WO2002059071A1 - Process for producing alkanedicarboxylic acid - Google Patents

Process for producing alkanedicarboxylic acid Download PDF

Info

Publication number
WO2002059071A1
WO2002059071A1 PCT/JP2002/000513 JP0200513W WO02059071A1 WO 2002059071 A1 WO2002059071 A1 WO 2002059071A1 JP 0200513 W JP0200513 W JP 0200513W WO 02059071 A1 WO02059071 A1 WO 02059071A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitric acid
acid
reactor
cycloalkanol
adiabatic reactor
Prior art date
Application number
PCT/JP2002/000513
Other languages
French (fr)
Japanese (ja)
Inventor
Masatsugu Kawase
Yasuhiro Murozono
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18883121&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2002059071(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2002559376A priority Critical patent/JP4004407B2/en
Priority to AT02716362T priority patent/ATE486837T1/en
Priority to EP02716362A priority patent/EP1354866B1/en
Priority to US10/470,163 priority patent/US7019167B2/en
Priority to CA002434894A priority patent/CA2434894C/en
Priority to KR10-2003-7009855A priority patent/KR100527655B1/en
Priority to BRPI0206659-9A priority patent/BR0206659B1/en
Priority to DE60238176T priority patent/DE60238176D1/en
Priority to UA2003087999A priority patent/UA73646C2/en
Publication of WO2002059071A1 publication Critical patent/WO2002059071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/316Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with oxides of nitrogen or nitrogen-containing mineral acids

Definitions

  • the present invention relates to a method for producing an alkanedicarboxylic acid by oxidizing a cycling alcohol or Z or a cycling alcohol with nitric acid. More specifically, a cycloalkyl alcohol and / or a cycloalkanol are oxidized in an adiabatic reactor using nitric acid.
  • the present invention relates to a method for producing an alkanedicarboxylic acid, which produces a high yield of an alkanedicarboxylic acid regardless of the temperature of the adiabatic reactor.
  • the reaction mixture thus obtained is separated from nitric oxide, and the concentration of nitric acid is raised again to a height approximately equivalent to the concentration in the reaction zone by evaporation of water from the reaction mixture, and alkanedicarboxylic acid is removed from a part of the reaction mixture.
  • nitric acid ie nitric acid sent to the circuit and / or freshly supplied nitric acid
  • a starting material ie, cycloalkanol, cycloalkanone, or cycloalkylamine and Z or an ⁇ -hydroxylalkanecarboxylic acid having at least 4 carbon atoms, a lactone of the ⁇ -hydroxylalkanecarboxylic acid or tetrahydrofuran
  • the reaction is carried out at a temperature of 45 to 90 ° C under normal pressure or under pressure. It is going to progress. Furthermore, in the example of Japanese Patent Publication No. 439-195229, the outlet temperature of the thermal break reactor is specified as 70 ° C.
  • Japanese Patent Publication No. 48-21088 discloses a method for reducing nitric acid consumption.
  • the publication discloses a method in which cycloalkanol and Z or cycloalkanone are converted to alkanedicarboxylic acids by liquid-phase nitric acid oxidation, which consumes essentially only a small amount of nitric acid. That is, according to a method for producing alkyne dicarponic acid by liquid-phase nitric acid oxidation of a reaction component selected from the group consisting of cycloalkanone and cycloalkanone, which has an improvement in reducing the consumption of nitric acid, Contact with nitric acid at a temperature of 90-140 ° C.
  • the circulation is different from the large circulation flow of the aqueous nitric acid solution in the present invention described below, and is circulation only in the reaction system. In the present specification, this is defined as a circulation stream of the reaction system.
  • Japanese Patent Publication No. 48-21088 discloses that a suitable mixing device, such as a draft tube mixer (draf t-tube-mixer) may be used to facilitate flow mixing.
  • a suitable mixing device such as a draft tube mixer (draf t-tube-mixer)
  • draf t-tube-mixer draf t-tube-mixer
  • a large pump, piping and reactor considering the pressure loss are required to secure a sufficient amount of circulation, which is disadvantageous in both equipment costs and power proportional costs.
  • the object of the present invention is to solve the above-mentioned problems of the prior art, and to provide cycloalkanol and
  • the circulation amount of nitric acid in the reaction system is more than necessary regardless of the temperature of the adiabatic reactor. Without increasing the amount of nitric acid, increase the yield of dicarboxylic acid, reduce the required amount of nitric acid, reduce the amount of air in the separation tower, reduce the large circulation flow rate of the aqueous nitric acid solution, It is an object of the present invention to provide a method capable of reducing the load on a concentration tower.
  • nitric acid aqueous solution containing the produced alkanedicarboxylic acid reacts with nitric acid necessary for the reaction. Contains a large excess of nitric acid. Therefore, the generation al After separating the produced carboxylic dicarboxylic acid from the aqueous nitric acid solution containing carboxylic dicarboxylic acid by crystallization and distillation, the excess nitric acid is concentrated and recovered and recycled. In this specification, this is defined as a large circulation flow of the aqueous nitric acid solution.
  • the concentration of the produced acandicarboxylic acid in the reaction solution at the outlet of the reactor can be increased.
  • the amount of nitric acid aqueous solution can be reduced, and as a result, the load on the crystallizer and the concentration tower can be reduced.
  • the inventor of the present invention has found that in a method for producing alkanedicarboxylic acid by oxidizing cyclaluminol and / or cyclacanone in an adiabatic reactor using nitric acid, Regardless of the reactor temperature, specific cycloalkanols and / or cycloalkanols can be used to increase the yield of aldicarboxylic acid without increasing both the amount of nitric acid circulated in the reaction system and the large circulation flow rate of the entire system.
  • the inventors have found that the above problems can be solved by using a method of mixing canon and nitric acid, and have completed the present invention.
  • a first aspect of the present invention relates to a method for producing an alkanedicarboxylic acid by oxidizing a cycling alcohol and a cycling alcohol with an aqueous nitric acid solution. And a mixing nozzle for feeding the cycloalkanol and / or Z or cycloalkanone, which can feed the cycloalkanol and / or the cycloalkanol at a linear speed of 8 ⁇ 10 2 msec or more.
  • the above method comprising using an adiabatic reactor.
  • a second aspect of the invention is the method of the first aspect of the invention, wherein the outlet temperature of the adiabatic reactor is a temperature above 90 ° C.
  • the aqueous solution of nitric acid the reaction product from the aqueous solution of nitric acid or Z or the aqueous solution of nitric acid with the aqueous solution of nitric acid, the aqueous solution of nitric acid and / or
  • the radial temperature profile of the adiabatic reactor has a standard deviation of 1.5 ° C or less.
  • the temperature profile in the radial direction of the adiabatic reactor is 1.5 ° C. or less at a position separated from the mixing device by the same distance as the radius of the adiabatic reactor. 4 is a method according to the first or second aspect of the invention, having a deviation.
  • the aqueous nitric acid solution, the reaction product from the liquid alcohol and Z or the non-aqueous nitric acid with the aqueous nitric acid solution At a position where the fluid containing the unreacted material of the mouth Alnon has flowed out of the mixing device for 2.5 seconds, the radial temperature profile of the adiabatic reactor is 1.5.
  • the nitric acid aqueous solution separates nitrogen oxide, nitrous oxide, nitrogen dioxide, and nitrous acid from the reaction mixture discharged from the adiabatic reactor after the nitric acid oxidation reaction,
  • the reaction mixture is concentrated to a nitric acid concentration at a height substantially corresponding to the nitric acid concentration at the reactor inlet, and the concentrated reaction mixture is concentrated.
  • the alkanedicarbonic acid is separated from a portion of the mixture, the nitric acid in the mother liquor is concentrated in another concentrating system, the mother liquor and the rest of the concentrated reaction mixture are combined, and the combined mixture is treated with fresh nitric acid.
  • the cycloalkanol and Z or cyclohexanone are cyclohexanol and / or cyclohexanone, and the alkanedicarboxylic acid produced is adipic acid.
  • the amount of nitric acid circulated in the reaction system is determined irrespective of the temperature of the adiabatic reactor in order to regulate the mixed state of the siccula alpinol and / or the siccap alrinone and the nitric acid aqueous solution.
  • the alkanedicarbonic acid yield can be increased without increasing the large circulation flow rate of the entire system.
  • the required amount of nitric acid can be reduced, the amount of air in the separation tower can be reduced, and the load on the crystallizer and the concentration tower can be reduced.
  • FIG. 1 is a schematic diagram of a mixing device in the method of the present invention.
  • FIG. 2 is a schematic view of a mixing device in the method of the present invention.
  • FIG. 3 is a schematic diagram showing one embodiment of a reaction system, a crystallization system, and a concentration system when the method of the present invention is used engineering.
  • cycloalkanol includes cyclopentanol, cyclohexanol, methylcyclohexanol, cyclooctanol, and cyclododecanol.
  • Cycloalkanones include cyclohexanone and methylcyclohexanol. Xanone and cyclododecanone.
  • the cycloalkanol is preferably cyclohexanol
  • the cycloalkanone is preferably cyclohexanone.
  • a mixture of cyclohexanol and cyclohexanone may be used as a raw material, or only hexanol alone may be used as a raw material.
  • These raw materials may remain as unreacted cycloalkanol and Z or cycloalkanone after the reaction.
  • the aqueous nitric acid solution refers to an aqueous solution having a nitric acid concentration of 10 to 70%, preferably an aqueous solution having a nitric acid concentration of 40 to 65%, and more preferably an aqueous solution having a nitric acid concentration of 50 to 65%. preferable.
  • nitric acid concentration and the Al force Njikarubon acid and unreacted products of the product cycloalkanone Oyohizo or cycloalkanol excluding purely nitrate obtained from the amount of HN 0 3 and H 2 0 Concentration, that is, [HN 0 3 Z
  • the alkanedicarboxylic acid includes succinic acid, glutaric acid, adipic acid, and dodecanediic acid, and adipic acid obtained when cyclohexanol and / or cyclohexanone is used as a raw material is preferable.
  • a method of mixing the cycloalkanol and Z or cycloalkanone with an aqueous nitric acid solution is important.
  • the fee Donozuru capable feed the cycloalk force Nord and z or cycloalk force Non at a linear velocity of 8 X 1 0- 2 mZ seconds faster than, the cycloalk force Nord and / Or, feed the non-slip mouth.
  • Another method of the present invention is to use a nitric acid aqueous solution and ⁇ The use of a mixing device for mixing z or the ferrite non-alcohol.
  • FIG. 1 shows an example of the feed nozzles 1 and 2 of the nozzle and the nozzle.
  • FIG. 1 shows two feed nozzles 1, which may be one or three or more.
  • the tip of the feed nose ⁇ / may be a simple single tube with one hole, or the nozzle may have two or more holes. What is important is the linear velocity of the cycloalkanol and / or cycloalkanone 2 supplied from the feed nozzle.
  • the linear velocity of the cycloalpinol and / or cycloalkanone 2 refers to the linear velocity at the tip of the feed nozzle 1 of the cycloalpinol and Z or cycloalnonone 2, and 8 ⁇ 10 mZ seconds or more are preferred. It is more preferably at least 1 ⁇ 10 11 m / sec, and even more preferably at least 10 mZ seconds.
  • the mixing device 3 refers to a normal mixer used for liquid-liquid mixing in the pipe 1 and includes a jet mixer, a static mixer, a Banbury mixer, an internal mixer, an orifice mixer, an impeller, and the like. However, a static mixer is preferred because of its simple structure and high mixing capacity. Various types of static mixers are described in Chemical Engineering Handbook, 6th revised edition, p. 452, Maruzen Co., Ltd. (199.99). May be used.
  • the number of the mixing devices 3 is not limited. That is, some of the mixing devices may be connected in series, or some of the mixing devices may be arranged in the nitric acid aqueous solution 4 in parallel.
  • a feed nozzle may be provided only for a specific mixing device, or a common feed nozzle may be provided for these devices.
  • the feed nozzles may be installed only in the first mixing device, or the feed nozzles may be individually installed in each of the mixing devices.
  • the interval between the feed nozzle 1 and the mixing device 3 may be apart, but the interval is preferably 10 mm or less, more preferably 5 mm or less. As shown in FIG. 2, the feed nozzle 1 is completely installed in the mixing device 3. It may be fully incorporated.
  • the ratio of the linear velocity of the cycloalcalonol and / or cycloalkanone 2 in the feed nozzle 1 to the linear velocity of the aqueous nitric acid solution 4 in the mixing device 3 is 1 ⁇ 10— It is preferably at least 2 .
  • the direction of the cycloalkanol and / or cycloalkanone feed nozzle is preferably close to parallel to the flow of the aqueous nitric acid solution.
  • a T-tube may be used as the mixing device.However, using a static mixer as the mixing device, the feed nozzles of the siphon nozzle and Z or the siphon nozzle are arranged in parallel with the flow of the nitric acid aqueous solution. It is more preferable to install them. In any case, it is necessary to satisfy that the feed line speed of the nozzle and the feed line can be fed at a feed line speed of 8 ⁇ 10 to 2 m / sec or more.
  • the aqueous nitric acid solution the reaction product from the aqueous solution of nitric acid and Z or the aqueous product of nitric acid with the aqueous solution of nitric acid; the aqueous solution of nitric acid and Z or cycloalkanol; It is preferable that a fluid having a standard deviation of 1.5 ° C. or less is provided at a position where the fluid containing the unreacted substance flows for 2.5 seconds after leaving the mixing apparatus.
  • the standard deviation is represented by the following equation (1).
  • N in the above equation is a point for measuring the temperature.
  • the interval between each measuring point is 5 mm or less. Measure the temperature from the reactor wall to the radially opposite wall at an interval of 5 mm or less. Therefore, if the device has a diameter of 100 mm, the temperature measurement point will be 21 points.
  • the diameter of the adiabatic reactor is 10 O mm, the aqueous nitric acid solution, the reaction product of the cycloalternol and Z or the cycloalternative alcohol with the aqueous nitric acid solution, If the flow rate of the fluid containing the unreacted material of the metal and / or the nozzle is 0.6 m / hr and n is 21, the fluid flows from the mixing device for 2.5 seconds.
  • the position is a position separated by 53 mm from the mixing device. That is, if the mixing device is a jet mixer, a static mixer, a bumper mixer, an internal mixer, an orifice mixer, an impeller, etc., the position of the mixing device is 53 mm from the position where the fluid exits. It is a position separated only by.
  • the mixing device is a T-shaped tube injector
  • the starting point at a position 2.5 seconds away from the mixing device is the feed nozzle of the siphon mouth and the feed nozzle of Z or the sieve mouth.
  • the standard deviation of the radial temperature profile of the adiabatic reactor is 1.5 ° C or less, the temperature rises from the inlet to the outlet of the thermal break reactor, so that the above-mentioned sequential reaction cannot be performed. An ideal flow direction temperature profile is obtained. Conversely, if the standard deviation exceeds 1.5 ° C., a portion having a high temperature is formed in the reactor, and the selectivity, that is, the yield, decreases. .
  • a fluid containing the aqueous nitric acid solution, a reaction product of the cycloalkanol and / or cycloalkanol with the aqueous nitric acid solution, and a non-reacted product of the cycloalkanol and / or cycloalkanol are used.
  • the temperature profile in the radial direction of the adiabatic reactor at a position where it flows for 2.5 seconds after leaving the mixing device has a standard deviation of 1.5 ° C or less, as described above.
  • Some of the mixing devices may be arranged in parallel. Several such mixers are placed in a reactor with a diameter of several meters. By installing the mixing devices in parallel, the temperature profile in the radial direction of the adiabatic reactor at a position 2.5 seconds away from the mixing device can be flattened.
  • the aqueous solution of nitric acid, the reaction product of the aqueous solution of cycloallic acid and Z or the cycloaltic acid with the aqueous solution of nitric acid, and the unreacted product of the aqueous solution of cycloaltic acid and z or z or cycloalkanol are included.
  • the mixing was performed so that the radial temperature profile of the adiabatic reactor at a position where the fluid flowed for 2.5 seconds after leaving the mixing device had a standard deviation of 1.5 ° C or less.
  • a current plate may be provided at the outlet of the device.
  • Examples of the current plate in the present invention include a perforated plate, a baffle tray, a lip tray, and the like which are usually used in a distillation column.
  • the current plate may be in the immediate vicinity of the mixing device, may be several cm to several meters away, and may be two or more in the reactor. Is preferred. Even when two or more rectifying plates are provided, the temperature profile refers to the distribution at a position 2.5 seconds away from the mixing device.
  • the temperature profile in the radial direction of the adiabatic reactor may have a standard deviation of 1.5 ° C. or less even at the same distance from the mixing device as the radius of the adiabatic reactor. It is preferable to have
  • the mixing device when the mixing device is a jet mixer, a static mixer, a pan parry mixer, an internal mixer, an orifice mixer, an impeller, or the like, the mixing device is located at a position where the fluid comes out.
  • the mixing device is a T-shaped tube, the mixing nozzle is located on the downstream side of the flow of the nitric acid aqueous solution at the siphon mouth nozzle and / or the feed nozzle.
  • the aqueous nitric acid solution, the reaction product of the cyclo'alkanol and / or Z or cycloalkyrinol with the aqueous nitric acid solution, and the cycloalkanol and / or cycloalkanol At a position where the fluid containing the unreacted substance of the force flows for 2.5 seconds after leaving the mixing device, the temperature profile in the radial direction of the adiabatic reactor is 1.5 ° C or less. And the radial temperature profile of the adiabatic reactor is less than 1.5 ° C even at the same distance from the mixing device as the radius of the adiabatic reactor. With, it is more preferred.
  • the standard deviation of the temperature profile in the present invention is important on a commercial scale when oxidizing cycloalcohol and / or Z-alcohol with a nitric acid aqueous solution to produce alkionic dicarboxylic acid.
  • the standard deviation of the temperature profile is as small as 1 Omm in a so-called bench scale, so that even if a flow straightening plate is not used, or if several mixing devices are not arranged in parallel, 1 It is likely that the temperature will be lower than 5 ° C, but on a commercial scale, the above measures are required to keep the temperature below 1.5 ° C.
  • the commercial scale means a scale using an adiabatic reactor having a reaction tube diameter of 10 Omm or more, preferably 50 Omm or more.
  • the adiabatic reactor in the present invention refers to a purely adiabatic reactor described in “Industrial Reactor” edited by Kenji Hashimoto (Baifukan, 1984), pp. 25-26.
  • a reactor is more preferable, but an intermediate heat exchange / multi-stage adiabatic reactor in which a heat exchanger is divided into several stages and a heat exchanger is provided between the stages to supply or remove heat may be used.
  • the outlet temperature of the adiabatic reactor is not particularly limited, but is preferably at least 80 ° C, more preferably at a temperature exceeding 90 ° C.
  • a feed nozzle for the cycloalkanol and / or Z or Al-Non which can feed cycloalkanol and / or Al-Nin at a linear speed of 8 ⁇ 10-2 mZ seconds or more; If an adiabatic reactor including a mixing device is used, the temperature can be obtained even when the outlet temperature of the adiabatic reactor is preferably 80 ° C. or more, more preferably 90 ° C. or more.
  • the alkanedicarboxylic acid yield is not reduced, but rather improved, compared to the prior art.
  • the outlet temperature of the adiabatic reactor to a temperature of preferably 80 ° C. or more, more preferably 90 ° C. or more, the cycloalkanol
  • the amount of nitric acid consumed during the oxidation of z or cycloalkanone with nitric acid can be reduced, and the concentration of the produced carboxylic dicarboxylic acid in the reaction solution at the outlet of the adiabatic reactor can be increased. Therefore, the amount of the general circulation of the aqueous nitric acid solution containing the produced alkanedicarbonic acid circulating in the system can be reduced, and the load on the crystallizer and the concentration tower can be reduced.
  • the aldicarboxylic acid is adipic acid and the outlet temperature of the adiabatic reactor is 90 ° C or 75 ° C.
  • the solubility is 80. It can contain about 22 wt% of adipic acid equivalent to C, but at ⁇ 5 ° C it can only contain a solubility of 65 ° C and about 15 wt% of adipic acid.
  • the method of the present invention in order to maintain the yield of alkanedicarboxylic acid at a temperature at the outlet of the adiabatic reactor, preferably at least 80 ° C, more preferably at a temperature exceeding 90 ° C, There is no need to increase the amount of nitric acid circulated in the reaction system.
  • the reactor outlet temperature is set to a temperature exceeding 90 ° C
  • the weight ratio of the reaction system nitric acid circulation amount to the reaction component is set to 200 or more in order to maintain the alkanedicarboxylic acid yield. Had to be extremely large.
  • the thermal insulation reactor is separated.
  • the resulting mixture can be mixed with fresh aqueous nitric acid and returned to the reactor.
  • the nitric acid concentration at a height substantially equivalent to the nitric acid concentration at the reactor inlet refers to, for example, a nitric acid concentration at the reactor inlet of not more than 1.5 Owt%.
  • nitric acid aqueous solution (32) which is a circulating flow of the reaction system, is sent from a lower part of the reactor (31) by a pump (33). Shikuroa Rukano one Honoré and / or consequent opening Al force than the feed can feed nozzle (34) in a non a linear velocity 8 X 10- 2 m / sec faster than, cycloalk force non and / or consequent Roarukanonore (35) Feed Is done.
  • the reaction system circulation stream (32) and the cycloalkanone and / or cycloalkanol (35) are instantaneously mixed by a mixing device (37) held by a holding plate (36).
  • a perforated plate (38) is installed at a position several hundred mm from the outlet of the mixing device (37).
  • the reaction product exiting the reactor (31) at a temperature higher than 90 ° C is introduced into the separation tower (39) and fed with air (40) to supply nitrogen oxide, nitrous acid, nitrogen dioxide, nitrous oxide. (41) are stripped.
  • the stripped gas is absorbed by the absorption tower and recovered as nitric acid.
  • a facility for decomposing acetic acid nitrogen which is a warming gas, may be provided between the separation tower (39) and the absorption tower.
  • the reaction product exiting the separation tower (39) is fed to a nitric acid concentration tower (42).
  • the nitric acid concentrating tower (42) is a pressure reducing tower, in which a part of the reaction heat is used for concentrating nitric acid. Drop water for recovery of nitric acid or washing water used in the subsequent crystallization step (49).
  • the aqueous nitric acid solution (43) concentrated in the nitric acid concentrating tower (42) to a concentration substantially corresponding to the concentration in the reaction zone forms a reaction system circulation flow (32) by a pump (33). Further, a part of the bottom liquid (43) of the nitric acid concentration tower (42) is withdrawn from the reaction system, and goes through a crystallization step (44) to be a product (45).
  • the mother liquor (46) coming out of the crystallization step (44) is concentrated through another concentration step (47) to form a general circulation stream (48).
  • the general circulation stream (48) is mixed with the reaction system circulation stream (32).
  • Fresh nitric acid (50) is fed at the inlet of the adiabatic reactor to keep the concentration of nitric acid in the aqueous nitric acid solution circulating in the reaction system constant.
  • the alkanedicarboxylic acid remaining without being separated is contained in the aqueous nitric acid solution of the circulation stream (32) and the large circulation stream (48) of the reaction system.
  • the concentration of the alcohol dicarboxylic acid contained in the aqueous nitric acid solution is 5 to 40%, but if the concentration is too high, the solubility becomes higher than the saturation solubility, and the nitric acid is used for the purpose of preventing the precipitation of crystals in pipes and relay tanks. Since the aqueous solution needs to be heated, 5 to 30% is preferable.
  • the outlet temperature of the adiabatic reactor can be preferably set to 80 ° C. or higher, more preferably to a temperature exceeding 90 ° C., so that the reaction system circulating nitric acid aqueous solution and the large circulating nitric acid aqueous solution can be used. It is possible to increase the concentration of the alkanedicarboxylic acid contained.
  • the mixing time is the same, and if the cycloalkanol and Z or is a reaction product had been fed cycloalk force non at a linear velocity of 8 X 1 0- 2 m / 7 seconds faster than the following it Let's compare the yield of alkanedicarboxylic acid when fed at linear velocity.
  • mixing time phenolphthalein when mixed with N a OH and H 2 SO 4 as a tracer, refers to the time until the color of phenolphthalein disappears.
  • the aqueous nitric acid solution, the reaction product of the cycloalkanol and / or cycloalkanol with the aqueous nitric acid solution, and the unreacted product of the cycloalkanol and z or cycloalkanol The position where the fluid containing for 2.5 seconds has flowed out of the mixing device is simply referred to as the position of 2.5 seconds.
  • a reactor having a length of 686 mm including a static mixer having a mixing section of 19 lmm using four elements of a Noritake static mixer having an inner diameter of 3 O mm was prepared. 0.04 N NaOH colored with phenolphthalein was flowed into the static mixer. As shown in Fig. 1, two feed nozzles with an inner diameter of l mm were installed immediately before the static mixer, and 1 N from the feed nozzle. The H 2 S 0 4 was fed. The distance until the color of the phenolphthalein disappeared was converted to time, and this was defined as the mixing time. The Na OH 0. 95 [1 i / hr], was determined to 11 2 3_Rei 4 102 [1 it / hr] in liquid passage and the mixing time, 1. was 1 second.
  • nitric acid oxidation of cyclohexanol was performed using the same static mixer and feed nozzle. That is, a nitric acid aqueous solution containing 73.8 ° C and 54.6 wt% containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the static mixer at 133 kgZhr, and the feed nozzle was Then, cyclohexanol was fed at 0.9 kg Z hr for 5 hours. The temperature at the outlet of the reactor was 91.8 ° C. The mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.17 m / s.
  • a T-tube having an inner diameter of 16.1 mm and a length of 25 Omm was prepared as a mixing section, and a reactor including a T-tube and having a length of 65 Omm was prepared.
  • 0.004N NaOH colored with phenolphthalein was introduced into one of the T-shaped tubes at 0.738 [1 itr].
  • the other from 1 N H 2 S_ ⁇ 4 was fed at 1 1 5 [1 it / hr ].
  • the distance until the color of the phenolphthalein disappeared was converted to time, and the mixing time was determined to be 1.1 seconds.
  • nitric acid oxidation of cyclohexanol was performed using the same T-tube. That is, a 75.6 ° C, 55.0 wt% aqueous nitric acid solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 150 kg / hr, Cyclohexanol was fed from the feed nozzle at 0.7 kg / hr for 5 hours. The outlet temperature of the reactor was 91.0 ° C. The mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.001 m / sec.
  • the liquid at the outlet of the reactor was sampled, and the relative molar yield of adipic acid was measured to be 91.6 m 01%.
  • the nitric acid consumption at this time was 1.018 kg-HNOg / kg-adipic acid.
  • the standard deviation of temperature was 0. 90 D C.
  • Example 2 The same average temperature as in Example 1, but the same mixing time, since Comparative Example 1 is the linear velocity of Kisano Ichiru cyclohexenone is less than 8 X 10 _ 2 m / sec, adipic acid yield is poor.
  • Comparative Example 1 is the linear velocity of Kisano Ichiru cyclohexenone is less than 8 X 10 _ 2 m / sec, adipic acid yield is poor.
  • nitric acid oxidation of cyclohexanol was performed using the same T-tube. That is, a 78.1 ° C, 55.3 wt% nitric acid aqueous solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 132 kgZir, and the feed nozzle was Hexanol was fed at 0.9 kg / hr for 5 hours.
  • the outlet temperature of the reactor was 91.3 ° C.
  • the mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.09 mZ seconds.
  • the liquid at the outlet of the reactor was sampled, and the relative molar yield of adipic acid was measured to be 94.
  • Nitrate consumption at this time was 0. 968 k g-HN0 3 / kg- adipic acid.
  • the standard deviation of the temperature was 0.70 ° C.
  • the standard deviation of the temperature at 2.5 seconds from the mixer was 0.50 ° C.
  • the static mixer having an inner diameter of 12mm and mixing unit, length including the static mixer of H 2 S_ ⁇ 4 of 1 N reactor 700mm flows at 99 [1 it / hr].
  • two feed nozzles with a hole of 1 mm in diameter were installed, and 0.004N NaOH colored with phenolphthalein was fed at 0.967 [1 it / hr] with the feed nozzle. did. Same as Example 1 When the mixing time was determined by the same method, it was 0.07 seconds.
  • nitric acid oxidation of cyclohexanol was performed using the same static mixer and feed nozzle. That is, a 78.4 ° C, 55.3 wt% aqueous nitric acid solution containing Cu 0.5 wt% and V0.04 wt% is fed into the static mixer at 130 kg / H, and Cyclohexanol was fed at 0.917 kg / hr. Therefore, the weight ratio of the circulation stream of the reaction system to cyclohexanol was 142.
  • the mixing time was 0.07 seconds, and the linear velocity of the cyclohexanone was 0.17 m / 7 seconds.
  • the radial temperature profile was measured at a position 6 mm from the outlet of the static mixer, the standard deviation was 0.60 ° C. The temperature at the reactor outlet at this time was 91.2 ° C.
  • the gas at the outlet of the reactor was introduced into the separation tower, and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid were air stripped in the separation tower, and then concentrated in the concentration tower.
  • the temperature at the bottom of the enrichment tower was about 80 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 21 wt. / 0 .
  • a part of the aqueous nitric acid solution was extracted out of the system, and the remaining aqueous nitric acid solution was returned to the reactor as a circulation stream of the reaction system.
  • the obtained adipic acid had a yield of 96.2 wt% based on the theoretical value.
  • Fresh nitric acid was added so that the nitric acid concentration at the reactor inlet was 55.3 wt%.
  • Nitric acid consumption per adipic acid was 806 [kg / T-adipic acid].
  • And injector mixing portion having an inner diameter of 1 lmm, length containing the injectors of 1 N reactor 80 Omm H 2 S 0 4 was flowed at 99 [1 it / hr]. 0.004N NaOH colored with phenolphthalein was fed from the injector at 0.503 [1 it / hr.].
  • the mixing time was 0.05 seconds.
  • nitric acid oxidation of cyclohexanol was performed using the same injector. That is, an aqueous nitric acid solution at 60 ° C. and 60 wt% containing 0.5 wt% of Cu and 0.04 wt% of V was introduced into the reactor containing the injector at 130 kg / H. The cyclohexanol dissolves in a clear manner after 0.05 seconds. Feed. At this time, the linear velocity of cyclohexanol was 0.002 m / sec. When the radial temperature profile at a position 6 mm from the injector was measured, the standard deviation was 0.70 ° C. The reaction mixture was removed from the reactor at 70 ° C and introduced into the reactor.
  • nitric oxide, nitrogen dioxide, nitrous oxide, and nitrous acid were stripped in the separation tower, they were sent to the concentration tower.
  • the nitric acid concentration was concentrated to about 56 wt% in the concentration tower.
  • the bottom temperature of the concentration tower was about 55 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 9 wt%.
  • a part of the nitric acid aqueous solution was drawn out of the system, and the remaining nitric acid aqueous solution was returned to the reactor as a circulation stream of the reaction system.
  • the obtained adipic acid was in a yield of 95.0 wt% with respect to the theoretical value.
  • Fresh nitric acid was added so that the nitric acid concentration at the reactor inlet was 60 wt%.
  • Nitric acid consumption per adipic acid was 840 [kg gT-adipic acid].
  • a stainless steel continuous isothermal device containing Cu 0.5 wt%, V0.04 wt%, 110 ° C, 50 wt% nitric acid aqueous solution 130 kg / H 13 kg / H was mixed in a T-shaped tube with inner diameter of 13111111 and then supplied.
  • the linear velocity of the hexanol hexanol was 0.0003 m / s, and the mixing time was 1.05 seconds.
  • a part of the reaction mixture was withdrawn to the crystallization system, and a part was circulated to the reaction system.
  • the weight flow ratio of the aqueous nitric acid solution circulating in the reaction system to the hexanol in the mouth was 1000.
  • the adipic acid yield was 94.1 wt% with respect to the theoretical value.
  • Nitric acid consumption per adipic acid was 807 [kg / T-adipic acid].
  • Example 4 Compared with Example 2, the adipic acid yield was lower due to the lower linear velocity of cyclohexanol. Furthermore, since the circulation flow of the reaction system was 1000: 142, which is 7 times larger, the load on the reactor, circulation pump and piping was also increased by 7 times. Example 4
  • a nitric acid aqueous solution containing 70.5 ° C and 53.6 wt% containing Cu 0.5 wt% and V0.04 wt% was circulated. Feed at 780 TZH.
  • Five static mixers with an inner diameter of 80 mm are installed in the adiabatic reactor in parallel with the flow of the nitric acid aqueous solution, and each mixer has two holes of 2.4 mm in diameter that are almost parallel to the flow of the nitric acid solution.
  • Two feed nozzles were installed. Cyclohexanol was fed at 5.6 T / H from the feed nozzle.
  • the weight ratio of the circulation stream to the cyclohexanol was 138.
  • the mixing time was 0.05 seconds, and the linear velocity of cyclohexanol was 18.3 m / s.
  • a multi-hole plate was installed at a position 300 mm from the outlet of the static mixer. When the radial temperature profile was measured at a position 2.5 seconds from the outlet of the static mixer, the standard deviation was 1.00 ° C. The standard deviation at 500 mm from the outlet of the static mixer was also 1.00 ° C. At this time, the temperature at the outlet of the adiabatic reactor was 95 ° C.
  • the gas at the outlet of the reactor is introduced for desorption, etc., and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid are stripped in the desorption column, and then the nitric acid concentration in the concentration column with a top pressure of 20 KPa was concentrated to about 40 wt%.
  • the bottom temperature of the concentration tower was about 80 ° C., and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom of the tower was 21 wt%.
  • a part of the nitric acid aqueous solution was sent to the crystallization step, and the remaining nitric acid aqueous solution was returned to the adiabatic reactor as a circulation stream of the reaction system.
  • the aqueous nitric acid solution extracted and sent to the crystallization process was crystallized and refined in the usual way to obtain adipic acid.
  • the obtained adipic acid had a yield of 95.8 wt% with respect to the theoretical value.
  • the mother liquor discharged from the crystallization step was concentrated in another concentration step and returned to the above-mentioned circulation stream of the reaction system. At this time, fresh nitric acid was added so that the nitric acid concentration at the inlet of the adiabatic reactor became 53.6 wt%.
  • Nitric acid consumption per adipic acid It was 800 [kg gT-adipic acid].
  • the reaction system circulated nitric acid aqueous solution at 77 ° C and 55.
  • Owt% containing 5 wt% of Cu O and 0.04 wt% of V was used in exactly the same manner as in Example 4.
  • the solution was fed at 780 TZH, and cyclohexanol was fed at 5.6 ⁇ / H from the feed nozzle.
  • the standard deviation was 2.50 ° C
  • the temperature at the outlet of the adiabatic reactor was 95 ° C.
  • the standard deviation at 500 mm from the outlet of the static mixer was 2.44 ° C.
  • the resulting adipic acid had a yield of 95.5 lwt% of the theoretical value. Since the standard deviation was 1.5 ° C or more, the adipic acid yield was lower than in Example 4.
  • the reaction system of 55. Owt% containing Cu 0.5 wt%, VO.
  • the circulating nitric acid aqueous solution was fed at 78 OTZH, and cyclohexanol was fed at 5.6 TZH from the feed nozzle.
  • the standard deviation was 1.oo ° c, and the temperature at the outlet of the adiabatic reactor was 85 ° C. .
  • the obtained adipic acid had a yield of 96.6 wt ⁇ 1 ⁇ 2 with respect to the theoretical value, which was slightly better than that of Example 4.
  • the consumption of nitric acid was lower than that of Example 4. 83.4 compared to [kg nitrate ZT adipic acid].
  • the gas at the outlet of the reactor is introduced into the separation or the like, and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid are air stripped in the separation tower.
  • the nitric acid concentration was concentrated to about 40 wt%.
  • the temperature at the bottom of the concentration tower was about 70 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 15 wt%. Since the concentration of adipic acid was lower than that in Example 4, the general circulation amount of the aqueous nitric acid solution in the reaction system was 1.4 times that in Example 4, and the load on the subsequent crystallizer was also 1.4 times larger.
  • a reactor having a length of 65 Omm was prepared. The distance until the color of the phenolphthalein disappeared was converted to time in the same manner as in Comparative Example 1, and the mixing time was determined to be 0.01 second.
  • the nitric acid reaction of cyclohexanol was performed. That is, a 78.4 ° C, 55.0 wt% aqueous nitric acid solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 150 kg / hr. Cyclohexanol was fed from the feed nozzle at 0.7 kg / hr for 5 hours. The outlet temperature of the reactor was 91.0 ° C. At this time, the mixing time was 0.01 seconds, and the linear velocity of hexanol hexanol was 0.03 mZ seconds.
  • the liquid at the outlet of the reactor was sampled, and the amount of adipic acid was 94.7% by weight based on the theoretical value.
  • the nitric acid consumption at this time was 0.9915 kg—HN ⁇ 3 / kg—adipic acid.
  • the standard deviation of the temperature was 0.80 ° C.
  • Comparative Example 4 had a poor adipic acid yield because the linear velocity of the hexanol in the mouth was 8 ⁇ 10 12 mZ seconds or less.
  • KA-Oil cycloalkanone and / or cycloalkanol
  • Example 3 Comparative Example 2 Comparative Example 3 Inlet temperature [c] 78.4 60 Thermostat type reactor Outlet temperature [c] 91.2 70 Isothermal type reactor Average temperature [c] 84.8 65 1 10 Reactor diameter Lmm "12 11 Isothermal reactor anti-f core 3 ⁇ 4f length Lmm ”700 800 Isothermal reactor Mixing device, static injector“ X ”tube mixer
  • KA-Oil cycloalkanone and / or cycloalkanol
  • KA-Oil Cycloalkanone and / or Cycloalkanol Industrial Applicability
  • a method for producing an alkanedicarboxylic acid by oxidizing a cycloalkanol and / or a cycloalnonone with nitric acid in an adiabatic reactor using nitric acid increase the alkanedicarboxylic acid yield, reduce the required amount of nitric acid, and reduce the amount of air in the desorption tower without increasing the circulation flow rate of nitric acid in the reaction system more than necessary.
  • the large circulation flow rate of the nitric acid aqueous solution can be reduced and the load on the crystallizer and the concentration tower can be reduced.

Abstract

A process for producing an alkanedicarboxylic acid by oxidizing a cycloalkanol and/or cycloalkanone with an aqueous nitric acid solution, which comprises using a heat-insulated reactor comprising a feed nozzle with which the cycloalkanol and/or cycloalkanone can be fed at a linear velocity of 8x10-2 m/sec or higher and a mixing device.

Description

ボン酸の製造方法 技術分野  Production method of boric acid
本発明は、 シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンを硝酸を用いて酸 化し、 アルカンジカルボン酸を製造する方法に関する。 さらに詳しくは、 シクロ アル力ノール及び/又はシク口アル力ノンを硝酸を用いて断熱型反応器で酸ィ匕す 明  The present invention relates to a method for producing an alkanedicarboxylic acid by oxidizing a cycling alcohol or Z or a cycling alcohol with nitric acid. More specifically, a cycloalkyl alcohol and / or a cycloalkanol are oxidized in an adiabatic reactor using nitric acid.
る際に、 該断熱型反応器の温度にかかわらず、 生成するアルカンジカルボン酸の 収率が高い、 アルカンジカルボン酸を製田造する方法に関する。 The present invention relates to a method for producing an alkanedicarboxylic acid, which produces a high yield of an alkanedicarboxylic acid regardless of the temperature of the adiabatic reactor.
背景技術 Background art
従来より、 シク口アル力ノ一ル及び/又はシク口アル力ノンを、 硝酸を用いて、 高められた温度でアル力ンジカルボン酸に酸ィヒできることは公知である。 また、 断熱型反応器を用いてシク口アル力ノ一ル及ぴ Z又はシク口アル力ノンを硝酸酸 ィ匕し、 アルカンジカルボン酸を製造する方法も知られている。 例えば、 特公昭 4 3— 1 9 5 2 9号公報には、 出発物質を 4 0〜7 0 %硝酸 8 0〜4 0 0倍容量と 激しく混合し、 反応の間、 反応温度の上昇が 2 5 °Cを超えないように硝酸の量を 調節し、 反応を常圧又は加圧下に 4 5〜 9 0 °Cの温度で進行させ、 4分以下の滞 留時間の後、 反応帯から排出した反応混合物を酸化窒素から分離し、 反応混合物 から水の蒸発によつて反応帯における濃度にほぼ相当する高さに硝酸濃度を再ぴ 上昇させ、 反応混合物の一部からアル力ンジカルボン酸を通常の方法で分離し、 母液を反応混合物の残りと一緒にし、 この一緒にした混合物を新しい出発物質と 激.しく混合し、 そして反応帯に戻すことを特徴とする、 高められた温度で循環系 中で一段階で、 シクロアルカノール、 シクロアルカノン、 又はシクロアルキルァ ミン及ぴ /又は少なくとも 4個の炭素原子を有する ω—ヒドロキシルアルカン力 ルボン酸、 この to—ヒドロキシルアルカンカルボン酸のラタトン又はテトラヒ ド 口フランを、 硝酸で酸化することによるアル力ンジカルボン酸の連続的製造方法 が示されている。 この中では、 硝酸 (すなわち、 循環路に送られる硝酸及び/又 は新しく供給される硝酸) を反応帯中に出発物質と混合して導入する際に、 硝酸 と出発物質 (すなわちシクロアルカノール、 シクロアルカノン、 又はシクロアル キルァミン及び Z又は少なくとも 4個の炭素原子を有する ω—ヒドロキシルアル カンカルボン酸、 この ω—ヒドロキシルアルカンカルボン酸のラクトン又はテト ラヒドロフラン) との混合をできるだけ短時間に行うのが望ましいことが記載さ れている。 例えばインジェクター、 混合ノズル又はタービン混合器を用いて、 出 発物質が遅くとも 5秒後に透明に溶解するような条件で混合させることが好まし いと記載されている。 特にシク口へキサノール及びシク口へキサノンの酸化の場 合は、 混合後 0 . 0 5〜 0 . 1秒で透明な溶液を得るように努力するべきである ことが開示されている。 その理由は、 短時間での混合を実施しないと、 反応帯に おける温度が局部的に高くなり、 アルカンジカルボン酸の収率が減少するためで あると述べられている。 しかしながら、 特公昭 4 3 - 1 9 5 2 9号公報に記載さ れている混合時間でも、 アルカンジカルボン酸の収率は必ずしも高くない。 この ことは、 特公昭 4 3 - 1 9 5 2 9号公報に定義されている混合時間が適切でない ことを示している。 It has been known that it is possible to oxidize alkanols and / or alkanols to nitric carboxylic acids at elevated temperatures using nitric acid. Also known is a method for producing an alkanedicarboxylic acid by nitrating nitric acid and / or Z at an adiabatic reactor to produce an alkanedicarboxylic acid. For example, Japanese Patent Publication No. 439-19529 states that the starting material is mixed vigorously with 40 to 70% nitric acid in an amount of 80 to 400 times the volume, and during the reaction, the reaction temperature increases by 2%. Adjust the amount of nitric acid so that it does not exceed 5 ° C, and allow the reaction to proceed at a temperature of 45 to 90 ° C under normal pressure or pressure and discharge from the reaction zone after a residence time of 4 minutes or less. The reaction mixture thus obtained is separated from nitric oxide, and the concentration of nitric acid is raised again to a height approximately equivalent to the concentration in the reaction zone by evaporation of water from the reaction mixture, and alkanedicarboxylic acid is removed from a part of the reaction mixture. Separation in the usual way, combining the mother liquor with the rest of the reaction mixture, vigorously mixing this combined mixture with fresh starting materials, and returning to the reaction zone, cycling at elevated temperature Cycloalkanol, cycloalkanone, or cycloalkylamine And / or the ω-hydroxylalkane force having at least 4 carbon atoms rubonic acid, the continuous formation of alkynedicarboxylic acid by oxidizing ratatotone or tetrahydrofuran of this to-hydroxylalkanecarboxylic acid with nitric acid The manufacturing method is shown. In this, nitric acid (ie nitric acid sent to the circuit and / or freshly supplied nitric acid) is mixed with the starting material in the reaction zone and introduced into the reaction zone. And a starting material (ie, cycloalkanol, cycloalkanone, or cycloalkylamine and Z or an ω-hydroxylalkanecarboxylic acid having at least 4 carbon atoms, a lactone of the ω-hydroxylalkanecarboxylic acid or tetrahydrofuran) It is stated that it is desirable to carry out as short as possible. It is stated that it is preferable to mix the starting materials using a injector, a mixing nozzle or a turbine mixer under conditions such that the starting material is transparently dissolved after at least 5 seconds. It is disclosed that especially in the case of oxidation of neck hexanol and neck hexanone, efforts should be made to obtain a clear solution within 0.05-0.1 seconds after mixing. The reason is that if the mixing is not performed in a short time, the temperature in the reaction zone locally increases, and the yield of alkanedicarboxylic acid decreases. However, even with the mixing time described in JP-B-43-195529, the yield of alkanedicarboxylic acid is not always high. This indicates that the mixing time defined in Japanese Patent Publication No. 439-19529 is not appropriate.
シクロへキサノール及ぴ/又はシクロへキサノンを硝酸酸化しアジピン酸を生 成する反応において、 温度が高いと得られるアジピン酸の収率が低下することは 另Iの文献でも公知である。 すなわち、 Preparation of adipic acid by oxidation of cyclohexanol and cyclohexanone with nitric acid (シクロへキ サノールとシクロへキサノンの硝酸酸ィ匕によるアジピン酸の調製) , W. J. VAN ASSELT and D. W. VAN KREVELEN, Rec. Tra. Chem. , 82, 51〜67, 429〜 437, 438〜449 (1963)には、 マグネティックスターラーと冷却ジャケットを備えた円筒 型の容器内でのバッチ酸ィヒ反応テスト結果から、 高温、 特に 6 0 °C以上では、 触 媒として C uが存在していてもアジピン酸収率が低下していくことを、 示してい る。  It is also known in the literature of I that, in the reaction of nitric acid oxidation of cyclohexanol and / or cyclohexanone to produce adipic acid, the yield of adipic acid obtained at high temperatures decreases. Preparation of adipic acid by oxidation of cyclohexanol and cyclohexanone with nitric acid (preparation of adipic acid by nitration of cyclohexanol and cyclohexanone), WJ VAN ASSELT and DW VAN KREVELEN, Rec. Tra. Chem. , 82, 51-67, 429-437, 438-449 (1963) show that the results of a batch acid reaction test in a cylindrical vessel equipped with a magnetic stirrer and a cooling jacket indicate that high temperatures, especially 60 ° Above C, it shows that the adipic acid yield decreases even when Cu is present as a catalyst.
従って、 特公昭 4 3 - 1 9 5 2 9公報では、 滞留時間又は混合時間を極めて短 く規定しているにもかかわらず、 反応を常圧又は加圧下に 4 5〜9 0 °Cの温度で 進行させるとしている。 さらに特公昭 4 3 - 1 9 5 2 9号公報の実施例では、 断 熱型反応器の出口温度は 7 0 °Cと明記している。  Therefore, despite the fact that the residence time or the mixing time is specified to be extremely short in Japanese Patent Publication No. 439-19529, the reaction is carried out at a temperature of 45 to 90 ° C under normal pressure or under pressure. It is going to progress. Furthermore, in the example of Japanese Patent Publication No. 439-195229, the outlet temperature of the thermal break reactor is specified as 70 ° C.
ところ力、 ——方で、 し Preparation of adipic acid by oxidation of cyclohexanol and cyclohexanone with nitric acid, W. J. VAN ASSELT and D. W. VAN KREVELEN, Rec. Tra. Chem., 82, 51〜67, 429〜437, 438〜449 (1963)より 得られる、 シク口へキサノールゃシクロへキサノンからアジピン酸への反応速度 を使用して計算を行うと、 同一アジピン酸収率を得るために必要な硝酸濃度は、 温度の低下と共に増えていくことも明らかである。 Preparation, adipic acid by oxidation of cyclohexanol and cyclohexanone with nitric acid, WJ VAN ASSELT and DW VAN KREVELEN, Rec. Tra. Chem., 82, 51-67, 429-437, 438-449 (1963). Calculations using the reaction rate of adipic acid to adipic acid also reveal that the nitric acid concentration required to achieve the same adipic acid yield increases with decreasing temperature.
このことは、 従来の技術では、 低温でアジピン酸収率は高まるが、 酸化に使用 する硝酸量が多くなることを示している。 すなわち、 前記特公昭 43- 1 952 9号公報に示される方法は、 45〜 90 °Cの低温でシク口アル力ノ一ル及ぴ Z又 はシクロア^/レカノンを硝酸酸化するため、 消費される硝酸量が多くなるという問 題を有している。  This indicates that the conventional technique increases the adipic acid yield at low temperatures but increases the amount of nitric acid used for oxidation. That is, the method disclosed in JP-B-43-19529 described above is consumed because nitric acid is used to oxidize the alkanol and Z or cycloa / lecanone at a low temperature of 45 to 90 ° C. The problem is that the amount of nitric acid increases.
特公昭 48 -21088号公報には硝酸の消費量を削減する方法が述べられて いる。 当該公報は本質的に少量の硝酸しか消費しなレ、液相硝酸酸化によってシク ロアルカノール及び Z又はシクロアルカノンをアルカンジカルボン酸に変える方 法を開示している。 すなわち、 硝酸の消費量を減少させる改良を有する、 シクロ アルカノーノレ及びシクロアルカノンからなる群から選択した反応成分の液相硝酸 酸化によるアル力ンジカルポン酸の製造法にぉレヽて、 該反応成分を銅一パナジゥ ム触媒の存在下で温度 90〜: 140°Cで硝酸と接触させ、 0. 30— 0. 60重 量%の酸化された銅、 0. 01— 0. 50重量%の酸ィ匕されたバナジウム、 及ぴ 0. 5より大きい平均の酸素対窒素比を有する硝酸還元生成物を含む反応混合物 の少なくとも一部を循環させ、 この際、 循環流対反応成分の重量比を 200〜 1 300に維持し、 且つ該重量比と酸ィ匕されたバナジウム濃度の積が 30〜60と なるように維持し、 次いで該ァルカンジカルボン酸を回収することを特徴とする 方法、 が開示されている。 ここでの循環は以下に述べる本発明における硝酸水溶 液の大循環流とは異なり、 反応系だけでの循環である。 本明細書ではこれを反応 系循環流と定義する。  Japanese Patent Publication No. 48-21088 discloses a method for reducing nitric acid consumption. The publication discloses a method in which cycloalkanol and Z or cycloalkanone are converted to alkanedicarboxylic acids by liquid-phase nitric acid oxidation, which consumes essentially only a small amount of nitric acid. That is, according to a method for producing alkyne dicarponic acid by liquid-phase nitric acid oxidation of a reaction component selected from the group consisting of cycloalkanone and cycloalkanone, which has an improvement in reducing the consumption of nitric acid, Contact with nitric acid at a temperature of 90-140 ° C. in the presence of one panadium catalyst; 0.30-0.60% by weight of oxidized copper; 0.01-1.50% by weight of oxidized copper Circulating at least a portion of the reaction mixture containing the reduced vanadium and the nitrate reduction product having an average oxygen to nitrogen ratio greater than 0.5, wherein the weight ratio of circulating stream to reactants is 200 to 1 300, and maintaining the product of the weight ratio and the oxidized vanadium concentration to be 30 to 60, and then recovering the alkanedicarboxylic acid. I have. The circulation here is different from the large circulation flow of the aqueous nitric acid solution in the present invention described below, and is circulation only in the reaction system. In the present specification, this is defined as a circulation stream of the reaction system.
更に特公昭 48- 21088号公報には、 流入シクロアルカノール及び/又は シク口アル力ノンを反応装置からの反応系循環流と混合する際に、 適当な混合装 置、 例えば通風管混合機 (d r a f t- t u b e -mi x e r) を流れの混合を 容易にするために用いてもよい旨が記載されている。 しかしながらこの方法では、 反応系循環流対反応成分の重量比を 2 0 0〜 1 3 0 0と、 極めて多く設定する必 要がある。 反応系循環量が多くなると、 それだけの循環量を確保するために大型 のポンプや圧力損失を考慮した配管や反応器が必要となり、 設備費, 電力比例費 共に不利である。 Further, Japanese Patent Publication No. 48-21088 discloses that a suitable mixing device, such as a draft tube mixer (draf t-tube-mixer) may be used to facilitate flow mixing. However, with this method, It is necessary to set the weight ratio of the circulation stream of the reaction system to the reaction components to be as large as 200 to 130,000. When the amount of circulation in the reaction system increases, a large pump, piping and reactor considering the pressure loss are required to secure a sufficient amount of circulation, which is disadvantageous in both equipment costs and power proportional costs.
以上列記したように、 シクロアルカノール及び/又はシクロアルカノンを、 硝 酸を用いてアルカンジカルボン酸に酸化する技術は公知であるが、 これらはアル カンジカルボン酸の収率を高めるために、 反応域の温度は 9 0 °C以下とするか、 9 0 °Cを超える温度でも極めて多い反応系硝酸循環量を必要としている。 そして、 反応域の温度を 9 0 °C以下とすると、 硝酸消費量が多くなり、 離脱塔での空気量 が多くなり、 系内を大循環する生成アル力ンジカルボン酸を含む硝酸水溶液大循 環流の量が多く、 晶析器や濃縮塔の負荷が増大するという問題があった。 また、 As listed above, techniques for oxidizing cycloalkanol and / or cycloalkanone to alkanedicarboxylic acid using nitric acid are known.However, in order to increase the yield of alkanedicarboxylic acid, these are used in the reaction zone. The temperature of the reaction must be 90 ° C or lower, or even at a temperature exceeding 90 ° C, an extremely large amount of circulating nitric acid in the reaction system is required. If the temperature of the reaction zone is set to 90 ° C or lower, the consumption of nitric acid increases, the amount of air in the separation tower increases, and the general circulation of nitric acid aqueous solution containing generated dicarboxylic acid circulates in the system. There was a problem that the amount of reflux was large and the load on the crystallizer and the concentration tower increased. Also,
9 0 °Cを超える温度でもアルカンジカルボン酸の収率を維持するには、 反応系硝 酸循環量が莫大になるという問題があつた。 In order to maintain the alkanedicarboxylic acid yield even at a temperature exceeding 90 ° C, there was a problem that the amount of nitric acid circulated in the reaction system was enormous.
発明の開示 Disclosure of the invention
本発明の課題は、 上記の従来技術の問題点を解決し、 シクロアルカノール及び The object of the present invention is to solve the above-mentioned problems of the prior art, and to provide cycloalkanol and
Z又はシクロアルカノンを、 硝酸を用いて断熱型反応器で酸ィ匕しアルカンジカル ボン酸を製造する方法において、 該断熱型反応器の温度にかかわらず、 反応系硝 酸循環量を必要以上に多くすることなしに、 アル力ンジカルボン酸の収率を高く し、 硝酸必要量を低減し、 離脱塔での空気量を低減し、 硝酸水溶液の大循環流量 を少なくし、 晶析器や濃縮塔の負荷を下げ得る方法を提供することにある。 In the method for producing alkanedicarboxylic acid by oxidizing Z or cycloalkanone with nitric acid in an adiabatic reactor, the circulation amount of nitric acid in the reaction system is more than necessary regardless of the temperature of the adiabatic reactor. Without increasing the amount of nitric acid, increase the yield of dicarboxylic acid, reduce the required amount of nitric acid, reduce the amount of air in the separation tower, reduce the large circulation flow rate of the aqueous nitric acid solution, It is an object of the present invention to provide a method capable of reducing the load on a concentration tower.
シクロアル力ノ一ル及ぴ Z又はシク口アル力ノンを硝酸酸化し、 アル力ンジカ ルボン酸を得るに際し、 該断熱型反応器出口の温度を上げることができれば、 反 応器の出口の反応液中の生成アル力ンジカルボン酸の濃度を上げることができる ため、 上記硝酸の使用量が抑えられるという利点の他に、 前記特公昭 4 3— 1 9 5 2 9号公報記載の離脱塔へ供給するべき空気量を減らすことができる。  In oxidizing nitric acid to cycloalcohol and Z or cycloalkanoic acid with nitric acid to obtain alkionic dicarboxylic acid, if the temperature at the outlet of the adiabatic reactor can be raised, the reaction solution at the outlet of the reactor In addition to the advantage that the amount of nitric acid used can be suppressed because the concentration of the produced carboxylic acid dicarboxylic acid in the solution can be increased, it is also supplied to the separation column described in Japanese Patent Publication No. 439-19529. The amount of air to be done can be reduced.
断熱型反応器出口の温度を上げることができる場合の利点は他にもある。 一般 に、 シク口アル力ノール及び/又はシク口アル力ノンを硝酸酸化してアル力ンジ カルボン酸を生成するプロセスでは、 生成アルカンジカルボン酸を含む硝酸水溶 液は反応に必要な硝酸に対して大過剰の硝酸を含んでいる。 そのため、 生成アル 力ンジカルボン酸を含む硝酸水溶液から、 晶析ゃ蒸留等により生成アル力ンジカ ルボン酸を分離した後、 過剰の硝酸を濃縮回収して、 循環再利用する。 本明細書 ではこれを硝酸水溶液の大循環流と定義する。 There are other advantages to being able to raise the temperature at the adiabatic reactor outlet. Generally, in the process of producing nitric acid by nitric acid oxidation of cycloalkanol and / or cycloalkanol, nitric acid aqueous solution containing the produced alkanedicarboxylic acid reacts with nitric acid necessary for the reaction. Contains a large excess of nitric acid. Therefore, the generation al After separating the produced carboxylic dicarboxylic acid from the aqueous nitric acid solution containing carboxylic dicarboxylic acid by crystallization and distillation, the excess nitric acid is concentrated and recovered and recycled. In this specification, this is defined as a large circulation flow of the aqueous nitric acid solution.
該断熱型反応器出口の温度を上げることができれば、 反応器の出口の反応液中 の生成ァ カンジカルボン酸の濃度を上げることができるため、 系内大循環流、 すなわち生成アルカンジカルボン酸を含む硝酸水溶液の量を下げることができ、 その結果、 晶析器や濃縮塔の負荷が削減できる。  If the temperature at the outlet of the adiabatic reactor can be increased, the concentration of the produced acandicarboxylic acid in the reaction solution at the outlet of the reactor can be increased. The amount of nitric acid aqueous solution can be reduced, and as a result, the load on the crystallizer and the concentration tower can be reduced.
本発明者は鋭意研究を重ねた結果、 シク口アル力ノール及び/又はシク口アル カノンを、 硝酸を用いて断熱型反応器で酸化し、 アルカンジカルボン酸を製造す る方法において、 該断熱型反応器の温度にかかわらず、 反応系内硝酸循環量と全 系の大循環流量を共に多くすることなしにアル力ンジカルボン酸の収率を高める 方法として、 特定のシクロアルカノール及び/又はシクロアルカノンと硝酸の混 合方法を用いれば、 上記の課題を解決できることを見いだし、 本発明を完成した。 すなわち本発明の第 1の態様は、 シク口アル力ノール及びノ又はシク口アル力 ノンを、 硝酸水溶液を用いて酸ィヒし、 アルカンジカルボン酸を製造する方法にお いて、 該シク口アル力ノール及び/又はシク口アル力ノンを線速 8 X 1 0 _ 2 m ノ秒以上の速さでフィードできる該シクロアル力ノール及び Z又はシクロアルカ ノンのフィードノズル、 及ぴミキシング装置を含んでなる断熱型反応器を用いる ことを含む、 上記方法である。 As a result of intensive studies, the inventor of the present invention has found that in a method for producing alkanedicarboxylic acid by oxidizing cyclaluminol and / or cyclacanone in an adiabatic reactor using nitric acid, Regardless of the reactor temperature, specific cycloalkanols and / or cycloalkanols can be used to increase the yield of aldicarboxylic acid without increasing both the amount of nitric acid circulated in the reaction system and the large circulation flow rate of the entire system. The inventors have found that the above problems can be solved by using a method of mixing canon and nitric acid, and have completed the present invention. That is, a first aspect of the present invention relates to a method for producing an alkanedicarboxylic acid by oxidizing a cycling alcohol and a cycling alcohol with an aqueous nitric acid solution. And a mixing nozzle for feeding the cycloalkanol and / or Z or cycloalkanone, which can feed the cycloalkanol and / or the cycloalkanol at a linear speed of 8 × 10 2 msec or more. The above method, comprising using an adiabatic reactor.
発明の第 2の態様は、 該断熱型反応器の出口温度が 9 0 °Cを超える温度である、 発明の第 1の態様の方法である。  A second aspect of the invention is the method of the first aspect of the invention, wherein the outlet temperature of the adiabatic reactor is a temperature above 90 ° C.
発明の第 3の態様は、 該硝酸水溶液と、 該シク口アル力ノ一ル及ぴ Z又はシク 口アル力ノンと該硝酸水溶液とからの反応生成物と、 該シク口アル力ノール及び /又はシクロアルカノンを含む流体が、 該ミキシング装置を出てから 2 . 5秒だ け流れた位置において、 該断熱型反応器の半径方向の温度プロファイルが、 1 . 5 °C以下の標準偏差を持つ、 発明の第 1又は第 2の態様の方法である。  In a third aspect of the present invention, the aqueous solution of nitric acid, the reaction product from the aqueous solution of nitric acid or Z or the aqueous solution of nitric acid with the aqueous solution of nitric acid, the aqueous solution of nitric acid and / or Alternatively, at a position where a fluid containing cycloalkanone flows for 2.5 seconds after leaving the mixing device, the radial temperature profile of the adiabatic reactor has a standard deviation of 1.5 ° C or less. The method according to the first or second aspect of the invention.
発明の第 4の態様は、 該断熱型反応器の半径方向の温度プロファイルが、 該ミ キシング装置から該断熱型反応器の半径と同一距離だけ離れた位置において、 1 . 5 °C以下の標準偏差を持つ、 発明の第 1又は第 2の態様の方法である。 発明の第 5の態様は、 該硝酸水溶液と、該シク口アル力ノ一ル及ぴ Z又はシク 口アル力ノンと該硝酸水溶液とからの反応生成物と、 該シクロアル力ノール及び Z又はシク口アル力ノンの未反応物とを含む流体が、 該ミキシング装置を出てか ら 2 . 5秒だけ流れた位置において、 該断熱型反応器の半径方向の温度プロファ ィルが、 1 . 5 C以下の標準偏差を持ち、 かつ、 該断熱型反応器の半径方向の温 度プロファイルが、 該ミキシング装置から該断熱型反応器の半径と同一距離だけ 離れた位置においても 1 . 5 °C以下の標準偏差を持つ、 発明の第 1〜4の態様の いずれかの方法である。 According to a fourth aspect of the present invention, the temperature profile in the radial direction of the adiabatic reactor is 1.5 ° C. or less at a position separated from the mixing device by the same distance as the radius of the adiabatic reactor. 4 is a method according to the first or second aspect of the invention, having a deviation. According to a fifth aspect of the present invention, the aqueous nitric acid solution, the reaction product from the liquid alcohol and Z or the non-aqueous nitric acid with the aqueous nitric acid solution, At a position where the fluid containing the unreacted material of the mouth Alnon has flowed out of the mixing device for 2.5 seconds, the radial temperature profile of the adiabatic reactor is 1.5. C or less, and the temperature profile in the radial direction of the adiabatic reactor is 1.5 ° C or less even at the same distance from the mixing device as the radius of the adiabatic reactor. The method according to any one of the first to fourth aspects of the invention, having a standard deviation of
発明の第 6の態様は、 該硝酸水溶液が、 硝酸酸化反応の後、 該断熱型反応器か ら排出された反応混合物から酸化窒素, 酸化二窒素, 二酸化窒素, 及び亜硝酸を 分離し、 次いで該断熱型反応器中で生成した水を該反応混合物から蒸発させるこ とによって、 反応器入口における硝酸濃度にほぼ相当する高さの硝酸濃度にまで 該反応混合物を濃縮し、 濃縮された該反応混合物の一部から該ァルカンジカルボ ン酸を分離し、 母液中の硝酸を別の濃縮系で濃縮し、 該母液と該濃縮された反応 混合物の残りとを一緒にし、 この一緒にした混合物を新しい硝酸水溶液と混合し、 そして反応器に戻された硝酸水溶液である、 発明の第 1から第 5の態様のいずれ かの方法である。  According to a sixth aspect of the present invention, the nitric acid aqueous solution separates nitrogen oxide, nitrous oxide, nitrogen dioxide, and nitrous acid from the reaction mixture discharged from the adiabatic reactor after the nitric acid oxidation reaction, By evaporating the water produced in the adiabatic reactor from the reaction mixture, the reaction mixture is concentrated to a nitric acid concentration at a height substantially corresponding to the nitric acid concentration at the reactor inlet, and the concentrated reaction mixture is concentrated. The alkanedicarbonic acid is separated from a portion of the mixture, the nitric acid in the mother liquor is concentrated in another concentrating system, the mother liquor and the rest of the concentrated reaction mixture are combined, and the combined mixture is treated with fresh nitric acid. The method according to any one of the first to fifth aspects of the present invention, wherein the nitric acid aqueous solution is mixed with an aqueous solution and returned to the reactor.
発明の第 7の態様は、 該シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンが、 シク口へキサノール及び 又はシク口へキサノンであり、製造される該アルカン ジカルボン酸がアジピン酸である、 発明の第 1から第 6の態様のいずれかの方法 である。  According to a seventh aspect of the present invention, the cycloalkanol and Z or cyclohexanone are cyclohexanol and / or cyclohexanone, and the alkanedicarboxylic acid produced is adipic acid. The method according to any one of the first to sixth aspects of the invention.
本発明の方法に従えば、 シク口アル力ノール及び/又はシク口アル力ノンと硝 酸水溶液の混合状態を規定するため、 該断熱型反応器の温度にかかわらず、 反応 系内硝酸循環量と全系の大循環流量を共に多くすることなく、 アルカンジカルボ ン酸の収率を高くすることができる。 また、 本発明の方法に従えば、 必要な硝酸 量を削減することができ、 離脱塔での空気量を低減し、 晶析器や濃縮塔の負荷を 下げることができる。  According to the method of the present invention, the amount of nitric acid circulated in the reaction system is determined irrespective of the temperature of the adiabatic reactor in order to regulate the mixed state of the siccula alpinol and / or the siccap alrinone and the nitric acid aqueous solution. The alkanedicarbonic acid yield can be increased without increasing the large circulation flow rate of the entire system. Further, according to the method of the present invention, the required amount of nitric acid can be reduced, the amount of air in the separation tower can be reduced, and the load on the crystallizer and the concentration tower can be reduced.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
第 1図は本発明の方法におけるミキシング装置の概略図である。 第 2図は本発明の方法におけるミキシング装置の概略図である。 FIG. 1 is a schematic diagram of a mixing device in the method of the present invention. FIG. 2 is a schematic view of a mixing device in the method of the present invention.
第 3図は本発明の方法を工学的に利用した場合の反応系, 晶析系, 濃縮系の一 実施態様を示す概略図である。  FIG. 3 is a schematic diagram showing one embodiment of a reaction system, a crystallization system, and a concentration system when the method of the present invention is used engineering.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 シクロアルカノールとは、 シクロペンタノール、 シクロへキ サノール、 メチルシク口へキサノール、 シクロォクタノール、 シクロドデカノー ルが挙げられ、 シクロアルカノンとしては、 シク口へキサノン、 メチルシク口へ キサノン、 シクロドデカノンが挙げられる。  In the present invention, cycloalkanol includes cyclopentanol, cyclohexanol, methylcyclohexanol, cyclooctanol, and cyclododecanol.Cycloalkanones include cyclohexanone and methylcyclohexanol. Xanone and cyclododecanone.
上記のそれぞれを単独で原料として用いてもよく、 混合物を原料としてもよい。 本発明においてシクロアルカノールとしては、 シクロへキサノールが好ましく、 シクロアルカノンとしてはシクロへキサノンが好ましい。 たとえば、 シクロへキ サノールとシクロへキサノンの混合物を原料としてもよいし、 シク口へキサノー ルのみを原料としてもよい。 これら原料は、 反応後に未反応のシクロアルカノー ルおよび Zまたはシクロアルカノンとして残ることはある。  Each of the above may be used alone as a raw material, or a mixture may be used as a raw material. In the present invention, the cycloalkanol is preferably cyclohexanol, and the cycloalkanone is preferably cyclohexanone. For example, a mixture of cyclohexanol and cyclohexanone may be used as a raw material, or only hexanol alone may be used as a raw material. These raw materials may remain as unreacted cycloalkanol and Z or cycloalkanone after the reaction.
本発明における、 硝酸水溶液とは、 硝酸濃度 1 0〜 7 0 %の水溶液のことをい い、 硝酸濃度 4 0〜 6 5 %の水溶液が好ましく、 硝酸濃度 5 0〜 6 5 %の水溶液 がより好ましい。 ここで硝酸濃度とは、 生成物のアル力ンジカルボン酸や未反応 物のシクロアルカノンおよひゾまたはシクロアルカノールを除いた、 純粋に H N 0 3と H 2 0の量から得られる硝酸の濃度、 すなわち、 [H N 0 3Z In the present invention, the aqueous nitric acid solution refers to an aqueous solution having a nitric acid concentration of 10 to 70%, preferably an aqueous solution having a nitric acid concentration of 40 to 65%, and more preferably an aqueous solution having a nitric acid concentration of 50 to 65%. preferable. Here nitric acid concentration and the Al force Njikarubon acid and unreacted products of the product cycloalkanone Oyohizo or cycloalkanol excluding purely nitrate obtained from the amount of HN 0 3 and H 2 0 Concentration, that is, [HN 0 3 Z
(H 2 0 + H N 0 3 ) ] を言う。 (H 2 0 + HN 0 3 )].
本発明における、 アルカンジカルボン酸とは、 コハク酸、 グルタル酸、 アジピ ン酸、 ドデカンジ酸が挙げられ、 シクロへキサノール及び 又はシク口へキサノ ンを原料とした時に得られる、 アジピン酸が好ましい。 '  In the present invention, the alkanedicarboxylic acid includes succinic acid, glutaric acid, adipic acid, and dodecanediic acid, and adipic acid obtained when cyclohexanol and / or cyclohexanone is used as a raw material is preferable. '
本発明においては、 前記シクロアルカノール及び Z又はシクロアルカノンと硝 酸水溶液とを混合する方法が重要である。  In the present invention, a method of mixing the cycloalkanol and Z or cycloalkanone with an aqueous nitric acid solution is important.
すなわち、 本発明における一つの方法では、 該シクロアル力ノール及び z又は シクロアル力ノンを線速 8 X 1 0— 2 mZ秒以上の速さでフィードできるフィー ドノズルを用いて、 該シクロアル力ノール及び/又はシク口アル力ノンをフィー ドする。 本発明におけるいま一つの方法は、 硝酸水溶液とシク口アル力ノール及 ぴ z又はシク口アル力ノンの混合にミキシング装置を用いることである。 That is, in one method of the present invention, by using the fee Donozuru capable feed the cycloalk force Nord and z or cycloalk force Non at a linear velocity of 8 X 1 0- 2 mZ seconds faster than, the cycloalk force Nord and / Or, feed the non-slip mouth. Another method of the present invention is to use a nitric acid aqueous solution and ぴ The use of a mixing device for mixing z or the ferrite non-alcohol.
第 1図に、 シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンの該フィ一ドノズ ノレ 1の一例を示す。 第 1図は 2本のフィードノズル 1を示すが、 これは 1本 であっても良いし、 3本以上であってもよい。 フィードノズ^/の先端は穴の数が 1つの単なる単管であってもよいし、 ノズルの穴が 2以上であってもよい。 重要 なのは該フィードノズルから供給されるシクロアルカノール及び/又はシクロア ルカノン 2の線速である。  FIG. 1 shows an example of the feed nozzles 1 and 2 of the nozzle and the nozzle. FIG. 1 shows two feed nozzles 1, which may be one or three or more. The tip of the feed nose ^ / may be a simple single tube with one hole, or the nozzle may have two or more holes. What is important is the linear velocity of the cycloalkanol and / or cycloalkanone 2 supplied from the feed nozzle.
本発明においては、 該シクロアル力ノール及び/又はシクロアルカノン 2の 線速とは、 該シクロアル力ノール及び Z又はシクロアル力ノン 2のフィードノ ズル 1の先端における線速を言い、 8 X 1 0 mZ秒以上が好ましい。 より 好ましくは 1 X 1 0一1 m/秒以上、 さらには 1 0 mZ秒以上がより好ましい。 本発明における、 ミキシング装置 3とは、 配管內での液液混合に使われる通 常のミキサーのことを言い、 ジェットミキサー, スタティックミキサー, バンバ リーミキサー, インターナルミキサー, オリフィスミキサー, インペラ一などが あるが、 スタティックミキサーが構造が簡単で混合能力も高く、 好ましい。 各種 スタティックミキサーについては、 化学工学便覧, 改訂 6版, P 4 5 2 , 丸善株 式会社 (1 9 9 9 ) に記載されているが、 旋回流を強制的に作る 0HR社製のミキ サ一の如きミキサ一でもよい。 In the present invention, the linear velocity of the cycloalpinol and / or cycloalkanone 2 refers to the linear velocity at the tip of the feed nozzle 1 of the cycloalpinol and Z or cycloalnonone 2, and 8 × 10 mZ seconds or more are preferred. It is more preferably at least 1 × 10 11 m / sec, and even more preferably at least 10 mZ seconds. In the present invention, the mixing device 3 refers to a normal mixer used for liquid-liquid mixing in the pipe 1 and includes a jet mixer, a static mixer, a Banbury mixer, an internal mixer, an orifice mixer, an impeller, and the like. However, a static mixer is preferred because of its simple structure and high mixing capacity. Various types of static mixers are described in Chemical Engineering Handbook, 6th revised edition, p. 452, Maruzen Co., Ltd. (199.99). May be used.
本発明においては、 該ミキシング装置 3の数は限定されない。 すなわち、 い くつかの該ミキシング装置を直列的につないでもよいし、 硝酸水溶液 4中に並 列的にいくつか並べてもよい。 並列的に該ミキシング装置を並べた場合は、 特定 のミキシング装置のみに、 あるいはこれらに共通のフィードノズルを設置しても よいが、 それぞれの該ミキシング装置に各々該フィ一ドノズルを設置することが 好ましい。 直列的に並べた場合は、 最初の該ミキシング装置だけに該フィードノ ズルを設置してもよいし、 それぞれの該ミキシング装置に該フィードノズルを個 別に設置してもよい。  In the present invention, the number of the mixing devices 3 is not limited. That is, some of the mixing devices may be connected in series, or some of the mixing devices may be arranged in the nitric acid aqueous solution 4 in parallel. When the mixing devices are arranged in parallel, a feed nozzle may be provided only for a specific mixing device, or a common feed nozzle may be provided for these devices. However, it is preferable to provide the feed nozzles for each of the mixing devices. preferable. When arranged in series, the feed nozzles may be installed only in the first mixing device, or the feed nozzles may be individually installed in each of the mixing devices.
該フィードノズル 1と該ミキシング装置 3の間隔は離れていてもよいが、 その間隔は 1 0 mm以下であることが好ましく、 より好ましくは、 5 mm以下で ある。 第 2図に示す如く、 該ミキシング装置 3内に該フィードノズル 1が完 全に組み込まれていてもよい。 The interval between the feed nozzle 1 and the mixing device 3 may be apart, but the interval is preferably 10 mm or less, more preferably 5 mm or less. As shown in FIG. 2, the feed nozzle 1 is completely installed in the mixing device 3. It may be fully incorporated.
本発明においては、 該フィードノズノレ 1での該シクロアル力ノール及び/又 はシクロアルカノン 2の線速と、 該ミキシング装置 3内での硝酸水溶液 4 の線速の比は 1 X 1 0— 2以上であることが好ましい。 In the present invention, the ratio of the linear velocity of the cycloalcalonol and / or cycloalkanone 2 in the feed nozzle 1 to the linear velocity of the aqueous nitric acid solution 4 in the mixing device 3 is 1 × 10— It is preferably at least 2 .
これらはシクロアル力ノ一ル及ぴ /又はシク口アル力ノンと硝酸水溶液が瞬時 に混合されることを目的としているのであるが、 混合時間短 ί¾だけでは不十分で ある。 シクロアルカノール及び/又はシクロアルカノンのフィードノズルが、 シ ク口アル力ノ一ル及ぴ /又はシク口アル力ノンを 8 X 1 0— 2 m/秒以上で供給 できることが重要である。 These aims at instantaneously mixing the cycloalcohol and / or cycloalcohol with the aqueous nitric acid solution, but a short mixing time alone is not sufficient. Feed nozzle of cycloalkanol and / or cycloalkanone it is important that the sheet click port al force Roh Ichiru及Pi / or consequent opening Al force Non be supplied in 8 X 1 0- 2 m / sec or more.
本発明においては、 シクロアルカノール及び/又はシクロアルカノンのフィー ドノズルの方向は硝酸水溶液の流れに対して平行に近い方がよい。 ミキシング装 置として T字管を用いても構わないが、 ミキシング装置にスタティックミキサー を用いて、 該シク口アル力ノール及び Z又はシク口アル力ノンのフィードノズル を、 硝酸水溶液の流れに平行になるように設置する方が好ましい。 いずれにして ·も該シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンのフィ一ド線速が 8 X 1 0 ~ 2 m/秒以上でフィードできることを満足するべきである。 In the present invention, the direction of the cycloalkanol and / or cycloalkanone feed nozzle is preferably close to parallel to the flow of the aqueous nitric acid solution. A T-tube may be used as the mixing device.However, using a static mixer as the mixing device, the feed nozzles of the siphon nozzle and Z or the siphon nozzle are arranged in parallel with the flow of the nitric acid aqueous solution. It is more preferable to install them. In any case, it is necessary to satisfy that the feed line speed of the nozzle and the feed line can be fed at a feed line speed of 8 × 10 to 2 m / sec or more.
本発明においては、 該硝酸水溶液と、 該シク口アル力ノール及び Z又はシク口 アル力ノールと該硝酸水溶液とからの反応生成物と、 該シク口アル力ノ一ル及ぴ Z又はシクロアルカノールの未反応物とを含む流体が、 該ミキシング装置を出て から 2 . 5秒だけ流れた位置において、 1 . 5 °C以下の標準偏差を持つことが好 ましい。 ここで標準偏差とは以下の式 (1 ) で表されるものをいう。 η Σ Τ ' (∑Τ) :  In the present invention, the aqueous nitric acid solution; the reaction product from the aqueous solution of nitric acid and Z or the aqueous product of nitric acid with the aqueous solution of nitric acid; the aqueous solution of nitric acid and Z or cycloalkanol; It is preferable that a fluid having a standard deviation of 1.5 ° C. or less is provided at a position where the fluid containing the unreacted substance flows for 2.5 seconds after leaving the mixing apparatus. Here, the standard deviation is represented by the following equation (1). η Σ Τ '(∑Τ):
( 1 )  (1)
η  η
η :断熱型反応器の半径方向で、 温度を測温する点の数 η≥ 1 0 η: Number of points for measuring temperature in the radial direction of the adiabatic reactor η≥10
T (°C) :断熱型反応器の半径方向の各点の温度 T (° C): Temperature at each point in the radial direction of the adiabatic reactor
上記式の nは、 温度を測温する点数である。 また、 各測温点の間隔は 5 mm以 下である。 反応器の壁面から、 半径方向に反対側の壁面まで、 5 mm以下の間隔 で測温する。 従って、 直径が 1 0 0 mmの装置であれば、 2 1点の測温点数とな る。 例えば、 該断熱型反応器の径が 1 0 O mmで、 該硝酸水溶液と、 該シクロアル 力ノール及び Z又はシク口アル力ノールと該硝酸水溶液とからの反応生成物と、 該シク口アル力ノール及び/又はシク口アル力ノ一ルの未反応物とを含む流体の 流量が 0 . 6 m / h rであって、 nが 2 1であれば、 該ミキシング装置から 2 . 5秒だけ流れた位置とは、 該ミキシング装置から 5 3 mmだけ離れた位置となる。 すなわち、 該位置は、 該ミキシング装置がジェットミキサー, スタティックミ キサ一, バンパリ一ミキサー, インターナ ミキサー, オリフィスミキサー, ィ ンぺラーなどの場合は、 該ミキシング装置を流体が出た位置から 5 3 mmだけ離 れた位置となる。 N in the above equation is a point for measuring the temperature. The interval between each measuring point is 5 mm or less. Measure the temperature from the reactor wall to the radially opposite wall at an interval of 5 mm or less. Therefore, if the device has a diameter of 100 mm, the temperature measurement point will be 21 points. For example, when the diameter of the adiabatic reactor is 10 O mm, the aqueous nitric acid solution, the reaction product of the cycloalternol and Z or the cycloalternative alcohol with the aqueous nitric acid solution, If the flow rate of the fluid containing the unreacted material of the metal and / or the nozzle is 0.6 m / hr and n is 21, the fluid flows from the mixing device for 2.5 seconds. The position is a position separated by 53 mm from the mixing device. That is, if the mixing device is a jet mixer, a static mixer, a bumper mixer, an internal mixer, an orifice mixer, an impeller, etc., the position of the mixing device is 53 mm from the position where the fluid exits. It is a position separated only by.
その位置で半径方向の温度プロフアイルを測定点 2 1点で測温する。  At that position, measure the temperature of the radial profile at the measurement point 21.
該ミキシング装置が T字管ゃィンジヱクタ一の場合は、 ミキシング装置から 2 . 5秒だけ離れた位置の起点は、 該シク口アル力ノ一ル及ぴ Z又はシク口アル力ノ ンのフィードノズルの、 硝酸水溶液の流れの後流側とする。  If the mixing device is a T-shaped tube injector, the starting point at a position 2.5 seconds away from the mixing device is the feed nozzle of the siphon mouth and the feed nozzle of Z or the sieve mouth. On the downstream side of the flow of the aqueous nitric acid solution.
該標準偏差が 1 . 5 °Cを超えると、 局部的に温度が上昇している部分ができ、 アル力ンジカルポン酸の収率が低下する。 シク口アル力ノール及び Z又はシク口 アルカノンを硝酸を用いて酸ィ匕しアルカンジカルボン酸を製造する方法において は、 その反応が逐次反応で該逐次反応の前半が低温、 後半が高温であれば、 アル カンジカルボン酸の選択率が向上する。 しかも該反応は発熱反応である。 該断熱 型反応器の半径方向温度プロファイルの標準偏差が 1 . 5 °C以下であれば、 該断 熱型反応器の入口から出口にかけて温度が上昇していくため、 上記逐次反応に対 して理想的な、 流れ方向の温度プロファイルが得られる。 反対に該標準偏差が 1 . 5 °Cを超えると、 該反応器内で温度の高い部分ができ、 選択率、 すなわち収率が 低下することになる。 .  When the standard deviation exceeds 1.5 ° C., a portion where the temperature is locally increased is formed, and the yield of aldicarboxylic acid is reduced. In the method for producing alkanedicarboxylic acid by oxidizing sucrose alkanol and Z or succulcan alkanone using nitric acid, if the reaction is a sequential reaction and the first half of the sequential reaction is a low temperature and the second half is a high temperature, The selectivity of the alkane dicarboxylic acid is improved. Moreover, the reaction is exothermic. If the standard deviation of the radial temperature profile of the adiabatic reactor is 1.5 ° C or less, the temperature rises from the inlet to the outlet of the thermal break reactor, so that the above-mentioned sequential reaction cannot be performed. An ideal flow direction temperature profile is obtained. Conversely, if the standard deviation exceeds 1.5 ° C., a portion having a high temperature is formed in the reactor, and the selectivity, that is, the yield, decreases. .
本発明において、 該硝酸水溶液と、 該シクロアルカノール及び/又はシクロア ルカノールと該硝酸水溶液とからの反応生成物と、 該シクロアル力ノール及ぴ/ 又はシクロアルカノ一ルの未反応物とを含む流体が、 該ミキシング装置を出てか ら 2 . 5秒だけ流れた位置における該断熱型反応器の半径方向の温度プロフアイ ルを、 1 . 5 °C以下の標準偏差とするために、 前述したとおり、 該ミキシング装 置をいくつか並列的に並べてもよい。 数 mの径を持つ反応器内に数個の該ミキシ ング装置を並列的に設置することで、 該ミキシング装置から 2 . 5秒だけ離れた 位置における該断熱型反応器の半径方向の温度プロファイルを平坦にすることが できる。 In the present invention, a fluid containing the aqueous nitric acid solution, a reaction product of the cycloalkanol and / or cycloalkanol with the aqueous nitric acid solution, and a non-reacted product of the cycloalkanol and / or cycloalkanol are used. As described above, the temperature profile in the radial direction of the adiabatic reactor at a position where it flows for 2.5 seconds after leaving the mixing device has a standard deviation of 1.5 ° C or less, as described above. Some of the mixing devices may be arranged in parallel. Several such mixers are placed in a reactor with a diameter of several meters. By installing the mixing devices in parallel, the temperature profile in the radial direction of the adiabatic reactor at a position 2.5 seconds away from the mixing device can be flattened.
また、 本発明においては、 該硝酸水溶液と、 該シクロアル力ノール及び Z又は シクロアル力ノールと該硝酸水溶液の反応生成物と、 該シク口アル力ノール及び z又はシクロアルカノールの未反応物とを含む流体が、 該ミキシング装置を出て から 2 . 5秒だけ流れた位置における該断熱型反応器の半径方向の温度プロフ了 ィルを、 1 . 5 °C以下の標準偏差とするため、 該ミキシング装置の出口に整流板 を設けてもよい。 本発明における整流板としては、 多孔板, 通常蒸留塔に使用す るバッフルトレイ, リップトレイなどがある。 該整流板は該ミキシング装置の直 近にあってもよいが、 数 c mから数 m離れていてもよく、 また反応器内に 2枚以 上あってもよいが、 上記記載の温度プロファイルを持つことが好ましい。 該整流 板を 2枚以上持つ場合も、 上記温度プロファイルは、 該ミキシング装置から 2 . 5秒だけ離れた位置での分布を言う。  Also, in the present invention, the aqueous solution of nitric acid, the reaction product of the aqueous solution of cycloallic acid and Z or the cycloaltic acid with the aqueous solution of nitric acid, and the unreacted product of the aqueous solution of cycloaltic acid and z or z or cycloalkanol are included. The mixing was performed so that the radial temperature profile of the adiabatic reactor at a position where the fluid flowed for 2.5 seconds after leaving the mixing device had a standard deviation of 1.5 ° C or less. A current plate may be provided at the outlet of the device. Examples of the current plate in the present invention include a perforated plate, a baffle tray, a lip tray, and the like which are usually used in a distillation column. The current plate may be in the immediate vicinity of the mixing device, may be several cm to several meters away, and may be two or more in the reactor. Is preferred. Even when two or more rectifying plates are provided, the temperature profile refers to the distribution at a position 2.5 seconds away from the mixing device.
本発明においては、 また、 該断熱型反応器の半径方向の温度プロファイルが、 該ミキシング装置から該断熱型反応器の半径と同一距離だけ離れた位置において も、 1 . 5 °C以下の標準偏差を持つことが好ましい。  In the present invention, the temperature profile in the radial direction of the adiabatic reactor may have a standard deviation of 1.5 ° C. or less even at the same distance from the mixing device as the radius of the adiabatic reactor. It is preferable to have
この場合も、 距離の起点は、 該ミキシング装置がジェットミキサー, スタティ ックミキサー, パンパリーミキサー, インターナルミキサー, オリフィスミキサ 一, インペラ一などの場合は、 該ミキシング装置を流体が出た位置とし、 該ミキ シング装置が T字管の場合は、 該シク口アル力ノール及び/又はシク口アル力ノ ンのフィードノズルの、 硝酸水溶液の流れの後流側とする。  Also in this case, when the mixing device is a jet mixer, a static mixer, a pan parry mixer, an internal mixer, an orifice mixer, an impeller, or the like, the mixing device is located at a position where the fluid comes out. When the mixing device is a T-shaped tube, the mixing nozzle is located on the downstream side of the flow of the nitric acid aqueous solution at the siphon mouth nozzle and / or the feed nozzle.
更に、 本発明においては、 該硝酸水溶液と、 該シクロ'アルカノール及ぴ Z又は シクロアル力ノールと該硝酸水溶液とからの反応生成物と、 該シク口アル力ノ一 ル及ぴ /又はシク口アル力ノ一ルの未反応物とを含む流体が、 該ミキシング装置 を出てから 2 . 5秒だけ流れた位置において、 該断熱型反応器の半径方向の温度 プロファイルが、 1 . 5 °C以下の標準偏差を持ち、 つ、 該断熱型反応器の半径 方向の温度プロファイルが、 該ミキシング装置から該断熱型反応器の半径と同一 距離だけ離れた位置においても 1 . 5 °C以下の標準偏差を持つと、 より好ましレ、。 本発明における温度プロファイルの標準偏差は、 商業スケールで、 シクロアル 力ノ一ル及ぴ Z又はシク口アル力ノンを硝酸水溶液を用いて酸化しアル力ンジカ ルボン酸を製造する場合に重要である。 温度プロファイルの標準偏差は、 いわゆ るベンチスケールでは反応管径が 1 O mm前後と小さいため、 整流板を使用しな くても、 あるいは、 ミキシング装置を並列にいくつ力並べなくても、 1 . 5 °Cよ り小さくなることが多いと考えられるが、 商業スケールでは、 1 . 5 °C以下とす るために上記の如き対策が必要となる。 ここで商業スケールとは、 1 0 O mm以 上、 好ましくは 5 0 O mm以上の反応管径を持つ断熱型反応器を用いるスケール を言う。 Further, in the present invention, the aqueous nitric acid solution, the reaction product of the cyclo'alkanol and / or Z or cycloalkyrinol with the aqueous nitric acid solution, and the cycloalkanol and / or cycloalkanol At a position where the fluid containing the unreacted substance of the force flows for 2.5 seconds after leaving the mixing device, the temperature profile in the radial direction of the adiabatic reactor is 1.5 ° C or less. And the radial temperature profile of the adiabatic reactor is less than 1.5 ° C even at the same distance from the mixing device as the radius of the adiabatic reactor. With, it is more preferred. The standard deviation of the temperature profile in the present invention is important on a commercial scale when oxidizing cycloalcohol and / or Z-alcohol with a nitric acid aqueous solution to produce alkionic dicarboxylic acid. The standard deviation of the temperature profile is as small as 1 Omm in a so-called bench scale, so that even if a flow straightening plate is not used, or if several mixing devices are not arranged in parallel, 1 It is likely that the temperature will be lower than 5 ° C, but on a commercial scale, the above measures are required to keep the temperature below 1.5 ° C. Here, the commercial scale means a scale using an adiabatic reactor having a reaction tube diameter of 10 Omm or more, preferably 50 Omm or more.
本発明における断熱型反応器とは、 橋本健治編著 「工業反応装置」 (培風館, 1 9 8 4 ) 2 5〜 2 6頁記載の純粋な断熱方式の反応器をいい、 一段だけの一段 断熱型反応器がより好ましいが、 数段に分割して段間に熱交換器を設けて熱の供 給又は除去を行う中間熱交換 ·多段断熱型反応器であってもよい。  The adiabatic reactor in the present invention refers to a purely adiabatic reactor described in “Industrial Reactor” edited by Kenji Hashimoto (Baifukan, 1984), pp. 25-26. A reactor is more preferable, but an intermediate heat exchange / multi-stage adiabatic reactor in which a heat exchanger is divided into several stages and a heat exchanger is provided between the stages to supply or remove heat may be used.
シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンを硝酸水溶液を用いて酸化し アルカンジカルボン酸を製造する方法で、 等温型反応器を用いる方法がある。 こ の場合は等温であるので、 当然温度プロファイルの標準偏差は 1 . 5 °C以下とな るが、 前記記載の逐次反応が同一温度で進むため、 アルカンジカルボン酸の選択 率が下がる。 また、 断熱型反応器であれば、 反応によって発生する熱量を硝酸の 濃縮熱に利用することができるが、 等温型反応器では反応熱を除熱するための冷 却設備が必要となり、 つ、 硝酸濃縮用の熱が別途必要となる。  There is a method of producing an alkanedicarboxylic acid by oxidizing the cycling alcohol and Z or cycling alcohol using an aqueous nitric acid solution, and using an isothermal reactor. In this case, since the temperature is isothermal, the standard deviation of the temperature profile naturally becomes 1.5 ° C. or less. However, since the above-described sequential reaction proceeds at the same temperature, the selectivity for alkanedicarboxylic acid decreases. In addition, in the case of an adiabatic reactor, the amount of heat generated by the reaction can be used for the heat of concentration of nitric acid, but in the case of an isothermal reactor, a cooling system for removing the heat of the reaction is required. Heat for nitric acid concentration is required separately.
本発明においては、 該断熱型反応器の出口温度は特に規定はないが、 好ましく は 8 0 °C以上、 より好ましくは 9 0 °Cを超える温度とする。 シクロアルカノール 及び/又はシク口アル力ノンを線速 8 X 1 0— 2 mZ秒以上の速さでフィードで きる該シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンのフィードノズル、 及ぴ ミキシング装置を含んでなる断熱型反応器を用いれば、 該断熱型反応器出口温度 を、 好ましくは 8 0 °C以上、 更に好ましくは 9 0 °Cを超える温度にしても、 得ら れるアルカンジカルボン酸の収率は、 従来の技術と比較して低下せず、 むしろ向 上する。 従って、 前述したとおり、 該断熱型反応器出口温度を、 好ましくは 8 0 °C以上、 更に好ましくは 9 0 °Cを超える温度とすることで、 シクロアルカノール 及び z又はシクロアルカノンの硝酸による酸ィ匕に消費される硝酸量を減らすこと ができると共に、 該断熱型反応器出口の反応液中の生成アル力ンジカルボン酸濃 度を上げることができる。 従って、 系内を循環している、 生成アルカンジカルボ ン酸を含む硝酸水溶液大循環流の量を下げることができ、 晶析器や濃縮塔の負荷 が削減できる。 In the present invention, the outlet temperature of the adiabatic reactor is not particularly limited, but is preferably at least 80 ° C, more preferably at a temperature exceeding 90 ° C. A feed nozzle for the cycloalkanol and / or Z or Al-Non which can feed cycloalkanol and / or Al-Nin at a linear speed of 8 × 10-2 mZ seconds or more; If an adiabatic reactor including a mixing device is used, the temperature can be obtained even when the outlet temperature of the adiabatic reactor is preferably 80 ° C. or more, more preferably 90 ° C. or more. The alkanedicarboxylic acid yield is not reduced, but rather improved, compared to the prior art. Therefore, as described above, by setting the outlet temperature of the adiabatic reactor to a temperature of preferably 80 ° C. or more, more preferably 90 ° C. or more, the cycloalkanol And the amount of nitric acid consumed during the oxidation of z or cycloalkanone with nitric acid can be reduced, and the concentration of the produced carboxylic dicarboxylic acid in the reaction solution at the outlet of the adiabatic reactor can be increased. Therefore, the amount of the general circulation of the aqueous nitric acid solution containing the produced alkanedicarbonic acid circulating in the system can be reduced, and the load on the crystallizer and the concentration tower can be reduced.
例えばアル力ンジカルボン酸がアジピン酸で、 該断熱型反応器の出口温度が 9 0 °Cの場合と、 7 5 °Cの場合とを考える。 アジピン酸の配管やバルブでの析出を 防止するために、 溶解度上 1 0 °Cの余裕を取るとすると、 出口温度が 9 0 °Cであ れば、 溶解度 8 0。C相当のアジピン酸約 2 2 w t %を含むことができるが、 Ί 5 °Cであれば 6 5 °Cの溶解度、 約 1 5 w t %のアジピン酸しか含むことができない。 従って、 同じアジピン酸の生産量を得るためには、 反応系から晶析系へ抜き出す 量、 すなわち硝酸水溶液の大循環量は 2 2 / 1 5 = 1 . 5倍になる。 硝酸水溶液 大循環量が減れば晶析器や濃縮塔の負荷が減る。 更に晶析器ではアジピン酸濃度 が高いほど、 晶析に必要なエネルギーも当然少なくて済む。  For example, consider the case where the aldicarboxylic acid is adipic acid and the outlet temperature of the adiabatic reactor is 90 ° C or 75 ° C. To prevent precipitation of adipic acid in pipes and valves, if there is a margin of 10 ° C above the solubility, if the outlet temperature is 90 ° C, the solubility is 80. It can contain about 22 wt% of adipic acid equivalent to C, but at Ί5 ° C it can only contain a solubility of 65 ° C and about 15 wt% of adipic acid. Therefore, in order to obtain the same production of adipic acid, the amount extracted from the reaction system to the crystallization system, that is, the large circulation amount of the aqueous nitric acid solution, becomes 2 2/15 = 1.5 times. If the amount of the nitric acid aqueous solution is reduced, the load on the crystallizer and the concentration tower will be reduced. Furthermore, in a crystallizer, the higher the adipic acid concentration, the lower the energy required for crystallization.
また、 本発明の方法に従えば、 該断熱型反応器出口温度を、 好ましくは 8 0 °C 以上、 更に好ましくは 9 0 °Cを超える温度でアルカンジカルボン酸の収率を維持 するために、 反応系の硝酸循環量を上げる必要がない。 従来の技術では、 反応器 出口温度を 9 0 °Cを超える温度にした場合に、 アルカンジカルボン酸の収率を維 持するため、 反応系硝酸循環量対反応成分の重量比を 2 0 0以上と極端に多くし なければならなかった。 シクロアルカノール及び Z又はシクロアルカノンを線速 8 X 1 0一2 m/秒以上の速さでフィ一ドできる該シク口アル力ノール及び Z又 はシク口アル力ノンのフィードノズル、 及びミキシング装置を含んでなる断熱型 反応器を用いれば、 反応系循環流対反応成分の重量比は 2 0 0未満で、 該断熱型 反応器出口温度が 9 0 °Cを超える温度でもアル力ンジカルボン酸の収率を高くす ることができる。 Further, according to the method of the present invention, in order to maintain the yield of alkanedicarboxylic acid at a temperature at the outlet of the adiabatic reactor, preferably at least 80 ° C, more preferably at a temperature exceeding 90 ° C, There is no need to increase the amount of nitric acid circulated in the reaction system. In the conventional technology, when the reactor outlet temperature is set to a temperature exceeding 90 ° C, the weight ratio of the reaction system nitric acid circulation amount to the reaction component is set to 200 or more in order to maintain the alkanedicarboxylic acid yield. Had to be extremely large. A feed nozzle for mixing the cycloalkanol and Z or cycloalkanone with a linear velocity of 8 × 10 12 m / s or more, and a mixing nozzle for mixing the cycloalkanol and Z or cycloalkanone; If an adiabatic reactor including the apparatus is used, the weight ratio of the circulating flow of the reaction system to the reaction components is less than 200, and even if the temperature of the outlet of the adiabatic reactor exceeds 90 ° C. The acid yield can be increased.
本発明においては、 硝酸酸化反応の後、 該断熱型反応器から排出された反応混 合物から酸化窒素, 酸化二窒素, 二酸化窒素, 及ぴ亜硝酸を分離し、 次いで該断 熱型反応器中で生成した水を該反応混合物から蒸発させることによつて反応器入 口における硝酸濃度にほぼ相当する高さの硝酸濃度にまで該反応混合物を濃縮し、 濃縮された該反応混合物の一部から該アルカンジカルボン酸を分離し、 母液中の 硝酸を別の濃縮系で濃縮し、 該母液と該濃縮された反応混合物の残りとを一緒に し、 この一緒にした混合物を新しい硝酸水溶液と混合し、 そして反応器に戻すこ とができる。 In the present invention, after the nitric acid oxidation reaction, nitrogen oxide, nitrous oxide, nitrogen dioxide, and nitrous acid are separated from the reaction mixture discharged from the adiabatic reactor, and then, the thermal insulation reactor is separated. Concentrating the reaction mixture to a nitric acid concentration at a height approximately corresponding to the nitric acid concentration at the reactor inlet by evaporating the water formed therein from the reaction mixture; Separating the alkanedicarboxylic acid from a portion of the concentrated reaction mixture, concentrating the nitric acid in the mother liquor in a separate concentration system, combining the mother liquor with the remainder of the concentrated reaction mixture, The resulting mixture can be mixed with fresh aqueous nitric acid and returned to the reactor.
ここで言う、 反応器入口における硝酸濃度にほぼ相当する高さの硝酸濃度とは、 たとえば、 反応器入口における硝酸濃度一 5. Owt %以内を指す。  Here, the nitric acid concentration at a height substantially equivalent to the nitric acid concentration at the reactor inlet refers to, for example, a nitric acid concentration at the reactor inlet of not more than 1.5 Owt%.
本発明の方法を工学的に適用した場合の一実施態様を示す図面に従って、 本発 明を詳細に説明する。  The present invention will be described in detail with reference to the drawings showing an embodiment in which the method of the present invention is applied by engineering.
第 3図の (31) は断熱型反応器である。 該反応器 (31) の下部から反応系 循環流である硝酸水溶液 (32) がポンプ (33) にて送られてくる。 シクロア ルカノ一ノレ及び/又はシク口アル力ノンを線速 8 X 10— 2 m/秒以上の速さで フィードできるフィードノズル (34) より、 シクロアル力ノン及び/又はシク ロアルカノーノレ (35) がフィードされる。 該反応系循環流 (32) と該シクロ アルカノン及び/又はシクロアルカノール (35) は保持板 (36) によって保 持されたミキシング装置 (37) によって瞬時に混合される。 該ミキシング装置 (37) の出口から数百 mmの位置に多孔板 (38) が設置されている。 90°C より高い温度で該反応器 (31) を出た反応生成物は離脱塔 (39) に導入され て、 エアー (40) をフィードして酸化窒素, 亜硝酸, 二酸化窒素, 酸化二窒素 等 (41) がストリツビングされる。 ストリツビングされたガスは吸収塔で吸収 され、 硝酸として回収される。 なお、 該離脱塔 (39) と該吸収塔との間に、 温 暖化ガスである酸ィヒニ窒素を分解する設備を設けてもよい。 該離脱塔 (39) を 出た反応生成物は硝酸濃縮塔 (42) へフィードされる。 該硝酸濃縮塔 (42) は減圧塔で、 ここでは、 反応熱の一部が硝酸の濃縮に利用される。 硝酸回収用に 水又は後段の晶析工程で使用された洗浄水等 (49) を降らせる。 該硝酸濃縮塔 (42) にて反応帯における濃度にほぼ相当する濃度まで濃縮された硝酸水溶液 (43) はポンプ (33) にて反応系循環流 (32) を形成する。 また、 該硝酸 濃縮塔 (42) のボトム液 (43) の一部は反応系より抜き出され、 晶析工程 (44) を経て製品 (45) となる。 晶析工程 (44) より出てくる母液 (4 6) は別の濃縮工程 (47) を経て濃縮され、 大循環流 (48) を形成する。 該 大循環流 (4 8 ) は先の反応系循環流 (3 2 ) と混合される。 該断熱型反応器の 入り口での該反応系循環硝酸水溶液中の硝酸濃度を一定にするために新しい硝酸 ( 5 0 ) がフィードされる。 (31) in Fig. 3 is an adiabatic reactor. A nitric acid aqueous solution (32), which is a circulating flow of the reaction system, is sent from a lower part of the reactor (31) by a pump (33). Shikuroa Rukano one Honoré and / or consequent opening Al force than the feed can feed nozzle (34) in a non a linear velocity 8 X 10- 2 m / sec faster than, cycloalk force non and / or consequent Roarukanonore (35) Feed Is done. The reaction system circulation stream (32) and the cycloalkanone and / or cycloalkanol (35) are instantaneously mixed by a mixing device (37) held by a holding plate (36). A perforated plate (38) is installed at a position several hundred mm from the outlet of the mixing device (37). The reaction product exiting the reactor (31) at a temperature higher than 90 ° C is introduced into the separation tower (39) and fed with air (40) to supply nitrogen oxide, nitrous acid, nitrogen dioxide, nitrous oxide. (41) are stripped. The stripped gas is absorbed by the absorption tower and recovered as nitric acid. In addition, between the separation tower (39) and the absorption tower, a facility for decomposing acetic acid nitrogen, which is a warming gas, may be provided. The reaction product exiting the separation tower (39) is fed to a nitric acid concentration tower (42). The nitric acid concentrating tower (42) is a pressure reducing tower, in which a part of the reaction heat is used for concentrating nitric acid. Drop water for recovery of nitric acid or washing water used in the subsequent crystallization step (49). The aqueous nitric acid solution (43) concentrated in the nitric acid concentrating tower (42) to a concentration substantially corresponding to the concentration in the reaction zone forms a reaction system circulation flow (32) by a pump (33). Further, a part of the bottom liquid (43) of the nitric acid concentration tower (42) is withdrawn from the reaction system, and goes through a crystallization step (44) to be a product (45). The mother liquor (46) coming out of the crystallization step (44) is concentrated through another concentration step (47) to form a general circulation stream (48). The The general circulation stream (48) is mixed with the reaction system circulation stream (32). Fresh nitric acid (50) is fed at the inlet of the adiabatic reactor to keep the concentration of nitric acid in the aqueous nitric acid solution circulating in the reaction system constant.
上記反応系循環流 (3 2 ) と大循環流 (4 8 ) の硝酸水溶液中には、 分離され ずに残った該アルカンジカルボン酸が含まれる。 該硝酸水溶液に含まれる該アル 力ンジカルボン酸の濃度は 5〜 4 0 %であるが、 あまり濃度が高いと飽和溶解度 以上となり、 配管や中継タンクなどでの結晶の析出を防ぐ目的で該硝酸水溶液を 加温する必要があるため、 5〜3 0 %が好ましい。  The alkanedicarboxylic acid remaining without being separated is contained in the aqueous nitric acid solution of the circulation stream (32) and the large circulation stream (48) of the reaction system. The concentration of the alcohol dicarboxylic acid contained in the aqueous nitric acid solution is 5 to 40%, but if the concentration is too high, the solubility becomes higher than the saturation solubility, and the nitric acid is used for the purpose of preventing the precipitation of crystals in pipes and relay tanks. Since the aqueous solution needs to be heated, 5 to 30% is preferable.
本発明においては、 該断熱型反応器出口温度を、 好ましくは 8 0 °C以上、 更に 好ましくは 9 0 °Cを超える温度にできるので、 反応系循環流硝酸水溶液、 及び大 循環流硝酸水溶液に含まれる該アルカンジカルボン酸の濃度を高くすることがで さる。  In the present invention, the outlet temperature of the adiabatic reactor can be preferably set to 80 ° C. or higher, more preferably to a temperature exceeding 90 ° C., so that the reaction system circulating nitric acid aqueous solution and the large circulating nitric acid aqueous solution can be used. It is possible to increase the concentration of the alkanedicarboxylic acid contained.
次に、 実施例及び比較例によつて本発明を説明する。  Next, the present invention will be described with reference to Examples and Comparative Examples.
以下に、 混合時間は同じであるが、 反応物であるシクロアルカノール及び Z又 はシクロアル力ノンを線速 8 X 1 0— 2 m/7秒以上の速さでフィードした場合と、 それ以下の線速でフイードした場合とのアルカンジカルボン酸の収率を比較して みる。 ここで混合時間は、 フエノールフタレインをトレーサーとして N a O Hと H 2 S O 4を混合させたときに、 フエノールフタレインの色が消えるまでの時間 を言う。 Hereinafter, the mixing time is the same, and if the cycloalkanol and Z or is a reaction product had been fed cycloalk force non at a linear velocity of 8 X 1 0- 2 m / 7 seconds faster than the following it Let's compare the yield of alkanedicarboxylic acid when fed at linear velocity. Here mixing time, phenolphthalein when mixed with N a OH and H 2 SO 4 as a tracer, refers to the time until the color of phenolphthalein disappears.
また、 以下では、 該硝酸水溶液と、 該シクロアル力ノール及び/又はシクロア ルカノールと該硝酸水溶液とからの反応生成物と、 該シク口アル力ノ一ル及ぴ z 又はシクロアルカノールの未反応物とを含む流体が、 該ミキシング装置を出てか ら 2 . 5秒だけ流れた位置を、 単に 2 . 5秒の位置、 と表現する。  In the following, the aqueous nitric acid solution, the reaction product of the cycloalkanol and / or cycloalkanol with the aqueous nitric acid solution, and the unreacted product of the cycloalkanol and z or cycloalkanol The position where the fluid containing for 2.5 seconds has flowed out of the mixing device is simply referred to as the position of 2.5 seconds.
実施例 1 Example 1
内径 3 O mmのノリタケ社製スタティックミキサーを 4エレメント用いた 1 9 l mmの混合部を持つ、 スタティックミキサーを含んだ長さが 6 8 6 mmの反応 器を用意した。 該スタティックミキサーにフエノールフタレインで着色した 0 . 0 0 4 Nの N a O Hを流入した。 第 1図に示すとおり、 該スタティックミキサー の直前に内径 l mmのフィードノズルを 2本設置し、 該フィードノズルより 1 N の H2 S 04をフィードした。 フエノールフタレインの色が消えるところまでの 距離を時間に換算し、 これを混合時間とした。 Na OHを 0. 95 [1 i / h r] , 1123〇4を102 [1 i t/h r] で通液し混合時間を求めたところ、 1. 1秒であった。 A reactor having a length of 686 mm including a static mixer having a mixing section of 19 lmm using four elements of a Noritake static mixer having an inner diameter of 3 O mm was prepared. 0.04 N NaOH colored with phenolphthalein was flowed into the static mixer. As shown in Fig. 1, two feed nozzles with an inner diameter of l mm were installed immediately before the static mixer, and 1 N from the feed nozzle. The H 2 S 0 4 was fed. The distance until the color of the phenolphthalein disappeared was converted to time, and this was defined as the mixing time. The Na OH 0. 95 [1 i / hr], was determined to 11 2 3_Rei 4 102 [1 it / hr] in liquid passage and the mixing time, 1. was 1 second.
次に、 同じスタティックミキサーとフィードノズノレを用いて、 シクロへキサノ ールの硝酸酸化反応を行った。 すなわち、 該スタティックミキサーに Cuを 0. 5 w t %, Vを 0. 05wt %含む、 73. 8°C, 54. 6 w t %の硝酸水溶液 を 1 33 k gZh rで通液し、 該フィードノズルよりシクロへキサノールを 0. 9 k g Z h rで 5時間フィードした。 該反応器の出口の温度は 91. 8 °Cであつ た。 このときの混合時間は 1. 1秒であり、 シクロへキサノールの線速は 0. 1 7m/秒であった。 反応器出口の液をサンプリングし、 アジピン酸の収率を測定 したところ、 理論値に対して 94. lmo 1 %であつた。 このときの硝酸消費量 は 0. '967 k g— HN〇3Zk g—アジピン酸であった。 また、 混合器から 1 5 mmの位置での温度プロフアイルを測定したところ、 温度の標準偏差は 0. 5 0°Cであった。 Next, nitric acid oxidation of cyclohexanol was performed using the same static mixer and feed nozzle. That is, a nitric acid aqueous solution containing 73.8 ° C and 54.6 wt% containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the static mixer at 133 kgZhr, and the feed nozzle was Then, cyclohexanol was fed at 0.9 kg Z hr for 5 hours. The temperature at the outlet of the reactor was 91.8 ° C. The mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.17 m / s. The liquid at the outlet of the reactor was sampled and the yield of adipic acid was measured. The result was 94. lmo 1% of the theoretical value. Nitrate consumption at this time was 0. '967 kg-HN_〇 3 Zk g- adipic acid. When the temperature profile was measured at a position 15 mm from the mixer, the standard deviation of the temperature was 0.50 ° C.
比較例 1 Comparative Example 1
内径 1 6. 1 mm, 長さ 25 Ommの T字管を混合部とする、 T字管を含んだ 長さが 6 5 Ommの反応器を用意した。 該 T字管の一方にフエノールフタレイン で着色した 0. 004NのNa OHを0. 738 [ 1 i t r ] で流入した。 もう一方より 1 Nの H2S〇4を 1 1 5 [1 i t/h r ] でフィードした。 フエ ノールフタレインの色が消えるところまでの距離を時間に換算し、 混合時間を求 めたところ 1. 1秒であった。 A T-tube having an inner diameter of 16.1 mm and a length of 25 Omm was prepared as a mixing section, and a reactor including a T-tube and having a length of 65 Omm was prepared. 0.004N NaOH colored with phenolphthalein was introduced into one of the T-shaped tubes at 0.738 [1 itr]. The other from 1 N H 2 S_〇 4 was fed at 1 1 5 [1 it / hr ]. The distance until the color of the phenolphthalein disappeared was converted to time, and the mixing time was determined to be 1.1 seconds.
次にく 同じ T字管を用いて、 シクロへキサノールの硝酸酸化反応を行った。 す なわち、 該 T字管に Cuを 0. 5wt%, Vを 0. 05w t%含む、 75. 6 °C, 55. 0 w t %の硝酸水溶液を 1 50 k g / h rで通液し、 該フイードノズルょ りシクロへキサノールを 0. 7 k g/h rで 5時間フィードした。 該反応器の出 口の温度は 91. 0°Cであった。 このときの混合時間は 1. 1秒であり、 シクロ へキサノールの線速は 0. 001m/秒であった。 反応器出口の液をサンプリン グし、 アジピン酸の相対モル収率を測定したところ、 91. 6 m 0 1 %であった。 このときの硝酸消費量は 1. 018 k g-HNOg/k g—アジピン酸であった。 また、 混合器から 8mmの位置での温度プロファイルを測定したところ、 温度の 標準偏差は 0. 90DCであった。 Next, nitric acid oxidation of cyclohexanol was performed using the same T-tube. That is, a 75.6 ° C, 55.0 wt% aqueous nitric acid solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 150 kg / hr, Cyclohexanol was fed from the feed nozzle at 0.7 kg / hr for 5 hours. The outlet temperature of the reactor was 91.0 ° C. The mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.001 m / sec. The liquid at the outlet of the reactor was sampled, and the relative molar yield of adipic acid was measured to be 91.6 m 01%. The nitric acid consumption at this time was 1.018 kg-HNOg / kg-adipic acid. Moreover, when the mixer was measured temperature profile at the position of 8 mm, the standard deviation of temperature was 0. 90 D C.
実施例 1と同じ平均温度、 同じ混合時間であるが、 比較例 1はシクロへキサノ 一ルの線速が 8 X 10 _ 2 m/秒以下であるので、 アジピン酸収率が悪かった。 実施例 2 The same average temperature as in Example 1, but the same mixing time, since Comparative Example 1 is the linear velocity of Kisano Ichiru cyclohexenone is less than 8 X 10 _ 2 m / sec, adipic acid yield is poor. Example 2
内径 10mmの T字管で、 シクロへキサノールのフィード側の内径のみを 2 mmに狭めた T字管を用いて、 比較例 1と同じ方法で混合時間を求めたところ、 1. 1秒であった。  Using a T-tube with an inner diameter of 10 mm and reducing only the inner diameter on the feed side of cyclohexanol to 2 mm, the mixing time was determined in the same manner as in Comparative Example 1, and it was 1.1 seconds. Was.
次に、 同じ T字管を用いて、 シクロへキサノールの硝酸酸化反応を行った。 す なわち、 該 T字管に Cuを 0. 5wt%, Vを 0. 05wt%含む、 78. 1 °C, 55. 3 w t %の硝酸水溶液を 132k gZ i rで通液し、 該フィードノズルよ りシク口へキサノールを 0. 9 k g /h rで 5時間フィードした。 該反応器の出 口の温度は 9 1. 3°Cであった。 このときの混合時間は 1. 1秒であり、 シクロ へキサノールの線速は 0. 09mZ秒であった。 反応器出口の液をサンプリング し、 アジピン酸の相対モル収率を測定したところ、 94. Omo 1 %であった。 このときの硝酸消費量は 0. 968 k g-HN03/k g—アジピン酸であった。 また、 混合器から 5mmの位置での温度プロファイルを測定したところ、 温度の 標準偏差は 0. 70°Cであった。 混合器から 2. 5秒の位置での温度の標準偏差 は 0. 50°Cであった。 Next, nitric acid oxidation of cyclohexanol was performed using the same T-tube. That is, a 78.1 ° C, 55.3 wt% nitric acid aqueous solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 132 kgZir, and the feed nozzle was Hexanol was fed at 0.9 kg / hr for 5 hours. The outlet temperature of the reactor was 91.3 ° C. The mixing time at this time was 1.1 seconds, and the linear velocity of cyclohexanol was 0.09 mZ seconds. The liquid at the outlet of the reactor was sampled, and the relative molar yield of adipic acid was measured to be 94. Omo 1%. Nitrate consumption at this time was 0. 968 k g-HN0 3 / kg- adipic acid. When the temperature profile at 5 mm from the mixer was measured, the standard deviation of the temperature was 0.70 ° C. The standard deviation of the temperature at 2.5 seconds from the mixer was 0.50 ° C.
比較例 1と同じ T字管タイプのミキシング装置で、 同じ平均温度、 混合時間で あるが、 実施例 2はシク口へキサノールの線速が 8 X 10— 2 m/秒以上である ので、 アジピン酸収率が実施例 1と同様高かった。 . In the mixing device of the same T-shaped pipe type as Comparative Example 1, the same average temperature, but a mixing time, since the second embodiment the linear velocity of hexanol Sik port is 8 X 10- 2 m / sec or more, adipic The acid yield was as high as in Example 1. .
実施例 3 Example 3
内径 12mmのスタティックミキサーを混合部とする、 スタティックミキサー を含んだ長さが 700mmの反応器に 1 Nの H2 S〇4を 99 [1 i t/h r ] で流入した。 該スタティックミキサーの直前に径 1mmの穴を持つフィードノズ ルを 2本設置し、 該フイードノズルょりフエノールフタレインで着色した 0. 0 04Nの N a OHを 0. 967 [1 i t/h r ] でフィードした。 実施例 1と同 じ方法で混合時間を求めたところ 0. 07秒であつた。 The static mixer having an inner diameter of 12mm and mixing unit, length including the static mixer of H 2 S_〇 4 of 1 N reactor 700mm flows at 99 [1 it / hr]. Immediately before the static mixer, two feed nozzles with a hole of 1 mm in diameter were installed, and 0.004N NaOH colored with phenolphthalein was fed at 0.967 [1 it / hr] with the feed nozzle. did. Same as Example 1 When the mixing time was determined by the same method, it was 0.07 seconds.
次に、 同じスタティックミキサーとフィードノズルを用いて、 シクロへキサノ ールの硝酸酸化反応を行った。 すなわち、 該スタティックミキサーに Cu 0. 5 w t %, V 0. 04 w t %を含む、 78. 4°C, 55. 3 w t %の硝酸水溶液を 130 k g/Hでフィードし、 該フィードノズノレよりシクロへキサノールを 0. 917 k g/h rでフィードした。 従って、 反応系循環流とシクロへキサノール の重量比は 142であった。 また、 混合時間は 0. 07秒、 シクロへキサノーノレ の線速は 0. 17m/7秒であった。 スタティックミキサーの出口から 6mmの位 置での半径方向温度プロファイルを測温したところ、 標準偏差は 0. 60°Cであ つた。 このときの反応器出口の温度は 91. 2°Cであった。 Next, nitric acid oxidation of cyclohexanol was performed using the same static mixer and feed nozzle. That is, a 78.4 ° C, 55.3 wt% aqueous nitric acid solution containing Cu 0.5 wt% and V0.04 wt% is fed into the static mixer at 130 kg / H, and Cyclohexanol was fed at 0.917 kg / hr. Therefore, the weight ratio of the circulation stream of the reaction system to cyclohexanol was 142. The mixing time was 0.07 seconds, and the linear velocity of the cyclohexanone was 0.17 m / 7 seconds. When the radial temperature profile was measured at a position 6 mm from the outlet of the static mixer, the standard deviation was 0.60 ° C. The temperature at the reactor outlet at this time was 91.2 ° C.
反応器出口のガスを離脱塔に導入し、 離脱塔にて酸化窒素, 二酸化窒素, 酸ィ匕 二窒素, 及ぴ亜硝酸をエアーストリツビングした後、 濃縮塔で濃縮した。 該濃縮 塔の塔底温度は約 80°C, 塔底から排出される硝酸水溶液中のアジピン酸濃度は 21wt。/0であった。 該硝酸水溶液の一部を系外に抜き出し、 残りの硝酸水溶液 は反応系循環流として反応器に戻した。 得られたアジピン酸は理論値に対して 9 6. 2 w t %の収率であった。 反応器の入口での硝酸濃度が 55. 3 w t %にな るように、 新しい硝酸を加えた。 アジピン酸あたりの硝酸消費量は 806 [k g /T—アジピン酸] であった。 The gas at the outlet of the reactor was introduced into the separation tower, and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid were air stripped in the separation tower, and then concentrated in the concentration tower. The temperature at the bottom of the enrichment tower was about 80 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 21 wt. / 0 . A part of the aqueous nitric acid solution was extracted out of the system, and the remaining aqueous nitric acid solution was returned to the reactor as a circulation stream of the reaction system. The obtained adipic acid had a yield of 96.2 wt% based on the theoretical value. Fresh nitric acid was added so that the nitric acid concentration at the reactor inlet was 55.3 wt%. Nitric acid consumption per adipic acid was 806 [kg / T-adipic acid].
比較例 2 Comparative Example 2
内径 1 lmmのインジェクターを混合部とする、 インジェクターを含んだ長さ が 80 Ommの反応器に 1 Nの H2 S 04を 99 [1 i t/h r ] で流入した。 該インジェクターよりフエノールフタレインで着色した 0. 004Nの Na OH を 0. 503 [1 i t / h r.] でフィードした。 実施例 1と同じ方法で混合時間 を求めたところ 0. 05秒であった。 And injector mixing portion having an inner diameter of 1 lmm, length containing the injectors of 1 N reactor 80 Omm H 2 S 0 4 was flowed at 99 [1 it / hr]. 0.004N NaOH colored with phenolphthalein was fed from the injector at 0.503 [1 it / hr.]. When the mixing time was determined in the same manner as in Example 1, the mixing time was 0.05 seconds.
次に、 同じインジェクターを用いて、 シクロへキサノールの硝酸酸化反応を行 つた。 すなわち、 該インジェクターを含む反応器に Cu 0. 5 w t %, V 0. 0 4 w t %を含む、 60°C, 60 w t %の硝酸水溶液を 1 30 k g/Hで導入した。 シクロへキサノールが 0. 05秒後に透明に溶解する内径 1 1mmのインジエタ ターによって、 硝酸水溶液に垂直に、 シクロへキサノールを 0. 477 k g/H でフィードした。 このときシクロへキサノールの線速は 0. 002m/秒であつ た。 ィンジェクタ一から 6 mmの位置での半径方向温度プロファイルを測温した ところ、 標準偏差は 0. 70 °Cであった。 反応混合物は 70 °Cで反応器から去り、 離脱等に導入された。 離脱塔にて酸化窒素, 二酸化窒素, 酸化二窒素, 及び亜硝 酸をェアーストリツビングした後、 濃縮塔に送られた。 濃縮塔で硝酸濃度を約 5 6wt%まで濃縮した。 該濃縮塔の塔底温度は約 55 °C, 塔底から排出される硝 酸水溶液中のアジピン酸濃度は 9 w t %であった。 該硝酸水溶液の一部を系外に 抜き出し、 残りの硝酸水溶液は反応系循環流として反応器に戻した。 得られたァ ジピン酸は理論値に対して 95. 0 w t %の収率であった。 反応器の入口での硝 酸濃度が 60 w t %になるように、 新しい硝酸を加えた。 アジピン酸あたりの硝 酸消費量は 840 [k gZT—アジピン酸] であった。 Next, nitric acid oxidation of cyclohexanol was performed using the same injector. That is, an aqueous nitric acid solution at 60 ° C. and 60 wt% containing 0.5 wt% of Cu and 0.04 wt% of V was introduced into the reactor containing the injector at 130 kg / H. The cyclohexanol dissolves in a clear manner after 0.05 seconds. Feed. At this time, the linear velocity of cyclohexanol was 0.002 m / sec. When the radial temperature profile at a position 6 mm from the injector was measured, the standard deviation was 0.70 ° C. The reaction mixture was removed from the reactor at 70 ° C and introduced into the reactor. After nitric oxide, nitrogen dioxide, nitrous oxide, and nitrous acid were stripped in the separation tower, they were sent to the concentration tower. The nitric acid concentration was concentrated to about 56 wt% in the concentration tower. The bottom temperature of the concentration tower was about 55 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 9 wt%. A part of the nitric acid aqueous solution was drawn out of the system, and the remaining nitric acid aqueous solution was returned to the reactor as a circulation stream of the reaction system. The obtained adipic acid was in a yield of 95.0 wt% with respect to the theoretical value. Fresh nitric acid was added so that the nitric acid concentration at the reactor inlet was 60 wt%. Nitric acid consumption per adipic acid was 840 [kg gT-adipic acid].
実施例 2と比較して、 反応温度が低いためアジピン酸あたりの硝酸消費量が多 かった。 反応温度が低く、 混合時間も短いにも関わらずアジピン酸収率が低かつ た。 更に、 反応温度が低いために濃縮塔の塔底から晶析系へ抜き出される硝酸水 溶液中のアジピン酸濃度が低かった。 実施例 2と同じだけのアジピン酸を得るた めには、 21/9 = 2. 3倍の量を抜き出すことになる。 このことは、 商業プロ セスでの晶析系及びその後段の別の濃縮系の負荷が大きくなることを示している。 比較例 3  Compared to Example 2, the nitric acid consumption per adipic acid was higher due to the lower reaction temperature. The adipic acid yield was low despite the low reaction temperature and short mixing time. Furthermore, because of the low reaction temperature, the concentration of adipic acid in the aqueous nitric acid solution extracted from the bottom of the concentration tower to the crystallization system was low. In order to obtain the same amount of adipic acid as in Example 2, 21/9 = 2.3 times the amount must be extracted. This indicates that the load of the crystallization system in the commercial process and another enrichment system in the subsequent stage is increased. Comparative Example 3
ステンレス鋼製連続等温型装置に C u 0. 5 w t %, V 0. 04 w t %を含む、 1 1 0°C, 50 w t %の硝酸水溶液 1 30 k g /Hと、 シク口へキサノール 0. 1 3 k g/Hを 13111111内径の丁字管にて混合した後、 供給した。 このときシク 口へキサノールの線速は 0. 0003 m/秒であり、 混合時間は 1. 05秒であ つた。 反応混合物は一部を晶析系へ抜き出し、 一部を反応系へ循環した。 この反 応系循環硝酸水溶液とシク口へキサノールの重量流量比は 1000であった。 こ の時、 アジピン酸収率は理論値に対して 94. 1 w t%であった。 アジピン酸あ たりの硝酸消費量は 807 [k g/T—アジピン酸] であった。  A stainless steel continuous isothermal device containing Cu 0.5 wt%, V0.04 wt%, 110 ° C, 50 wt% nitric acid aqueous solution 130 kg / H 13 kg / H was mixed in a T-shaped tube with inner diameter of 13111111 and then supplied. At this time, the linear velocity of the hexanol hexanol was 0.0003 m / s, and the mixing time was 1.05 seconds. A part of the reaction mixture was withdrawn to the crystallization system, and a part was circulated to the reaction system. The weight flow ratio of the aqueous nitric acid solution circulating in the reaction system to the hexanol in the mouth was 1000. At this time, the adipic acid yield was 94.1 wt% with respect to the theoretical value. Nitric acid consumption per adipic acid was 807 [kg / T-adipic acid].
実施例 2と比較して、 シクロへキサノールの線速が小さいためアジピン酸収率 が低かった。 更に、 反応系循環流が 1000 : 142と 7倍多いため反応器ゃ循 環ポンプ、 配管の負荷も 7倍となった。 実施例 4 Compared with Example 2, the adipic acid yield was lower due to the lower linear velocity of cyclohexanol. Furthermore, since the circulation flow of the reaction system was 1000: 142, which is 7 times larger, the load on the reactor, circulation pump and piping was also increased by 7 times. Example 4
内径 8 Ommのスタティックミキサーに I Nの H2S04を 1 23 m 3 / h r で流入した。 該スタティックミキサーの直前に径 2. 4 mmの 2つの穴を持つフ ィ一ドノズルを 2本設置し、 該フィードノズルょりフエノールフタレインで着色 した 0. 004Nの Na OHを 1. 2m /h rでフィードした。 実施例 1と同 じ方法で混合時間を求めたところ 0. 05秒であった。 IN 2 H 4 was introduced into the static mixer having an inner diameter of 8 Omm at 123 m 3 / hr. Immediately before the static mixer, two feed nozzles each having two holes of 2.4 mm in diameter were installed, and 0.004 N NaOH colored with phenolphthalein at the feed nozzle was 1.2 m / hr. Feed. When the mixing time was determined in the same manner as in Example 1, the mixing time was 0.05 seconds.
内径 1000 mm、 高さ 1 0000 mmの断熱型反応器に C u 0. 5 w t %, V 0. 04 w t %を含む、 78. 2°C, 53. 6 w t %の反応系循環硝酸水溶液 を 780 TZHでフィードした。 断熱型反応器に硝酸水溶液の流れに平行に内径 80mmのスタティックミキサーを 5個設置し、 それぞれのミキサーには硝酸水 溶液の流れにほぼ平行に径 2. 4 mmの 2つの穴を持つ内径 10mmのフィード ノズルを 2本ずつ設置した。 該フィードノズルからシクロへキサノールを 5. 6 T/Hでフィードした。 従って、 反応系循環流とシクロへキサノールの重量比は 138であった。 また、 混合時間は 0. 05秒、 シクロへキサノールの線速は 1 8. 3m/秒であった。 スタティックミキサーの出口から 300mmの位置に多 孔板を設置した。 スタティックミキサーの出口から 2. 5秒の位置での半径方向 温度プロファイルを測温したところ、 標準偏差は 1. 00°Cであった。 また、 ス タティックミキサ一の出口から 500 mmの位置での標準偏差も 1. 00°Cであ つた。 このときの断熱型反応器出口の温度は 95 °Cであつた。  In an adiabatic reactor with an inner diameter of 1000 mm and a height of 10000 mm, a nitric acid aqueous solution containing 70.5 ° C and 53.6 wt% containing Cu 0.5 wt% and V0.04 wt% was circulated. Feed at 780 TZH. Five static mixers with an inner diameter of 80 mm are installed in the adiabatic reactor in parallel with the flow of the nitric acid aqueous solution, and each mixer has two holes of 2.4 mm in diameter that are almost parallel to the flow of the nitric acid solution. Two feed nozzles were installed. Cyclohexanol was fed at 5.6 T / H from the feed nozzle. Therefore, the weight ratio of the circulation stream to the cyclohexanol was 138. The mixing time was 0.05 seconds, and the linear velocity of cyclohexanol was 18.3 m / s. A multi-hole plate was installed at a position 300 mm from the outlet of the static mixer. When the radial temperature profile was measured at a position 2.5 seconds from the outlet of the static mixer, the standard deviation was 1.00 ° C. The standard deviation at 500 mm from the outlet of the static mixer was also 1.00 ° C. At this time, the temperature at the outlet of the adiabatic reactor was 95 ° C.
反応器出口のガスを離脱等に導入し、 離脱塔にて酸化窒素, 二酸化窒素, 酸化 二窒素, 及ぴ亜硝酸をェアーストリツビングした後、 塔頂圧 20 K P aの濃縮塔 で硝酸濃度を約 40 w t %まで濃縮した。 該濃縮塔の塔底温度は約 80°C, 塔底 ■ 力 ら排出される硝酸水溶液中のアジピン酸濃度は 21 w t %であった。 該硝酸水 溶液の一部を晶析工程に送り、 残りの硝酸水溶液は反応系循環流として断熱型反 応器に戻した。 抜き出されて晶析工程に送られた硝酸水溶液はふつうの方法で晶 祈, 精製してアジピン酸を得た。 得られたアジピン酸は理論値に対して 95. 8 wt%の収率であった。 晶析工程より排出された母液は、 別の濃縮工程で濃縮し、 上記反応系循環流へ戻した。 このとき、 断熱型反応器の入口での硝酸濃度が 53. 6wt%になるように、 新しい硝酸を加えた。 アジピン酸あたりの硝酸消費量は 8 00 [k gZT—アジピン酸] であった。 The gas at the outlet of the reactor is introduced for desorption, etc., and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid are stripped in the desorption column, and then the nitric acid concentration in the concentration column with a top pressure of 20 KPa Was concentrated to about 40 wt%. The bottom temperature of the concentration tower was about 80 ° C., and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom of the tower was 21 wt%. A part of the nitric acid aqueous solution was sent to the crystallization step, and the remaining nitric acid aqueous solution was returned to the adiabatic reactor as a circulation stream of the reaction system. The aqueous nitric acid solution extracted and sent to the crystallization process was crystallized and refined in the usual way to obtain adipic acid. The obtained adipic acid had a yield of 95.8 wt% with respect to the theoretical value. The mother liquor discharged from the crystallization step was concentrated in another concentration step and returned to the above-mentioned circulation stream of the reaction system. At this time, fresh nitric acid was added so that the nitric acid concentration at the inlet of the adiabatic reactor became 53.6 wt%. Nitric acid consumption per adipic acid It was 800 [kg gT-adipic acid].
実施例 5 Example 5
多孔板を設置しない以外は、 実施例 4と全く同じ方法で、 Cu O: 5 w t %, V 0. 04w t %を含む、 77 °C, 5 5. Ow t %の反応系循環硝酸水溶液を 7 8 0TZHでフィードし、 フィードノズルからシクロへキサノールを 5. 6 Ύ/ Hでフィードした。 スタティックミキサーの出口から 2. 5秒の位置での半径方 向温度プロファイルを測温したところ、 標準偏差は 2. 5 0°Cであり、 該断熱型 反応器出口の温度は 95°Cであった。 スタティックミキサーの出口から 500 mmの位置での標準偏差は 2. 44°Cであった。 得られたアジピン酸は理論値に 対して 9 5. l w t%の収率であった。 標準偏差が 1. 5 °C以上であるので、 実 施例 4よりはアジピン酸収率が低かった。  Except that the perforated plate is not installed, the reaction system circulated nitric acid aqueous solution at 77 ° C and 55. Owt% containing 5 wt% of Cu O and 0.04 wt% of V was used in exactly the same manner as in Example 4. The solution was fed at 780 TZH, and cyclohexanol was fed at 5.6 Ύ / H from the feed nozzle. When measuring the radial temperature profile at a position 2.5 seconds from the outlet of the static mixer, the standard deviation was 2.50 ° C, and the temperature at the outlet of the adiabatic reactor was 95 ° C. Was. The standard deviation at 500 mm from the outlet of the static mixer was 2.44 ° C. The resulting adipic acid had a yield of 95.5 lwt% of the theoretical value. Since the standard deviation was 1.5 ° C or more, the adipic acid yield was lower than in Example 4.
実施例 6 Example 6
断熱型反応器の入口温度を 6 8°Cとする以外は、 実施例 4と全く同じ方法で、 C u 0. 5 w t %, VO. 04w t%を含む、 55. Ow t %の反応系循環硝酸 水溶液を 78 OTZHでフィードし、 フィードノズルからシクロへキサノールを 5. 6 TZHでフィードした。 スタティックミキサーの出口から 2. 5秒の位置 での半径方向温度プロファイルを測温したところ、 標準偏差は 1. oo°cであり、 該断熱型反応器出口の温度は 8 5°Cであった。 得られたアジピン酸は理論値に対 して 9 6. 6 w t <½の収率であり、 実施例 4より若干良くなったが、 温度が低い ために硝酸消費量が実施例 4の 8 00 [k g硝酸 ZTアジピン酸] に対し、 8 3 4と多くなつた。 更に、 反応器出口のガスを離脱等に導入し、 離脱塔にて酸化窒 素, 二酸化窒素, 酸化二窒素, 及び亜硝酸をエアーストリツビングした後、 塔項 圧 20 K P aの濃縮塔で硝酸濃度を約 40 w t %まで濃縮した。 該濃縮塔の塔底 温度は約 70°C, 塔底から排出される硝酸水溶液中のアジピン酸濃度は 1 5 w t %であった。 実施例 4より低いアジピン酸濃度であるので、 反応系での硝酸水溶 液大循環量は実施例 4の 1. 4倍となり、 また、 後段の晶析器の負荷も 1. 4倍 増えた。  Except that the inlet temperature of the adiabatic reactor is set at 68 ° C, the reaction system of 55. Owt% containing Cu 0.5 wt%, VO. The circulating nitric acid aqueous solution was fed at 78 OTZH, and cyclohexanol was fed at 5.6 TZH from the feed nozzle. When a radial temperature profile at a position 2.5 seconds from the outlet of the static mixer was measured, the standard deviation was 1.oo ° c, and the temperature at the outlet of the adiabatic reactor was 85 ° C. . The obtained adipic acid had a yield of 96.6 wt <½ with respect to the theoretical value, which was slightly better than that of Example 4. However, because of the lower temperature, the consumption of nitric acid was lower than that of Example 4. 83.4 compared to [kg nitrate ZT adipic acid]. Further, the gas at the outlet of the reactor is introduced into the separation or the like, and nitrogen oxide, nitrogen dioxide, nitrous oxide, and nitrous acid are air stripped in the separation tower. The nitric acid concentration was concentrated to about 40 wt%. The temperature at the bottom of the concentration tower was about 70 ° C, and the concentration of adipic acid in the aqueous nitric acid solution discharged from the bottom was 15 wt%. Since the concentration of adipic acid was lower than that in Example 4, the general circulation amount of the aqueous nitric acid solution in the reaction system was 1.4 times that in Example 4, and the load on the subsequent crystallizer was also 1.4 times larger.
比較例 4 Comparative Example 4
内径 2. 9 mm, 長さ 250 mmの T字管を混合部とする、 T字管を含んだ長 さが 65 Ommの反応器を用意した。 比較例 1と同様の方法でフエノールフタレ インの色が消えるところまでの距離を時間に換算し、 混合時間を求めたところ 0. 01秒であった。 A T-tube with an inner diameter of 2.9 mm and a length of 250 mm, including a T-tube. A reactor having a length of 65 Omm was prepared. The distance until the color of the phenolphthalein disappeared was converted to time in the same manner as in Comparative Example 1, and the mixing time was determined to be 0.01 second.
次に、 同じ T字管を用いて、 シクロへキサノールの硝酸酸ィヒ反応を行った。 す なわち、 該 T字管に Cuを 0. 5wt%, Vを 0. 05wt%含む、 78. 4°C, 55. 0 w t %の硝酸水溶液を 1 50 k g / h rで通液し、 該フィードノズルょ りシクロへキサノールを 0. 7 k g/h rで 5時間フィードした。 該反応器の出 口の温度は 91. 0°Cであった。 このときの混合時間は 0. 01秒であり、 シク 口へキサノールの線速は 0. 03mZ秒であった。 反応器出口の液をサンプリン グし、 アジピン酸は理論値に対して、 94. 7wt%であった。 このときの硝酸 消費量は 0. 91 5 k g— HN〇3/k g—アジピン酸であった。 また、 混合器 から 2. 5秒の位置での温度プロフアイルを測定したところ、 温度の標準偏差は 0. 80°Cであった。 Next, using the same T-tube, the nitric acid reaction of cyclohexanol was performed. That is, a 78.4 ° C, 55.0 wt% aqueous nitric acid solution containing 0.5 wt% of Cu and 0.05 wt% of V was passed through the T-tube at 150 kg / hr. Cyclohexanol was fed from the feed nozzle at 0.7 kg / hr for 5 hours. The outlet temperature of the reactor was 91.0 ° C. At this time, the mixing time was 0.01 seconds, and the linear velocity of hexanol hexanol was 0.03 mZ seconds. The liquid at the outlet of the reactor was sampled, and the amount of adipic acid was 94.7% by weight based on the theoretical value. The nitric acid consumption at this time was 0.9915 kg—HN〇 3 / kg—adipic acid. When the temperature profile was measured 2.5 seconds from the mixer, the standard deviation of the temperature was 0.80 ° C.
実施例 3より速 、混合時間であるが、 比較例 4はシク口へキサノ一ルの線速が 8 X 10一2 mZ秒以下であるので、 アジピン酸収率が悪かった。 Although the mixing time was faster than in Example 3, Comparative Example 4 had a poor adipic acid yield because the linear velocity of the hexanol in the mouth was 8 × 10 12 mZ seconds or less.
表 1 table 1
Figure imgf000025_0001
Figure imgf000025_0001
KA-Oil:シクロアルカノンおよび/またはシクロアルカノール KA-Oil: cycloalkanone and / or cycloalkanol
実施例 3 比較例 2 比単父例 3 入口温度 [ c] 78.4 60 寺温型反応器 出口温度 [ c] 91.2 70 等温型反応器 平均温度 [ c] 84.8 65 1 10 反応器径 Lmm」 12 11 等温型反応器 反 f心 ¾f長 Lmm」 700 800 等温型反応器 ミキシンク、、装置 スタティック インシ"ェクター Τ字管 キサー Example 3 Comparative Example 2 Comparative Example 3 Inlet temperature [c] 78.4 60 Thermostat type reactor Outlet temperature [c] 91.2 70 Isothermal type reactor Average temperature [c] 84.8 65 1 10 Reactor diameter Lmm "12 11 Isothermal reactor anti-f core ¾f length Lmm ”700 800 Isothermal reactor Mixing device, static injector“ X ”tube mixer
キンンク装置内径 LmmJ 12 11 13 混合時間 [秒] 0.07 0.05 1.05 Kinking device inner diameter LmmJ 12 11 13 Mixing time [sec] 0.07 0.05 1.05
KA - Oilフィート内ィ圣 Lmm」 1 11 1 1KA-Oil Feet Inside Lmm "1 11 1 1
KA - Oilの線速 [m/秒] 0.17 0.002 0.0003KA-Oil linear velocity [m / s] 0.17 0.002 0.0003
¾酸濃度 [wt%] 55.3 60.0 50.0Acid concentration [wt%] 55.3 60.0 50.0
KA-Oil NOL NOL NOL ^z KA-Oil NOL NOL NOL ^ z
CLI;辰度 [wt%] 0.5 0.5 0.5 CLI; dragonness [wt%] 0.5 0.5 0.5
V濃度 [wt%] 0.04 0.04 0.04 硝酸循環量 [T/hr] 0.13 0.13 0.13V concentration [wt%] 0.04 0.04 0.04 Nitric acid circulation amount [T / hr] 0.13 0.13 0.13
KA- Οί¾ Ckg/hr] 0.917 0.477 0.13 硝酸循環量 KA - Oil [一] 142 273 1000KA- Οί¾ Ckg / hr] 0.917 0.477 0.13 Nitric acid circulation rate KA-Oil [I] 142 273 1000
ADA収率 96.2[wt%] 95.0[wt%] 94.1 [wt%] 石肖酸消費至 [kg硝酸/ T- ADA] 806 840 807 反応系出口 ADA濃度 [wt%] 21 9 30 多孔板 なし ADA yield 96.2 [wt%] 95.0 [wt%] 94.1 [wt%] Sodium acid consumption [kg nitric acid / T-ADA] 806 840 807 ADA concentration at reaction system outlet [wt%] 21 9 30 No perforated plate
2.5秒の位置での温度標準偏差 [°C] 0.50 0.55  Temperature standard deviation at 2.5 seconds [° C] 0.50 0.55
半径と同じ距離における温度標準偏差 [°c] 0.60 0.70
Figure imgf000026_0001
Temperature standard deviation at the same distance as the radius [° c] 0.60 0.70
Figure imgf000026_0001
KA-Oil: シクロアルカノンおよび/またはシクロアルカノ一ル KA-Oil: cycloalkanone and / or cycloalkanol
表 1 table 1
Figure imgf000027_0001
Figure imgf000027_0001
KA-Oil: シクロアルカノンおよび/またはシクロアルカノール 産業上の利用可能性  KA-Oil: Cycloalkanone and / or Cycloalkanol Industrial Applicability
本発明の方法に従えば、 シク口アル力ノ一ル及ぴ /又はシク口アル力ノンを硝酸 を用いて断熱型反応器で酸ィヒし、 アルカンジカルボン酸を製造する方法において、 該断熱型反応器の温度にかかわらず、 反応系硝酸循環流量を必要以上に多くする ことなしに、 アルカンジカルボン酸の収率を高くし、 硝酸必要量を低減し、 離脱 塔での空気量を低減し、 硝酸水溶液の大循環流量を少なくし、 晶析器や濃縮塔の 負荷を下げることができる。 According to the method of the present invention, a method for producing an alkanedicarboxylic acid by oxidizing a cycloalkanol and / or a cycloalnonone with nitric acid in an adiabatic reactor using nitric acid, Regardless of the temperature of the reactor, increase the alkanedicarboxylic acid yield, reduce the required amount of nitric acid, and reduce the amount of air in the desorption tower without increasing the circulation flow rate of nitric acid in the reaction system more than necessary. However, the large circulation flow rate of the nitric acid aqueous solution can be reduced and the load on the crystallizer and the concentration tower can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1. シク口アル力ノ一ル及ぴ /又はシク口アル力ノンを、 硝酸水溶液を用いて 酸ィ匕し、 アルカンジカルボン酸を製造する方法において、 該シクロアル力ノール 及び/又はシク口アル力ノンを線速 8 X 1 0— 2 m/秒以上の速さでフィ一ドで きる該シク口アル力ノ一ル及ぴ /又はシク口アル力ノンのフィードノズル、 及び ミキシング装置を含んでなる断熱型反応器を用いることを含む上記方法。 1. A method for producing an alkanedicarboxylic acid by oxidizing a cycloalkanol and / or a cycloalkanol using an aqueous nitric acid solution, wherein the cycloalkanol and / or the cycloalkanol is Including a feed nozzle and / or a feed nozzle for the siphon Al-Non capable of feeding the non-linear SiN at a linear speed of 8 × 10-2 m / s or more, and a mixing device. The method as described above, comprising using an adiabatic reactor.
2. 該断熱型反応器の出口温度が 9 0 °Cを超える請求項 1記載の方法。  2. The method according to claim 1, wherein the outlet temperature of the adiabatic reactor exceeds 90 ° C.
3. 該硝酸水溶液と、 該シク口アル力ノ一ル及ぴ /又はシク口アル力ノンと該 硝酸水溶液とからの反応生成物と、 該シク口アル力ノール及び/又はシク口アル カノンを含む流体が、 該ミキシング装置を出てから 2 . 5秒だけ流れた位置にお いて、 該断熱型反応器の半径方向の温度プロファイルが、 1 . 5 °C以下の標準偏 差を持つ、 請求項 1又は 2記載の方法。  3. reacting the aqueous solution of nitric acid, the reaction product from the aqueous solution of nitric acid and / or the aqueous solution of nitric acid with the aqueous solution of nitric acid, and the aqueous solution of alcohol and / or the aqueous solution of alkanone The temperature profile in the radial direction of the adiabatic reactor has a standard deviation of 1.5 ° C. or less at a position where the containing fluid has flowed for 2.5 seconds after leaving the mixing device. Item 1. The method according to item 1 or 2.
4. 該断熱型反応器の半径方向の温度プロファイルが、 該ミキシング装置から 該断熱型反応器の半径と同一距離だけ離れた位置において、 1 . 5 °C以下の標準 偏差を持つ、 請求項 1又は 2記載の方法。  4. The radial temperature profile of the adiabatic reactor has a standard deviation of 1.5 ° C. or less at the same distance from the mixing device as the radius of the adiabatic reactor. Or the method described in 2.
5. 該硝酸水溶液と、 該シクロアル力ノール及び/又はシクロアルカノンと該 硝酸水溶液とからの反応生成物と、 該シク口アル力ノール友び/又はシク口アル カノンの未反応物とを含む流体が、 該ミキシング装置を出てから 2 . 5秒だけ流 れた位置において、 該断熱型反応器の半径方向の温度プロファイルが、 1 . 5 °C 以下の標準偏差を持ち、 かつ、 該断熱型反応器の半径方向の温度プロファイルが、 該ミキシング装置を出た位置から該断熱型反応器の半径と同一距離だけ離れた位 置においても 1 . 5 °C以下の標準偏差を持つ、 請求項 1〜4のいずれか一項記載 の方法。  5. It contains the aqueous nitric acid solution, a reaction product from the cycloalkinol and / or cycloalkanone and the aqueous nitric acid solution, and an unreacted product of the cycloalkanol and / or the cycloalkanol. At a position where the fluid flows for 2.5 seconds after leaving the mixing apparatus, the radial temperature profile of the adiabatic reactor has a standard deviation of 1.5 ° C or less, and The radial temperature profile of the reactor has a standard deviation of 1.5 ° C or less even at the same distance as the radius of the adiabatic reactor from the position where the mixing device exits. The method according to any one of claims 1 to 4.
6. 該硝酸水溶液が、 硝酸酸化反応の後、 該断熱型反応器から排出された反応 混合物から酸化窒素, 酸化二窒素, 二酸化窒素, 及び亜硝酸を分離し、 次いで該 断熱型反応器中で生成した水を該反応混合物から蒸発させることによって、 反応 器入口における硝酸濃度にほぼ相当する高さの硝酸濃度にまで該反応混合物を濃 縮し、 濃縮された該反応混合物の一部から該アルカンジカルボン酸を分離し、 母 液中の硝酸を別の濃縮系で濃縮し、 該母液と該濃縮された反応混合物の残りとを 一緒にし、 この一緒にした混合物を新しい硝酸水溶液と混合し、 そして反応器に 戻された硝酸水溶液である、 請求項 1から 5のレ、ずれか一項記載の方法。 6. The nitric acid aqueous solution separates nitric oxide, nitrous oxide, nitrogen dioxide, and nitrous acid from the reaction mixture discharged from the adiabatic reactor after the nitric acid oxidation reaction, and then, in the adiabatic reactor. By evaporating the formed water from the reaction mixture, the reaction mixture is concentrated to a concentration of nitric acid at a level substantially corresponding to the concentration of nitric acid at the reactor inlet, and the alkane is removed from a part of the concentrated reaction mixture. Separating dicarboxylic acid and mother The nitric acid in the liquid is concentrated by another concentrating system, the mother liquor is combined with the remainder of the concentrated reaction mixture, the combined mixture is mixed with fresh aqueous nitric acid, and the nitric acid returned to the reactor The method according to any one of claims 1 to 5, wherein the method is an aqueous solution.
7. 該シク口アル力ノ一ル及ぴ Z又はシク口アル力ノンが、 シク口へキサノー ル及び/又はシクロへキサノンであり、 製造される該アルカンジカルボン酸がァ ジピン酸である、 請求項 1カゝら 6のいずれか一項記載の方法。  7. The method according to claim 1, wherein the cycloalkanol and Z or cycloalnonone are cyclohexanol and / or cyclohexanone, and the alkanedicarboxylic acid produced is adipic acid. Item 7. The method according to any one of Items 1 to 6 above.
PCT/JP2002/000513 2001-01-25 2002-01-24 Process for producing alkanedicarboxylic acid WO2002059071A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002559376A JP4004407B2 (en) 2001-01-25 2002-01-24 Method for producing alkanedicarboxylic acid
AT02716362T ATE486837T1 (en) 2001-01-25 2002-01-24 METHOD FOR PRODUCING ALKANECARBONIC ACID
EP02716362A EP1354866B1 (en) 2001-01-25 2002-01-24 Process for producing alkanedicarboxylic acid
US10/470,163 US7019167B2 (en) 2001-01-25 2002-01-24 Process for producing alkanedicarboxylic acid
CA002434894A CA2434894C (en) 2001-01-25 2002-01-24 Method for manufacturing alkanedicarboxylic acid
KR10-2003-7009855A KR100527655B1 (en) 2001-01-25 2002-01-24 Process for producing alkanedicarboxylic acid
BRPI0206659-9A BR0206659B1 (en) 2001-01-25 2002-01-24 A method for preparing an alkanedicarboxylic acid by oxidizing cycloalkanol and / or cycloalkanone with an aqueous solution of nitric acid.
DE60238176T DE60238176D1 (en) 2001-01-25 2002-01-24 PROCESS FOR THE PREPARATION OF ALKANDIC ACETIC ACID
UA2003087999A UA73646C2 (en) 2001-01-25 2002-01-24 A method for the preparation of alkanedicarboxylic acid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-16819 2001-01-25
JP2001016819 2001-01-25

Publications (1)

Publication Number Publication Date
WO2002059071A1 true WO2002059071A1 (en) 2002-08-01

Family

ID=18883121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000513 WO2002059071A1 (en) 2001-01-25 2002-01-24 Process for producing alkanedicarboxylic acid

Country Status (13)

Country Link
US (1) US7019167B2 (en)
EP (1) EP1354866B1 (en)
JP (1) JP4004407B2 (en)
KR (1) KR100527655B1 (en)
CN (1) CN1221508C (en)
AT (1) ATE486837T1 (en)
BR (1) BR0206659B1 (en)
CA (1) CA2434894C (en)
DE (1) DE60238176D1 (en)
MY (1) MY136690A (en)
TW (1) TWI238157B (en)
UA (1) UA73646C2 (en)
WO (1) WO2002059071A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510491A (en) * 2008-12-01 2012-05-10 ロディア オペレーションズ Method for producing adipic acid
JP2012510488A (en) * 2008-12-01 2012-05-10 ロディア オペレーションズ Plant for crystallizing adipic acid
US11306052B2 (en) 2014-12-22 2022-04-19 Performance Polyamides, Sas Cycloalkane oxidation catalysts and method to produce alcohols and ketones

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101190784B (en) * 2006-11-22 2010-08-11 中国石油天然气股份有限公司 Dilute hydrogen nitrate concentration technique in hexanedioic acid production
GB201019701D0 (en) * 2010-11-19 2011-01-05 Invista Tech Sarl Reaction process
MY157220A (en) * 2011-07-12 2016-05-13 Asahi Kasei Chemicals Corp Cyclohexanol, method for producing cyclohexanol, and method for producing adipic acid
CN104478701B (en) * 2014-11-24 2016-08-24 常州大学 The method of alcohol ketone oil nitric acid oxidation synthesizing adipic acid in stream micro passage reaction continuously
CN104478702B (en) * 2014-11-24 2018-01-05 常州大学 A kind of method using micro passage reaction synthesizing adipic acid

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359308A (en) * 1963-05-17 1967-12-19 Du Pont Preparation of dicarboxylic acids by nitric acid oxidation
JPS4319529B1 (en) 1964-03-11 1968-08-23
GB1511438A (en) * 1976-04-12 1978-05-17 Ici Ltd Treatment of residues from the oxidation process for the preparation of adipic acid
JPS61257940A (en) 1985-05-13 1986-11-15 Asahi Chem Ind Co Ltd Production of dicarboxylic acid

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR86366E (en) * 1961-08-25 1966-04-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3359308A (en) * 1963-05-17 1967-12-19 Du Pont Preparation of dicarboxylic acids by nitric acid oxidation
JPS4821088B1 (en) 1963-05-17 1973-06-26
JPS4319529B1 (en) 1964-03-11 1968-08-23
GB1511438A (en) * 1976-04-12 1978-05-17 Ici Ltd Treatment of residues from the oxidation process for the preparation of adipic acid
JPS61257940A (en) 1985-05-13 1986-11-15 Asahi Chem Ind Co Ltd Production of dicarboxylic acid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
W.J.VAN ASSELT; D.W.VAN KREVELEN: "Preparation of adipic acid by oxidation of cyclohexanol and cyclohexanone with nitric acid", REC. TRA. CHEM., vol. 82, 1963, pages 51429438 - 67437449
W.J.VAN ASSELT; D.W.VAN KREVELEN: "Preparation of adipic acid by oxidizing cyclohexanol and cyclohexanone with nitric acid", REC. TRA. CHEM., vol. 82, 1963, pages 51429438 - 67437449

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012510491A (en) * 2008-12-01 2012-05-10 ロディア オペレーションズ Method for producing adipic acid
JP2012510488A (en) * 2008-12-01 2012-05-10 ロディア オペレーションズ Plant for crystallizing adipic acid
US11306052B2 (en) 2014-12-22 2022-04-19 Performance Polyamides, Sas Cycloalkane oxidation catalysts and method to produce alcohols and ketones

Also Published As

Publication number Publication date
KR20030074738A (en) 2003-09-19
US20040073061A1 (en) 2004-04-15
CN1221508C (en) 2005-10-05
CA2434894C (en) 2008-02-19
ATE486837T1 (en) 2010-11-15
EP1354866B1 (en) 2010-11-03
JP4004407B2 (en) 2007-11-07
BR0206659B1 (en) 2012-08-21
MY136690A (en) 2008-11-28
TWI238157B (en) 2005-08-21
US7019167B2 (en) 2006-03-28
UA73646C2 (en) 2005-08-15
JPWO2002059071A1 (en) 2004-05-27
EP1354866A1 (en) 2003-10-22
BR0206659A (en) 2004-02-03
DE60238176D1 (en) 2010-12-16
KR100527655B1 (en) 2005-11-09
CN1487914A (en) 2004-04-07
CA2434894A1 (en) 2002-08-01
EP1354866A4 (en) 2005-05-11

Similar Documents

Publication Publication Date Title
US3880921A (en) Process for the continuous production of saturated aliphatic dicarboxylic acids
EP1073621B1 (en) Preparation of organic acids
US6844464B2 (en) Process for producing alkyl nitrite
US6838061B1 (en) Reactor for carrying out gas-liquid, liquid, liquid-liquid or gas-liquid-solid chemical reactions
US4908471A (en) Method for the production of benzene carboxylic acids and benzene dicarboxylic acid esters
US5194242A (en) Process for the production of hydrogen peroxide from hydrogen and oxygen
US8492584B2 (en) Process and apparatus for oxidizing organic compounds
US5641467A (en) Method for producing hydrogen peroxide from hydrogen and oxygen
JP2008508226A (en) High pressure method to produce pure melamine in vertical synthesis reactor
WO2002059071A1 (en) Process for producing alkanedicarboxylic acid
PL205525B1 (en) Continuous adiabatic process for the preparation of nitrochlorobenzene
WO2007134521A1 (en) Apparatus and technology for preparing cyclohexanol, cyclohexanone and adipic acid by air oxidization of cyclohexane
US5277878A (en) Reactor for heterogeneous-phase reactions
US7053239B2 (en) Method for producing methyl formate
WO1996005138A1 (en) Method and apparatus for producing hydrogen peroxide from hydrogen and oxygen
JP4171698B2 (en) Process for treating aqueous media comprising phosphate, cyclohexanone and cyclohexanone oxime
US3986841A (en) Apparatus for the continuous production of saturated aliphatic dicarboxylic acids
CN105085354B (en) A kind of caprolactam preparation method
JPH0761846B2 (en) High-concentration NO ▲ lower x ▼ Gas manufacturing method and apparatus
US3197505A (en) Process for the preparation of cyclohexanoneoxime from the oxidation products of cyclohexane
US5085846A (en) Process for producing phosphorous acid
WO2023156430A1 (en) Process for producing alkyl sulfonic acid
US3255261A (en) Process for producing nitrocycloalkanes
SU1171453A1 (en) Method of producing 1,10-decandicarboxylic acid
CN117342979A (en) Production method and production system of alpha-hydroxynitrile

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002559376

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2002716362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2434894

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 028040414

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10470163

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037009855

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037009855

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002716362

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 1020037009855

Country of ref document: KR