WO2002055905A2 - Getriebesteuerung mittels eines elektronischen kupplungsmanagements - Google Patents

Getriebesteuerung mittels eines elektronischen kupplungsmanagements Download PDF

Info

Publication number
WO2002055905A2
WO2002055905A2 PCT/DE2001/004779 DE0104779W WO02055905A2 WO 2002055905 A2 WO2002055905 A2 WO 2002055905A2 DE 0104779 W DE0104779 W DE 0104779W WO 02055905 A2 WO02055905 A2 WO 02055905A2
Authority
WO
WIPO (PCT)
Prior art keywords
torque
speed
clutch
mot
rsoll
Prior art date
Application number
PCT/DE2001/004779
Other languages
English (en)
French (fr)
Other versions
WO2002055905A3 (de
Inventor
Jürgen EICH
Thomas JÄGER
Original Assignee
Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luk Lamellen Und Kupplungsbau Beteiligungs Kg filed Critical Luk Lamellen Und Kupplungsbau Beteiligungs Kg
Priority to AU2002229478A priority Critical patent/AU2002229478A1/en
Priority to DE10195839T priority patent/DE10195839D2/de
Priority to BR0116734-0A priority patent/BR0116734A/pt
Publication of WO2002055905A2 publication Critical patent/WO2002055905A2/de
Publication of WO2002055905A3 publication Critical patent/WO2002055905A3/de
Priority to US10/617,248 priority patent/US6850829B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/08Regulating clutch take-up on starting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18027Drive off, accelerating from standstill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0002Automatic control, details of type of controller or control system architecture
    • B60W2050/0008Feedback, closed loop systems or details of feedback error signal
    • B60W2050/001Proportional integral [PI] controller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0638Engine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1015Input shaft speed, e.g. turbine speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/104Clutch
    • F16D2500/10406Clutch position
    • F16D2500/10412Transmission line of a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30415Speed of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3042Signal inputs from the clutch from the output shaft
    • F16D2500/30426Speed of the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • F16D2500/3068Speed change of rate of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/308Signal inputs from the transmission
    • F16D2500/3081Signal inputs from the transmission from the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/314Signal inputs from the user
    • F16D2500/31406Signal inputs from the user input from pedals
    • F16D2500/3144Accelerator pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/502Relating the clutch
    • F16D2500/50224Drive-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/506Relating the transmission
    • F16D2500/50684Torque resume after shifting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/7061Feed-back
    • F16D2500/70626PID control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/706Strategy of control
    • F16D2500/70668Signal filtering

Definitions

  • the present invention relates to a method for controlling and / or regulating an automated clutch and / or an automated transmission of a vehicle, in which a clutch target torque is determined by means of an electronic clutch management (EKM), as well as a device for control and such a transmission.
  • EKM electronic clutch management
  • Automated clutches and / or automated transmissions are known from vehicle technology, thereby enabling automation of the drive train of a vehicle, in particular a motor vehicle.
  • An electronic clutch management system automates the engagement process when the gearshift is required.
  • Coupling management is subject to increased demands, particularly when starting off. For example, the driver must take into account a certain degree of influence and also changed operating conditions, such as. B. increasing engine torque in turbo engines or clutch properties are taken into account.
  • the invention has for its object to provide a method for controlling and / or regulating an automated clutch and / or an automated transmission, in which the starting functionality, in particular of the electronic clutch management, is improved.
  • the electronic clutch management system performs a starting function as a function of predetermined input sizes is determined with the target clutch torque as an output variable, which is then to be set on the clutch of the vehicle.
  • the starting speed can be determined to a greater extent by a driver's request.
  • the starting functionality of the electronic clutch management is expanded in such a way that in particular a defined engine speed can be set during the starting process. This enables improved reproducibility of approaches in changing operating conditions.
  • the desired clutch torque can be determined by the starting function as a function of at least one of the following input variables, such as, for. B. accelerator pedal angle, engine speed, transmission input speed and / or engine torque can be determined.
  • the start-up function is essentially divided into two phases with the aid of a factor calculation.
  • further phases it is also possible for further phases to be provided in order to further optimize the starting process for a vehicle.
  • the engine speed essentially follows a starting solid speed in order to regulate the starting speed.
  • the engine speed and the gearbox input speed must be adjusted in order to synchronize them. This avoids a sharp switchover between the phases and, depending on a so-called speed ratio, which is defined as the quotient of the transmission input speed and engine speed, enables the two phases to be blended continuously during the starting process.
  • An advantageous embodiment of the invention provides that a torque contribution is first determined according to a global control in order to calculate the desired clutch torque as an output variable. For this, e.g. B. Shares can be determined as functions of the transmission input speed and / or the engine speed.
  • the use of a portion dependent on engine torque is also possible.
  • the portion that is dependent on the engine torque is suitably weighted by the speed ratio, so that its full effectiveness is achieved precisely when the synchronization point on the clutch is reached.
  • further shares are used in determining the starting function.
  • the speed ratio e.g. B. if the value of the speed ratio (SR) is approximately in the range of SR ⁇ 0.5 to 0.7, a regulation of the starting target speed is in the foreground. It is possible that the starting speed over a suitable, for. B. monotonically increasing characteristic curve is determined depending on the accelerator pedal angle. Of course, it is also possible that a characteristic curve of any other design is used.
  • the determined starting speed is, for example, low-pass filtered, preferred wise with a PT1 link. It is also conceivable that other filter elements can be used.
  • the filter used is initialized by means of the engine speed, in particular if the engine speed in neutral is essentially an idling speed, e.g. B. exceeds values that are about 500 revolutions per minute.
  • the initialization can also be done • with smaller or larger values.
  • the difference f ⁇ (SR) * (n_Anf-n_mot) weighted by the speed ratio when calculating the factors can, for. B. can be implemented via a PI controller in a contribution to the target clutch torque.
  • the PI controller can have the factor KP1 of the proportional element and the factor KI1 of the integrator as parameters. Of course, another controller and / or other parameters can also be used.
  • a PI controller can also be used, the input variable of which, for. B. f2 (SR) * (n_mot-n_get).
  • the PI controller preferably has the factor KP2 of the proportional element and the factor KI2 of the integrator as parameters.
  • other controllers and / or parameters can be used.
  • a further development of the invention provides that the I components of both regulations are preferably implemented by the same integrator. This advantageously reduces the complexity of the circuit used. It can be provided that an additional integrator is used for the existing integrator, the z.
  • the additional integrator can, for example, have a smaller gain KI3 in order to prevent permanent slippage at the clutch, e.g. B. counteract due to ramp-shaped disturbances, such as a continuously increasing engine torque. It is conceivable that further integrators can also be used, wherein a different circuit configuration can also be provided, and larger or smaller amplifications can be used.
  • the target clutch torque determined as an output variable is limited.
  • the target clutch torque (M_Rsoll) can be limited by the condition M_Rsoll> 0.
  • the integrator used and / or the optionally separated integrators can be subjected to a suitable measure to avoid a so-called wind-up. This can e.g. B. can be achieved by calculating back to a corresponding I torque component (M_l) after limiting the desired clutch torque.
  • M_Glob global control
  • M_D damping torque component
  • M_l M_Rsoll_blimited - M_Glob - M_D + M_P1 + M_P2 with
  • M_P1 P torque component of the PI controller in the first phase
  • M_P2 P torque component of the PI controller in the second phase
  • a further method variant according to the invention can provide that a damping component is included in the determination of the starting function.
  • This damping component can be processed both in the first phase, ie when adjusting the starting speed, and in the second phase of factor calculation, ie when synchronizing or reducing slip.
  • the use of the damping component can advantageously make a major change, e.g. B. the engine speed, prevent.
  • the damping component is preferably applied to the difference between engine speed and transmission input speed.
  • Another development of the invention provides that when determining the desired clutch torque by the starting function z. B. the transmission input speed and / or engine speed dependent portion is dispensed with. Any other proportions can of course be reduced or omitted in order to further optimize the overall determination of the starting function in the method according to the invention.
  • this throttle-valve-dependent part is used both alone and in connection with the parts already mentioned for determining the starting function.
  • the throttle valve-dependent portion z. B With increasing throttle valve angle, the desired clutch torque is reduced in order to increase the starting speed and to prevent almost identical engine speeds from occurring during the starting process over a larger load range. lie.
  • the throttle valve-dependent component and / or the engine speed-dependent component can be reduced when calculating the desired clutch torque.
  • Embodiment of the invention provides that at least the gradient of a portion is appropriately limited when determining the starting function. Limiting the gradient of the throttle valve-dependent component and / or the engine speed-dependent component is particularly advantageous. By means of a suitable choice of the limits, in particular in the case of the gradient of the throttle valve-dependent portion, the influence of the portion can be reduced to such an extent that undesired acceleration of the vehicle can be avoided.
  • the method according to the invention can be used for electronic clutch management (EKM) as well as for an automated manual transmission (ASG).
  • EKM electronic clutch management
  • ASG automated manual transmission
  • the method according to the invention can be used in continuously variable CVT transmissions.
  • FIG. 1 is a block diagram of the invention
  • FIG. 2 shows a diagram with a basic sequence of a starting process
  • FIG. 3 shows a diagram with a starting process with a tip-in
  • FIG. 4 shows a diagram with a starting process with back-out.
  • FIG. 1 shows a starting strategy in the form of a block diagram. This is, in particular, a start-up function that is compatible with global control and in which the start-up speed is adjusted.
  • the accelerator pedal angle PWG, the engine speed n_mot, the transmission input speed n_get and the engine torque Me are provided as input variables. These input variables are processed to the desired clutch torque M_Rsoll as the output variable.
  • a starting speed is determined via a starting target speed calculation, which is compared with the engine speed and serves as an input variable for the first phase (adjusting the starting speed).
  • This input variable is converted into a torque contribution M_P1 and M_l via a PI controller with the parameters KP1 and KI1.
  • the engine speed is compared with the transmission input speed and serves as an input variable for the synchronization phase.
  • a PI controller with parameters KI2 and KPp2 is also provided in the synchronizing block, so that a torque contribution M_P2 is output.
  • the I component of the PI controller is added to the I component of the PI controller of the start-up speed control block and fed to an integrator. The output variable of the integrator then forms the torque component M_l.
  • the engine speed and the transmission input speed serve as input variables for the factor calculation, in which weighting is carried out with a speed ratio SR, which is defined by the quotient of the transmission input speed and engine speed.
  • This weighting is carried out by the functions U (SR) and f 2 (SR).
  • the function (SR) serves as an input variable for the adjustment of the starting speed block and the function f 2 (SR) serves as an input variable for the synchronization block.
  • the engine speed is also provided as an input variable for the damping component.
  • the function fi (SR) also has an influence on the damping component, so that a damping moment contribution M_D is output as the output variable.
  • the engine torque is weighted by the factor calculation and forms an input variable for the global control. Furthermore, the engine speed and the transmission input speed are provided as input variables for the global control. A torque contribution M_GIob is output as the common output variable.
  • FIG. 2 shows a starting process over time.
  • the diagram is divided into the first phase (adjusting the starting speed) and the second phase (synchronizing or reducing slip).
  • the diagram shows the curves of the starting speed n_Anf, the engine speed n_mot and the transmission input speed n_get.
  • the engine speed is adapted to the starting speed so that it coincides with the course of the starting speed at the end of the first phase.
  • the engine speed is adjusted to the transmission input speed and thus leaves the course of the starting speed.
  • the engine speed and the transmission input speed are approximately identical, so that the further course of the engine speed and the transmission input speed is identical. From this point on, the engine speed and the gearbox input speed are synchronized.
  • FIG. 3 shows a start-up process with a tip-in.
  • the picture comprises two representations, among others the target clutch torque M_Rsoll and the engine speed n_mot with a solid line, the transmission input speed n_get with a dotted line and a throttle valve-dependent factor K ( ⁇ ) and the throttle valve angle DKLW are shown with a dashed line over time.
  • the diagram shows the effect of the gradient limitation of K ( ⁇ ) when starting with a tip-in.
  • the limited gradient of K ( ⁇ ) can be seen in the upper illustration. Because of this limitation, a collapse in the desired clutch torque M_Rsoll following the tip-in can be largely avoided. It must be noted, however, that a compromise must be made in tuning the gradient.
  • FIG. 4 shows a start-up process with a back-out.
  • the picture includes two representations, u. a.
  • the target clutch torque M_Rsoll and the engine speed n_mot with a solid line, the transmission input speed n_get with a dotted line and a throttle valve-dependent factor K ( ⁇ ) and the throttle clutch angle DKLW with a dashed line are shown over time.
  • the diagram shows the effect of the gradient limitation of K ( ⁇ ) when starting with back-out.
  • the limited gradient of K ( ⁇ ) can be seen in the upper illustration.
  • An extremely flat increase in K () allows the clutch to be pulled shut suddenly before synchronizing n_mot and n_getr. suppress dig.
  • a gradient limitation to one or more parts is advantageous for determining the desired clutch torque, so that in particular the starting functionality of an automated clutch and / or an automated transmission is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

Es wird ein Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung und/oder eines automatisierten Getriebes eines Fahrzeugs vorgeschalgen, bei dem mittels eines elektronischen Kupplungsmanagements (EKM) ein Kupplungssollmoment bestimmt wird, wobei das Kupplungssollmoment als Ausgangsgrösse für eine Anfahrfunktion in Abhängigkeit von geeigneten Eingangsgrössen ermittelt wird.

Description

Getriebe
Die vorliegende Erfindung betrifft ein Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung und/oder eines automatisierten Getriebes eines Fahrzeugs, bei dem mittels eines elektronischen Kupplungsmanagements (EKM) ein Kupplungssollmoment bestimmt wird, sowie eine Vorrichtung zur Steuerung und ein solches Getriebe.
Aus der Fahrzeugtechnik sind automatisierte Kupplungen und/oder automatisierte Getriebe bekannt, wodurch insgesamt eine Automatisierung des Antriebsstranges eines Fahrzeugs, insbesondere eines Kraftfahrzeuges ermöglicht wird. Durch ein elektronisches Kupplungsmanagement (EKM) wird ein Einkuppelvorgang bei einem gewünschten Schaltvorgang automatisiert.
Dazu ist es erforderlich, dass mit Hilfe der automatisierten Kupplung ein entsprechendes Kupplungssollmoment unter vorliegenden Betriebsbedingungen bestimmt wird. Insbesondere beim Anfahrvorgang werden erhöhte Anforderungen an das Kupplungsmanagement gestellt. Beispielsweise muß dabei in einem bestimmten Maß Einfluß- möglichkeiten durch den Fahrer berücksichtigt werden und auch veränderte Betriebsbedingungen, wie z. B. ansteigendes Motormoment bei Turbomotoren oder Kupplungseigenschaften berücksichtigt werden.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung und/oder eines automatisierten Getriebes zu schaffen, bei dem die Anfahrfunktionalität insbesondere des elektronischen Kupplungsmanagement verbessert wird.
Dies wird erfindungsgemäß dadurch erreicht, dass von dem elektronischen Kupp- lungsmanagement eine Anfahrfunktion in Abhängigkeit von vorbestimmten Eingangs- größen mit dem Kupplungssollmoment als Ausgangsgröße ermittelt wird, welches dann an der Kupplung des Fahrzeugs eingestellt werden soll. Dadurch kann bei einem Fahrzeug bzw. bei einem Kraftfahrzeug mit automatischer Kupplungs- und/oder Getriebesteuerung die Anfahrdrehzahl in stärkerem Maß einem Fahrerwunsch, beurteilt z. B. nach einer Fahrpedal- oder Drosselklappenstellung, entsprechen. Die Anfahrfunktionalität des elektronischen Kupplungsmanagement wird dahingehend erweitert, dass insbesondere eine definierte Motordrehzahl während des Anfahrvorgangs eingestellt werden kann. Somit ist eine verbesserte Reproduzierbarkeit von Anfahrten bei veränderlichen Betriebsbedingungen möglich.
Gemäß einer vorteilhaften Weiterbildung der Erfindung kann das Kupplungssollmoment durch die Anfahrfunktion in Abhängigkeit zumindest einer der folgenden Eingangsgrößen, wie z. B. Fahrpedalwinkel, Motordrehzahl, Getriebeeingangsdrehzahl und/oder Motormoment, bestimmt werden.
Erfindungsgemäß ist vorgesehen, dass die Anfahrfunktion mit Hilfe einer Faktorenberechnung im wesentlichen in zwei Phasen aufgeteilt wird. Selbstverständlich ist es auch möglich, dass dabei weitere Phasen vorgesehen werden, um den Anfahrvorgang bei einem Fahrzeug weiter zu optimieren.
In vorteilhafter Weise wird bei dem erfindungsgemäßen Verfahren vorzugsweise in einer ersten Phase der Faktorenberechnung dafür gesorgt, dass die Motordrehzahl im wesentlichen einer Anfahrsolidrehzahl folgt, um die Anfahrdrehzahl einzuregeln. In einer zweiten Phase wird dagegen die Angleichung von der Motordrehzahl und der Getriebe- eingangsdrehzahl verlangt, um diese zu synchronisieren. Dadurch wird eine scharfe Umschaltung zwischen den Phasen vermieden und in Abhängigkeit von einer sogenannten Speedratio, welche definiert ist als Quotient aus Getriebeeingangsdrehzahl und Motordrehzahl, ein kontinuierliches Überblenden der beiden Phasen innerhalb des Anfahrvorganges ermöglicht. Eine vorteilhafte Ausgestaltung der Erfindung sieht vor, dass zur Berechnung des Kupplungssollmomentes als Ausgangsgröße zunächst ein Momentenbeitrag gemäß einer Globalsteuerung ermittelt wird. Dazu können z. B. Anteile als Funktionen von der Getriebeeingangsdrehzahl und/oder der Motordrehzahl bestimmt werden. Des weiteren ist auch die Verwendung eines motormomentenabhängigen Anteils möglich. Besonders vorteilhaft ist es jedoch, wenn der motormomentenabhängige Anteil durch die Speedratio geeignet gewichtet wird, so dass dieser gerade bei Erreichen des Synchronpunktes an der Kupplung seine volle Wirksamkeit erreicht wird. Selbstverständlich ist es auch denkbar, dass noch weitere Anteile bei der Bestimmung der Anfahrfunktion verwendet werden.
Es hat sich gezeigt, dass eine geeignete Gradientenbegrenzung beispielsweise des motormomentenabhängigen Anteils besonders vorteilhaft ist, um die Anfahrfunktionalität des elektronischen Kupplungsmanagement durch das erfindungsgemäße Verfahren weiter zu verbessern.
Die vorgenannten Anteile können z. B. durch entsprechende Regelanteile, deren Ziel die Sicherstellung der oben genannten phasenspezifischen Aufgaben ist, ergänzt werden.
Gemäß einer anderen Weiterbildung der Erfindung kann beispielsweise bei kleineren Werten der Speedratio, z. B. wenn der Wert des Speedratio (SR) etwa im Bereich von SR < 0,5 bis 0,7 liegt, eine Einregelung der Anfahrsolldrehzahl im Vordergrund stehen. Dabei ist es möglich, dass die Anfahrdrehzahl über eine geeignete, z. B. monoton wachsende Kennlinie in Abhängigkeit vom Fahrpedalwinkel ermittelt wird. Selbstverständlich ist es auch möglich, dass eine beliebig anders ausgestaltete Kennlinie dabei verwendet wird.
Zur Vermeidung von schnellen und/oder zeitweise gegenläufigen Änderungen des Fahrpedalwinkels bzw. des Drosselklappenwinkels zu Änderungen des Kupplungssollmomentes wird die ermittelte Anfahrdrehzahl beispielsweise tiefpaßgefiltert, Vorzugs- weise mit einem PT1 -Glied. Es ist auch denkbar, dass andere Filterglieder verwendet werden können.
Gemäß einer vorteilhaften Weiterbildung ist vorgesehen, dass der verwendete Filter mittels der Motordrehzahl initialisiert wird, insbesondere wenn die Motordrehzahl im Neutralgang eine Leerlaufdrehzahl wesentlich, z. B. um Werte, die etwa bei 500 Umdrehungen pro Minute liegen, übersteigt. Selbstverständlich kann die Initialisierung auch bei kleineren oder größeren Werten erfolgen.
Die bei der Faktorenberechnung von der Speedratio gewichtete Differenz fι(SR)*(n_Anf-n_mot) kann z. B. über einen Pl-Regler in einem Beitrag zu dem Kupplungssollmoment umgesetzt werden. Der Pl-Regler kann als Parameter den Faktor KP1 des Proportionalgliedes und den Faktor KI1 des Integrators aufweisen. Selbstverständlich kann auch ein anderer Regler und/oder andere Parameter verwendet werden.
Insbesondere für größere Werte der Speedratio, z. B. wenn der Wert der Speedratio (SR) etwa im Bereich von SR > 0,6 bis 0,9 liegt, kann das Erreichen des Synchronpunktes in den Vordergrund bei der Faktorenberechnung rücken. Es ist denkbar, dass dieses auch bei von den angegebenen Werten der Speedratio abweichenden Werten vorgesehen werden kann.
Nach einer Weiterbildung der Erfindung kann auch ein Pl-Regler eingesetzt werden, dessen Eingangsgröße z. B. f2 (SR)*(n_mot-n_get) darstellt. Vorzugsweise weist der Pl-Regler als Parameter den Faktor KP2 des Proportionalgliedes und den Faktor KI2 des Integrators auf. Auch hier ist die Verwendung von anderen Reglern und/oder Parametern möglich.
Eine Weiterbildung der Erfindung sieht vor, dass vorzugsweise die I-Anteile beider Regelungen durch denselben Integrator realisiert werden. Dadurch wird in vorteilhafter Weise die Komplexität der verwendeten Schaltung verringert. Es kann vorgesehen sein, dass zu dem vorhandenen Integrator ein zusätzlicher Integrator verwendet wird, der z.
B. in Reihe geschaltet ist. Der zusätzliche Integrator kann beispielsweise eine kleinere Verstärkung KI3 aufweisen, um Dauerschlupf an der Kupplung, z. B. aufgrund rampen- förmiger Störgrößen, wie einem kontinuierlich anwachsenden Motormoment, entgegenzuwirken. Es ist denkbar, dass auch noch weitere Integratoren verwendet werden, wobei auch eine andere Schaltungskonstellation vorgesehen werden kann, sowie größere oder kleinere Verstärkungen verwendet werden können.
Nach einer anderen Weiterbildung der Erfindung kann vorgesehen sein, dass bei dem erfindungsgemäßen Verfahren das als Ausgangsgröße ermittelte Kupplungssollmoment begrenzt wird. Beispielsweise kann das Kupplungssollmoment (M_Rsoll) durch die Bedingung M_Rsoll > 0, begrenzt werden. Falls das Kupplungssollmoment einer solchen Begrenzung unterliegt, kann der verwendete Integrator und/oder die gegebenenfalls getrennten Integratoren einer geeigneten Maßnahme zur Vermeidung eines soge- nannten Windups unterzogen werden. Dies kann z. B. dadurch erreicht werden, dass nach der Begrenzung des Kupplungssollmoments auf einen entsprechenden I- Momentenanteil (M_l) zurückgerechnet wird. Vorzugsweise kann dies durch die Subtraktion des Momentenbeitrages der Globalsteuerung (M_Glob) und eines Dämpfungs- Momentenanteils (M_D) sowie durch Addition der P-Anteile M_P1 und M_P2 der Pi- Regler der ersten und der zweiten Phase bei der Faktorenberechnung von bzw. zu dem begrenzten Kupplungsollmomentes (M_Rsoll_begrenzt) erfolgen.
Somit gilt folgende Gleichung:
M_l = M_Rsoll_begrenzt - M_Glob - M_D + M_P1 + M_P2 mit
M_Rsoll_begrenzt = begrenztes Kupplungssollmoment
M_D Dämpfungsmomentenanteil
M_P1 = P-Momentenanteil des Pl-Regler bei der ersten Phase
M_P2 = P-Momentenanteil des Pl-Regler bei der zweiten Phase
Selbstverständlich können beim Zurückrechnen auf den I-Momentenanteil auch andere bzw. weitere Anteile berücksichtigt werden. Eine weitere erfindungsgemäße Verfahrensvariante kann vorsehen, dass bei der Bestimmung der Anfahrfunktion ein Dämpfungsanteil einfließt. Dieser Dämpfungsanteil kann sowohl bei der ersten Phase, also beim Einregeln der Anfahrdrehzahl als auch bei der zweiten Phase der Faktorenberechnung, also beim Synchronisieren bzw. Schlupfabbauen, verarbeitet werden. Bei der ersten Phase kann die Verwendung des Dämpfungsanteils in vorteilhafter Weise eine starke Änderung, z. B. der Motordrehzahl, verhindern. Bei der zweiten Phase bzw. Synchronisierungsphase wird der Dämpfungsanteil vorzugsweise auf die Differenz von Motordrehzahl und Getriebeeingangsdrehzahl angewendet.
Eine andere Weiterbildung der Erfindung sieht vor, dass bei der Bestimmung des Kupplungssollmomentes durch die Anfahrfunktion z. B. auf den getriebeeingangsdreh- zahl- und/oder motordrehzahlabhängigen Anteil verzichtet wird. Selbstverständlich kön- nen beliebige andere Anteile reduziert oder weggelassen werden, um insgesamt die Ermittlung der Anfahrfunktion bei dem erfindungsgemäßen Verfahren weiter zu optimieren.
Bei einer weiteren Variation der Erfindung ist es vorteilhaft, wenn bei der Bestimmung der Anfahrfunktion z. B. ein drosselklappenabhängiger Anteil K(α) verwendet wird. Durch die Einführung des Anteils K(α) ergibt sich für M_Rsoll folgende Gleichung:
M_Rsoll = K(α)*f(n_mot) mit f(n_mot) = Funktion abhängig von der Motordrehzahl.
Es kann vorgesehen sein, dass dieser drosselklappenabhängige Anteil sowohl alleine als auch im Zusammenhang mit den bereits genannten Anteilen zur Bestimmung der Anfahrfunktion verwendet wird. Durch die Verwendung des drosselklappenabhängigen Anteils kann z. B. bei steigendem Drosselklappenwinkel das Kupplungssollmoment reduziert werden, um die Anfahrdrehzahl anzuheben und zu verhindern, dass beim Anfahrvorgang über einen größeren Lastbereich nahezu identische Motordrehzahlen vor- liegen. Insbesondere kann bei der Berechnung des Kupplungssollmomentes der drosselklappenabhängige Anteil und/oder de motordrehzahlabhängigen Anteil reduziert werden.
Unter Berücksichtigung der stationären und der dynamischen Vorgänge bei einer Anfahrvorgang eines Kraftfahrzeugs wird gemäß einer weiteren. Ausgestaltung der Erfindung vorgesehen, dass zumindest der Gradient eines Anteils bei der Ermittlung der Anfahrfunktion geeignet begrenzt wird. Besonders vorteilhaft ist die Begrenzung des Gradienten des drosselklappenabhängigen Anteils und/oder des motordrehzahlabhän- gigen Anteils. Durch eine geeignete Wahl der Grenzen, insbesondere bei dem Gradienten des drosselklappenabhängigen Anteils läßt sich der Einfluß des Anteils soweit reduzieren, dass unerwünschte Beschleunigung des Fahrzeuges vermieden werden können.
Insbesondere die dynamischen Vorgänge bei einem Anfahrvorgang werden durch folgende Gleichung dargestellt
— M lsoll = f(n_mot) * ■^^ * d l K(QL) * df( l-m0t) * dn-mot dt da dt dn mot dt
mit n_mot = Motordrehzahl
K(α) = drosselklappenabhängiger Anteil.
Bei einem Lastwechsel, insbesondere bei einem Tipp-in kann durch eine geeignete Be- grenzung des Gradienten des drosselklappenabhängigen Anteils ein Einbruch des Kupplungssollmomentes im Anschluß an den Tipp-in weitgehend vermieden werden. Je nach Betriebsbedingungen ist eine geeignete Begrenzung des Gradienten zu finden, um insgesamt einen optimierten Anfahrvorgang zu gewährleisten. Auch bei einem anderen Lastwechsel, insbesondere bei einem Back-out, ist eine Begrenzung des Betrages des Gradienten vorteilhaft. Durch einen extrem flachen Anstieg des drosselklappenabhängigen Anteils läßt sich ein unerwünschtes Zuziehen der Kupplung beim Back-out vollständig unterdrücken.
Das erfindungsgemäße Verfahren läßt sich wie beschrieben beim elektronischen Kupplungsmanagement (EKM) als auch bei einem automatisierten Schaltgetriebe (ASG) prinzipiell anwenden. Darüber hinaus ist es auch denkbar, dass das erfindungs- gemäße Verfahren bei stufenlosen CVT-Getrieben eingesetzt werden kann.
Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und der Zeichnung.
Es zeigen:
Figur 1 ein Blockschaltbild des erfindungsgemäßen
Verfahrens; Figur 2 ein Diagramm mit einem prinzipiellen Ablauf eines Anfahrvorganges;
Figur 3 ein Diagramm mit einem Anfahrvorgang mit einem Tip-In; und Figur 4 ein Diagramm mit einem Anfahrvorgang mit Back-out.
In Figur 1 ist eine Anfahrstrategie in Form eines Blockschaltbildes dargestellt. Es handelt sich hierbei insbesondere um eine globalsteuerungskompatible Anfahrfunktion, bei der die Anfahrdrehzahl eingeregelt wird. Als Eingangsgrößen sind bei dieser Anfahrstrategie der Fahrpedalwinkel PWG, die Motordrehzahl n_mot, die Getriebeeingangsdrehzahl n_get und das Motormoment Me vorgesehen. Diese Eingangsgrößen werden zu dem als Ausgangsgröße vorgesehenen Kupplungssollmoment M_Rsoll verarbeitet.
Mit dem Fahrpedalwinkel wird über eine Anfahrsolldrehzahlberechnung eine Anfahrdrehzahl ermittelt, welche mit der Motordrehzahl abgeglichen wird und als Eingangsgröße für die erste Phase (Einregeln Anfahrdrehzahl) dient. Diese Eingangsgröße wird über einen Pl-Regler mit den Parametern KP1 und KI1 in ein Momentenbeitrag M_P1 und M_l umgesetzt.
Die Motordrehzahl wird mit der Getriebeeingangsdrehzahl abgeglichen und dient als Eingangsgröße für die Synchronisierungsphase. In dem Block Synchronisieren ist e- benfalls ein Pl-Regler mit den Parametern KI2 und KPp2 vorgesehen, so dass ein Momentenbeitrag M_P2 ausgegeben wird. Der I-Anteil des Pl-Reglers wird mit dem I-Anteil des Pl-Reglers des Blockes Einregeln Anfahrdrehzahl addiert und einem Integrator zugeführt. Die Ausgangsgröße des Integrators bildet dann den Momentenanteil M_l.
Die Motordrehzahl und die Getriebeeingangsdrehzahl dienen als Eingangsgrößen der Faktorenberechnung, bei der mit einer Speedratio SR, welche durch den Quotient von Getriebeeingangsdrehzahl und Motordrehzahl definiert ist, gewichtet. Diese Wichtung wird durch die Funktionen U (SR) und f2 (SR) durchgeführt. Die Funktion (SR) dient als Eingangsgröße für den Block Einregeln der Anfahrdrehzahl und die Funktion f2 (SR) dient als Eingangsgröße für den Block Synchronisieren.
Die Motordrehzahl ist auch als Eingangsgröße für den Dämpfungsanteil vorgesehen. Bei dem Dämpfungsanteil nimmt zusätzlich die Funktion fi (SR) Einfluß, so dass insgesamt als Ausgangsgröße ein Dämpfungsmomentenbeitrag M_D ausgegeben wird. Das Motormoment wird durch die Faktorenberechnung gewichtet und bildet eine Eingangsgröße für die Globalsteuerung. Des weiteren sind die Motordrehzahl und die Getriebeeingangsdrehzahl als Eingangsgrößen für die Globalsteuerung vorgesehen. Als gemeinsame Ausgangsgröße wird ein Momentenbeitrag M_GIob ausgegeben.
Die gemeinsame Ausgangsgrößen der Blöcke Einregeln Anfahrdrehzahl und Synchronisieren werden mit dem Dämpfungsmomentenbeitrag M_D überlagert. Die dabei entstehende Ausgangsgröße wird dann zu dem Momentenbeitrag M_Glob addiert und bildet letztendlich das gewünschte Kupplungssollmoment M_Rsoll als Ausgangsgröße.
In Figur 2 ist ein Anfahrvorgang über die Zeit dargestellt. Das Diagramm in die erste Phase (Einregeln Anfahrdrehzahl) und in die zweite Phase (Synchronisieren bzw. Schlupfabbau) eingeteilt. In dem Diagramm sind die Verläufe der Anfahrdrehzahl n_Anf, die Motordrehzahl n_mot und die Getriebeeingangsdrehzahl n_get dargestellt.
Es wird deutlich, dass bei der ersten Phase die Motordrehzahl an die Anfahrdrehzahl angepaßt wird, so dass sie zum Ende der ersten Phase mit dem Verlauf der Anfahrdrehzahl übereinstimmt. Bei Beginn der zweiten Phase (Synchronisierungsphase) wird die Motordrehzahl an die Getriebeeingangsdrehzahl angeglichen und verläßt damit den Verlauf der Anfahrdrehzahl.
Etwa bei 3 Sekunden ist die Motordrehzahl und die Getriebeeingangsdrehzahl in etwa identisch, so dass der weitere Verlauf der Motordrehzahl und der Getriebeeingangsdrehzahl identisch ist. Ab diesem Zeitpunkt sind die Motordrehzahl und die Getriebeein- gangsdrehzahl synchronisiert.
In Figur 3 ist ein Anfahrvorgang mit Tipp-In dargestellt. Das Bild umfaßt zwei Darstellungen, wobei u. a. das Kupplungssollmoment M_Rsoll und die Motordrehzahl n_mot mit durchgezogener Linie, die Getriebeeingangsdrehzahl n_get mit gepunkteter Linie und ein drosselklappenabhängiger Faktor K(α) sowie der Drosselklappenwinkel DKLW mit gestrichelter Linie über die Zeit dargestellt sind.
Aus dem Diagramm wird die Wirkung der Gradientenbegrenzung von K(α) bei einem Anfahrvorgang mit Tipp-In deutlich. In der oberen Darstellung ist der begrenzte Gradient von K(α) zu erkennen. Aufgrund dieser Begrenzung kann ein Einbruch des Kupplungssollmoment M_Rsoll im Anschluß an den Tipp-in weitgehend vermieden werden. Es muß jedoch bemerkt werden, dass ein Kompromiss in der Abstimmung des Gradienten eingegangen werden muß.
In Figur 4 ist ein Anfahrvorgang mit Back-out dargestellt. Das Bild umfaßt zwei Darstellungen, wobei u. a. das Kupplungssollmoment M_Rsoll und die Motordrehzahl n_mot mit durchgezogener Linie, die Getriebeeingangsdrehzahl n_get mit gepunkteter Linie und ein drosselklappenabhängiger Faktor K(α) sowie der Drossel kl appenwinkel DKLW mit gestrichelter Linie über die Zeit dargestellt sind.
Aus dem Diagramm wird die Wirkung der Gradientenbegrenzung von K(α) bei einem Anfahrvorgang mit Back-out deutlich. In der oberen Darstellung ist der begrenzte Gradient von K(α) zu erkennen. Durch einen extrem flachen Anstieg von K( ) läßt sich ein plötzliches Zuziehen der Kupplung vor Synchronisieren von n_mot und n_getr vollstän- . dig unterdrücken.
Für das Ermitteln des Kupplungssollmomentes ist eine Gradientenbegrenzung auf einen oder auf mehrere Anteilen vorteilhaft, so dass insbesondere die Anfahrfunktionalität einer automatisierten Kupplung und/oder eines automatisierten Getriebes verbessert wird.
Die mit der Anmeldung eingereichten Patentansprüche sind Formulierungsvorschläge oh- ne Präjudiz für die Erzielung weitergehenden Patentschutzes. Die Anmelderin behält sich vor, noch weitere, bisher nur in der Beschreibung und/oder Zeichnungen offenbarte
Merkmalskombination zu beanspruchen.
In Unteransprüchen verwendete Rückbeziehungen weisen auf die weitere Ausbildung des Gegenstandes des Hauptanspruches durch die Merkmale des jeweiligen Unteranspruches hin; sie sind nicht als ein Verzicht auf die Erzielung eines selbständigen, gegenständlichen Schutzes für die Merkmalskombinationen der rückbezogenen Unteransprüche zu verstehen.
Da die Gegenstände der Unteransprüche im Hinblick auf den Stand der Technik am Prioritätstag eigene und unabhängige Erfindungen bilden können, behält die Anmelderin sich vor, sie zum Gegenstand unabhängiger Ansprüche oder Teilungserklärungen zu machen. Sie können, weiterhin auch selbständige Erfindungen enthalten, die eine von den Gegenständen der vorhergehenden Unteransprüche unabhängige Gestaltung aufweisen.
Die Ausführungsbeispiele sind nicht als Einschränkung der Erfindung zu verstehen. Vielmehr sind im Rahmen der vorliegenden Offenbarung zahlreiche Abänderungen und Modifikationen möglich, insbesondere solche Varianten, Elemente und Kombinationen und/oder Materialien, die zum Beispiel durch Kombination oder Abwandlung von einzel- nen in Verbindung mit den in der allgemeinen Beschreibung und Ausführungsformen sowie den Ansprüchen beschriebenen und in den Zeichnungen enthaltenen Merkmalen bzw. Elementen oder Verfahrensschritten für den Fachmann im Hinblick auf die Lösung der - Aufgabe entnehmbar sind und durch kombinierbare Merkmale zu einem neuen Gegenstand oder zu neuen Verfahrensschritten bzw. Verfahrensschrittfolgen führen, auch soweit sie Herstell-, Prüf- und Arbeitsverfahren betreffen.

Claims

Patentansprüche
Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung und/oder eines automatisierten Getriebes, bei einem Fahrzeug, bei dem mittels eines elektronischen Kupplungsmanagements (EKM) ein Kupplungssollmoment bestimmt wird, dadurch gekennzeichnet, dass das Kupplungssollmoment als Ausgangsgröße für eine Anfahrfunktion in Abhängigkeit von geeigneten Eingangsgrößen ermittelt wird.
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass zumindest eine der folgenden Eingangsgrößen, wie Fahrpedalwinkel (PWG), Motordrehzahl (n_mot), Getriebeeingangsdrehzahl (n_get), Motormoment (Me), verwendet wird.
3. Verfahren nach einem der Ansprüche 1 oder 2 , dadurch gekennzeichnet, dass die Anfahrfunktion mittels einer Faktorenberechnung im wesentlichen in zumindest zwei Phasen aufgeteilt wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass bei einer ersten Phase der Faktorenberechnung die Motordrehzahl im wesentlichen einer Anfahrsolldreh- - zahl (a_Anf) angeglichen wird, um die Anfahrdrehzahl einzuregeln, und dass bei einer zweiten Phase der Faktorenberechnung die Motordrehzahl (n_mot) mit der Getriebeeingangsdrehzahl (n_get) synchronisiert wird.
5. Verfahren nach einem der vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass bei der Berechnung des Kupplungssollmomentes M_Rsoll mit einer Globalsteuerung ein Momentenbeitrag M_Glob ermittelt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Momentenbeitrag M_Glob aus mehreren Anteilen ermittelt wird.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass wenigstens ein Anteil als Funktion von der Getriebeeingangsdrehzahl (n_get) und/oder von der Motordrehzahl (n_mot) bestimmt wird.
8. Verfahren nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass ein motormomentenabhängiger Anteil (KME*Me) bestimmt wird.
9. Verfahren nach Anspruch 8 , dadurch gekennzeichnet, dass der motormomente- nabhängige Anteil (KME*Me) mit einer Speedratio (SR) gewichtet wird, wobei SR
= n_get/n_mot gilt, so dass bei Erreichen von Synchron an der Kupplung der mo- tormomentenabhängige Anteil im wesentlichen wirksam wird.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass zumindest bei dem gewichteten, motormomentenabhängigen Anteil (SR*KME*Me) eine geeignete
Gradientenbegrenzung durchgeführt wird.
11. Verfahren nach einem der Ansprüche 6 bis 10, dadurch gekennzeichnet, dass die ermittelten Anteile durch zumindest einen Regleranteil ergänzt werden, um die phasenspezifischen Aufgaben bei der Anfahrfunktion sicherzustellen.
12. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass bei kleineren Werten von der Speedratio (SR) die Einregelung der Anfahrsolldrehzahl (n_Anf) im Vordergrund steht und durch eine geeignete Kennlinie zumindest in Abhängigkeit von dem Fahrpedal Winkel (PWG) ermittelt wird.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die jeweils ermittelte Anfahrdrehzahl mit einem Filter gefiltert wird.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass als Filter ein Tiefpaßfilter verwendet wird.
15. Verfahren nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass der Filter mit der Motordrehzahl (n_mot) initialisiert wird, falls die Motordrehzahl
(n_mot) im Neutralgang die Leerlaufdrehzahl wesentlich übersteigt.
16. Verfahren nach einem der Ansprüche 11 oder 15 , dadurch gekennzeichnet, dass die mittels der Speedratio (SR) gewichtete Differenz [fι(SR)*(n_Anf - n_motj] über einen Pl-Regler mit geeigneten Parametern in einen Beitrag zum Kupplungssollmoment (M_Rsoll) umgesetzt wird.
17. Verfahren nach einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, dass bei größeren Werten der Speedratio (SR) das Erreichen von Synchron in den Vorder- grund rückt und ein Pl-Regler mit geeigneten Parametern eingesetzt wird, wobei die mittels der Speedratio (SR) gewichtete Differenz [f2(SR)*(n_mot - n_get)] dem Pl-Regler als Eingangssignal dient und in einen Beitrag zum Kupplungssollmoment M__Rsoll umgesetzt wird.
18. Verfahren nach einem der Ansprüche 16 oder 17 , dadurch gekennzeichnet, dass die jeweiligen I-Anteile der beiden Pl-Regler durch einen gemeinsamen Integrator- realisiert werden.
19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass neben dem gemein- samen Integrator ein- zusätzlicher Integrator verwendet wird.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass der zusätzliche Integrator in Reihe geschaltet wird und dass als Parameter eine relativ geringe Verstärkung (KI3) verwendet wird.
21. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das als Ausgangsgröße ermittelte Kupplungssollmoment (M_Rsoll) begrenzt wird.
22. Verfahren nach Anspruch 21 , dadurch gekennzeichnet, dass beim Begrenzen des Kupplungssollmomentes (M_Rsoll) zumindest im Bereich von niedrigen Werten des Kupplungssollmomentes (M_Rsoll) eine neue Anfahrfunktion an die Anfahrfunktion angeglichen wird und dass erst bei steigenden Werten des Kupplungssollmomentes (M_Rsoll) die neue Anfahrfunktion von der bestehenden Anfahr- funktion entfernt wird.
23. Verfahren nach einem der Ansprüche 21 oder 22, dadurch gekennzeichnet, dass bei der Begrenzung des Kupplungssollmomentes (M_Rsoll) jeder Integrator einer geeigneten Maßnahme zur Vermeidung des sogenannten Windups unterzogen wird.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass nach dem Begrenzen des Kupplungssollmomentes (M_Rsoll) der I-Anteil (M_l) mit folgender Gleichung zurückgerechnet: M_l = M_Rsoll_begrenzt - M_Glob - M_D + M_P1 + M_P2 mit
M_Rsoll_begrenzt = begrenztes Kupplungssollmoment
M_D = Dämpfungsmomentenanteil
M_P1 = P-Momentenanteil des Pl-Regler bei der ersten Phase M_P2 = P-Momentenanteil des Pl-Regler bei der zweiten Phase
25. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Bestimmung der Anfahrfunktion ein Dämpfungsmomentenanteil (M_D) verwendet wird.
26. Verfahren nach Anspruch 25, dadurch gekennzeichnet, dass der Dämpfungsmomentenanteil (M_D) beim Einregeln der Anfahrdrehzahl (erste Phase) und/oder beim Synchronisieren (zweite Phase) verarbeitet wird.
27. Verfahren nach einem der Ansprüche 7 bis 26, dadurch gekennzeichnet, dass bei der Bestimmung der Anfahrfunktion auf den Anteil als Funktion von der Getriebeeingangsdrehzahl (n_get) und/oder von der Motordrehzahl (n_mot) verzichtet wird.
28. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass bei der Bestimmung der Anfahrfunktion ein drosselklappenabhängiger Anteil
(K( )) verwendet wird.
29. Verfahren nach einem der Ansprüche 27 oder 28, dadurch gekennzeichnet, dass durch die Einführung des Anteils (K(α)) für das Kupplungssollmoment (M_Rsoll) folgende Gleichung gilt:
M_Rsoll = K(α)*f(n_mot) mit f(n_mot) = Funktion abhängig von der Motordrehzahl.
30. Verfahren nach einem der Ansprüche 28 bis 30, dadurch gekennzeichnet, dass für die zeitliche Ableitung des Kupplungssollmomentes (M_Rsoll) folgende Gleichung gilt:
d -M*_ ,Rs.o,ll _ =- f(.n_mo .tN) * * —dK( ^«)- * * —da + ι K ^(rμ^) ^ * df(n-mot) ^ dn_mot dt da dt dn mot dt
31.
mit n_mot = Motordrehzahl und K(α) = drosselklappenabhängiger Anteil.
32. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest bei dem drosselklappenabhängigen Anteil (K( )) und/oder bei dem motordrehzahlabhängigen Anteil f(n_mot) eine geeignete Gradientenbegrenzung durchgeführt wird.
33. Verfahren nach Anspruch 31 , dadurch gekennzeichnet, dass der Betrag des Gra- dienten dK(α)/dt geeignet begrenzt wird, um den Einfluß von K(α) derart zu reduzieren, dass unerwünschte Beschleunigungen des Fahrzeuges vermieden werden.
34. Verfahren nach einem der Ansprüche 31 oder 32, dadurch gekennzeichnet, dass durch eine geeignete Begrenzung des Gradienten (dK(α)/dt) ein Abfall des Kupplungssollmomentes (M_Rsoll) bei einem Lastwechsel, insbesondere beim Tipp-In, vermieden wird.
35. Verfahren nach einem der Ansprüche 31 oder 32, dadurch gekennzeichnet, dass durch eine geeignete Begrenzung des Gradienten (dK(α)/dt) ein plötzliches Zuziehen der Kupplung beim Lastwechsel, insbesondere beim Back-Out, vermieden wird.
PCT/DE2001/004779 2001-01-09 2001-12-17 Getriebesteuerung mittels eines elektronischen kupplungsmanagements WO2002055905A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002229478A AU2002229478A1 (en) 2001-01-09 2001-12-17 Gearbox control by means of an electronic clutch management
DE10195839T DE10195839D2 (de) 2001-01-09 2001-12-17 Getriebe
BR0116734-0A BR0116734A (pt) 2001-01-09 2001-12-17 Caixa de mudanças
US10/617,248 US6850829B2 (en) 2001-01-09 2003-07-09 Method for controlling a transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10100644 2001-01-09
DE10100644.6 2001-01-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/617,248 Continuation US6850829B2 (en) 2001-01-09 2003-07-09 Method for controlling a transmission

Publications (2)

Publication Number Publication Date
WO2002055905A2 true WO2002055905A2 (de) 2002-07-18
WO2002055905A3 WO2002055905A3 (de) 2003-03-13

Family

ID=7670023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004779 WO2002055905A2 (de) 2001-01-09 2001-12-17 Getriebesteuerung mittels eines elektronischen kupplungsmanagements

Country Status (7)

Country Link
US (1) US6850829B2 (de)
AU (1) AU2002229478A1 (de)
BR (1) BR0116734A (de)
DE (2) DE10195839D2 (de)
FR (1) FR2822205B1 (de)
IT (1) ITMI20020026A1 (de)
WO (1) WO2002055905A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519068A1 (de) * 2003-09-24 2005-03-30 Aisin Seiki Kabushiki Kaisha Kupplungssteuerungsvorrichtung
CN105408652A (zh) * 2013-08-01 2016-03-16 罗伯特·博世有限公司 用于在延迟过程中联接内燃发动机的方法和装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399870A (en) * 2003-03-25 2004-09-29 Eaton Corp Hill start or aggressive clutch control
FR2866682B1 (fr) * 2004-02-25 2006-04-07 Renault Sas Procede de controle du couple transmis par un embrayage lors de la mise en mouvement d'un vehicule
EP1617058A3 (de) * 2004-07-15 2007-08-15 LuK Lamellen und Kupplungsbau Beteiligungs KG Verfahren zur Regelung der Anfahrtstrategie von Verbrennungskraftmaschinen
DE102006042355A1 (de) * 2006-09-08 2008-03-27 Zf Friedrichshafen Ag Verfahren zur Steuerung eines Anfahrvorgangs eines Fahrzeuges
US7622877B2 (en) * 2007-03-13 2009-11-24 Gm Global Technology Operations, Inc. Method and system for controlling permanent magnet AC machines
DE102011116268A1 (de) * 2011-10-19 2013-04-25 Wirtgen Gmbh Selbstfahrende Baumaschine
FR3066167B1 (fr) * 2017-05-09 2021-03-12 Peugeot Citroen Automobiles Sa Procede de controle d'un groupe motopropulseur d'un vehicule hybride pour le demarrage de ce vehicule

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504847A1 (de) * 1994-02-23 1995-09-28 Luk Getriebe Systeme Gmbh Steuerverfahren für ein Drehmoment-Übertragungssystem und Drehmoment-Übertragungssystem zur Durchführung des Steuerverfahrens
DE19716828A1 (de) * 1996-04-23 1997-11-13 Luk Getriebe Systeme Gmbh Vorrichtung zur Ansteuerung eines Drehmomentübertragungssystems
DE19925664A1 (de) * 1999-06-04 2000-12-21 Mannesmann Sachs Ag Anordnung zur Betätigung einer Kraftfahrzeug-Reibungskupplung
EP1065401A2 (de) * 1999-06-30 2001-01-03 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Kupplungsteuerung mit Regelung eines Solldrehmomentwertes bei einem Anfahrvorgang

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003527540A (ja) * 1999-05-27 2003-09-16 ルーク ラメレン ウント クツプルングスバウ ベタイリグングス コマンディートゲゼルシャフト 特に自動車のためのトルク伝達装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504847A1 (de) * 1994-02-23 1995-09-28 Luk Getriebe Systeme Gmbh Steuerverfahren für ein Drehmoment-Übertragungssystem und Drehmoment-Übertragungssystem zur Durchführung des Steuerverfahrens
DE19716828A1 (de) * 1996-04-23 1997-11-13 Luk Getriebe Systeme Gmbh Vorrichtung zur Ansteuerung eines Drehmomentübertragungssystems
DE19925664A1 (de) * 1999-06-04 2000-12-21 Mannesmann Sachs Ag Anordnung zur Betätigung einer Kraftfahrzeug-Reibungskupplung
EP1065401A2 (de) * 1999-06-30 2001-01-03 Ford Global Technologies, Inc., A subsidiary of Ford Motor Company Kupplungsteuerung mit Regelung eines Solldrehmomentwertes bei einem Anfahrvorgang

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519068A1 (de) * 2003-09-24 2005-03-30 Aisin Seiki Kabushiki Kaisha Kupplungssteuerungsvorrichtung
CN105408652A (zh) * 2013-08-01 2016-03-16 罗伯特·博世有限公司 用于在延迟过程中联接内燃发动机的方法和装置
CN105408652B (zh) * 2013-08-01 2018-10-19 罗伯特·博世有限公司 用于在延迟过程中联接内燃发动机的方法和装置

Also Published As

Publication number Publication date
DE10195839D2 (de) 2003-12-11
ITMI20020026A0 (it) 2002-01-09
ITMI20020026A1 (it) 2003-07-09
FR2822205A1 (fr) 2002-09-20
DE10161983A1 (de) 2002-07-11
AU2002229478A1 (en) 2002-07-24
BR0116734A (pt) 2003-12-23
US20040063542A1 (en) 2004-04-01
US6850829B2 (en) 2005-02-01
WO2002055905A3 (de) 2003-03-13
FR2822205B1 (fr) 2008-03-14

Similar Documents

Publication Publication Date Title
EP0580827B1 (de) Einrichtung zur steuerung des abtriebsmoments eines automatischen schaltgetriebes
EP1551662B1 (de) Verfahren zur steuerung von schaltvorgängen eines lastschaltgetriebes und lastschaltgetriebe hierzu
EP0670789A1 (de) Verfahren zur steuerung des abtriebsmoments eines automatischen schaltgetriebes
DE10230612A1 (de) Verfahren, Vorrichtung und deren Verwendung zum Betrieb eines Kraftfahrzeuges, insbesondere zum Verbessern eines Anfahrvorganges
EP2016312A1 (de) Verfahren und vorrichtung zum adaptieren der steuerung der kupplungen eines doppelkupplungsgetriebes
WO2003016742A1 (de) Verfahren zur schlupfsteuerung einer kupplung
WO2005019676A1 (de) Verfahren zur steuerung eines doppelkupplungsgetriebes
WO2002055905A2 (de) Getriebesteuerung mittels eines elektronischen kupplungsmanagements
DE102004043345A1 (de) Verfahren zum Steuern und Regeln eines Automatgetriebes
EP1108164B1 (de) Verfahren zum steuern und regeln einer kupplung
DE102008046849A1 (de) Verfahren und Steuereinrichtung zur Steuerung eines Verbrennungsmotors eines Triebstrangs eines Kraftfahrzeugs
EP1224406A1 (de) Verfahren und vorrichtung zum steuern und regeln einer kupplung in einem stufenlosen automatgetriebe für ein kraftfahrzeug
EP1242758B1 (de) Verfahren und vorrichtung zum steuern und regeln einer kupplung in einem automatisierten stufengetriebe für ein kraftfahrzeug
EP3882487A1 (de) Verfahren zum schalten eines verbundgetriebes
EP1117556B1 (de) Verfahren und einrichtung zum steuern und regeln einer kupplung
WO2002070923A2 (de) Verfahren zum steuern und/oder regeln eines automatisierten getriebes eines fahrzeuges
EP1224412B1 (de) Verfahren und vorrichtung zum steuern und regeln einer kupplung in einem gestuften lastschaltbaren automatgetriebe
DE19809060A1 (de) Verfahren zur Steuerung von schaltbaren Kupplungen zum Zweck des Anfahrens und Schaltens von Wechselgetrieben in Kraftfahrzeugen
DE10337624B4 (de) Vorrichtung und Verfahren zum Ansteuern eines Motormomentes und eines Kupplungsmomentes bei einem Antriebsstrang eines Fahrzeugs
DE10195828B4 (de) Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung und/oder eines automatisierten Getriebes
EP1132659B1 (de) Verfahren zum Steuern von Lastschaltungen eines Automatgetriebes
EP3550169B1 (de) Verfahren zur steuerung und/oder regelung der doppelkupplung eines doppelkupplungsgetriebes eines kraftfahrzeugs
DE102019200076A1 (de) Verfahren zur Erhöhung des Komforts beim Reversieren bei einem Kraftfahrzeug umfassend ein Automatgetriebe
DE102007048862B4 (de) Verfahren und Vorrichtung zur Begrenzung einer Drehzahl eines Motors
EP2063148B1 (de) Verfahren zum Steuern einer Kupplung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10617248

Country of ref document: US

REF Corresponds to

Ref document number: 10195839

Country of ref document: DE

Date of ref document: 20031211

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10195839

Country of ref document: DE

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP