. co / z ' strain JTG10 with the chromosomal marker gshA20 :: Tnl0kan, which is available, for example, from the E. coli Genetic Stock Center, Yale University, New Haven, CT, USA, can be obtained (CGSC # 6926) and was originally described by Greenberg & Demple (1986, J. Bacteriol. 168, 1026). Another suitable glutathione-deficient bacterial strain is, for example, the E. co / t strain 821, ID # 9836 with the mutation gshA2 (Apontoweil and Behrends (1975) Mol. Gen. Genet. 141, 91-95), which is also from the E coli Genetic Stock Center, Yale University, New Haven, CT, USA.
Die Verwendung eines Glutathion-defizienten Stammes bietet den Vorteil, dass die Abwesenheit von Glutathion als Kontrollmittel für die Akkumulation von Cystein in der Bakterienzelle in der Sekretion von Cystein aus der Bakterienzelle in das Wachstumsmedium resultiert. Dieser Effekt führt zu einer beträchtlichen Steigerung der insgesamten Cysteinanreicherung.The use of a glutathione deficient strain has the advantage that the absence of glutathione as a control agent for the accumulation of cysteine in the bacterial cell results in the secretion of cysteine from the bacterial cell into the growth medium. This effect leads to a considerable increase in the total cysteine accumulation.
Die Verwendung eines Glutathion-defizienten Stammes zur Produktion von Cystein wurde im Stand der Technik bisher nicht erwogen. Die im Rahmen dieser Erfindung erstmals beobachtete Überproduktion von Cystein in einem Glutathion-defizienten - Stamm ist auch als überraschend anzusehen, da Glutathion u.a. als wichtiger Schutz vor oxidativem Stress in Bakterien gilt und die erfolgreiche Überproduktion von Cystein durch einen Glutathion-defizienten Stamm in einer aeroben Kultur somit keinesfalls erwartet werden konnte.The use of a glutathione-deficient strain to produce cysteine has not previously been considered in the prior art. The overproduction of cysteine in a glutathione-deficient strain, which was observed for the first time in the context of this invention, can also be regarded as surprising, since glutathione and others. is an important protection against oxidative stress in bacteria and the successful overproduction of cysteine by a glutathione-deficient strain in an aerobic culture could not be expected.
Gegenstand der Erfindung ist somit ein Verfahren zur Herstellung von Cystein, Cystin und Glutathion in Mikroorganismen, insbesondere Bakterien, dadurch gekennzeichnet, dass in dem Mikroorganismus eine DNA-Sequenz exprimiert wird, die für eine Cystein-insensitve Serin- Acetyltransferase kodiert, und es sich bei dem Mikroorganismus um eine Glutathion-defiziente Zelle handelt.The invention thus relates to a process for the production of cysteine, cystine and glutathione in microorganisms, in particular bacteria, characterized in that a DNA sequence which codes for a cysteine-insensitive serine acetyltransferase is expressed in the microorganism, and it is present in the microorganism is a glutathione-deficient cell.
Dabei werden die in dem Glutathion-defizienten Mikroorganismus exprimierten DNA-Sequenzen für SAT in der Regel danach ausgewählt werden, dass sie die gewünschte Überproduktion von Cystein in dem Mikroorganismus zeigen. Cystin und Glutathion entstehen dabei als Folge der Cysteinüberproduktion bzw. können durch gezielte Maßnahmen bevorzugt gebildet werden.The DNA sequences for SAT expressed in the glutathione-deficient microorganism are generally selected so that they show the desired overproduction of cysteine in the microorganism. cystine and glutathione arise as a result of cysteine overproduction or can be formed preferentially through targeted measures.
In einer bevorzugten Ausführuiigsform handelt es sich um ein SAT-Gen, das unter Verwendung des oben beschriebenen erfindungsgemäßen Screeningverfahrens mittels funktionaler Komplementation identifiziert wird. Bevorzugt handelt es sich hierbei um pflanzliche SAT-Gene, besonders bevorzugt aus Nicotiana tabacum.In a preferred embodiment, it is a SAT gene which is identified by means of functional complementation using the inventive screening method described above. These are preferably plant SAT genes, particularly preferably from Nicotiana tabacum.
Die in dieser Anmeldung offenbarten Sequenzen kodieren für pflanzliche SAT- Enzyme, die sich gegenüber SAT-Proteinen aus der Literatur durch stark verminderte Sensitivität gegenüber Cystein auszeichnen. Mit dem erfindungsgemäßen Verfahren zur Auffindung Cystein-insensitiver SAT-Sequenzen kömien weitere geeignete kodierende Sequenzen, insbesondere aus Pflanzen, identifiziert und auf ihre Eignung zur Überproduktion von Cystein in Mikroorganismen untersucht werden. Mit Hilfe des erfindungsgemäßen Screeningverfahrens können noch besser geeignete SAT- Gene aufgefunden werden, also Gene, die für Protein kodieren, die eine noch ausgeprägtere Cystein-Insensitivität zeigen. Wenn wie hier beschrieben, cDNA- Klone isoliert werden, können die kodierten SAT-Proteine durch Standardverfahren in Bakterien exprimiert und in existierende Stämme zur Verbesserung der Cysteinproduktion eingebracht werden, wobei hier bevorzugt Glutathion-defiziente Stämme eingesetzt werden.The sequences disclosed in this application code for vegetable SAT enzymes which are distinguished from SAT proteins from the literature by greatly reduced sensitivity to cysteine. With the method according to the invention for the detection of cysteine-insensitive SAT sequences, further suitable coding sequences, in particular from plants, can be identified and their suitability for the overproduction of cysteine in microorganisms can be examined. With the aid of the screening method according to the invention, even more suitable SAT genes can be found, that is to say genes which code for protein and which show an even more pronounced cysteine insensitivity. If cDNA clones are isolated as described here, the coded SAT proteins can be expressed in bacteria by standard methods and introduced into existing strains to improve cysteine production, preference being given to using glutathione-deficient strains.
Bei einer weiteren bevorzugten Ausiül-rungsform handelt es sich bei dem Mikroorganismus um einen Glutathion-defizienten Bakterienstamm, insbesondere um einen Bakterienstamm, der im ersten Glutathionsyntheseschritt (gshl~) durch Mutation inaktiviert ist.In a further preferred embodiment, the microorganism is a glutathione-deficient bacterial strain, in particular a bacterial strain which is inactivated by mutation in the first glutathione synthesis step (gshl ~ ).
Der besonders bevorzugte Stamm JTG10 enthält ein durch Transposon TnlOkan inaktiviertes gshA-Gen, welches für das erste Enzym der Glutathionsynthese, γ- Glutamylcystein-Synthetase, kodiert. Jede Inaktivierung dieses Gens das zur vollständigen oder teilweisen Reduktion der Enzymaktivität führt, ist für die erfindungsgemäße Cystein-Übeφroduktion geeignet.The particularly preferred strain JTG10 contains a gshA gene which is inactivated by transposon TnlOkan and which codes for the first enzyme of glutathione synthesis, γ-glutamylcysteine synthetase. Any inactivation of this gene leads to complete or partial reduction of the enzyme activity, is suitable for the cysteine production according to the invention.
Die Expression der Cystein-insensitiven SAT-Gene in einem Glutathion-defizienten Bakterienstamm führt dazu, dass das gebildete Cystein aus der Zelle ausgeschleust wird und sich im umgebenden Kulturmedium in hohen Konzentrationen als Cystein und Cystin anreichert. Die angereicherten Schwefel-haltigen Verbindungen können dann mittels Standardverfahren aufgereinigt werden. Die Reinigung von Cystein aus wässrigen Lösungen ist z.B. in den Patentschriften JP56140966A2 (Preparation of purified cysteine) und JP61057549 (Method of purifying cysteine) beschrieben. Prinzipielle Verfahren zur Reinigung von Aminosäure mit Kationen- Austauscher- Chromatographie sind z.B. beschrieben bei T. G. Cooper (Biochemische Arbeitsmethoden, W. de Gryuter Verlag, Berlin, 1980).The expression of the cysteine-insensitive SAT genes in a glutathione-deficient bacterial strain leads to the fact that the cysteine formed is discharged from the cell and accumulates in high concentrations in the surrounding culture medium as cysteine and cystine. The enriched sulfur-containing compounds can then be purified using standard procedures. The purification of cysteine from aqueous solutions is e.g. in JP56140966A2 (Preparation of purified cysteine) and JP61057549 (Method of purifying cysteine). Principal methods for the purification of amino acid with cation exchange chromatography are e.g. described by T. G. Cooper (Biochemical Working Methods, W. de Gryuter Verlag, Berlin, 1980).
Die für die Herstellung eines für die fermentative Herstellung von Cystein, Cystin und Glutathion geeigneten Mikroorganismus erforderlichen Techniken, wie die Transformation von Bakterien mit Plasmiden, die Selektion transformierter Bakterien, die Kultivierung von Bakterien in geeigneten Wachstumsmedien, sind dem Fachmann bestens bekannt und beschrieben, z.B. in Sambrook et al. (1989) vide supra.The techniques required for the production of a microorganism suitable for the fermentative production of cysteine, cystine and glutathione, such as the transformation of bacteria with plasmids, the selection of transformed bacteria, the cultivation of bacteria in suitable growth media, are well known and described to the person skilled in the art, e.g. in Sambrook et al. (1989) vide supra.
Gleiches gilt für die Herstellung bakterieller Expressionsvektoren mittels herkömmlicher Techniken; darüber hinaus sind geeignete Expressionsvektoren für die Überexpression heterologer Gene in Bakterien kommerziell erhältlich, z.B. von der Firma Qiagen, Hilden Deutschland.The same applies to the production of bacterial expression vectors using conventional techniques; suitable expression vectors for the overexpression of heterologous genes in bacteria are also commercially available, e.g. from the company Qiagen, Hilden Germany.
Die Nutzung des synthetisierten und akkumulierten Cysteins liegt insbesondere in der Supplementierung der Nahrung für Mensch und Tier. Weiter können hieraus Derivate wie z.B. N-Acetylcystein auf einfache Weise hergestellt werden, die pharmazeutische und kosmetische Anwendung haben. Die Erfindung wird im Folgenden in den nachfolgenden Beispielen erläutert, die nur der Veranschaulichung der Erfindung dienen und in keiner Weise als Einschränkung zu verstehen sind.The use of the synthesized and accumulated cysteine lies particularly in the supplementation of food for humans and animals. Furthermore, derivatives such as N-acetylcysteine, which have pharmaceutical and cosmetic use, can be easily produced from this. The invention is explained below in the following examples, which serve only to illustrate the invention and are in no way to be understood as a limitation.
BeispieleExamples
Allgemeine Klonierungs- und PCR-Verfahren wurden nach Sambrook et al. (1989, vide supra) durchgeführt. DNA-Sequenzen wurden mit einem 373A-Sequencer (Perkin-Elmer, Boston, USA) erhalten.General cloning and PCR procedures were carried out according to Sambrook et al. (1989, vide supra). DNA sequences were obtained with a 373A sequencer (Perkin-Elmer, Boston, USA).
Die verwendete cDNA-Bibliothek aus N. tabacum cv. Samsun wurde in λ-ZAPII nach Angaben und mit Materialien des Herstellers, Stratagene, erstellt. In vivo- Excision erfolgte ebenfalls nach Herstellerangaben (Stratagene), um rekombinante Plasmide aus der Phagenbank zu erhalten. Diese können zur Transformation des SAT-defizienten E.co/t-Starnmes verwendet werden.The cDNA library from N. tabacum cv used. Samsun was created in λ-ZAPII according to specifications and with materials from the manufacturer, Stratagene. In vivo excision was also carried out according to the manufacturer's instructions (Stratagene) in order to obtain recombinant plasmids from the phage bank. These can be used to transform the SAT-deficient E.co/t standard.
Southern Blot- Analyse von genomischer DNA von E. coli wurde, wie in Hell et al. (1994, FΕBS Lett. 351, 257 - 262) beschrieben, mit dem unten angegeben 2,2 kb c sE-Fragment als Hybridisierungssonde durchgeführt.Southern blot analysis of E. coli genomic DNA was performed as described in Hell et al. (1994, FΕBS Lett. 351, 257-262), using the 2.2 kb c sE fragment given below as a hybridization probe.
Herstellung eines cys--r-Bakterienstamm.esProduction of a cys--r bacterial strain
Die insertionelle Inaktivierung des Wildtyp cysE-Gens von E. coli C600 (thr leu thi lac (λ)-Pl+F'; Clontech, Heidelberg, Deutschland) wurde wie von Hamilton et al. (1989) J. Bacteriol. 171, 4617 - 4622 beschrieben, durchgeführt. Hierdurch sollte ein S AT-defizienter Stamm erzeugt werden, der im Vergleich zu gegenwärtig erhältlichen Stämmen eine erhöhte Stabilität aufweist. Das Wildtyp cysE-Gen wurde einschließlich seiner flankierenden Bereiche mittels PCR mit genomischer DNA vom Stamm C600 und den PrimernThe insertional inactivation of the wild-type cysE gene from E. coli C600 (thr leu thi lac (λ) -Pl + F '; Clontech, Heidelberg, Germany) was carried out as described by Hamilton et al. (1989) J. Bacteriol. 171, 4617-4622. This should create an S AT-deficient strain that has increased stability compared to currently available strains. The wild-type cysE gene was including its flanking regions using PCR with genomic DNA from strain C600 and the primers
ECS 155 5'-CGTGGATCCTTAGGCGATCAAATTCC-3' und ECS156 5'-GGGGAGTCGACGGCGCTGTATGTACTCCCT-3'ECS 155 5'-CGTGGATCCTTAGGCGATCAAATTCC-3 'and ECS156 5'-GGGGAGTCGACGGCGCTGTATGTACTCCCT-3'
amplifiziert.amplified.
Das PCR-Protokoll war wie folgt:The PCR protocol was as follows:
In 50 μl Reaktionsvolumen befanden sich:In 50 ul reaction volume were:
20 pmol der beiden Primer, 10 ng genomische DNA, 1 U Taq-Polymerase (Promega, Heidelberg, Deutschland), Polymerase-Puffer von Promega nach Herstellerangaben. Nach 5 Min. bei 94°C folgten 35 Zyklen mit 30 Sek. bei 94°C, 30 Sek. bei 58°C, 60 Sek. bei 72°C, gefolgt von 10 Min. bei 72°C.20 pmol of the two primers, 10 ng genomic DNA, 1 U Taq polymerase (Promega, Heidelberg, Germany), polymerase buffer from Promega according to the manufacturer's instructions. After 5 minutes at 94 ° C there were 35 cycles of 30 seconds at 94 ° C, 30 seconds at 58 ° C, 60 seconds at 72 ° C, followed by 10 minutes at 72 ° C.
Das resultierende 2,2 kb DNA-Fragment wurde in die Restriktionsschnittstellen Sall und BamHI von linearisiertem pUC18 ligiert. Innerhalb dieses Plasmids wurde das cysE-Gen mit Clal bei Position 522, bezogen auf den offenen Leserahmen, geschnitten und durch hisertion eines 2,2 kb Clal/Clal-Fragments von p AC YC 184- Gm inaktiviert. Dieses Fragment aus dem Plasmid pACYC184-Gm (Chang and Cohen (1978) J. Bacteriol. 134, 1141 - 1156) trägt ein Gentamycin-Resistenzgen; das resultierende pUC-Plasmid wurde pUC18cysΕ-Gm genannt. In diesem Plasmid können somit maximal 174 Aminosäuren des E. co/z-SAT-Enzyms translatiert werden. Die cysE-Gm-Kassette wurde mit Sall und BamHI ausgeschnitten und als 4,4 kb Fragment in die gleichen Schnittstellen des Plasmids pMAK705 ligiert, welches ein Kanamycin-Resistenzgen und einen Temperatur-sensitiven Replikationsursprung trägt (pHOl; Hashimoto-Gotoh and Sekiguchi (1977) J. Bacteriol. 131, 405 - 412). Das resultierende Plasmid pMWl wurde für den Genaustausch mittels homologer Rekombination eingesetzt. Zu diesem Zweck wurde der Stamm C600 mit pMWl transformiert, um Kanamycin-resistente Kolonien bei 44°C (nicht-permissive Temperatur) zu selektionieren. Cointegrate wurden von dem Plasmid zuerst durch Kultivierung bei 30°C (permissive Temperatur), gefolgt von nicht-permissiven Bedingungen gereinigt und der resultierende Cystein-auxotrophe Stamm wurde MW1 genannt (fhr leu thi lac (λ)-PH-F' cysE GmX). Auf diese Weise wurde das inaktivierte cysE-Gen in das Genom von E. coli C600 via homologe Rekombination eingeführt.The resulting 2.2 kb DNA fragment was ligated into the Sall and BamHI restriction sites of linearized pUC18. Within this plasmid, the cysE gene was cut with Clal at position 522, based on the open reading frame, and inactivated by inserting a 2.2 kb Clal / Clal fragment from p AC YC 184-Gm. This fragment from the plasmid pACYC184-Gm (Chang and Cohen (1978) J. Bacteriol. 134, 1141-1156) carries a gentamycin resistance gene; the resulting pUC plasmid was named pUC18cysΕ-Gm. A maximum of 174 amino acids of the E. co / z-SAT enzyme can thus be translated in this plasmid. The cysE-Gm cassette was cut out with Sall and BamHI and ligated as a 4.4 kb fragment into the same sites of the plasmid pMAK705, which carries a kanamycin resistance gene and a temperature-sensitive origin of replication (pHOl; Hashimoto-Gotoh and Sekiguchi (1977 ) J. Bacteriol. 131, 405-412). The resulting plasmid pMW1 was used for gene exchange using homologous recombination. For this purpose strain C600 transformed with pMWl to select kanamycin resistant colonies at 44 ° C (non-permissive temperature). Cointegrates were first purified from the plasmid by culturing at 30 ° C (permissive temperature) followed by non-permissive conditions and the resulting cysteine auxotrophic strain was named MW1 (fhr leu thi lac (λ) -PH-F 'cysE GmX) , In this way, the inactivated cysE gene was introduced into the genome of E. coli C600 via homologous recombination.
Die Komplementations- und Auxotrophie-Tests wurden auf festem M9-Minimal- medium, ergänzt mit IPTG (1 mM), Ampicillin (100 μg/ml), Gentamycin (50 μg/ml), Thiamin (0,1 mM) und 1 mM sämtlicher Aminosäuren mit Ausnahme von Methionin und Cystein durchgeführt. Einzelne Plasmide oder die cDNA-Bibliothek aus Tabak wurden mittels Elektroporation (BioRad, München, Deutschland) in den Stamm MW1 eingeJührt und Kolonien wurden durch Inkubation bei 37°C für bis zu 48 Stunden selektioniert.The complementation and auxotrophy tests were carried out on solid M9 minimal medium, supplemented with IPTG (1 mM), ampicillin (100 μg / ml), gentamycin (50 μg / ml), thiamine (0.1 mM) and 1 mM all amino acids except methionine and cysteine. Individual plasmids or the cDNA library from tobacco were introduced into strain MW1 by electroporation (BioRad, Munich, Germany) and colonies were selected by incubation at 37 ° C. for up to 48 hours.
Proteinexpression und EnzymtestsProtein expression and enzyme tests
Die Expression von SAT-Enzymen wurde in sämtlichen Konstrukten mit Isopropyl- Thiogalaktosid in Vollmedium (LB) oder Minimalmedium (M9), ergänzt mit Ampicillin oder Gentamycin oder beidem, induziert (Bogdanova et al. (1995) vide supra; Wirtz et al. (2000) hi Brunold et al., eds, Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. P. Haupt Bern, Seiten 297-298). Die Zellen wurden geerntet und durch Ultraschallbehandlung (Sonicator Bandelin, Berlin, Deutschland) aufgeschlossen, anschließend wurde der lösliche Überstand (10 Min. bei 30.000 x g) durch Gelfiltration auf einer PD 10-Säule (Amersham, Freiburg, Deutschland) entsalzt und bei -80°C gelagert. Die Proteingehalte wurden nach Bradford (1976) bestimmt. Die SAT-Aktivität von gereinigten Fraktionen und Rohfraktionen wurde in 250 μl, enthaltend 50 mM Tris- HC1, pH 7,5, 0,2 mM Acetyl-CoA, 2 mM Dithiothreitol und 5 mM Serin in Gegenwart oder Abwesenheit variierender Cystein-Konzentrationen untersucht. Die Absorption bei 232 nm wurde für mehrere Minuten nach Kredich and Becker (1971, h Meihods in Enzymology (Tabor H. and Tabor C.W., eds) Seiten 459-469, Acadamic Press, New York, USA) dokumentiert. SAT- Aktivitäten wurden nach Nakamura et al. (1987, Plant Cell Physiol 28, 885-891) bestimmt.Expression of SAT enzymes was induced in all constructs with isopropyl thiogalactoside in full medium (LB) or minimal medium (M9) supplemented with ampicillin or gentamycin or both (Bogdanova et al. (1995) vide supra; Wirtz et al. ( 2000) hi Brunold et al., Eds, Sulfur Nutrition and Sulfur Assimilation in Higher Plants: Molecular, Biochemical and Physiological Aspects. P. Haupt Bern, pages 297-298). The cells were harvested and disrupted by ultrasound treatment (Sonicator Bandelin, Berlin, Germany), then the soluble supernatant (10 min at 30,000 xg) was desalted by gel filtration on a PD 10 column (Amersham, Freiburg, Germany) and at -80 ° C stored. The protein contents were determined according to Bradford (1976). The SAT activity of purified fractions and crude fractions was determined in 250 μl, containing 50 mM Tris HC1, pH 7.5, 0.2 mM acetyl-CoA, 2 mM dithiothreitol and 5 mM serine in the presence or absence of varying cysteine concentrations were examined. The absorption at 232 nm was documented for several minutes according to Kredich and Becker (1971, h Meihods in Enzymology (Tabor H. and Tabor CW, eds) pages 459-469, Acadamic Press, New York, USA). SAT activities were carried out according to Nakamura et al. (1987, Plant Cell Physiol 28, 885-891).
Quantifizierung der ThioleQuantification of the thiols
Für die Quantifizierung der Thiole wurde der Gehalt an Cystein und Glutathion im Medium bzw. in den Zellen nach Extraktion mit 0,1 N HC1 in einem 1 :5-Verhältnis bestimmt. Nach Reduzierung mit Dithiothreitol wurden die Sulfhydryl-Gruppen mit Monobromobiman (Calbiochem, Darmstadt, Deutschland) derivatisiert. Die Auftrennung, Detektion und Quantifizierung der fluoreszierenden Addukte wurde mittels HPLC durchgeführt (reversed-phase-Säule Waters Nova-Pak C18, 4,6 x 250 mm; Waters HPLC-System; Hell and Bergmann (1990) Planta 180, 630 -612).For the quantification of the thiols, the content of cysteine and glutathione in the medium or in the cells after extraction with 0.1 N HCl was determined in a 1: 5 ratio. After reduction with dithiothreitol, the sulfhydryl groups were derivatized with monobromobimane (Calbiochem, Darmstadt, Germany). The separation, detection and quantification of the fluorescent adducts was carried out by means of HPLC (reversed-phase column Waters Nova-Pak C18, 4.6 x 250 mm; Waters HPLC system; Hell and Bergmann (1990) Planta 180, 630 -612) ,
Identifizierung von cDNA-Klonen, die für Cystein-insensitive SAT kodieren, durch Komplementation von MW1Identification of cDNA clones encoding cysteine-insensitive SAT by complementation of MW1
Elektroporations-kompetente Zellen von MW1 wurden mit einer Plasmid-cDNA Bank (erhalten durch in vivo-Excision der λZAPII-Bank) von Nicotiana tabacum var. SNN transformiert. Die Regeneration der Zellen erfolgte in 1 ml LB-Electroporation-competent cells from MW1 were transformed with a plasmid cDNA library (obtained by in vivo excision of the λZAPII library) from Nicotiana tabacum var. SNN. The cells were regenerated in 1 ml of LB
Vollmedium bei 37°, 220 rpm für 1 Stunde. Das Volumen wurde auf 2 Petrischalen ausplattiert, die M9-Minimalmedium (Sambrook et al. (1989), vide supra) mit lOOμg/ml Ampicillin, 50μg/ml Gentamycin und 1 mM Isopropylthiogalaktosid enthielten sowie je 1 mM aller proteinogenen Aminosäuren außer Cystein und Methionin. Die Schalen wurden für 24 Stunden bei 37°C inkubiert. Die erhaltenen Kolonien wurden danach weiter kultiviert und zur Überprüfung der Cystein- Sensitivität der selektierten SAT bzw. Plasmidisolierung herangezogen.Complete medium at 37 °, 220 rpm for 1 hour. The volume was plated onto 2 petri dishes containing the M9 minimal medium (Sambrook et al. (1989), vide supra) with 100 μg / ml ampicillin, 50 μg / ml gentamycin and 1 mM isopropylthiogalactoside and 1 mM each of all proteinogenic amino acids except cysteine and methionine , The dishes were incubated at 37 ° C for 24 hours. The received Colonies were then cultivated further and used to check the cysteine sensitivity of the selected SAT or plasmid isolation.
Die Überprüfung der Cystein-Insensitivität erfolgte auf zweierlei Art:The cysteine insensitivity was checked in two ways:
1. Selektierte Kolonien wurden in 4 ml LB-Medium vermehrt. Ein Aliquot entsprechend einer optischen Dichte bei 600 nm von 0,05 wurde zur Inoculation einer Schüttelkultur mit 20 ml Cl -Medium (Minimalmedium nach Nakamori et al. (1998) Appl. Environm. Microbiol. 64, 1607-1611, ergänzt mit 0,1 mM Thiamin und je 1 mM Threonin und Leucin als einzige Aminosäuren, verwendet. Nach 48 Stunden wird die Cysteinakkumulation im Medium als Maß der Cysteininsensitivität der jeweiligen Plasmid-kodierten pflanzlichen SAT bestimmt.1. Selected colonies were grown in 4 ml LB medium. An aliquot corresponding to an optical density at 600 nm of 0.05 was used to inoculate a shake culture with 20 ml Cl medium (minimal medium according to Nakamori et al. (1998) Appl. Environm. Microbiol. 64, 1607-1611, supplemented with 0, 1 mM thiamine and 1 mM threonine and leucine are used as the only amino acids, and after 48 hours the cysteine accumulation in the medium is determined as a measure of the cysteine sensitivity of the respective plasmid-encoded vegetable SAT.
2. Es wurden selektierte Kolonien in 200 ml LB-Vollmedium (Sambrook et al., (1989), vide supra) mit lOOμg/ml Ampicillin wie oben beschrieben vermehrt. Die lösliche Proteinfraktion wurde wie oben beschrieben nach Ultraschallbehandlung isoliert und die SAT-Aktivität im Standardtest nach Kredich and Becker (1971, vide supra) mit 10 μM Cystein im Vergleich zur Abwesenheit von Cystein bestimmt.2. Selected colonies were grown in 200 ml LB full medium (Sambrook et al., (1989), vide supra) with 100 μg / ml ampicillin as described above. The soluble protein fraction was isolated as described above after ultrasound treatment and the SAT activity was determined in the standard test according to Kredich and Becker (1971, vide supra) with 10 μM cysteine compared to the absence of cysteine.
Die Plasmide selektierter Kolonien wurden erneut in MWl wie oben transformiert und auf Wachstum in Abwesenheit von Cystein überprüft. Wachstum aller jeweils plattierten Zellen wurde als positive funktionale Komplementation interpretiert. Die cDNA-Insertionen der betreffenden Plasmide wurden daraufhin der DNA- Sequenzierung unterzogen.The plasmids of selected colonies were again transformed into MWl as above and checked for growth in the absence of cysteine. Growth of all plated cells was interpreted as positive functional complementation. The cDNA inserts of the plasmids in question were then subjected to DNA sequencing.
Produktion von Cystein, Cystin und Glutathion in dem E. co z-Stamm MWlProduction of cysteine, cystine and glutathione in the E. co z strain MWl
Zur Herstellung von Cystein, Cystin und Glutathion in MWl wurden 200ml Schüttelkulturen mit M9-Medium, ergänzt mit IPTG (ImM), Ampicillin (100 μg/ml) und den 18 proteinogenen Aminosäuren außer Cystein und Methionin mit einem Inoculum von 0,05 OD vom MWl mit einem Plasmid mit SAT-kodierendem cDNA- Insert angeimpft. Die Cystein- und Glutathionbildung wurde im Kulturverlauf verfolgt. Die Werte nach 18 Stunden Wachstum sind in Tab. 2 dargestellt. Cystin entstand als Oxidationsprodukt von Cystein im Medium und wurde nicht gesondert bestimmt.For the production of cysteine, cystine and glutathione in MWl, 200 ml shake cultures with M9 medium, supplemented with IPTG (ImM), ampicillin (100 μg / ml) and the 18 proteinogenic amino acids in addition to cysteine and methionine with an inoculum of 0.05 OD from MWl were inoculated with a plasmid with a SAT-encoding cDNA insert. The formation of cysteine and glutathione was followed in the course of the culture. The values after 18 hours of growth are shown in Table 2. Cystine was created as an oxidation product of cysteine in the medium and was not determined separately.
Die Herstellung von Cystein und Cystin in dem Glutathion-defizienten Stamm JTG10 wurde genauso durchgeführt wie die Herstellung der Schwefel-haltigen Verbindung in MWl .The production of cysteine and cystine in the glutathione-deficient strain JTG10 was carried out as well as the production of the sulfur-containing compound in MWl.
Das Screenen nach Genen mittels funktionaler Komplementation ist stark von der Stabilität der entsprechenden Mutation in dem Wirtsorganismus abhängig. Dies ist insbesondere der Fall bei heterologer Komplementation zwischen entfernten Taxa und dem Erfordernis einer großen Anzahl von Transformanten, wenn derThe screening for genes by means of functional complementation is strongly dependent on the stability of the corresponding mutation in the host organism. This is particularly the case with heterologous complementation between remote taxa and the need for a large number of transformants if the
Organismus, aus dem das die Mutation komplementierende Gen stammt, genetisch sehr komplex ist. Der oben beschriebene, für das effiziente Screening von SAT- cDNAs hergestellte mutierte E. co/z-Stamm MWl war den bereits bekannten cysE-E. co/z'-Mutanten EC1801 und JM39 dahingehend überlegen, dass MWl keine Reversion des Phänotyps zeigte. Dies bedeutet, dass das Screenen nach SAT-Genen aus heterologen Quellen ohne Beeinträchtigung durch unerwünschte genetische Ereignisse bei beliebigen Bedingungen durchgeführt werden kann. Die funktionelle Identität des Genotyps wurde verifiziert (i) biochemisch mittels Enzymassays, (ii) genetisch mittels DNA-DNA-Hybridisierung und (iü) physiologisch mittels Komplementation mit bekannten cDNA-Klonen aus Pflanzen.Organism from which the gene complementing the mutation originates is genetically very complex. The mutant E. co / z strain MW1 described above, which was produced for the efficient screening of SAT cDNAs, was the already known cysE-E. Co / z ' mutants EC1801 and JM39 consider that MWI showed no reversion of the phenotype. This means that the screening for SAT genes from heterologous sources can be carried out under any conditions without being affected by undesired genetic events. The functional identity of the genotype was verified (i) biochemically using enzyme assays, (ii) genetically using DNA-DNA hybridization and (iü) physiologically using complementation with known cDNA clones from plants.
Der Stamm MWl zeigte keine nachweisbare SAT-Aktivität (siehe Tabelle 1). Tabelle 1 : SAT enzymatische Aktivität in Rohextrakten von E. coli Wildtyp Stamm C600 und Mutante MWlThe MW1 strain showed no detectable SAT activity (see Table 1). Table 1: SAT enzymatic activity in crude extracts from E. coli wild-type strain C600 and mutant MWl
Figure imgf000024_0001
Figure imgf000024_0001
Die Position der homologen Rekombination wurde durch Hybridisierung genomischer DNA des Wildtyp-Stammes C600 mit dem cysE-Gen als Sonde bestätigt. Restriktionsverdau mit ΕcoRV, welches außerhalb von cysE schneidet, und mit StuI, welches innerhalb des cysE-Gens schneidet, ergab ein 4,6 kb-Signal bzw. 7,4 kb- und 1,0 kb-Signale, was der Voraussage anhand der Karte des E. coli-The position of the homologous recombination was confirmed by hybridizing genomic DNA of the wild-type strain C600 with the cysE gene as a probe. Restriction digestion with ΕcoRV, which cuts outside of cysE, and with StuI, which cuts inside the cysE gene, gave a 4.6 kb signal or 7.4 kb and 1.0 kb signals, which the prediction based on the Map of the E. coli
Genoms bei 81,44 min. entspricht. Die Insertion der 2,2 kb-Gentamycin-Kassette würde das genomische ΕcoRV-Fragment auf 6,8 kb vergrößern. Dagegen führt eine interne ΕcoRV-Schnittstelle in der Kassette zu Signalen von 4,7 kb und 2,1 kb in der DNA-DNA-Hybridisierung, was die Position, Orientierung und Identität der Insertion bestätigt. Abgesehen von der Gentamycmresistenz wurde die spezifische Identität des MWl -Stammes mittels Komplementation mit einer für SAT aus Arabidopsis thaliana kodierenden cDNA (Wirtz, Diplomarbeit 1998, Ruhr- Universität Bochum, Untersuchung der Cysteinbiosynthese durch Mutagenese der pflanzlichen Serin- Acetyltransferase) auf Minimalmedium ohne Cystein gezeigt. Die SAT-Defizienz in dem Stamm MWl wurde durch niedrige und mittelstarkeGenome at 81.44 min. equivalent. The insertion of the 2.2 kb gentamycin cassette would enlarge the ΕcoRV genomic fragment to 6.8 kb. In contrast, an internal ΕcoRV interface in the cassette leads to signals of 4.7 kb and 2.1 kb in the DNA-DNA hybridization, which confirms the position, orientation and identity of the insertion. Apart from the gentamic resistance, the specific identity of the MWl strain was demonstrated by complementation with a cDNA coding for SAT from Arabidopsis thaliana (Wirtz, diploma thesis 1998, Ruhr University Bochum, investigation of cysteine biosynthesis by mutagenesis of plant serine acetyltransferase) on minimal medium without cysteine , The SAT deficiency in the MWl strain was characterized by low and medium strength
Εxpressionsraten von SAT A unter Verwendung von Vektoren mit verschiedener Kopiezahl funktional komplementiert.Raten Expression rates of SAT A functionally complemented using vectors with different copy numbers.
Die pflanzliche Cysteinsynthese wurde somit in E. coli ohne jeglichen endogenen Hintergrund implementiert. - 24 'Plant cysteine synthesis was thus implemented in E. coli without any endogenous background. - 24 '
SAT7 und SAT1 aus Tabak entsprechen hinsichtlich ihrer Sensitivität gegenüber Cystein der SAT-A aus E. coli mit einem I50-Wert von ungefähr 45 μM (Noji et al. (1998) vide supra), wobei die Werte von SAT7 als auch SAT1 deutlich über der hihibitionskonstante der bakteriellen SAT liegen (Ki 1,1 μM, Kredich et al. (1969) vide supra). SAT4 ist im Wesentlichen msensitiv gegenüber Cystein, d.h. ein I50- Wert ist für SAT4 nicht messbar (vgl. Abbildungl). Eine derart vollständige Insensitivität gegenüber Cystein ist bislang noch nie für eine klonierte oder biochemisch isolierte SAT aus irgendeinem Organismus beschrieben worden.In terms of their sensitivity to cysteine, SAT7 and SAT1 from tobacco correspond to the SAT-A from E. coli with an I 50 value of approximately 45 μM (Noji et al. (1998) vide supra), the values of SAT7 and SAT1 being clear lie above the inhibition constant of the bacterial SAT (Ki 1.1 μM, Kredich et al. (1969) vide supra). SAT4 is essentially msensitive to cysteine, ie an I 50 value cannot be measured for SAT4 (see Figure 1). Such complete insensitivity to cysteine has never been described for a cloned or biochemically isolated SAT from any organism.
Produktion von Cystein und GlutathionProduction of cysteine and glutathione
Tabelle 2: Akkumulation von Cystein im WachstumsmediumTable 2: Accumulation of cysteine in the growth medium
E. cotϊ-Zellen mit oder ohne pBS-SK-Plasmide mit Tabak-cDNA-Klonen für SAT wurden in supplementiertem M9-Minimalmedium ohne reduzierte Schwefelquelle kultiviert; die Cystein- Gehalte wurden nach 18 Stunden Wachstum, gereclmet von der Animpfung der Kultur, bestimmt.E. cotϊ cells with or without pBS-SK plasmids with tobacco cDNA clones for SAT were cultivated in supplemented M9 minimal medium without a reduced sulfur source; cysteine levels were determined after 18 hours of growth, as determined from inoculation of the culture.
Tabelle 2:Table 2:
Figure imgf000025_0001
Figure imgf000026_0001
n.d. = nicht detektierbar
Figure imgf000025_0001
Figure imgf000026_0001
nd = undetectable
Der GSH-Gehalt im Medium von C600 und MWl liegt im Wesentlichen in der Größenordnung der Cystein-Gehalte. Es ist davon auszugehen, dass auch Cystin im Medium vorhanden ist, da das Medium durch Schütteln kontinuierlich belüftet wird, wodurch die Cysteinoxidation gefördert wird.The GSH content in the medium of C600 and MWl is essentially in the order of magnitude of the cysteine content. It can be assumed that cystine is also present in the medium since the medium is continuously aerated by shaking, which promotes cysteine oxidation.
Der Cystein-Gehalt im Medium ist für MWl, der die SAT-cDNA-Klone aus Tabak exprimiert, im Vergleich zu C600, der das Wildtyp-c s-E-Gen trägt, ungefähr 10-fach erhöht. Ein weiterer 10-facher Anstieg in der Sekretion von Cystein wird durch Expression der Tabak-SAT in dem E. co z-Stamm JTG10 erreicht. Das Fehlen von Glutathion als Kontrollmittel für die Akkumulation von Cystein in der Bakterienzelle resultiert somit in der Sekretion des Cysteins. Die Kombination von Feedback- insensitiven SAT-Enzymen mit Glutathion-defizienten Zelllinien erlaubt die Produktion von Cystein in 3- bis 10-fach höheren Mengen als im Stand der Technik unter Einsatz anderer Strategien bislang erreicht wurde (Daßler et al. (2000) vide supra; Takagi et al. (1999) vide supra; Nakamori et al. (1998) vide supra).The cysteine content in the medium is approximately 10-fold higher for MW1, which expresses the SAT cDNA clones from tobacco, compared to C600, which carries the wild-type cs-E gene. A further 10-fold increase in the secretion of cysteine is achieved by expression of the tobacco SAT in the E. co z strain JTG10. The lack of glutathione as a control agent for the accumulation of cysteine in the bacterial cell thus results in the secretion of the cysteine. The combination of feedback-insensitive SAT enzymes with glutathione-deficient cell lines allows the production of cysteine in amounts 3 to 10 times higher than has been achieved in the prior art using other strategies (Daßler et al. (2000) vide supra ; Takagi et al. (1999) vide supra; Nakamori et al. (1998) vide supra).
AbbildungIllustration
Abbildung 1 zeigt die Hemmung pflanzlicher SAT-Enzyme durch Cystein. SAT1, SAT4 und SAT7 aus Tabak wurden in dem Stamm MWl exprimiert und hinsichtlich ihrer SAT- Aktivität bei steigenden Cystein-Konzentrationen untersucht. S equenzprotokollFigure 1 shows the inhibition of plant SAT enzymes by cysteine. SAT1, SAT4 and SAT7 from tobacco were expressed in the MW1 strain and examined for their SAT activity with increasing cysteine concentrations. Sequence protocol
SEQ ID NO. 1 cDNA-Sequenz von SAT 1 aus Nicotiana tabacumSEQ ID NO. 1 cDNA sequence from SAT 1 from Nicotiana tabacum
GCGGCCGCCTTTCTCTTTGTTTATCTCTCTCCTCCCTCGCCGCCACATATTC TCCTACACACATTTCGCTTCAATGTCCACTAATTTCCTCGGATCACCACCA CCCCTTTTCAAGAATGTAATCTCTCCTTGTAATAAACTCTCCACTTTCACA ATAAGAGCTTGTTTACATTCTTGTGAGCCCAAAATTGATGATCATATCTA CAACAACTACACTAAATACTGCACTCCCAATTTCCCAAATCATGTTTCTC AGACACCCATTTCAGAAAAACAGCCAAAAACCAACAAGAACCATACAAT TTTGGACAATTTTGCAAAAGATGATGATTTGTGGCTAAAAATGCAAAAAG AGGCAAGGTTAGATATTGAGCAAGAACCCCTTTTGTCAAATTACTATAAA AATTCAATCTTGGCTCATGATTCTATAGAAAGTGCTTTAGCTAACCATCTT TCAATGAAATTGAGCAATTTGAGTATTTCTAGTGAAACTCTATATGATCT TTTCATGGGGGTGCTCACAGAGGATCAAGAATTGATTTTTGATGTTAATG CTGATTTGATAGCTGTTAAAGAAAGAGATCCAGCTTGTATTAGTTATATA CATTGTTTCTTGAATTTTAAAGGGTTTTTAGCATGTCAAGCACATAGAAT AGCACATAAGTTATGGTCTAAAGGGAGAAAGATTTTAGCTTTAGTAATAC AAAATAGAGTATGTGAAGTTTTTGCTGTGGATATTCATCCTGGAGCAAGA ATTGGTAGAGGAATATTATTAGATCATGCAACTGGAGTTGTAATTGGTGA GACAGCAATTATAGGAAATAATGTGTCAATTTTACATAATGTAACATTAG GTGGAACCGGAAAAATGTGTGGTGATAGACATCCAAAAATTGGTGATGG TGTATTAATAGGTGCAGGGACTTGTGTTCTTGGAAATGTTAGAATTGAAA ATGGTGCTAAAATTGGAGCTGGTTCTGTTGTGTTAATGGAAGTTCCTGCT AGAACAACTGCTGTTGGAAATCCAGCTAGATTGATTGGTGGGAAAGCAA ATCCAATTAAGCTTGATAAAATTCCTAGTTTGCCTATGGATCATACTTCAT ATTTATCTGAGTGGTCTGATTATGTAATTTAGACCTAGGTTTGCTATGTAC TGTGTACTTAGGCGGCCGCGCGGCCGC SEQ ID NO. 2GCGGCCGCCTTTCTCTTTGTTTATCTCTCTCCTCCCTCGCCGCCACATATTC TCCTACACACATTTCGCTTCAATGTCCACTAATTTCCTCGGATCACCACCA CCCCTTTTCAAGAATGTAATCTCTCCTTGTAATAAACTCTCCACTTTCACA ATAAGAGCTTGTTTACATTCTTGTGAGCCCAAAATTGATGATCATATCTA CAACAACTACACTAAATACTGCACTCCCAATTTCCCAAATCATGTTTCTC AGACACCCATTTCAGAAAAACAGCCAAAAACCAACAAGAACCATACAAT TTTGGACAATTTTGCAAAAGATGATGATTTGTGGCTAAAAATGCAAAAAG AGGCAAGGTTAGATATTGAGCAAGAACCCCTTTTGTCAAATTACTATAAA AATTCAATCTTGGCTCATGATTCTATAGAAAGTGCTTTAGCTAACCATCTT TCAATGAAATTGAGCAATTTGAGTATTTCTAGTGAAACTCTATATGATCT TTTCATGGGGGTGCTCACAGAGGATCAAGAATTGATTTTTGATGTTAATG CTGATTTGATAGCTGTTAAAGAAAGAGATCCAGCTTGTATTAGTTATATA CATTGTTTCTTGAATTTTAAAGGGTTTTTAGCATGTCAAGCACATAGAAT AGCACATAAGTTATGGTCTAAAGGGAGAAAGATTTTAGCTTTAGTAATAC AAAATAGAGTATGTGAAGTTTTTGCTGTGGATATTCATCCTGGAGCAAGA ATTGGTAGAGGAATATTATTAGATCATGCAACTGGAGTTGTAATTGGTGA GACAGCAATTATAGGAAATAATGTGTCAATTTTACATAATGTAACATTAG GTGGAACCGGAAAAATGTGTGGTGATAGACATCCAAAAATTGGTGATGG TGTATTAATAGGTGCAGGGACTTGTGTTCTTGGAAATGTTAGAATTGAAA ATGGTGCTAAAATTGGAGCTGGTTCTGT TGTGTTAATGGAAGTTCCTGCT AGAACAACTGCTGTTGGAAATCCAGCTAGATTGATTGGTGGGAAAGCAA ATCCAATTAAGCTTGATAAAATTCCTAGTTTGCCTATGGATCATACTTCAT ATTTATCTGAGTGGTCTGATTATGGGTTGGGTGGTGGGTGGTGGGT SEQ ID NO. 2
Aminosäuresequenz der SAT 1 aus Nicotiana tabacumAmino acid sequence of SAT 1 from Nicotiana tabacum
RPPFSLFISLLPRRHIFSYTHFASMSTNFLGSPPPLFK->WISPCNKLSTFTIRACL HSCEPKIDDHiYNNYTKYCTPNFPNHNSQTPISEKQPKTNK->ΗTILDl^AKDD DLWLKMQKEARLDIEQEPLLSNYYKNSILAHDSIESALANHLSMKLSNLSISS ETLYDLFMGVLTEDQELIFDNNADLIANKERDPACISYIHCFLNFKGFLACQA H-^iAHKLWSKGRKILALNIQNRNCENFANDLHPGARIGRGILLDHATGNNIGE TAIIGΝΝNSILHΝNTLGGTGKMCGDRHPKIGDGNLIGAGTCNLGΝVRIEΝGA KIGAGS LJVIEVPARTTAVGΝPARLIGGKAΝPIKLDKIPSLPMDHTSYLSEW SDYVIRPPFSLFISLLPRRHIFSYTHFASMSTNFLGSPPPLFK-> WISPCNKLSTFTIRACL HSCEPKIDDHiYNNYTKYCTPNFPNHNSQTPISEKQPKTNK-> ΗTILDl ^ AKDD DLWLKMQKEARLDIEQEPLLSNYYKNSILAHDSIESALANHLSMKLSNLSISS ETLYDLFMGVLTEDQELIFDNNADLIANKERDPACISYIHCFLNFKGFLACQA H ^ iAHKLWSKGRKILALNIQNRNCENFANDLHPGARIGRGILLDHATGNNIGE TAIIGΝΝNSILHΝNTLGGTGKMCGDRHPKIGDGNLIGAGTCNLGΝVRIEΝGA KIGAGS LJVIEVPARTTAVGΝPARLIGGKAΝPIKLDKIPSLPMDHTSYLSEW SDYVI
SEQ ID ΝO. 3 cDΝA-Sequenz von SAT 4 aus Nicotiana tabacumSEQ ID ΝO. 3 cDΝA sequence from SAT 4 from Nicotiana tabacum
GCGGCCGCAACTCCTCCTACAAATCCACTTTCTCGCGATCCAAACAAGCC CCAAATCGACAATCATGTCTATAACTACGTTAAATTCTGTCGACCCAGTT TCCCTGAGCTTGTTTCTTGCGCACCCATTCCTGAAAAGAACTCCAAAATC GGTCGTAACGAAGAGGAAGACGATTTGTGGCTAAAAATGAAAGATGAGG CTAGATCAGACATTGATCAAGAACCCATTTTGTCTACTTACTACATAACT TCAATCTTGGCTCATGATTCTATGGAAAGGGCTTTAGCTAATCATCTTTCA ATGAAATTGAGTAATTCAAGTCTTCCTAGCAGCACTTTGTATGATCTTTTC CTAGGGGTGCTCACAGAGGATTGCTCACAAGATATAATTAAAGCTGTTAT AGCTGATTTAAGGGCAGTTAAAGAAAGGGACCCAGCTTGTATTAGTTATG TACACTGTTTCTTGAATTTTAAAGGGTTTTTAGCATGTCAAGCTCATAGGA TTGCACATAAATTATGGTCAAATGGTAGGCAAATTTTGGCACTTTTGATA CAAAACAGGGTATCTGAAGTTTTTGCTGTCGACATACATCCTGGTGCTAA AATTGGTAAAGGGATTTTACTTGATCATGCTACTGGAGTTGTCGTTGGTG AAACTGCTGTGATTGGAAATAATGTGTCAATTTTGCATAACGTGACATTG GGTGGAACTGGCAAAATATCTGGGGATAGACATCCTAAAATTGGTGATG GGGTTTTAATTGGTGCTGGAACTTGTGTTCTTGGAAATGTTATAATTGAA GATGGAGCTAAAATTGGGGCAGGGTCCGTGGTGCTGAAGAAAGTTCCGG CGAGGACTACCGCCGTTGGGAATCCGGCGAGGTTGCTCGGAGGGAAGGA AAATCCAAAGAAACTTGATAAGATTCCTAGTTTGACCATGGACCATACAT ATGAGTGGTCTGATTATGTAATTTAGAGTAATAACAACTTTTACTTTGTTT ACTACTGTTTTAGGTTTTTATTAGATTAAGTGAAACGAAGGGAATTCTTG GCCGTAACCGATAAAGTTGCTGCTATGTGATTAAGAAGGTTACGAAGTTC CGAACTGTAANAAACAACCTTTTGCAAAAAAATACNGGTAAGAATTGCG TACAATAAACCCTTGNGGTCTGACCCTTNCTCAATCCCCCCCCATAGCCG GGGAGTTTTATTGCACCCAAAAANGTCATTTTTTANTAAAATTAAGTGGA GATGCCCCTCGAGGAATTTTAGTTGCAGGGAGAATATTTCCTTGAGTGGA GATGTTGTACAAGCCATTTACTTCTATGGTAACTGGTTTATATTAAGAGA TTATTGTACTAGATTTCTTGCTAGAGTAAACGGTTCAAATGCAATCTGAC TAAGATTGAGGCGGCCGCGCGGCCGCAACTCCTCCTACAAATCCACTTTCTCGCGATCCAAACAAGCC CCAAATCGACAATCATGTCTATAACTACGTTAAATTCTGTCGACCCAGTT TCCCTGAGCTTGTTTCTTGCGCACCCATTCCTGAAAAGAACTCCAAAATC GGTCGTAACGAAGAGGAAGACGATTTGTGGCTAAAAATGAAAGATGAGG CTAGATCAGACATTGATCAAGAACCCATTTTGTCTACTTACTACATAACT TCAATCTTGGCTCATGATTCTATGGAAAGGGCTTTAGCTAATCATCTTTCA ATGAAATTGAGTAATTCAAGTCTTCCTAGCAGCACTTTGTATGATCTTTTC CTAGGGGTGCTCACAGAGGATTGCTCACAAGATATAATTAAAGCTGTTAT AGCTGATTTAAGGGCAGTTAAAGAAAGGGACCCAGCTTGTATTAGTTATG TACACTGTTTCTTGAATTTTAAAGGGTTTTTAGCATGTCAAGCTCATAGGA TTGCACATAAATTATGGTCAAATGGTAGGCAAATTTTGGCACTTTTGATA CAAAACAGGGTATCTGAAGTTTTTGCTGTCGACATACATCCTGGTGCTAA AATTGGTAAAGGGATTTTACTTGATCATGCTACTGGAGTTGTCGTTGGTG AAACTGCTGTGATTGGAAATAATGTGTCAATTTTGCATAACGTGACATTG GGTGGAACTGGCAAAATATCTGGGGATAGACATCCTAAAATTGGTGATG GGGTTTTAATTGGTGCTGGAACTTGTGTTCTTGGAAATGTTATAATTGAA GATGGAGCTAAAATTGGGGCAGGGTCCGTGGTGCTGAAGAAAGTTCCGG CGAGGACTACCGCCGTTGGGAATCCGGCGAGGTTGCTCGGAGGGAAGGA AAATCCAAAGAAACTTGATAAGATTCCTAGTTTGACCATGGACCATACAT ATGAGTGGTCTGATTATGTAATTTAGAGTAATAACAACTTTTACTTTGTTT ACTACTGTTTTAGGTTTTTATTAGATTAAGTGAAACGAAGGGAATTCTTG GCCGTAACCGATAAAGTTGCTGCTATGTGATTAAGAAGGTTACGAAGTTC CGAACTGTAANAAACAACCTTTTGCAAAAAAATACNGGTAAGAATTGCG TACAATAAACCCTTGNGGTCTGACCCTTNCTCAATCCCCCCCCATAGCCG GGGAGTTTTATTGCACCCAAAAANGTCATTTTTTANTAAAATTAAGTGGA GATGCCCCTCGAGGAATTTTAGTTGCAGGGAGAATATTTCCTTGAGTGGA GATGTTGTACAAGCCATTTACTTCTATGGTAACTGGTTTATATTAAGAGA TTATTGTACTAGATTTCTTGCTAGAGTAAACGGTTCAAATGCAATCTGAC TAAGATTGAGGCGGCCGC
SEQ ID NO. 4 Aminosäuresequenz von SAT 4 aus Nicotiana tabacumSEQ ID NO. 4 amino acid sequence of SAT 4 from Nicotiana tabacum
AAATPPTNPLSRDPNIO'QroNHVYNYViα^C-^SFPELVSCAPIPEKNSKIGRN EEEDDLWLKMKDEARSDroQEPILSTYYITSILAHDSMERALA->fflLSMKLSN SSLPSSTLYDLFLGVLTEDCSQDI--KAVIADLRAVKERDPACISYVHCFLNFKG FLACQAHRIAHKLWSNGRQILALLIQNRVSEVFAVDIHPGAKIGKGILLDHAT GVVVGETAVIGNNVSILHNVTLGGTGKISGDRHPKIGDGVLIGAGTCVLGNV IffiDGAKIGAGSVVLKKVPARTTAVGNPARLLGGKENPKKLDK-TPSLTMDHT YEWSDYVI SEQ ID NO. 5 cDNA-Sequenz von SAT 7 aus Nicotiana tabacumAAATPPTNPLSRDPNIO'QroNHVYNYViα ^ C ^ SFPELVSCAPIPEKNSKIGRN EEEDDLWLKMKDEARSDroQEPILSTYYITSILAHDSMERALA-> fflLSMKLSN SSLPSSTLYDLFLGVLTEDCSQDI - KAVIADLRAVKERDPACISYVHCFLNFKG FLACQAHRIAHKLWSNGRQILALLIQNRVSEVFAVDIHPGAKIGKGILLDHAT GVVVGETAVIGNNVSILHNVTLGGTGKISGDRHPKIGDGVLIGAGTCVLGNV IffiDGAKIGAGSVVLKKVPARTTAVGNPARLLGGKENPKKLDK-TPSLTMDHT YEWSDYVI SEQ ID NO. 5 cDNA sequence of SAT 7 from Nicotiana tabacum
CGCGGCCGCCGACGTTATCCGATATGCCAGCCGGAGAATACCGCAATGC CACACCGGCGACACCACATCCACCGACAGACACGGCGGAAGAATCCACA TGGCTATGGACACAAATCAAAGCCGAAGCTCGGCGCGACGCCGAAGCCG AGCCGGCATTAGCCAGCTACTTATACTCAACTATACTCTCTCACTCTTCGC TTGAACGTTCGCTCTCTTTCCATTTGGGAAACAAGCTTTGTTCTTCCACGC TCTTATCCACACTCCTTTATGATCTGTTTCTCAATACTTTCTCTAATGAAC CTGAGCTACGCGCCGCCGCTTCCGCTGACCTACTCGCTGCTCGTTACCGG GACCCTGCTTGTGTTTCATTCTCTCATTGTTTGCTTAACTACAAAGGTTTC CTTGCTTGTCAGGCACATCGAGTAGCCCACAAGCTTTGGACTCAATCCCG AAGGCCACTTGCTCTGGCACTTCAATCCCGAATCTCTGATGTTTTTGCTGT TGACATTCATCCAGCTGCCAAGATCGGTAAAGGTATCCTCTTTGATCATG C AAC AGGAGTGGTGGTTGGCGAGACTGC AGTTATTGGAAACAACGTGTC AATTCTTCACCATGTAACCTTAGGAGGGACTGGTAAGATTGGTGGTGACC GGCACCCTAAGATTGGGGATGGTGTGCTCATAGGTGCAGGTGCCACAAT ATTGGGCAACGTGAGGATTGGTGAGGGGGCCAAGATTGGCGCTGGATCA GTGGTATTGATTGACGTGCCACCACGGACAACTGCAGTTGGGAATCCAGC AAGGTTGGTTGGAGGGAAGGAACAACCAACTAAGCATGAGGAATGTCCC GGAGAGAGTATGGATCATACATCTTTCATTTCTGAATGGTCTGATTACAT CATATGACTTGCATCCCTCATGTATGCTATATCTGCAAAGTGAACAAGAA GTCGTCTACGAACCTAGCAGAGAGGACAAAGGTTCAATCTTAACGCTACT GACTGTTAAACATGCTCTTTGTGCTAGTCCAACAGTCCAAAGTGCAAAGA ACTTATATCTATCTTTTTTTTTCCCAATAGTCTTTCTGTTTTTCTACATTTA CATGCTGTCTGAGAGGGTTGAAGGCTCTTGTTTTTATGCAGAGATTTCTG CTTGGAGTCGCCTTACAGCAAGTTCCCTTTGATGGCACAAATATATAAGT AGTATGTATTATGAGTTCAGTATCTACTCGTTGCTGGTCTTCCTAGGCCTT AAAAACTGGTGAAAATTAACTGTACGAAGTACTGGCCTATTATTATTGGT ATCATTATTGCTGCGGGCC SEQ ID NO. 6CGCGGCCGCCGACGTTATCCGATATGCCAGCCGGAGAATACCGCAATGC CACACCGGCGACACCACATCCACCGACAGACACGGCGGAAGAATCCACA TGGCTATGGACACAAATCAAAGCCGAAGCTCGGCGCGACGCCGAAGCCG AGCCGGCATTAGCCAGCTACTTATACTCAACTATACTCTCTCACTCTTCGC TTGAACGTTCGCTCTCTTTCCATTTGGGAAACAAGCTTTGTTCTTCCACGC TCTTATCCACACTCCTTTATGATCTGTTTCTCAATACTTTCTCTAATGAAC CTGAGCTACGCGCCGCCGCTTCCGCTGACCTACTCGCTGCTCGTTACCGG GACCCTGCTTGTGTTTCATTCTCTCATTGTTTGCTTAACTACAAAGGTTTC CTTGCTTGTCAGGCACATCGAGTAGCCCACAAGCTTTGGACTCAATCCCG AAGGCCACTTGCTCTGGCACTTCAATCCCGAATCTCTGATGTTTTTGCTGT TGACATTCATCCAGCTGCCAAGATCGGTAAAGGTATCCTCTTTGATCATG C AAC AGGAGTGGTGGTTGGCGAGACTGC AGTTATTGGAAACAACGTGTC AATTCTTCACCATGTAACCTTAGGAGGGACTGGTAAGATTGGTGGTGACC GGCACCCTAAGATTGGGGATGGTGTGCTCATAGGTGCAGGTGCCACAAT ATTGGGCAACGTGAGGATTGGTGAGGGGGCCAAGATTGGCGCTGGATCA GTGGTATTGATTGACGTGCCACCACGGACAACTGCAGTTGGGAATCCAGC AAGGTTGGTTGGAGGGAAGGAACAACCAACTAAGCATGAGGAATGTCCC GGAGAGAGTATGGATCATACATCTTTCATTTCTGAATGGTCTGATTACAT CATATGACTTGCATCCCTCATGTATGCTATATCTGCAAAGTGAACAAGAA GTCGTCTACGAACCTAGCAGAGAGGACAAA GGTTCAATCTTAACGCTACT GACTGTTAAACATGCTCTTTGTGCTAGTCCAACAGTCCAAAGTGCAAAGA ACTTATATCTATCTTTTTTTTTCCCAATAGTCTTTCTGTTTTTCTACATTTA CATGCTGTCTGAGAGGGTTGAAGGCTCTTGTTTTTATGCAGAGATTTCTG CTTGGAGTCGCCTTACAGCAAGTTCCCTTTGATGGCACAAATATATAAGT AGTATGTATTATGAGTTCAGTATCTACTCGTTGCTGGTCTTCCTAGGCCTT AAAAACTGGTGAAAATTAACTGTACGAAGTACTGGCCTATTATTATTGGT ATCATTATTGCTGCGGGCC SEQ ID NO. 6
Aminosäuresequenz von SAT 7 aus Nicotiana tabacumAmino acid sequence of SAT 7 from Nicotiana tabacum
PJPTLSDMPAGEY1^ATPATPHPPTDTAEESTWLWTQIKAEARRDAEAEPAL ASYLYSTILSHSSLERSLSFHLGNKLCSSTLLSTLLYDLFLNTFSNEPELRAAA SADLLAA-RYRDPACVSFSHCLLNYKGFLACQAHRVAHKLWTQSRRPLALAL QSRISDVFAVDΓHPAAKIGKGILFDHATGVVVGETAVIGNNVSILHHVTLGGT GKIGGDRHPKIGDGVLIGAGATILGNVRIGEGAKIGAGSVVLIDVPPRTTAVG NPARLVGGKEQPTKHEECPGESMDHTSFISEWSDYΠ PJPTLSDMPAGEY1 ^ ATPATPHPPTDTAEESTWLWTQIKAEARRDAEAEPAL ASYLYSTILSHSSLERSLSFHLGNKLCSSTLLSTLLYDLFLNTFSNEPELRAAA SADLLAA-RYRDPACVSFSHCLLNYKGFLACQAHRVAHKLWTQSRRPLALAL QSRISDVFAVDΓHPAAKIGKGILFDHATGVVVGETAVIGNNVSILHHVTLGGT GKIGGDRHPKIGDGVLIGAGATILGNVRIGEGAKIGAGSVVLIDVPPRTTAVG NPARLVGGKEQPTKHEECPGESMDHTSFISEWSDYΠ

Claims

P A T EN T AN S P RÜ C H E PAT EN T AN SPRÜCHE
1. Verfahren zur Herstellung und Gewinnung von Schwefel-haltigen Verbindungen wie Cystein, Cystin und Glutathion in einem Mikroorganismus, der eine heterologe, für eine Cystein-insensitive Serin- Acetyltransferase kodierende DNA-Sequenz enthält und Glutathion-defizient ist.1. Process for the preparation and production of sulfur-containing compounds such as cysteine, cystine and glutathione in a microorganism which contains a heterologous DNA sequence coding for a cysteine-insensitive serine acetyltransferase and is deficient in glutathione.
2. Verfahren nach Anspruch 2, wobei die DNA-Sequenz pflanzlichen Ursprungs ist.2. The method according to claim 2, wherein the DNA sequence is of plant origin.
3. Verfahren nach Anspruch 1 oder 2, wobei es sich bei dem Mikroorganismus um einen E. coli-Stamm handelt.3. The method according to claim 1 or 2, wherein the microorganism is an E. coli strain.
4. Verfahren nach einem der vorangehenden Ansprüche, wobei der4. The method according to any one of the preceding claims, wherein the
Mikroorganismus im ersten Glutathionsyntheseschritt inaktiviert ist.Microorganism is inactivated in the first glutathione synthesis step.
5. Verfahren nach einem der vorangehenden Ansprüche, wobei die DNA-Sequenz ausgewählt ist aus der Gruppe, bestehend aus SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, einer für eine SAT kodierenden Sequenz, die zu5. The method according to any one of the preceding claims, wherein the DNA sequence is selected from the group consisting of SEQ ID NO. 1, SEQ ID NO. 3, SEQ ID NO. 5, a sequence coding for a SAT, which leads to
SEQ ID NO. 1, SEQ ID NO. 3 oder SEQ ID NO. 5 innerhalb der kodierenden Region eine Identität von mindestens 80% aufweist.SEQ ID NO. 1, SEQ ID NO. 3 or SEQ ID NO. 5 has an identity of at least 80% within the coding region.
6. Verfahren nach einem der vorangehenden Ansprüche, wobei die DNA-Sequenz in einem Verfahren zur Auffindung von DNA-Sequenzen, die für6. The method according to any one of the preceding claims, wherein the DNA sequence in a method for finding DNA sequences which are for
Proteine mit der enzymatischen Aktivität einer Cystein-insensitiven Serin- Acetyltransferase kodieren, aufgefunden wurde, worin die Auffindung durch Expression der DNA-Sequenzen und damit einhergehende funktionale Komplementation in einem Bakterienstamm erfolgt, dessen endogene Serin- Acetyltransferase- Aktivität gestört ist. Encoding proteins with the enzymatic activity of a cysteine-insensitive serine acetyltransferase has been found, in which the discovery is carried out by expression of the DNA sequences and the associated functional complementation in a bacterial strain whose endogenous serine acetyltransferase activity is disrupted.
7. Verfahren nach Anspruch 6, wobei der Bakterienstamm, dessen SAT- Aktivität gestört ist, ein Escherichia eo/t-Bakterienstamm ist, der eine Mutation im cysE-Gen aufweist (cysE).7. The method according to claim 6, wherein the bacterial strain whose SAT activity is disturbed is an Escherichia eo / t bacterial strain which has a mutation in the cysE gene (cysE).
8. Verfahren nach einem der vorangehenden Ansprüche, wobei die Cystein-insensitive Serin- Acetyltransferase einen I5o-Wert von mindestens 30 μM aufweist.8. The method according to any one of the preceding claims, wherein the cysteine-insensitive serine acetyltransferase has an I 5 o value of at least 30 μM.
9. Verwendung von Cystein-insensitiven Serin- Acetyltransferase-Genen, die für Serin- Acetyltransferasen kodieren, die einen Iso-Wert von mindestens 30 μM aufweisen, zur Herstellung und Gewinnung von Schwefel-haltigen Verbindungen wie Cystein, Cystin und Glutathion in Glutathion-defizienten Mikroorganismen.9. Use of cysteine-insensitive serine acetyltransferase genes, which code for serine acetyltransferases and which have an iso value of at least 30 μM, for the production and production of sulfur-containing compounds such as cysteine, cystine and glutathione in glutathione-deficient microorganisms.
10. Verwendung nach Anspruch 9, wobei das Serin- Acetyltransferase- Gen pflanzlichen Ursprungs ist.10. Use according to claim 9, wherein the serine acetyltransferase gene is of plant origin.
11. Verfahren zur Auffindung von DNA-Sequenzen, die für Proteine mit der enzymatischen Aktivität einer Cystein-insensitiven Serin- Acetyltransferase kodieren, dadurch gekennzeichnet, dass die Auffindung durch Expression der DNA-Sequenzen und damit einhergehende funktionale Komplementation in einem Bakterienstamm erfolgt, dessen endogene Serin- Acetyltransferase- Aktivität gestört ist.11. A method for the discovery of DNA sequences which code for proteins with the enzymatic activity of a cysteine-insensitive serine acetyltransferase, characterized in that the discovery is carried out by expression of the DNA sequences and the associated functional complementation in a bacterial strain whose endogenous Serine acetyltransferase activity is disrupted.
12. Verfahren nach Anspruch 11, wobei der Bakterienstamm ein Escherichia co/z-Bakterienstamm ist und eine Mutation im cysE-Gen aufweist cysET). 12. The method according to claim 11, wherein the bacterial strain is an Escherichia co / z bacterial strain and has a mutation in the cysE gene (cysET).
13. Verfahren nach Anspruch 11 oder 12, wobei es sich um pflanzliche DNA-Sequenzen handelt.13. The method according to claim 11 or 12, wherein it is vegetable DNA sequences.
14. Verfahren nach einem der Ansprüche 11 bis 13, wobei die Cystein- insensitive Serin- Acetyltransferase einen Iso-Wert von mindestens 30 μM aufweist.14. The method according to any one of claims 11 to 13, wherein the cysteine-insensitive serine acetyltransferase has an iso value of at least 30 μM.
15. DNA-Sequenz, die für ein Protein mit der enzymatischen Aktivität einer Serin- Acetyltransferase aus Nicotiana tabacum kodiert, ausgewählt aus der Gruppe bestehend aus: a) DNA-Sequenzen, die eine Nukleotidsequenz umfassen, die die in SEQ TD NO. 2, SEQ ID NO. 4 oder SEQ ID NO. 6 angegebene Aminosäuresequenz oder Fragmente davon kodieren, b) DNA-Sequenzen, die die in SEQ ID NO. 1, SEQ ID NO. 3 oder SEQ ID NO. 5 angegebene Nukleotidsequenz oder Teile davon umfassen, c) DNA-Sequenzen, die eine Nukleotidsequenz, die mit einem komplementären Strang der Nukleotidsequenz von a) oder b) hybridisiert, oder Teile dieser Nukleotidsequenz umfassen, d) DNA-Sequenzen, die eine Nukleotidsequenz, die zu einer Nukleotidsequenz von c) degeneriert ist, oder Teile dieser15. DNA sequence which codes for a protein with the enzymatic activity of a serine acetyltransferase from Nicotiana tabacum, selected from the group consisting of: a) DNA sequences which comprise a nucleotide sequence which corresponds to that described in SEQ TD NO. 2, SEQ ID NO. 4 or SEQ ID NO. 6 encode specified amino acid sequence or fragments thereof, b) DNA sequences which the SEQ ID NO. 1, SEQ ID NO. 3 or SEQ ID NO. 5 specified nucleotide sequence or parts thereof, c) DNA sequences which comprise a nucleotide sequence which hybridizes with a complementary strand of the nucleotide sequence of a) or b) or parts of this nucleotide sequence, d) DNA sequences which comprise a nucleotide sequence is degenerate to a nucleotide sequence of c), or parts thereof
Nukleotidsequenz umfassen, e) DNA-Sequenzen, die ein Derivat, Analog oder Fragment einer Nukleotidsequenz von a), b), c) oder d) darstellen. Nucleotide sequence comprise, e) DNA sequences which represent a derivative, analog or fragment of a nucleotide sequence of a), b), c) or d).
PCT/EP2002/001122 2001-02-02 2002-02-04 Method for producing cysteine, cystine and glutathione by fermentation WO2002061106A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002244700A AU2002244700A1 (en) 2001-02-02 2002-02-04 Method for producing cysteine, cystine and glutathione by fermentation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10104722.3 2001-02-02
DE10104722A DE10104722A1 (en) 2001-02-02 2001-02-02 Process for the fermentative production of cysteine, cystine and glutathione

Publications (2)

Publication Number Publication Date
WO2002061106A2 true WO2002061106A2 (en) 2002-08-08
WO2002061106A3 WO2002061106A3 (en) 2003-03-13

Family

ID=7672632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/001122 WO2002061106A2 (en) 2001-02-02 2002-02-04 Method for producing cysteine, cystine and glutathione by fermentation

Country Status (3)

Country Link
AU (1) AU2002244700A1 (en)
DE (1) DE10104722A1 (en)
WO (1) WO2002061106A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389427A1 (en) * 2002-08-16 2004-02-18 Degussa AG Sulfur-containing animal feed additives
US7348037B2 (en) 2002-08-16 2008-03-25 Evonik Degussa Gmbh Sulfur-containing animal-feed additives
EP2348107A2 (en) 2003-02-18 2011-07-27 Metabolic Explorer Method for preparing evolved micro-organisms, enabling the creation or modification of metabolic pathways
WO2018114575A1 (en) * 2016-12-22 2018-06-28 Dsm Ip Assets B.V. Enzymatic reduction of cystine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539952A1 (en) * 1995-10-26 1997-04-30 Consortium Elektrochem Ind Process for the preparation of O-acetylserine, L-cysteine and L-cysteine-related products

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
HELL R: "MOLECULAR PHYSIOLOGY OF PLANT SULFUR METABOLISM" PLANTA, SPRINGER VERLAG, DE, Bd. 202, 1997, Seiten 138-148, XP000856032 ISSN: 0032-0935 *
HOWARTH ET AL: "cysteine biosynthesis in higher plants;a new member of the Arabidopsis thaliana serine acetyltransferase small gene-family obtained by functional complementation of an Escherichia coli cysteine auxotroph" BIOCHIMICA ET BIOPHYSICA ACTA. GENE STRUCTURE AND EXPRESSION, ELSEVIER, AMSTERDAM, NL, Bd. 1350, 1997, Seiten 123-127, XP002115632 ISSN: 0167-4781 *
NAKAMORI ET AL: "overproduction of L-cysteine and L-cystine by Escherichia coli strains with a genetically altered serine acetyltransferase" APPLIED AND ENVIRONMENTAL MICROBIOLOGY, WASHINGTON,DC, US, Bd. 64, Nr. 5, Mai 1998 (1998-05), Seiten 1607-1611, XP002115630 ISSN: 0099-2240 *
NOJI ET AL: "ISOFORM-DEPENDENT DIFFERENCES IN FEEDBACK REGULATION AND SUBCELLULAR LOCALIZATION OF SERINE ACETYLTRANSFERASE INVOLVED IN CYSTEINE BIOSYNTHESIS FROM ARABIDOPSIS THALIANA" JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, Bd. 273, Nr. 49, 4. Dezember 1998 (1998-12-04), Seiten 32739-32745, XP002115629 ISSN: 0021-9258 *
TAKAGI HIROSHI ET AL: "Overproduction of L-cysteine and L-cystine by expression of genes for feedback inhibition-insensitive serine acetyltransferase from Arabidopsis thaliana in Escherichia coli." FEMS MICROBIOLOGY LETTERS, Bd. 179, Nr. 2, 15. Oktober 1999 (1999-10-15), Seiten 453-459, XP002209321 ISSN: 0378-1097 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1389427A1 (en) * 2002-08-16 2004-02-18 Degussa AG Sulfur-containing animal feed additives
US7348037B2 (en) 2002-08-16 2008-03-25 Evonik Degussa Gmbh Sulfur-containing animal-feed additives
EP2348107A2 (en) 2003-02-18 2011-07-27 Metabolic Explorer Method for preparing evolved micro-organisms, enabling the creation or modification of metabolic pathways
WO2018114575A1 (en) * 2016-12-22 2018-06-28 Dsm Ip Assets B.V. Enzymatic reduction of cystine
CN110087488A (en) * 2016-12-22 2019-08-02 帝斯曼知识产权资产管理有限公司 The enzymatic reduction of cystine
US11098332B2 (en) 2016-12-22 2021-08-24 Dsm Ip Assets B.V. Enzymatic reduction of cystine

Also Published As

Publication number Publication date
DE10104722A1 (en) 2002-08-14
AU2002244700A1 (en) 2002-08-12
WO2002061106A3 (en) 2003-03-13

Similar Documents

Publication Publication Date Title
EP0858510B1 (en) Process for preparing o-acetylserine, l-cysteine and l-cysteine-related products
KR101720836B1 (en) Feedback-resistant acetohydroxy acid synthase variants and a method of producing L-valine using the same
EP3418388B1 (en) Cells and method for the preparation of rhamnolipids
EP1155139B1 (en) Method for microbially producing l-valine
Richaud et al. Directed evolution of biosynthetic pathways. Recruitment of cysteine thioethers for constructing the cell wall of Escherichia coli.
EP2501813A2 (en) Cells, nucleic acids, enzymes, and use thereof, and methods for the production of sophorolipids
EP1382684A1 (en) Process for fermentative production of amino acids and amino acid derivatives of the phosphoglycerate family
DE19855312A1 (en) Process for the fermentative production of D-pantothenic acid using coryneform bacteria
EP1445310B1 (en) Process for the fermentative production of L-methionine
US5639950A (en) Nucleotide sequence encoding for bifunctional enzyme for proline production
JP2003169668A (en) L-cysteine-producing microorganism and method for producing l-cysteine
EP2808394A1 (en) Microorganism and method for overproduction of gamma-glutamylcysteine and derivatives of this dipeptide by fermentation
EP1496111A2 (en) Variants of 3-Phosphoglycerate dehydrogenase with reduced inhibition by L-serine and genes encoding the same
CN107075465A (en) The method that forulic acid is converted into vanillic aldehyde
DE69333954T2 (en) POLYPEPTIDES INVOLVED IN THE STREPTOGRAMIN BIOSYNTHESIS, THEIR CODING NUCLEOTIDE SEQUENCES AND THEIR USE
EP1516059B1 (en) Method for the production of sulphur-containing fine chemicals by fermentation
DE60210184T2 (en) L-cysteine producing bacterium and method for producing L-cysteine
WO2002061106A2 (en) Method for producing cysteine, cystine and glutathione by fermentation
DE10258127A1 (en) Process for the fermentative production of R-α-lipoic acid
EP1659174A2 (en) Alleles of the mtK gene from coryneform bacteria
WO2015132213A1 (en) Process for preparing terminal amino carboxylic acids and amino aldehydes by means of a recombinant microorganism
JP4582573B2 (en) Method for producing pyruvic acid and method for producing L-valine
DE10114999A1 (en) D-carbamoylase from Arthrobacter crystallopoietes DSM 20117
DE69627856T2 (en) PENICILLIUM CHRYSOGENUM PHENYLACETYL-CoA LIGASE
DE10104721B4 (en) Process for increasing the content of sulfur compounds in plants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP