Prüfverfahren und Prüfanordnung zur Ermittlung von Elastizitätseigenschaften einer überlappenden scherzugbeanspruchten Verbindung
Die Erfindung betrifft ein Prüfverfahren und eine Prüfanordnung zur Ermittlung von Elastizitätseigenschaften einer überlappenden scherzugbeanspruchten Verbindung. Die Erfindung ist geeignet für - aber nicht beschränkt auf - überlappende Nietverbindungen, insbesondere für den Wagenkastenrohbau von Schienenfahrzeugen. Bisherige Verfahren zur experimentellen Ermittlung der Steifigkeit sind stark von der Probengeometrie abhängig. Es ist bisher nicht möglich, die Steifigkeit der Punktverbindung von der Geometrie der Probe und der Elastizität des Grundwerkstoffes im Bereich, der nicht von der Fügeverbindung beeinflusst wird zu entkoppeln. Das bedeutet, dass man maximal qualitative Vergleiche verschiedener Fügeelemente anstellen kann. Für FEM- odelle werden wahre Steifigkeitswerte benötigt, die bisher nicht durch derartige Verfahren ermittelbar sind. Für die Prüfung von punktförmigen Blechverbindungen oder dergleichen werden die unterschiedlichsten Prüfkörperformen und Prüfverfahren verwendet. Für das Widerstandspunktschweißelement sind in der DBSf 50124 und der D1N 50164 zwei Prüfkörperformen genormt. Diese bestehen aus zwei rechteckigen Blechstücken, welche teilweise überlappen und an einem Punkt im Überlappungsbereich miteinander verbunden sind.
Bei der Scherzugprobe werden zwei Bleche jeweils einendig übereinandergelegt und dort miteinander verbunden. Sie werden dann in einer Zugprüfmaschine senkrecht zu ihrer Verbindungsstelle, d. h. parallel zur Erstreckungsebene der Bleche, wieder auseinandergezogen.
Bei der Kopfzugprobe werden die Bleche kreuzweise übereinandergelegt, in der Mitte miteinander verbunden und anschließend in der Prüfmaschine parallel zur Verbindungsstelle, d. h. senkrecht zur Ersteckungsebene der Bleche, auseinandergezogen.
Weiterhin ist die Schälzugprobe bekannt, bei der die Enden der Bleche abgekantet und die abgekanteten Enden flächig voreinander gelegt und miteinander verbunden werden. In der Prüfmaschine wird die Probe parallel zu ihrer Längserstreckung senkrecht zu den zusammengeführten, abgekanteten Flächen auseinandergezogen. Aus der DE 32 15 789 AI sind ein Verfahren und eine Vorrichtung zur Messung der Zugspannungen in Nietverbindungen bekannt. Dabei wird zur Messung der mechanischen Spannung eines Niets, mit dem wenigstens zwei benachbarte Werkstücke verbunden sind, eines der beiden Werkstücke an einem Anschlagelement abgestützt. Ein dem Anschlagelement gegenüberliegendes Druckelement wird am anderen Werkstück derart angelegt, dass das Druckelement und das Anschlagelement annäherbar sind. Das Anschlagelement und das Druckelement bewegen sich aufeinander zu. Dabei werden die beiden Werkstücke mit einer vorgegebenen Kraft derart gegeneinander gepresst, dass sie sich elastisch verformen. Durch die erzeugte Druckspannung kommt es zu einer Längenänderung des Niets, die gemessen wird. Die DE 197 44 104 AI offenbart eine Vorrichtung zur Erfassung einer Dehnung insbesondere kleiner Proben. Diese umfasst zwei Probenhalter, zwischen denen eine zu untersuchende Probe aufgespannt und befestigt über den Probenhalter einer Zugkraft unterworfen wird. Die Probenhalter weisen jeweils ein Paar voneinander beabstandete Stifte zur haltenden Aufnahme der Probe auf. Die Stifte sind jeweils auf einer Linie rechtwinklig zur Zugrichtung angeordnet, wobei zwei Spitzen eines mit der Probe verbindbaren Wegaufnehmers auf jeweils auf einer gedachten Linie im wesentlichen mittig sich befindenden gedachten Andruckpunkten greifen.
Die DE 37 14 185 AI beinhaltet ein Verfahren und eine Vorrichtung zur Messung der axialen Dehnung an einem in einer Prüfmaschine eingespannten Probestab. Dabei wird die an zwei Referenzpunkten abgegriffene Längendehnung des Probestabes über eine kombinierte rotatorisch-translatorische Bewegung einer Messeinrichtung von einem Wegaufnehmer gemessen und registriert.
In der DE 43 38 005 AI sind ein Extensometer und eine Lagerung für ein Extensometer offenbart. Das Extensometer weist einen Grundkörper und mindestens zwei Abgriffschenkel zum reibschlüssigen Andrücken gegen einen Probenkörper auf. Die Abgriffschenkel sind relativ zueinander bewegbar am Grundkörper angebracht. Weiterhin beinhaltet das Extensometer einen Signalgeber, der mit mindestens einem Abgriffschenkel mechanisch gekoppelt ist und ein Maß einer Relativbewegung der Abgriffschenkel repräsentierendes
Ausgangssignal liefert. Zum Extensometer gehört auch eine Lagerungsvorrichtung zum Befestigen des Grundkörpers und Andrücken der Ab griff Schenkel gegen den Probenkörper. Die Lagerangsvorrichtung ist derart ausgestaltet, dass der Grundkörper frei beweglich schwimmend angeordnet ist.
Nachteilig bei allen aufgezeigten Vorrichtungen und Verfahren ist, dass der Aufbau, insbesondere die Anbringung von Messfühlern an die Probenkörper bzw. die Messmethoden kompliziert und daher aufwendig sind. Weiterhin dienen einige der Vorrichtungen und Verfahren zum Prüfen von Werkstoffproben, d. h. Grundmaterial und sind daher zur Ermittlung von Elastizitätseigenschaften von Verbindungen nicht vorgesehen. Weitere Nachteile ergeben sich durch Einflüsse der Prüfvorrichtungen auf die Messungen, Einflüsse durch von außen wirkende Messsysteme sowie Verfälschungen der Messungen durch Grundmaterialdehnungen.
Aufgabe der Erfindung ist es, die beschriebenen Nachteile des Standes der Technik zu beseitigen und insbesondere ein Prüfverfahren und eine Prüfanordnung zur Ermittlung von Elastizitätseigenschaften einer überlappender scherzugbelasteter Verbindung vorzuschlagen, welche einfach, leicht handhabbar und mit geringen Kosten verbunden sind und mit denen gleichzeitig qualitativ hochwertige Ergebnisse erzielbar sind.
Diese Aufgabe wird durch ein Prüfverfahren zur Ermittlung von Elastizitätseigenschaften einer überlappenden scherzugbelasteten Verbindung gemäß den Merkmalen des Anspruchs 1 und eine Prüfanordnung zur Ermittlung von Elastizitätseigenschaften einer überlappenden scherzugbelasteten Verbindung gemäß den Merkmalen des Anspruchs 11 gelöst. Zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den
Unteransprüchen angegeben.
Beim erfindungsgemäßen Prüfverfahren werden Elastizitätseigenschaften einer überlappenden scherzugbelasteten Verbindung ermittelt, indem mindestens zwei Fügepartner, die überlappt und mit mindestens zwei Verbindungen miteinander gefügt sind, parallel zu ihrer Überlappungsfläche und mit einer eine Scherzugbeanspruchung erzeugenden Last, beispielsweise einer Zug- oder Druckspannung, beaufschlagt werden und die Relativbewegung mindestens zweier, auf den beiden Fügepartnem zwischen den Verbindungsstellen festgelegter Marken zueinander gemessen und aus den dergestalt
ermittelten Kraft- und Wegdaten, die nur den Verformungsprozess in den scherzugbelasteten Verbindungsstellen widerspiegeln, die Elastizitätseigenschaften für eine einzelne Verbindungsstelle errechnet werden.
Die erfindungsgemäße Prüfanordnung besteht aus zwei sich überlappenden Fügepartnern, die im Überlappungsbereich durch mindestens zwei Verbindungen miteinander gefügt sind. Die mindestens beiden Verbindungsstellen sind in der Linie der angreifenden Prüfkraft angeordnet und so weit voneinander beabstandet, dass sie sich gegenseitig nicht beeinflussen können. Die Lage der beiden Marken ist dabei so gewählt, dass eine Dehnung der beiden Fügepartner im Bereich zwischen den Verbindungsstellen sich nicht auf die Lage der beiden Marken relativ zueinander auswirkt, also z. B. bei einer in Geometrie und Material symmetrisch aufgebauten Prüfanordnung in der Mitte zwischen den mindestens beiden Verbindungsstellen. Eine Relativbewegung der Marken ist dann ausschließlich durch die Verformung in den Verbindungsstellen verursacht, eine Dehnung eines Fügepartners im Bereich zwischen den Verbindungen wird durch eine analoge Dehnung des anderen Fügepartners kompensiert, jede Dehnung der Fügepartner außerhalb der Verbindungsstellen, jede Dehnung und jedes Spiel in der Prüfkörpereinspannung und in der Messmaschine bleibt ohne Einfluss. Die Lage und Art der Marken ist so gewählt, dass ihre Relativbewegung zueinander mit technischen Mitteln erfassbar ist. In einer bevorzugten Ausgestaltung der Erfindung wird zur Erfassung der Relativbewegung der mindestens beiden Marken, die auf den einander zugewandten Überlappungsflächen der beiden Fügepartner und anfangs einander gegenüberliegend festgelegt sind, ein Runddraht zwischen die beiden Fügepartner eingespannt, der einer Relativbewegung der zueinander gewandten Oberflächen durch Drehung folgt und dessen Drehwinkel in an sich bekannter Weise erfassbar und in die zugehörige lineare Bewegung umxechenbar ist. In bevorzugter
Weise wird der Durchmesser des Runddrahtes möglichst klein gewählt und sein Material derart, dass seine Oberfläche und Rundheit durch den zwischen beiden Fügepartnern senkrecht zur Überlappungsfläche ausgeübten Druck nicht geschädigt wird. Die Relativbewegung der mindestens beiden Marken zueinander ist jedoch auch mit anderen technischen Mitteln erfassbar: Optisch wahrnehmbare Marken sind beispielsweise visuell, z. B. mittels Lichtmikroskop verfolgbar; die Bewegung reflektierender Marken ist mit
Reflexionstechniken auswertbar.
Die Fügepartner können beispielsweise Bleche, ein Gussteile oder Strangpressprofile sein.
Die Verbindungen können beispielsweise Nietverbindungen, Punktschweißverbindungen, Lochschweißverbindungen, Kehlnahtschweißverbindungen, Schraubverbindungen oder ähnliche, überlappende Teile miteinander fügende Verbindungen sein. Die Vorteile der Erfindung bestehen darin, dass die Bestimmung der Elastizitätseigenschaften bei geringem Aufwand sehr genau ist und Verfälschungen weitgehend vermieden werden. Weiterhin werden Einflüsse durch Prüfvorrichtung und Einspannung eliminiert. Bei symmetrischer Beanspruchung der Verbindungen wird der Einfluss der Grundmaterialdehnungen aufgehoben. Es werden die von der Höhe der Scherzugbeanspruchung abhängigen Elastizitäten aufgezeigt.
Die Erfindung wird anhand der in den Zeichnungen dargestellten Ausführungsbeispiele nachfolgend näher erläutert. Es zeigen schematisch und nicht maßstäblich
Fig. 1 eine Prüfanordnung in Draufsicht, Fig. 2 die Prüfanordnung in Seitenansicht mit Ausschnittvergrößerung,
Fig. 3 eine Ausschnittvergrößerung der Prüfanordnung und
Fig. 4 eine zweite Prüfanordnung.
Beispiel 1:
Die Einflüsse durch den Grundwerkstoff in der Prüfanordnung zwischen den Fügepunkten einerseits und zwischen den Fügepunkten und der Einspannung andererseits werden ausgeschlossen, in dem eine vollständige Symmetrie um 180° um einen Sensordrehpunkt realisiert wird. Die Prüfanordnung besteht in diesem Ausführungsbeispiel nach den Fig. 1 bis 3 aus zwei rechtwinkligen, sich überlappenden, planparallelen Blechen 1, 2 gleichen Grundmaterials und gleicher Dicke. Im Überlappungsbereich 3 sind auf der Längsachse der Bleche 1, 2 symmetrisch zwei Nietverbindungen 4, 5 angeordnet, die die Bleche 1, 2 miteinander verbinden. Die Nietverbindungen 4, 5 bestehen aus je einem Niet und in beiden Blechen eingebrachten Bohrungen. Die Fügerichtung der beiden Nietverbindungen 4, 5 ist um 180° entgegengesetzt, damit die Symmetrie eingehalten wird. An den Enden der Bleche 1, 2 können die Bleche 1, 2 in eine Vorrichtung eingespannt und mit einer Zugspannung beaufschlagt werden. Die Zugspannung wirkt dabei in Richtung der Längsachse 6 der
Bleche 1, 2. Zwischen den Blechen 1, 2 und mittig zwischen den beiden Nietverbindungen 4, 5 befindet sich ein Draht 7. Dieser ist orthogonal zur Längsachse 6 der Bleche 1, 2 und parallel zur Überlappungsebene bzw. zu den Blechen 1, 2 angeordnet. Am Draht 7 ist eine Anzeigevorrichtung 8 (Drehwinkelmessapparatur) angebracht, die zur Ermittlung des Drehwinkels des Drahtes 7 dient.
Beim Beaufschlagen der Bleche 1, 2 mit einer Zugspannung wird der Draht 7, abhängig von der Höhe der Scherzugbeanspruchung der Nietverbindungen 4, 5 um einen bestimmten Drehwinkel gedreht. Die Erfassung der Drehung des Drahtes 7 erfolgt in diesem Ausführungsbeispiel über einen hochgenauen Drehgeber mit einer maximalen Messabweichung von 0.07° (entspricht bei 1 mm Drahtdurchmesser einem Fehler von 0.0006 mm). Der Drehgeber muss während des Versuches mit halber Prüfgeschwindigkeit in gleicher Richtung mitlaufen, um eine Belastung des Drahtes 7 durch Biegekräfte und daraus resultierende Fehler zu vermeiden. Aus dem Durchmesser des Drahtes 7 und dem Drehwinkel lässt sich der Weg bestimmen,- den die Bleche 1, 2 relativ zueinander zurückgelegt haben. Aus dem zurückgelegten Weg und der Scherzugbeanspruchung lässt sich z. B. die Steifigkeit in Abhängigkeit von der Scherzugbeanspruchung ermitteln.
Das Abrollen des Drahtes 7 zur Berechnung der örtlichen Deformationen ist in Fig. 3 dargestellt. Die Verschiebung Δs der beiden Bleche 1, 2 am Ort des Drahtes 7 kann über einfache geometrische Beziehungen hergeleitet werden, wobei d, den Drahtdurchmesser, Δφ den Drehwinkel des Drahtes und F die Zugkraft bezeichnet:
τι * d
Δs = φ .
360°
Die Steifigkeit c pro Punkt ergibt sich dann zu
Zur Auswertung der Versuche können in den quasilinearen Bereichen der Kraft- Weg-Kurve über lineare Regression Steifigkeiten berechnet werden. Bei den meisten der Prüfanordnungen waren zwei typische quasilineare Bereiche der Kraft- Weg-Kurve zu beobachten. Der Grund hierfür ist darin zu sehen, das die Verbindung bei Belastungsbeginn durch den vorhandenen
Reibschluss trägt, bei entsprechend höheren Belastungen jedoch Lochlaibung einsetzt. Die Regressionsgeraden haben durchgängig einen Korrelationskoeffizienten von R >0.9. Die unterschiedlichen Tragmechanismen führen dann zu verschiedenen Steifigkeiten der Verbindung.
Bei derartigen Scherzugbeanspruchung kommt es zu mehreren Effekten. Dies sind im wesentlichen: a) eine elastische und/oder plastische Verformung des Niets, b) eine elastische und/oder plastische Verformung der Bohrung, z. B. Lochlaibung c) eine Nietkippung, d) eine Grundmaterialverformung, e) Effekte, verursacht durch die Messapparatur, f) Effekte, verursacht durch die Art der Einspannung der Bleche, g) Dehnung durch äußere Einflüsse, z. B. Temperatur und h) Effekte, verursacht durch eine Bypassdehnung.
Durch die Messung der Drehung des Drahtes 7 und die symmetrische Anordnung der Bleche 1, 2 im Überlappungsbereich 3, der Nietverbindungen 4, 5 und des Drahtes 7 werden die auf die Messung der Elastizitätseigenschaften, insbesondere der Steifigkeit der Nietverbindungen 4, 5 negativ beeinflussenden Effekte d) bis h) eliminiert. Dies erhöht wesentlich die Genauigkeit der Messung, so dass eine Ermittlung der Steifigkeit in Abhängigkeit von der Scherzugbeanspruchung ermöglicht wird.
Die Relativbewegung der Bleche 1, 2 in der unmittelbaren Umgebung des Drahtes 7 wird ausschließlich durch Deformationen an den Fügepunkten verursacht. Sämtliche elastischen und plastischen Verformungen im Grundwerkstoff beider Bleche 1, 2 treten aufgrund der Symmetrie der Prüfanordnung jeweils beidseitig des Drahtes 7 auf und heben sich deshalb auf.
Die Effekte beim Überwinden des Reibschlusses zwischen den Blechen 1, 2 und der Kompensation des Spieles zwischen Bolzen und Lochlaibung werden mit erfasst.
Selbst bei nicht symmetrisch aufgebauter Prüfanordnung, beispielsweise bei unterschiedlichen Materialien der Bleche 1, 2 oder durch unterschiedliche Blechdicken, werden die sich auf das Messergebnis negativ auswirkenden Effekte d) bis h) verringert. Bei nicht symmetrisch
aufgebauten Proben (keine 50/50 Aufteilung auf die Verbindungen) werden nur e) und f) eliminiert, die Effekte d), g) und h) können nicht vollständig herausgefiltert werden. Entscheidend ist, die Kraftverteilung zwischen den mindestens zwei Verbindungen gleichmäßig zu verteilen. Für eine korrekte Messung ist also nicht unbedingt eine vollständige Symmetrie, sondern die gleichmäßige Kraftverteilung in den Verbindungen erforderlich. Diese kann beispielsweise erreicht werden durch eine vollständige Symmetrie (wie in diesem Ausführungsbeispiel, aber auch durch eine Symmetrie der Elastizitätseigenschaften der Grundmaterialien (z. B. bei der Verbindung Aluminium/Stahl muss das Aluminium dreimal dicker sein als das Stahl-Blech, da der E-Modul des Aluminiums nur ein Drittel dem E-Modul von Stahl beträgt) oder durch eine Symmetrie der Elastizitätseigenschaften der Grundmaterialien (z. B. bei der Verbindung Stahl/Stahl mit ungleichen Wandstärken wird die dickere Wandstärke im Bereich der Fügung einseitig auf die zu messende dünnere Wandstärke reduziert z. B. durch Stirnfräsen).
Beispiel 2:
Eine gleichmäßige Kraftverteilung kann auch erreicht werden, wenn die Lasteinleitung nicht am Ende der Probe sondern als Linienlast über zwei Schenkel eingebracht wird, siehe Fig. 4. In Fig. 4 sind U-Profilstege 9 zur linienförmigen Lasteinleistung mit Löchern 10 für eine steife Vorrichtung und eine U-Profil-Fügeebene 11 mit zwei Fügungen 12 und (nicht dargestelltem Draht) in der Mitte dargestellt. Die den Blechen 1, 2 im ersten Ausführungsbeispiel entsprechenden Bleche wurden verbreitert und zu einem U-Profil gebogen, die Lasteinleitung erfolgt über die entstehenden U-Profilstege 9 als Linienlast. Damit ist eine gleichmäßige Lastverteilung auch bei unterschiedlichen Materialien gewährleistet.
Beispiel 3:
Eine gleichmäßige Kraftverteilung kann auch erreicht werden, wenn zwei Scheiben miteinander verbunden werden, die über ein Torsionsmoment belastet werden. Dies entspricht einer linienförmigen Lasteinleitung.
Beispiel 4:
Möglich ist auch, den symmetrischen Teil der Prüfanordnung als Prüfvorrichtung auszubilden
(z. B. zwei dicke Stahlbleche). An den Verbindungsstellen besitzt die- Prüf Vorrichtung zwei
„große" Löcher, die mit zu prüfenden Fügungen „gefüllt" werden (z. B. zwei Unterlegscheiben gefügt und in das Durchgangsloch eingepresst).
Bei allen Ausführungen kann zusätzlich durch Messung der Nietkippung auch dieser Effekt c) bei der Bestimmung der Elastizitätseigenschaften berücksichtigt und somit z. B. für zweischnittige Verbindungen eliminiert werden. Die Messung der Nietldppung erfolgt beispielsweise mittels eines auf dem Niet angebrachten Reflektors, der einen auf ihn gerichteten Laserstrahl reflektiert. Durch die Messung des Einfalls- bzw. Ausfallwinkels des Laserstrahls lässt sich die Nietkippung messen.