WO2002056542A1 - Radio transmission system - Google Patents

Radio transmission system Download PDF

Info

Publication number
WO2002056542A1
WO2002056542A1 PCT/JP2002/000014 JP0200014W WO02056542A1 WO 2002056542 A1 WO2002056542 A1 WO 2002056542A1 JP 0200014 W JP0200014 W JP 0200014W WO 02056542 A1 WO02056542 A1 WO 02056542A1
Authority
WO
WIPO (PCT)
Prior art keywords
master
slave
master unit
unit
transmission
Prior art date
Application number
PCT/JP2002/000014
Other languages
French (fr)
Japanese (ja)
Other versions
WO2002056542A8 (en
Inventor
Makoto Fujii
Yoshikazu Kato
Original Assignee
Adtec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtec Corporation filed Critical Adtec Corporation
Priority to JP2002557078A priority Critical patent/JPWO2002056542A1/en
Publication of WO2002056542A1 publication Critical patent/WO2002056542A1/en
Publication of WO2002056542A8 publication Critical patent/WO2002056542A8/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/04Scheduled access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the present invention relates to a wireless transmission system, and more particularly to a wireless transmission system in which a number of wireless transmission devices are used in close proximity, such as a wireless LAN in a building or a connection between a telephone pole and a device in a home.
  • a nearby wireless transmission device Measures were taken such as using different channels.
  • the interference wave component of the transmission wave of one device (unwanted wave component that spreads in the frequency band on both sides of the transmission wave) is at a high level and the other device tries to receive it. There was a problem that the signal could not be received, even to the channel.
  • the present invention is directed to a wireless transmission system that communicates with slaves in a group by sharing a frequency band in a group formed by one master master unit and one or more slave master units.
  • a master master unit having inter-group synchronization means for controlling transmission / reception timing in synchronization with a master master unit of another group, a data transmission / reception means, and controlling transmission / reception timing in synchronization with the master master unit
  • a slave master unit provided with an intra-group synchronization unit.
  • FIG. 1 is an explanatory diagram showing a configuration of a communication system to which the present invention is applied.
  • FIG. 2 is a block diagram showing a hardware configuration of the wireless transmission device of the present invention.
  • FIG. 3 is an explanatory diagram showing transmission / reception timing between groups in the present invention.
  • FIG. 4 is an explanatory diagram showing the timing of a synchronization cycle between groups in the present invention.
  • FIG. 5 is an explanatory diagram showing a frequency band used by the system of the present invention.
  • FIG. 6 is an explanatory diagram showing a flow of data transmission and reception in the present invention.
  • FIG. 7 is an explanatory diagram showing a flow of a synchronization cycle in the present invention.
  • FIG. 8 is an explanatory diagram showing a time synchronization method within a group according to the present invention.
  • FIG. 9 is a state transition diagram showing a state change of the priority of the slave unit in the present invention.
  • FIG. 10 is an explanatory diagram showing an example of queue control of the parent device in the present invention.
  • FIG. 1 is an explanatory diagram showing the configuration of a communication system including a wireless transmission device to which the present invention has been applied.
  • group 1 for example, radius of about 100 m
  • each subgroup has one master or slave master and multiple slaves. I do.
  • the master unit and the slave unit are installed close to each other (for example, 10 m), and each is connected to, for example, a server computer via a communication line (not shown), and the server is connected to the Internet. .
  • Each slave unit is connected to, for example, a personal computer (not shown). '
  • Each subgroup (1 to 4) has its area determined by the directivity and transmission power of the antenna connected to the master master unit or slave master unit. Therefore, it is connected to a predetermined master unit.
  • FIG. 2 is a block diagram showing a hardware configuration of the wireless transmission device of the present invention.
  • the master unit and the slave unit have basically the same hardware configuration and different control software.
  • the analog signal processing unit 10 is composed of a known single super heterodyne digital signal transmission / reception circuit, and data can be transmitted / received on an arbitrary frequency channel by two PLL circuits including a frequency synthesizer and a VCO circuit. In the present invention, any known method can be adopted as the transmission / reception circuit method and modulation method.
  • the first LSI of the digital signal processing unit 20 performs A / D, DZA conversion, direct spreading, despreading, scrambling, preamble processing, frame processing, error detection processing, and correlation signal detection.
  • the second LSI of the digital signal processing unit 20 performs S / P conversion, scramble processing, error detection processing, and the like.
  • the timer 21 is a timer that is reset and started by a frame detection (flag pattern detection) signal output from the first LSI, and is configured so that the CPU can read a timer value by a program. This timer 21 is used to adjust the clock with the master master unit as described later.
  • the control unit 30 includes a CPU, a flash ROM storing a program code, a RAM used as a buffer and a work area, a CAM (associative memory), a LAN transceiver, a bus, and the like.
  • the LAN transceiver has a well-known LAN interface function such as the 10BASE-T standard.
  • the LAN transceiver is connected to a high-speed line such as an optical fiber through a device such as a line / LAN comparator.
  • a slave station it is connected to a personal computer or HUB.
  • the power supply circuit also outputs a zero-cross detection signal along with the power supply.
  • FIG. 3 is an explanatory diagram showing transmission / reception timing between groups in the wireless transmission system of the present invention.
  • One transmission cycle is basically based on the interval between the zero-cross points of the commercial power supply (timing when the voltage becomes 0). Therefore, if the frequency of the commercial power supply is 50 Hz, the cycle of the transmission cycle is 10 milliseconds.
  • a fixed-length downward window which is the period during which data is transmitted from the master station to the And a fixed-length upward window that is the reverse of the period.
  • the zero-crossing point is detected by the master unit in each group, and the transmission / reception timing within the group is controlled based on this timing. Therefore, since the transmission cycle timing is the same between the groups, it is possible to prevent the handset of another group from transmitting and hindering the reception near the handset currently receiving.
  • the phase shift can be set manually in each master unit, but if the time information frame from another master unit can be received, the frame can be set. By receiving and making a judgment, the phase shift can be automatically detected and the offset time can be set automatically.
  • the inter-group synchronization means controls transmission / reception timing based on time information distributed from a standard time distribution server connected via a communication line as well as a commercial power supply, or makes a time inquiry to the standard time server. There is also a method of correcting the internal clock, which is a reference for controlling transmission / reception timing. With these methods, it is possible to synchronize even power supplies that do not guarantee zero-cross timing synchronization between groups.
  • FIG. 4 is an explanatory diagram showing the timing of a synchronization cycle between groups in the wireless transmission system of the present invention.
  • the master unit executes a “synchronization cycle” once every predetermined number of transmission cycles (for example, 10 times), and adjusts the clock of the master unit and the slave unit.
  • the timing for executing this synchronization cycle is independent for each group, and the phases are different.
  • FIG. 5 is an explanatory diagram showing a frequency band used by the wireless transmission system of the present invention.
  • FIG. 5 shows a time change of frequency channels (A to D) assigned to four subgroups (# 1 to # 4) in one group.
  • a to D frequency channels assigned to four subgroups (# 1 to # 4) in one group.
  • a frequency band to be used for example, a 2.4 GHz band is used, and a band per channel is, for example, about 20 MHz, and a total frequency band of four channels is, for example, about 80 MHz. .
  • Each master unit and each slave unit store the same frequency transition table, and the phase (address) in the table indicating the next frequency to be used by the slave unit is determined by the phase beacon transmitted from the master station. Be instructed. Therefore, even if reception of the phase beacon fails, communication can be continued by advancing the phase by one after the synchronization cycle.
  • FIG. 6 is an explanatory diagram showing a flow of data transmission and reception in the wireless transmission system of the present invention.
  • One transmission (communication) cycle has a fixed-length down window and an up window.
  • each master unit sends a beacon signal to the slave unit.
  • the time information of the clock of the master unit is written in this beacon frame, and each slave station adjusts its own clock with the master unit based on this beacon signal by a method described later.
  • Each slave unit transmits at the specified timing according to this clock.
  • the beacon signal contains information on the child device to which the upstream in the upstream window is allocated, and the child device permitted by the beacon signal transmits data.
  • Adopts TDMA method The assignment method will be described later.
  • the base unit allocates downstream as follows based on the order of packets received from the line (LAN).
  • FIG. 10 is an explanatory diagram showing an example of transmission queue control of the parent device according to the present invention.
  • Figure 1
  • a plurality of queues are provided for each slave unit according to the transmission packet type, and when transmitting a bucket to a radio slot, the queue selection control unit selects a queue with a predetermined priority and transmits the packet. .
  • the queue selection control unit selects a queue with a predetermined priority and transmits the packet.
  • the response bucket is prioritized, the response bucket is transmitted earlier, and the timing of sending out the next data bucket in the upper layer protocol is obtained earlier, so that the communication efficiency is improved.
  • priority is given to packets that require real-time performance, the bandwidth required for transmission of bucketed voice and the like can be secured, and quality can be secured according to the contents of the transfer data.
  • the ACK signal for each downstream in the down window is returned at different timings. If the master unit cannot receive ACK, it resends in the next cycle. However, if the retransmission fails a predetermined number of times, the frame is discarded. In the case of broadcast, retransmission is not performed.
  • the ACK period After the ACK period, there are two upstream periods, each of which has been granted permission to transmit. If the master unit fails in reception, specify the same frame number and assign the upstream again. In the case of Internet connection, the downstream has a longer window since the downstream has a larger amount of data on average.
  • FIG. 7 is an explanatory diagram showing a flow of a synchronization cycle in the wireless transmission system of the present invention.
  • the master and receiver transmit a master and receiver beacon to each slave master on the currently used channel.
  • the time information of the master master unit's clock is written in the mass evening beacon.
  • Each slave master unit receives the master beacon in the down window of the synchronization cycle, and adjusts the clock of the slave master unit to the clock of the master unit.
  • each master unit sends out a phase beacon and checks the use channels in each subgroup. Update channels.
  • the master unit collects request (transmission request) information from all slave units in the sub-loop.
  • the slave master unit If the slave master unit cannot receive the master beacon continuously for the desired number of times, or if it cannot receive the master beacon continuously for the desired time, it determines that the master master unit has failed. Thereafter, one slave master unit specified according to a predetermined priority order starts an operation corresponding to the master master unit, and starts a substitute operation of the failed master master unit. As a result, the operation of the subgroup belonging to the failed master unit is stopped, and the system is degraded, but there is an effect of preventing all the systems in the group from being stopped.
  • FIG. 8 is an explanatory diagram showing a time synchronization method within a group according to the present invention.
  • Each wireless transmission device has a clock function by software.
  • the base unit reads the time information (to) from its own clock, and immediately creates and transmits a beacon frame.
  • the beacon frame is composed of a preamble of a predetermined length and a frame having a well-known configuration, and time information (to) is written in a data area of the frame.
  • the slave unit when a beacon is received within the reception window, synchronization is established at an arbitrary timing in the preamble section of the beacon, and the frame (the first flag pattern of the beacon) is detected.
  • the hard timer 21 shown in Figure 2 is set and activated, and starts counting.
  • the program calculates the current time (t 3) by adding the delay time tp from the reading of the clock time to the detection of the frame and the count time tt of the timer 21 to the time information (to) written in the frame to the time information (to) written in the frame. Update your watch to t3.
  • the above method is used to adjust the clock of the master unit and the clock of the slave unit with higher accuracy than the detection of the cross-point of the mouth. Is possible.
  • the master beacon from the master unit is synchronized with the master unit, and the beacon from each master unit to the slave unit adjusts the clock of each slave unit with each master unit.
  • FIG. 9 is a state transition diagram showing a state change of the priority of the slave unit in the present invention.
  • the master unit collects transmission requests from slave units only in the synchronization cycle, and does not collect transmission requests in other cycles. Also, since there are only two upstreams in the upstream window, for example, the master unit controls the priority of the slave units in order to efficiently assign them to the slave units, and assigns the transmission right to the slave units with higher priority. To control.
  • the present invention includes inter-group synchronization means for controlling transmission / reception timing in a group formed by one master master unit and one or more slave master units in synchronization with a master master unit of another group.
  • Master master unit same as master master unit
  • a slave master unit having intra-group synchronization means for controlling transmission / reception timing in anticipation. Therefore, according to the present invention, the transmission and reception of signals are performed synchronously, so that even in a wireless transmission system in which a large number of wireless transmission devices are used in close proximity, data transmission can be efficiently performed without hindrance. This has the effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

A radio transmission system in which a signal can be transmitted/received without any problem even if a large number of radio transmitters near to one another are used. In this system, communication with child devices in a group of one master parent device and one or more slave parent devices and child devices is carried out by sharing a frequency band. The master parent device has an inter-group synchronizing means for controlling the transmission/reception timing in synchronism with the phase of a commercial power supply. Each slave parent device has an intra-group synchronizing means for controlling the transmission/reception timing in synchronism with the master parent device. Data can be transmitted without any problem efficiently since the parent devices synchronously transmits/receives a signal.

Description

明細 無線伝送ミ  Description Wireless transmission
' 技術分野 ' Technical field
本発明は無線伝送システムに関し、 特にビル内の無線 L A Nや電柱と家庭内の 装置との間の接続など、 多数の無線伝送装置が近接して使用される無線伝送シス テムに関するものである。  The present invention relates to a wireless transmission system, and more particularly to a wireless transmission system in which a number of wireless transmission devices are used in close proximity, such as a wireless LAN in a building or a connection between a telephone pole and a device in a home.
背景技術  Background art
従来、 ビル内の無線 L ANや電柱と家庭内の装置との間の接続など、 多数の無 線伝送装置が近接して使用される可能性のある無線伝送システムにおいては、 近 接する無線伝送装置において使用するチャネルを異ならせる等の対策をとつてい た。  Conventionally, in a wireless transmission system in which many wireless transmission devices may be used in close proximity, such as a connection between a building in a building or a wireless LAN or a telephone pole, a nearby wireless transmission device Measures were taken such as using different channels.
多数の無線伝送装置が近接して使用される無線伝送システムにおいては、 近接 する無線伝送装置において使用するチャネルを異ならせても、 例えば一方の無線 伝送装置があるチャネルで送信し、 近接した他方の無線伝送装置が隣接するチヤ ネルで受信しょうとすると、 一方の装置の送信波の干渉波成分 (送信波の両側の 周波数帯域に広がる不要波成分) が高レベルで他方の装置が受信しょうとするチ ャネルにまで及び、 受信ができないという問題点があった。  In a wireless transmission system in which a large number of wireless transmission devices are used in close proximity, even if the channels used in adjacent wireless transmission devices are different, for example, one wireless transmission device transmits on one channel, and When a wireless transmission device tries to receive on an adjacent channel, the interference wave component of the transmission wave of one device (unwanted wave component that spreads in the frequency band on both sides of the transmission wave) is at a high level and the other device tries to receive it. There was a problem that the signal could not be received, even to the channel.
発明の開示  Disclosure of the invention
本発明の目的は、 前記のような従来技術の問題点を解決し、 多数の無線伝送装 置が近接して使用される場合においても信号の送受信が支障なく行える無線伝送 システムを提供することにある。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a wireless transmission system that solves the above-described problems of the related art and that can transmit and receive signals without hindrance even when a large number of wireless transmission devices are used in close proximity. is there.
本発明は、 1つのマスタ一親機および 1つ以上のスレーブ親機により形成され るグループ内において、 周波数帯を共用してグループ内の子機と通信を行う無線 伝送システムにおいて、 データ送受信手段と、 他のグループのマスター親機と同 期して送受信タイミングを制御するグループ間同期手段とを備えたマスター親機 と、 データ送受信手段と、 マスター親機と同期して送受信タイミングを制御する グループ内同期手段とを備えたスレーブ親機とを備えたことを特徴とする。 本発明によれば、 多数の無線伝送装置が近接して使用される無線伝送システム においても信号の送受信が同期して実行されるので、 データの伝送が支障なくか つ効率的に行える。 The present invention is directed to a wireless transmission system that communicates with slaves in a group by sharing a frequency band in a group formed by one master master unit and one or more slave master units. A master master unit having inter-group synchronization means for controlling transmission / reception timing in synchronization with a master master unit of another group, a data transmission / reception means, and controlling transmission / reception timing in synchronization with the master master unit A slave master unit provided with an intra-group synchronization unit. According to the present invention, even in a wireless transmission system in which a large number of wireless transmission devices are used in close proximity, signal transmission and reception are performed in synchronization, so that data transmission can be performed efficiently without any trouble.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明を適用した通信システムの構成を示す説明図である。  FIG. 1 is an explanatory diagram showing a configuration of a communication system to which the present invention is applied.
図 2は、 本発明の無線伝送装置のハードウェア構成を示すブロックである。 図 3は、 本発明におけるグループ間の送受信タイミングを示す説明図である。 図 4は、 本発明におけるグループ間の同期サイクルのタイミングを示す説明図 である。  FIG. 2 is a block diagram showing a hardware configuration of the wireless transmission device of the present invention. FIG. 3 is an explanatory diagram showing transmission / reception timing between groups in the present invention. FIG. 4 is an explanatory diagram showing the timing of a synchronization cycle between groups in the present invention.
図 5は、 本発明のシステムが使用する周波数帯域を示す説明図である。  FIG. 5 is an explanatory diagram showing a frequency band used by the system of the present invention.
図 6は、 本発明におけるデータ送受信のフローを示す説明図である。  FIG. 6 is an explanatory diagram showing a flow of data transmission and reception in the present invention.
図 7は、 本発明における同期サイクルのフローを示す説明図である。  FIG. 7 is an explanatory diagram showing a flow of a synchronization cycle in the present invention.
図 8は、 本発明におけるグループ内の時刻同期方法を示す説明図である。 図 9は、 本発明における子機の優先度の状態変化を示す状態遷移図である。 図 1 0は、 本発明における親機のキュー制御例を示す説明図である。  FIG. 8 is an explanatory diagram showing a time synchronization method within a group according to the present invention. FIG. 9 is a state transition diagram showing a state change of the priority of the slave unit in the present invention. FIG. 10 is an explanatory diagram showing an example of queue control of the parent device in the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を詳細に説明する。 図 1は、 本発明を適用した無線 伝送装置を含む通信システムの構成を示す説明図である。 グループ 1の領域 (例 えば半径 1 0 0 m程度) 内には、 4つのサブグループ領域が存在し、 それぞれの サブグループにはそれぞれマスタ一親機あるいはスレーブ親機と、 複数の子機が 存在する。  Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is an explanatory diagram showing the configuration of a communication system including a wireless transmission device to which the present invention has been applied. Within the area of group 1 (for example, radius of about 100 m), there are four subgroup areas, and each subgroup has one master or slave master and multiple slaves. I do.
マス夕一親機およびスレーブ親機は近接 (例えば 1 0 m) して設置され、 それ ぞれ図示しない通信回線を介して例えばサーバコンピュータに接続されており、 当該サーバはインターネットに接続されている。 また、 それぞれの子機は例えば 図示しないパソコンに接続されている。 '  The master unit and the slave unit are installed close to each other (for example, 10 m), and each is connected to, for example, a server computer via a communication line (not shown), and the server is connected to the Internet. . Each slave unit is connected to, for example, a personal computer (not shown). '
各サブグループ (1〜4 ) は、 マスター親機あるいはスレーブ親機に接続され たアンテナの指向性および送信電力によってその領域が決定され、 子機は I Dに よって、 予め定められた親機と接続される。 Each subgroup (1 to 4) has its area determined by the directivity and transmission power of the antenna connected to the master master unit or slave master unit. Therefore, it is connected to a predetermined master unit.
図 2は、 本発明の無線伝送装置のハードウェア構成を示すブロックである。 親 機および子機は基本的には同じハードウェア構成であり、 制御ソフトウェアが異 なっている。 アナログ信号処理部 10は公知のシングルスーパーヘテロダイン方 式のデジタル信号送受信回路からなっており、 周波数シンセサイザおよび VCO 回路からなる 2つの PLL回路によって、 任意の周波数チャネルにおいてデータ の送受信が可能である。 なお、 本発明において送受信回路の方式や変調方式とし ては公知の任意のものを採用可能である。  FIG. 2 is a block diagram showing a hardware configuration of the wireless transmission device of the present invention. The master unit and the slave unit have basically the same hardware configuration and different control software. The analog signal processing unit 10 is composed of a known single super heterodyne digital signal transmission / reception circuit, and data can be transmitted / received on an arbitrary frequency channel by two PLL circuits including a frequency synthesizer and a VCO circuit. In the present invention, any known method can be adopted as the transmission / reception circuit method and modulation method.
デジタル信号処理部 20の第 1の LS Iは、 A/D、 DZA変換、 直接拡散、 逆拡散処理、 スクランブル処理、 プリアンブル処理、 フレーム処理、 誤り検出処 理、 相関信号検出を行う。 デジタル信号処理部 20の第 2の LS Iは、 S/P変 換、 スクランブル処理、 誤り検出処理等を行う。  The first LSI of the digital signal processing unit 20 performs A / D, DZA conversion, direct spreading, despreading, scrambling, preamble processing, frame processing, error detection processing, and correlation signal detection. The second LSI of the digital signal processing unit 20 performs S / P conversion, scramble processing, error detection processing, and the like.
タイマー 21は、 第 1の L S Iから出力されるフレーム検出 (フラグパターン 検出) 信号によってリセットされて起動されるタイマーであり、 CPUがプログ ラムによりタイマー値を読み取り可能に構成されている。 このタイマ 21は後述 するようにマスタ一親機との時計合わせに使用される。  The timer 21 is a timer that is reset and started by a frame detection (flag pattern detection) signal output from the first LSI, and is configured so that the CPU can read a timer value by a program. This timer 21 is used to adjust the clock with the master master unit as described later.
制御部 30は、 CPU、 プログラムゃデ一夕を格納しているフラッシュ ROM、 バッファやワークエリアとして使用される RAM、 CAM (連想メモリ)、 L A Nトランシーバ、 バス等からなる。 LANトランシーバは、 10BASE- T規格等の 周知の LANインターフェイス機能を有し、 親局の場合には回線/ LANコンパ 一夕等の装置を介して光ファイバ等の高速回線と接続される。 また、 子局の場合 にはパソコンや H U Bへ接続される。 電源回路からは電源と共にゼロクロス検出 信号も出力される。  The control unit 30 includes a CPU, a flash ROM storing a program code, a RAM used as a buffer and a work area, a CAM (associative memory), a LAN transceiver, a bus, and the like. The LAN transceiver has a well-known LAN interface function such as the 10BASE-T standard. In the case of a master station, the LAN transceiver is connected to a high-speed line such as an optical fiber through a device such as a line / LAN comparator. In the case of a slave station, it is connected to a personal computer or HUB. The power supply circuit also outputs a zero-cross detection signal along with the power supply.
図 3は、 本発明の無線伝送システムにおけるグループ間の送受信のタイミング を示す説明図である。 1つの伝送サイクルは基本的には商用電源のゼロクロス点 (電圧が 0となるタイミング) の間隔を基準としている。 従って、 商用電源の周 波数が 50Hzであれば、 伝送サイクルの周期は 10ミリ秒となる。 1伝送サイ クル中には親局から乎局へデータを伝送する期間である固定長の下りウィンドウ とその逆の期間である固定長の上りウィンドウが存在する。 FIG. 3 is an explanatory diagram showing transmission / reception timing between groups in the wireless transmission system of the present invention. One transmission cycle is basically based on the interval between the zero-cross points of the commercial power supply (timing when the voltage becomes 0). Therefore, if the frequency of the commercial power supply is 50 Hz, the cycle of the transmission cycle is 10 milliseconds. During one transmission cycle, a fixed-length downward window, which is the period during which data is transmitted from the master station to the And a fixed-length upward window that is the reverse of the period.
ゼロクロス点は各グループのマス夕一親機が検出し、 このタイミングに基づい て、 当該グループ内の送受信タイミングの制御を行う。 従って各グループ間にお いて伝送サイクルのタイミングが揃うので、 受信中の子機の近傍で他グループの 子機が送信して受信を妨害することを回避できる。  The zero-crossing point is detected by the master unit in each group, and the transmission / reception timing within the group is controlled based on this timing. Therefore, since the transmission cycle timing is the same between the groups, it is possible to prevent the handset of another group from transmitting and hindering the reception near the handset currently receiving.
なお、 タイミング検出用の商用電源が 3相交流から供給されている場合、 商用 電源として選択される 2相がマスター親機ごとに異なると、 ゼロクロ.スポイント にずれが生じて同期がとれない。 従って、 ゼロクロスポイントに電源周波数に応 じたオフセット時間を追加したタイミングを同期タイミングにすることにより、 いずれの 2相を選択してもシステムの同期が確立できるようになる。 オフセット 時間は、 位相のずれが既知であれば、 各マスター親機に手動により設定するする ことが可能であるが、 他のマスター親機からの時間情報フレームを受信可能であ れば、 当該フレームを受信して判断することにより、 位相のずれを自動検出し、 オフセット時間を自動設定することもできる。  When the commercial power for timing detection is supplied from three-phase AC, if the two phases selected as the commercial power are different for each master unit, the zero crossing point will be out of sync and synchronization will not be achieved. Therefore, by setting the timing at which the offset time according to the power supply frequency is added to the zero crossing point as the synchronization timing, the synchronization of the system can be established regardless of which two phases are selected. If the phase shift is known, the offset time can be set manually in each master unit, but if the time information frame from another master unit can be received, the frame can be set. By receiving and making a judgment, the phase shift can be automatically detected and the offset time can be set automatically.
また、 グループ間同期手段は、 商用電源に限らず通信回線を介して接続された 標準時刻配信サーバから配信される時刻情報に基づいて送受信タイミングを制御 する、 ないしは、 標準時刻サーバに時刻問い合わせを行い、 送受信タイミングを 制御する基準となる内蔵時計を補正する方法もある。 これらの方法により、 ダル ープ間でのゼロクロスタイミングの同期が保証されない電源の場合でも同期を取 ることが可能である。  The inter-group synchronization means controls transmission / reception timing based on time information distributed from a standard time distribution server connected via a communication line as well as a commercial power supply, or makes a time inquiry to the standard time server. There is also a method of correcting the internal clock, which is a reference for controlling transmission / reception timing. With these methods, it is possible to synchronize even power supplies that do not guarantee zero-cross timing synchronization between groups.
図 4は、 本発明の無線伝送システムにおけるグループ間の同期サイクルのタイ ミングを示す説明図である。 マスター親機は所定数の伝送サイクル (例えば 1 0 回) 毎に 1回 「同期サイクル」 を実行し、 マスタ一親機とスレーブ親機との時計 合わせを行う。 この同期サイクルを実行するタイミングは各グループ毎に独立し ており、 位相は異なっている。  FIG. 4 is an explanatory diagram showing the timing of a synchronization cycle between groups in the wireless transmission system of the present invention. The master unit executes a “synchronization cycle” once every predetermined number of transmission cycles (for example, 10 times), and adjusts the clock of the master unit and the slave unit. The timing for executing this synchronization cycle is independent for each group, and the phases are different.
図 5は、 本発明の無線伝送システムが使用する周波数帯域を示す説明図である。 図 5においては、 1つのグループ内において、 4つのサブグループ (# 1〜# 4 ) に割り当てられる周波数チャネル (A〜D ) の時間変化を示している。 使用 する周波数帯としては、 例えば 2 . 4 G H z帯を使用し、 1つのチャネル当たり の帯域として例えば 2 0 MH z程度、 4つのチャネル合計の周波数帯域として例 えば 8 0 MH z程度を使用する。 . FIG. 5 is an explanatory diagram showing a frequency band used by the wireless transmission system of the present invention. FIG. 5 shows a time change of frequency channels (A to D) assigned to four subgroups (# 1 to # 4) in one group. use As a frequency band to be used, for example, a 2.4 GHz band is used, and a band per channel is, for example, about 20 MHz, and a total frequency band of four channels is, for example, about 80 MHz. .
各親機および子機はそれぞれ同じ周波数遷移テーブルを記憶しており、 親局か ら送信されるフェーズビーコンによって、 子機が次に使用すべき周波数を示す当 該テーブル内の位相 (番地) が指示される。 従って、 フェーズビーコンの受信に 失敗しても、 同期サイクル後に自分で位相を 1つ進めることによつて通信が継続 可能となる。  Each master unit and each slave unit store the same frequency transition table, and the phase (address) in the table indicating the next frequency to be used by the slave unit is determined by the phase beacon transmitted from the master station. Be instructed. Therefore, even if reception of the phase beacon fails, communication can be continued by advancing the phase by one after the synchronization cycle.
図 5に示すようにチャネルを巡回させることにより、 特定のチャネルに雑音が 発生して誤り率が増大しても、 グループ内の各子機との通信を継続可能となる。 なお巡回させる順序は任意である。  By circulating the channels as shown in Fig. 5, even if noise occurs in a specific channel and the error rate increases, communication with each slave unit in the group can be continued. Note that the order of the circulation is arbitrary.
図 6は、 本発明の無線伝送システムにおけるデータ送受信のフローを示す説明 図である。 1つの伝送 (通信) サイクルには固定長の下りウィンドウと上りウイ ンドウがあり、 下りウィンドウにおいては、 各親機は子機に対してビーコン信号 を送出する。 このビーコンフレームには親機の時計の時刻情報が書き込まれてお り、 各子局は、 後述する方法によって、 このビーコン信号に基づいて自分の時計 を親機と合わせる。 各子機はこの時計に従って指定されたタイミングで送信を行 ラ。  FIG. 6 is an explanatory diagram showing a flow of data transmission and reception in the wireless transmission system of the present invention. One transmission (communication) cycle has a fixed-length down window and an up window. In the down window, each master unit sends a beacon signal to the slave unit. The time information of the clock of the master unit is written in this beacon frame, and each slave station adjusts its own clock with the master unit based on this beacon signal by a method described later. Each slave unit transmits at the specified timing according to this clock.
ビーコン信号には、 上りウィンドウ内のアップストリームを割り当てる子機の 情報が含まれており、 ビーコン信号によって許可された子機がデータを送信する The beacon signal contains information on the child device to which the upstream in the upstream window is allocated, and the child device permitted by the beacon signal transmits data.
T D MA方式を採用している。 割り当て方式は後述する。 Adopts TDMA method. The assignment method will be described later.
下りウィンドウには例えばダウンス卜リームが 4つ存在し、 それぞれ任意の子 機宛てにデータを送信可能である。 親機は回線 (L AN) より受信したパケット 順に基づき下記のようにダウンストリームを割り当てる。  There are, for example, four downstream streams in the downstream window, and each can transmit data to any child unit. The base unit allocates downstream as follows based on the order of packets received from the line (LAN).
図 1 0は、 本発明における親機の送信キュー制御例を示す説明図である。 図 1 FIG. 10 is an explanatory diagram showing an example of transmission queue control of the parent device according to the present invention. Figure 1
0に示すように、 各子機ごとに送信パケット種別に応じた複数のキューを設け、 無線スロットにバケツトを送り出す際に、 キュー選択制御部が所定の優先順位で キューを選択してパケットを送り出す。 これにより例えば応答バケツトを優先させれば、 応答バケツトが早期に送信さ れ、 上位プロトコルにおける次のデータバケツトの送り出しタイミングが早まる 効果が得られ、 通信効率が改善される。 また、 リアルタイム性が要求されるパケ ットを優先させれば、 バケツト化された音声等の伝送に要求される帯域確保がで き、 転送データの内容に応じた品質確保が可能となる。 As shown in 0, a plurality of queues are provided for each slave unit according to the transmission packet type, and when transmitting a bucket to a radio slot, the queue selection control unit selects a queue with a predetermined priority and transmits the packet. . Thus, for example, if the response bucket is prioritized, the response bucket is transmitted earlier, and the timing of sending out the next data bucket in the upper layer protocol is obtained earlier, so that the communication efficiency is improved. If priority is given to packets that require real-time performance, the bandwidth required for transmission of bucketed voice and the like can be secured, and quality can be secured according to the contents of the transfer data.
また、 個々の子機へのスロッ卜割り当て率を子機によって変えることにより、 子機ごとに通信優先度を可変にすることも可能である。  It is also possible to make the communication priority variable for each slave unit by changing the slot allocation rate to each slave unit depending on the slave unit.
更に、 子機ごとのキューに保存されているデ一夕量に応じ、 送信子機あて先を 選択することにより、 データ量に応じた帯域確保、 および無線帯域の利用率の向 上が可能となる。  Furthermore, by selecting the destination of the sending slave unit according to the amount of data stored in the queue of each slave unit, it is possible to secure the bandwidth according to the data amount and improve the wireless band utilization rate .
上りウィンドウの最初の期間においては、 下りウィンドウの各ダウンストリー ムに対する A C K信号がそれぞれ異なるタイミングで返送される。 親機は A C K を受信できなかった場合には次のサイクルで再送を行う。 しかし再送を所定回数 失敗した場合には当該フレームを破棄する。 また、 ブロードキャストの場合には 再送は行わない。  In the first period of the up window, the ACK signal for each downstream in the down window is returned at different timings. If the master unit cannot receive ACK, it resends in the next cycle. However, if the retransmission fails a predetermined number of times, the frame is discarded. In the case of broadcast, retransmission is not performed.
A C K期間の後、 2つのアップストリーム期間が存在し、 それぞれ送信許可を 受けた子機が送信を行う。 親機において受信に失敗した場合には同一フレーム番 号を指定して再度アップストリームを割り当てる。 なお、 インタ一ネット接続の 場合には平均するとダウンストリームの方がデータ量が多いので、 ウインドウも 下りの方を長くしてある。  After the ACK period, there are two upstream periods, each of which has been granted permission to transmit. If the master unit fails in reception, specify the same frame number and assign the upstream again. In the case of Internet connection, the downstream has a longer window since the downstream has a larger amount of data on average.
図 7は、 本発明の無線伝送システムにおける同期サイクルのフローを示す説明 図である。 同期サイクルにおいては、 まずマス夕一親機が下りウィンドウ内でゼ 口クロス夕イミングを検出すると、 各スレーブ親機に対してそれぞれ現在使用中 のチャネルでマス夕一ビーコンを送出する。 このマス夕一ビーコンにはマスター 親機の時計の時刻情報が書き込まれている。 各スレーブ親機は、 同期サイクルの 下りウィンドウにおいてマスタービーコンを受信し、 スレーブ親機の時計をマス 夕一親機の時計と合わせる。  FIG. 7 is an explanatory diagram showing a flow of a synchronization cycle in the wireless transmission system of the present invention. In the synchronization cycle, first, when the master and receiver detects cross-crossing timing in the down window, the master and receiver transmit a master and receiver beacon to each slave master on the currently used channel. The time information of the master master unit's clock is written in the mass evening beacon. Each slave master unit receives the master beacon in the down window of the synchronization cycle, and adjusts the clock of the slave master unit to the clock of the master unit.
その後、 各親機はフェーズビーコンを送出し、 各サブグループにおける使用チ ャネルを更新する。 同期サイクルの上りウィンドウにおいては、 親機がサブダル ープ内の全ての子機からリクエスト (送信要求) 情報を収集する。 After that, each master unit sends out a phase beacon and checks the use channels in each subgroup. Update channels. In the uplink window of the synchronous cycle, the master unit collects request (transmission request) information from all slave units in the sub-loop.
なお、 スレーブ親機はマスタービーコンを所望の回数連続して受信できなかつ たか、 所望の時間連続して受信できなかった場合、 マスター親機の障害と判断す る。 この後、 予め定められた優先順位に従って特定されるひとつのスレーブ親機 が、 マスター親機に相当する動作を開始し、 障害が発生したマスター親機の代理 動作を開始する。 これにより、 故障したマスター親機に属するサブグループの動 作が停止し、 システムが縮退するが、 グループの全システムが停止するのを回避 する効果が得られる。  If the slave master unit cannot receive the master beacon continuously for the desired number of times, or if it cannot receive the master beacon continuously for the desired time, it determines that the master master unit has failed. Thereafter, one slave master unit specified according to a predetermined priority order starts an operation corresponding to the master master unit, and starts a substitute operation of the failed master master unit. As a result, the operation of the subgroup belonging to the failed master unit is stopped, and the system is degraded, but there is an effect of preventing all the systems in the group from being stopped.
図 8は、 本発明におけるグループ内の時刻同期方法を示す説明図である。 各無 線伝送装置はソフトウェアによる時計機能を有している。 例えば親機は、 自分の 時計から時刻情報 (t o ) を読み出し、 直ちにビーコンフレームを作成して送信 する。 ビーコンフレームは所定長のプリアンブルと周知の構成のフレームから構 成されており、 当該フレームのデータ領域には時刻情報 (t o ) が書き込まれて いる。  FIG. 8 is an explanatory diagram showing a time synchronization method within a group according to the present invention. Each wireless transmission device has a clock function by software. For example, the base unit reads the time information (to) from its own clock, and immediately creates and transmits a beacon frame. The beacon frame is composed of a preamble of a predetermined length and a frame having a well-known configuration, and time information (to) is written in a data area of the frame.
子機においては、 受信ウィンドウ内においてビーコンが受信された場合、 ビー コンのプリアンブル区間の任意のタイミングで同期を確立し、 フレーム (の先頭 のフラグパターン) の検出を行う。 フレームが検出されると、 図 2のハードゥエ ァタイマー 2 1力 」セットされて起動し、 カウントを開始する。  In the slave unit, when a beacon is received within the reception window, synchronization is established at an arbitrary timing in the preamble section of the beacon, and the frame (the first flag pattern of the beacon) is detected. When a frame is detected, the hard timer 21 shown in Figure 2 is set and activated, and starts counting.
子機においてフレームの受信が正常に完了すると、 プログラムによる処理が開 始され、 タイマー 2 1のカウント値が読み出される。 プログラムは、 フレーム内 に書き込まれている時刻情報 (t o ) に、 時計時刻読み出しからフレーム検出ま での遅延時間 t pおよびタイマー 2 1のカウント時間 t tを加算して現在時刻 ( t 3 ) を算出し、 自分の時計を t 3に更新する。  When the slave unit has successfully received a frame, processing by the program starts and the count value of timer 21 is read. The program calculates the current time (t 3) by adding the delay time tp from the reading of the clock time to the detection of the frame and the count time tt of the timer 21 to the time information (to) written in the frame to the time information (to) written in the frame. Update your watch to t3.
時間 t p、 t tはそれぞれハードウェアあるいはソフトウェアに依存する予め 定められた時間であるので、 上記方式によって、 親機の時計と子機の時計とをゼ 口クロス点の検出よりも高精度で合わせることが可能である。  Since the times tp and tt are predetermined times depending on hardware or software, the above method is used to adjust the clock of the master unit and the clock of the slave unit with higher accuracy than the detection of the cross-point of the mouth. Is possible.
以上のような方式によって、 マスタ一親機からのマスタービーコンによりスレ ーブ親機の時計がマスター親機と合わされ、 各親機から子機へのビーコンによつ て各子機の時計が各親機と合わされる。 そして、 各装置の時計の同期を正確に取 ることにより、 伝送の空き時間 (マージン) を減少させ、 伝送効率を上げること が可能となる。 With the above method, the master beacon from the master The clock of the master unit is synchronized with the master unit, and the beacon from each master unit to the slave unit adjusts the clock of each slave unit with each master unit. By accurately synchronizing the clocks of each device, it is possible to reduce the idle time (margin) of transmission and increase the transmission efficiency.
図 9は、 本発明における子機の優先度の状態変化を示す状態遷移図である。 本 発明のシステムにおいては、 親機は同期サイクルにおいてのみ子機からの送信要 求を収集しており、 その他のサイクルにおいては収集していない。 また、 上りゥ インドウのアップストリームは例えば 2個しかないので、 これを子機に効率よく 割り当てるために親機は子機の優先度制御を行い、 優先度の高い子機に送信権を 与えるように制御する。  FIG. 9 is a state transition diagram showing a state change of the priority of the slave unit in the present invention. In the system of the present invention, the master unit collects transmission requests from slave units only in the synchronization cycle, and does not collect transmission requests in other cycles. Also, since there are only two upstreams in the upstream window, for example, the master unit controls the priority of the slave units in order to efficiently assign them to the slave units, and assigns the transmission right to the slave units with higher priority. To control.
実施例においては、 優先度には図示するように 「高」 「中」 「低」 「非接続」 の 4つのレベルがある。 電源オフ等によりリクエストバケツトが連続して所定回数 未受信の場合には子機は 「非接続」 状態となり、 電源がオンされ、 子機からリク ェストパケットを受信した場合には 「低」 レベルに移行する。  In the embodiment, there are four levels of priority, "high", "medium", "low", and "not connected", as shown in the figure. If the request bucket has not been received a predetermined number of times continuously due to power-off, etc., the slave unit will be in the "disconnected" state, and if the power is turned on and a request packet has been received from the slave unit, it will be in the "low" level. Move to
「低」 あるいは 「中」 レベルで、 送信要求を受信した場合には 「高」 レベルに 移行し、 「高」 レベルで送信要求を受信した場合、 あるいは送信パケットあるい は受信パケットがある場合には 「高」 レベルに留まる。 また、 「高」 レベルで送 信要求が受信されず、 送信パケットおよび受信パケットがなく、 アップの空きス ロットが 1秒連続した場合には 「中」 レベルに移行し、 更に空きスロットが 1秒 連続した場合には 「低」 レベルに移行する。  When a transmission request is received at the “Low” or “Medium” level, the state shifts to the “High” level, and when a transmission request is received at the “High” level, or when there is a transmitted packet or received packet. Remains at the “high” level. If a transmission request is not received at the “high” level, there is no transmission packet and no reception packet, and the up slot is continuous for 1 second, the transition to the “medium” level is made and the empty slot is set for 1 second. If consecutive, move to the "low" level.
同じレベルの子機が複数個ある場合には、 順にスロットを割り当てる。 また、 「中」 レベルの子機がある場合には、 「高」 レベルの子機があっても最低 2 0 % の割合で 「中」 レベルの子機にもスロットを割り当てる。 「低」 レベルの子機に は、 「高」 「中」 レベルの子機がいない場合にのみ割り当てを行う。  If there are multiple slave units of the same level, assign slots in order. In addition, if there is a “medium” level handset, a slot is also allocated to the “medium” level handset at least 20% even if there is a “high” level handset. Assignment to a “Low” level slave unit is only made when there are no “High” and “Middle” level slave units.
産業上の利用の可能性  Industrial applicability
本発明は、 1つのマスタ一親機および 1つ以上のスレープ親機により形成され るグループ内において、 他のグループのマスター親機と同期して送受信タイミン グを制御するグループ間同期手段とを備えたマスター親機と、 マスタ一親機と同 期して送受信タイミングを制御するグループ内同期手段とを備えたスレーブ親機 とを備えている。 従って、 本発明によれば、 信号の送受信が同期して実行される ので、 多数の無線伝送装置が近接して使用される無線伝送システムにおいてもデ 一夕の伝送が支障なくかつ効率的に行えるという効果がある。 The present invention includes inter-group synchronization means for controlling transmission / reception timing in a group formed by one master master unit and one or more slave master units in synchronization with a master master unit of another group. Master master unit, same as master master unit And a slave master unit having intra-group synchronization means for controlling transmission / reception timing in anticipation. Therefore, according to the present invention, the transmission and reception of signals are performed synchronously, so that even in a wireless transmission system in which a large number of wireless transmission devices are used in close proximity, data transmission can be efficiently performed without hindrance. This has the effect.

Claims

請求の範囲 The scope of the claims
1 . 1つのマスタ一親機および 1つ以上のスレーブ親機により形成されるダル ープ内において、 周波数帯を共用してグループ内の子機と通信を行う無線伝送シ ステムに.おいて、 1. In a wireless transmission system that communicates with slaves in a group by sharing a frequency band within a group formed by one master and one or more slave masters,
デ一夕送受信手段と、 他のグループのマス夕一親機と同期して送受信タイミン グを制御するグループ間同期手段とを備えたマス夕一親機と、  A master / slave master unit comprising: a master / slave transmission / reception means;
データ送受信手段と、 マスター親機と同期して送受信タイミングを制御するグ ループ内同期手段とを備えたスレーブ親機と、  A slave master unit having data transmission / reception means and an intra-group synchronization means for controlling transmission / reception timing in synchronization with the master master unit;
を備えたことを特徴とする無線伝送システム。  A wireless transmission system comprising:
2 . 更に、 マスタ一親機あるいはスレーブ親機とのデ一夕送受信手段と、 マス 夕一親機あるいはスレーブ親機と同期して送受信タイミングを制御するグループ 内同期手段とを備えた複数の子機を備えたことを特徴とする請求項 1に記載の無 線 送システム。  2. In addition, a plurality of child units having data transmission / reception means with the master master unit or the slave master unit, and intra-group synchronization means for controlling transmission / reception timing in synchronization with the master master unit or the slave master unit. 2. The radio transmission system according to claim 1, further comprising a device.
3 . 前記グループ間同期手段は、 商用電源の位相を検出して当該位相信号ある いは当該位相信号から所定の時間だけオフセットしたタイミングと同期して送受 信タイミングを制御することを特徴とする請求項 1に記載の無線伝送システム。 3. The inter-group synchronization means detects a phase of a commercial power supply and controls transmission / reception timing in synchronization with the phase signal or a timing offset from the phase signal by a predetermined time. Item 1. The wireless transmission system according to item 1.
4 . 前記グループ内同期手段は、 マスター親機から送信された時刻情報を含む フレームをスレーブ親機が受信することにより、 マスター親機の時計とスレーブ 親機の時計との同期を取ることを特徴とする請求項 1に記載の無線伝送システム。4. The intra-group synchronization means synchronizes the master master unit's clock with the slave master unit's clock by the slave master unit receiving a frame including the time information transmitted from the master master unit. 2. The wireless transmission system according to claim 1, wherein:
5 . 前記親機は、 子機の過去の通信状況に基づいて当該子機の優先度を決定し、 当該優先度に基づき子機に送信権を割り当てる優先度制御手段を有することを特 徵とする請求項 1に記載の無線伝送: 5. The master unit determines priority of the slave unit based on the past communication status of the slave unit, and has priority control means for assigning a transmission right to the slave unit based on the priority. Wireless transmission according to claim 1:
PCT/JP2002/000014 2001-01-09 2002-01-08 Radio transmission system WO2002056542A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002557078A JPWO2002056542A1 (en) 2001-01-09 2002-01-08 Wireless transmission system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-1737 2001-01-09
JP2001001737 2001-01-09

Publications (2)

Publication Number Publication Date
WO2002056542A1 true WO2002056542A1 (en) 2002-07-18
WO2002056542A8 WO2002056542A8 (en) 2002-10-31

Family

ID=18870341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000014 WO2002056542A1 (en) 2001-01-09 2002-01-08 Radio transmission system

Country Status (3)

Country Link
JP (1) JPWO2002056542A1 (en)
TW (1) TW563307B (en)
WO (1) WO2002056542A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500830A (en) * 2002-09-23 2006-01-05 シンボル テクノロジーズ インコーポレイテッド System and method for managing wireless network channels
CN100387068C (en) * 2006-01-16 2008-05-07 华为技术有限公司 Mobile communication system and its method
JP2010171917A (en) * 2009-01-21 2010-08-05 Jiaotong Univ Device, method and system for exchanging information between multi-hop wireless network groups
JP2013003000A (en) * 2011-06-17 2013-01-07 Yokogawa Electric Corp Communication system, communication device, and communication method
WO2015030017A1 (en) * 2013-08-30 2015-03-05 京セラ株式会社 Mobile communication system and user terminal
JP2017200223A (en) * 2017-06-28 2017-11-02 京セラ株式会社 User terminal, mobile communication system and method
WO2022259486A1 (en) * 2021-06-10 2022-12-15 三菱電機株式会社 Time synchronization subordinate device, time sharing system, time sharing method, and program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222232A (en) * 1994-02-04 1995-08-18 N T T Idou Tsuushinmou Kk Radio channel assigning method
JPH089455A (en) * 1994-06-22 1996-01-12 Hitachi Ltd Radio communication system and communication equipment
JPH08204615A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Radio lan system adopting frequency hopping system
JPH11205251A (en) * 1998-01-12 1999-07-30 Ntt Electornics Corp Method for reducing electromagnetic wave interference, electromagnetic wave detector, electronic device and radio communication method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222232A (en) * 1994-02-04 1995-08-18 N T T Idou Tsuushinmou Kk Radio channel assigning method
JPH089455A (en) * 1994-06-22 1996-01-12 Hitachi Ltd Radio communication system and communication equipment
JPH08204615A (en) * 1995-01-27 1996-08-09 Hitachi Ltd Radio lan system adopting frequency hopping system
JPH11205251A (en) * 1998-01-12 1999-07-30 Ntt Electornics Corp Method for reducing electromagnetic wave interference, electromagnetic wave detector, electronic device and radio communication method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006500830A (en) * 2002-09-23 2006-01-05 シンボル テクノロジーズ インコーポレイテッド System and method for managing wireless network channels
CN100387068C (en) * 2006-01-16 2008-05-07 华为技术有限公司 Mobile communication system and its method
JP2010171917A (en) * 2009-01-21 2010-08-05 Jiaotong Univ Device, method and system for exchanging information between multi-hop wireless network groups
JP2013003000A (en) * 2011-06-17 2013-01-07 Yokogawa Electric Corp Communication system, communication device, and communication method
WO2015030017A1 (en) * 2013-08-30 2015-03-05 京セラ株式会社 Mobile communication system and user terminal
JP2015050529A (en) * 2013-08-30 2015-03-16 京セラ株式会社 Mobile communication system and user terminal
US9642090B2 (en) 2013-08-30 2017-05-02 Kyocera Corporation Mobile communication system and user terminal
US9992816B2 (en) 2013-08-30 2018-06-05 Kyocera Corporation Mobile communication system and user terminal that support D2D communication
JP2017200223A (en) * 2017-06-28 2017-11-02 京セラ株式会社 User terminal, mobile communication system and method
WO2022259486A1 (en) * 2021-06-10 2022-12-15 三菱電機株式会社 Time synchronization subordinate device, time sharing system, time sharing method, and program

Also Published As

Publication number Publication date
TW563307B (en) 2003-11-21
JPWO2002056542A1 (en) 2004-05-20
WO2002056542A8 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
JP4887444B2 (en) Fast acquisition of traffic channels for high speed variable data transfer rates
EP2341666B1 (en) Adaptive scheduling
JPH09233034A (en) Time division multiplex access communication system and time division multiplex access communication method
JP2003529979A (en) Maintenance link using active / standby request channel
JP3970389B2 (en) Dynamic time division access apparatus and method
WO2003079579A1 (en) Method of using sub-rate slots in an ultrawide bandwidth system
CN106793128A (en) A kind of channel wireless radio multi Mesh network TDMA resource allocation methods
MXPA97006243A (en) System and method for access to a distribution of time dinam
CN110113812A (en) A kind of wireless communication whole network synchronous method based on TD-LTE
CN100581094C (en) Network clock synchronizing method for short distance radio communication network
US6243391B1 (en) Non-polled dynamic slot time allocation protocol
JP2006129102A (en) Communication method
Zhou et al. A compatible and scalable clock synchronization protocol in IEEE 802.11 ad hoc networks
US6108347A (en) Non-polled dynamic slot time allocation protocol
CN105846884A (en) Network communication method applicable to space-based network
WO2002056542A1 (en) Radio transmission system
GB2576052A (en) Synchronising unicast traffic
CN101286790B (en) Keeping method of uplink synchronization for time division synchronous code division multi-address accessing system
Datta et al. Ad-hoc Extensions to the 802.15. 3 MAC Protocol
JP3306843B2 (en) Mobile communication method using microcell
CN110830144B (en) Communication method and communication device of hybrid time division multiplexing system
JP3262306B2 (en) Mobile communication channel assignment method
CN101394576B (en) Synchronous base station, wireless transmission communication system and data transmission method
JPH08125582A (en) Radio wave communication method using low-speed frequency hopping system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: C1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: C1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 2002557078

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase