WO2002055478A1 - Process for preparation of optically active aminolactone derivatives and intermediates of the derivatives - Google Patents

Process for preparation of optically active aminolactone derivatives and intermediates of the derivatives Download PDF

Info

Publication number
WO2002055478A1
WO2002055478A1 PCT/JP2001/011627 JP0111627W WO02055478A1 WO 2002055478 A1 WO2002055478 A1 WO 2002055478A1 JP 0111627 W JP0111627 W JP 0111627W WO 02055478 A1 WO02055478 A1 WO 02055478A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
optically active
general formula
production method
Prior art date
Application number
PCT/JP2001/011627
Other languages
French (fr)
Japanese (ja)
Inventor
Masaru Mitsuda
Susumu Amano
Nobuo Nagashima
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2002556153A priority Critical patent/JPWO2002055478A1/en
Publication of WO2002055478A1 publication Critical patent/WO2002055478A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C227/00Preparation of compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C227/02Formation of carboxyl groups in compounds containing amino groups, e.g. by oxidation of amino alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C229/00Compounds containing amino and carboxyl groups bound to the same carbon skeleton
    • C07C229/02Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C229/04Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C229/22Compounds containing amino and carboxyl groups bound to the same carbon skeleton having amino and carboxyl groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated the carbon skeleton being further substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/02Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups
    • C07C251/04Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/06Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • C07C251/08Compounds containing nitrogen atoms doubly-bound to a carbon skeleton containing imino groups having carbon atoms of imino groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton being acyclic

Definitions

  • the present invention relates to a pharmaceutical intermediate, in particular, an important intermediate for producing an interleukin-1-1beta converting enzyme inhibitor (for example, described in WO9903852) and a method for producing the same.
  • an interleukin-1-1beta converting enzyme inhibitor for example, described in WO9903852
  • RR 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms;
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom.
  • RR 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms
  • this method does not provide any stereoscopic identification during the Michael addition reaction.
  • the resulting aminolatatatone is a 1: 1 mixture of optical isomers, which is inefficient and requires a complicated method for obtaining a compound having a preferred configuration as a pharmaceutical intermediate. Therefore, it can be said that this method is unsuitable for industrially producing optically active aminolactone.
  • the present invention has been made in view of the above circumstances, and provides an extremely efficient method for producing an optically active aminolatatatone derivative and an optically active aminobutyric acid derivative as an intermediate thereof, that is, a stereoselective production method with a small number of steps. .
  • the present invention provides a compound represented by the general formula (2):
  • R 5 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms.
  • RRRR 4 independently represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom.
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms
  • RR 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms; * Represents an asymmetric carbon), and reacted with an optically active imine represented by the general formula (5)
  • R 1 represents an alkyl group having 8 carbon atoms
  • R 2 represents an alkyl group having 5 to 18 carbon atoms.
  • R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms
  • the present invention relates to an optically active imine represented by the formula (I), which is used by the present inventors as a pharmaceutical intermediate, in particular, as an intermediate of an interleukin-11beta converting enzyme inhibitor and its production. It is a new compound for which a method has been found.
  • R 1 represents an alkyl group having 1 to 18 carbon atoms
  • R 2 represents an aryl group having 5 to 18 carbon atoms
  • * represents an asymmetric carbon
  • R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms
  • the present invention relates to a method for producing the novel compound by dehydration condensation of a dialkoxyaldehyde. Further, the present invention provides a compound represented by the general formula (3):
  • RR 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms
  • R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms
  • * represents an asymmetric carbon.
  • the acid is allowed to act on the optically active aminobutyric acid derivative represented by Converted to couton, general formula (8)
  • the optically active amine (6) and the dialkoxy aldehyde (7) are dehydrated and condensed to prepare the optically active imine (1), and in the step [2], the optically active imine (1) is converted to the optically active imine (1).
  • the optically active aminobutyric acid derivative (3) is derived to the optically active aminobutaic acid derivative (8) in the step [3].
  • R ⁇ RRR 4 each independently represents an alkyl group, Ariru group or Ararukiru group with carbon number 7-1 8 5-1 8 carbon atoms having 1 to 1 8 carbon atoms
  • R 5 is water atom
  • X represents a halogen or a hydrogen atom
  • * represents an asymmetric carbon.
  • the alkyl group having 1 to 18 carbon atoms in RRR 3 , R 4 and R 5 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms which may be substituted.
  • the aryl group having 5 to 18 carbon atoms in I 1 , RR 3 , R 4 , and R 5 is an aryl group having 5 to 18 carbon atoms which may be substituted, and more specifically, halogen and alkyl. And an aryl group having 5 to 18 carbon atoms which may be substituted with 1 to 3 identical or different substituents selected from the group consisting of alkoxy and alkoxy. Specific examples include a phenyl group, a trinole group, a p-chloropheninole group, a p-methoxypheninole group, a naphthyl group, a pyridyl group, and the like. ⁇ 12 aryl groups.
  • the aralkyl group having 7 to 18 carbon atoms in R 1 , R 2 , R 3 , R 4 , and R 5 is an aralkyl group having 7 to 18 carbon atoms which may be substituted. It is an aralkyl group having 7 to 18 carbon atoms which may be substituted with 1 to 3 identical or different substituents selected from the group consisting of halogen, alkyl and alkoxy. Specifically, benzyl group, 1-phenylenoethyl group, 1-phenylenopropyl group, diphenylenomethyl group, ⁇ -methoxybenzyl group, p-methoxyphenylethyl group, naphthylmethyl group, etc. And preferably an aralkyl group having 7 to 11 carbon atoms which may be substituted.
  • halogen used as a substituent in each of the above groups, for example, Alkyl, for example, methyl, ethyl, propyl, etc .; and alkoxy, for example, methoxy, ethoxy, propoxy and the like.
  • halogen in X examples include fluorine, chlorine, bromine, iodine and the like, and preferably bromine and iodine.
  • Optically active amine represented by the general formula (7)
  • RR 2 is preferably a methyl group, an ethyl group, a phenyl group, a trinole group, or a methoxyphenyl group.
  • * represents an asymmetric carbon, so that R 1 and R 2 must be different from each other.
  • the configuration of the asymmetric carbon is R or S, preferably R.
  • R 1 is more preferably an alkyl group such as a methyl group or an ethyl group
  • R 2 is more preferably an aryl group such as a phenyl group, a tolyl group, or a p-methoxyphenyl group.
  • R 1 is a methyl group and R 2 is a phenyl group.
  • the most preferred optically active amine is (R) -phenethylamine.
  • R 3 and R 4 are preferably a methyl group, an ethyl group, a benzyl group or the like, more preferably a methyl group or an ethyl group, and further preferably an ethyl group.
  • dialkoxy aldehyde is glyoxal getyl acetal.
  • optically active amine (6) and the dialkoxyaldehyde (7) those commercially available can be used.
  • the dehydration-condensation reaction in this step proceeds spontaneously only by mixing the above-mentioned optically active amine (6) and dialkoxyaldehyde (7).
  • the molar ratio of the optically active amine (6) to the dialkoxyaldehyde (7) is preferably 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.2, and still more preferably. Is 1: 1.
  • the dehydration-condensation reaction proceeds without a solvent, but a reaction solvent may be used.
  • the reaction solvent is not particularly limited, but is preferably an aprotic solvent. Examples thereof include getyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, ethylene glycolone dimethyl ether, ethylene glycol dimethyl ether, and triethyl ether.
  • Ethanol solvents such as ethyleneglycol / resin-methinole ether; hydrocarbon solvents such as benzene, tonolene, n- hexane and cyclohexane; methylene chloride, chloroform, 1,1,1-trichloroethane And aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, and hexamethyl phosphate triamide. These may be used alone or in combination of two or more.
  • a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane, etc., or getyl ether, diisopropyl ether, tert-butyl methyl ether, tetra Ether solvents such as hydrofuran and dioxane, and more preferably toluene or tetrahydrofuran.
  • the dehydration-condensation reaction in this step efficiently proceeds at room temperature, and thus does not require any operation such as heating or cooling. Therefore, the reaction temperature is not particularly limited, but the reaction proceeds smoothly, for example, in the range of 12 ° C. to 180 ° C., and preferably 110 ° C. to 80 ° C.
  • water is generated as the dehydration condensation reaction in this step proceeds.
  • the reaction proceeds smoothly without actively removing the water generated at this time, but the generated water is removed outside the reaction system by azeotropic dehydration with a reaction solvent or by adding a drying agent. Is also good.
  • the time until the completion of the reaction depends on the reaction temperature, but is about 0.5 to 12 hours, preferably 1 to 5 hours.
  • the degree of progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
  • the crude reaction product can be used as it is in Step [2] without requiring any special post-treatment in this step.
  • the solvent may be distilled off under reduced pressure, or the solvent may be used for the next step while containing the solvent.
  • the crude product may be distilled.
  • R 1 is an alkyl group having 1 to 18 carbon atoms which may be substituted
  • R 2 is a carbon atom which may be substituted.
  • Compounds that are a group or an aralkyl group having 7 to 18 carbon atoms which may be substituted are particularly preferred as important intermediates of the interleukin-11beta converting enzyme inhibitor, which is the object of the present invention, and are used by the present inventors. Is a new compound found.
  • R 1 is particularly preferably a methyl group
  • R 2 is particularly preferably a phenyl group
  • R 3 and R 4 are each particularly preferably a methyl group or an ethyl group.
  • optically active imine (1) of the present invention examples include N 1 — [(1R) 1-1—phenylethyl) —2,2-di (ethoxy) ethane-1-imine and N 1— [(1 R) — 1-phenylethyl] — 2,2-di (methoxy) ethane 1-imine, N 1-[(1 R) 1-1-phenylenethyl]] — 2,2-di (benzyloxy) ethane — 1-imine, N 1— [(1 R) 1-11 naphthylethyl] — 2,2-di (ethoxy) 1-imine, N 1— [(1 R) 1 1— (4-methoxyphenyl) Tyl] — 2,2-di (ethoxy) ethane-1-imine, N 1— [(1S) -1 -phenylenyl) -1,2,2-di (ethoxy) ethane-1-imine, and N 1 -[(1R
  • optically active imine represented by the general formula (3)
  • the present inventors have developed three methods (Method A, Method B, and Method C) as methods for converting an optically active imine (1) into an optically active aminobutyric acid derivative (3). I do.
  • An enolate prepared by reacting a low-valent metal with the acetic acid derivative represented by (2) is reacted with an optically active imine (1) to stereoselectively produce an optically active aminobutyric acid derivative (3).
  • R 5 is preferably a tert-butyl group, a benzyl group or the like.
  • X represents a halogen, preferably bromine, iodine or the like, and more preferably bromine.
  • the most preferred compound as the acetic acid derivative (2) of Method A is tert-butyl bromoacetate. ⁇
  • the amount of the acetic acid derivative (2) used in Method A is 1 to 5 moles, preferably 1 to 3 moles, per 1 mole of the optically active imine (1).
  • the low-valent metal in the method A is, for example, a metal of the third to sixth periods on the long-period table and a group of II ⁇ , ⁇ , IIIA, IIIB, IVA, IVB, VIB and a 0 to 3 valent metal.
  • Examples include divalent chromium, zero-valent gallium, zero-valent indium, divalent samarium, zero-valent or trivalent cell, and the like. Preferred are zero-valent zinc or zero-valent magnesium, and most preferred is zero-valent zinc.
  • the amount of low-valent metal used in Method A is 1 to 1 with respect to the optically active imine (1).
  • activators may be added for the purpose of activating low-valent metals to facilitate enolate formation.
  • a well-known activator for preparing a Reformatsky reaction reagent can be used. Preferred are halogen, mono- or di-halogenated alkanes, benzenes, logenated silanes and the like, and specific examples include iodine, methane iodide, dibromoethane, and trimethylsilane chloride.
  • the reaction solvent is not particularly limited, but is preferably an aprotic solvent.
  • examples include getyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, dithioxane, ethylene glycolone resin methinolate ether, and diethylene glycol.
  • Ether solvents such as dimethinoleate and triethylene glycolone resin, etc .; hydrocarbon solvents such as benzene, toluene, n-hexane and cyclohexane; methylene chloride, chloroform and 1,1 And halogen solvents such as 1,1-trichloroethane; aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric acid triamide. These may be used alone or in combination of two or more.
  • a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane or the like, or an ether such as getyl ether, diisopropinoleatenole, tert-butinolemethinoleatenole, tetrahydrofuran, dioxane or the like
  • a system solvent more preferably toluene or tetrahydrofuran.
  • the reaction temperature in the reaction of the method A is not particularly limited, but is preferably from 150 to 120 ° C, more preferably from 120 to 80 ° C.
  • the order of mixing the respective materials in the reaction of the method A is arbitrary and is not particularly limited.
  • the mixing can be performed by the following procedure. First, a low-valent metal and an acetic acid derivative (2) are mixed in a reaction solvent to prepare an enolate solution. Next, the optically active imine (1) may be added to the prepared enolate solution. As another method, an enolate solution prepared by the same method as described above may be added to the optically active imine (1) or a solution thereof.
  • the enolate prepared by the above procedure can be stored for a long period of time, and the enolate once prepared may be mixed with the optically active imine (1) and reacted at a later date according to the convenience of the worker.
  • the enolate can be stored in solution, or the solid enolate can be obtained and stored after concentration or crystallization of the solution.
  • the time until the end of the reaction depends on the reaction temperature, but is about 1 to 24 hours, preferably 2 to 12 hours.
  • the progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
  • the post-treatment method for obtaining the optically active aminobutyric acid derivative (3) from the mixture after the reaction is not particularly limited.
  • an optically active aminobutyric acid derivative (3) can be obtained by mixing the reaction mixture with water or a dilute acid, extracting the mixture with a common extraction solvent, and concentrating the organic layer under reduced pressure. .
  • acetic acid derivative represented by (2) by reacting an optically active imines (1), the c Method B for producing an optically active amino acid derivative (3) stereoselectively
  • the description of the group of R 5 is as described above, and R 5 is preferably a hydrogen atom, a tert-butyl group, a benzyl group, or the like.
  • X represents a hydrogen atom.
  • the most preferred compound as the acetic acid derivative (2) of Method B is tert-butyl acetate.
  • the amount of the acetic acid derivative (2) used in the method B is 1 to 5 moles, preferably 1 to 3 moles relative to the optically active imine (1).
  • Examples of the base used in the method B include lithium disopropylamide, lithium isopropylcyclohexylamide, magnesium diisopropylamide, lithium hexamethyldisilazide, and sodium hexamethyldisilazide.
  • Metal amides such as zide, potassium hexamethyldisilazide, sodium amide; alkyl metals such as butyllithium, tert-butylmagnesium chloride; metal hydrides such as sodium hydride, hydrogen hydride, calcium hydride Metal alkoxides such as sodium methoxide, sodium methoxide, potassium methoxide, potassium tert-butoxide, and magnesium methoxide; and simple metals such as metal sodium and metal potassium.
  • lithium diisopropylamide examples include metal amides such as lithium hexamethyldisilazide and sodium hexamethyldisilazide.
  • the amount of the base used in the method B is 1 to 5 moles, preferably 1 to 3 moles relative to the optically active imine (1).
  • reaction solvent is not particularly limited, but is preferably an aprotic solvent.
  • examples include getyl ether, diisopropylpropyl ether, tert-butyl methyl ether, tetrahydrofuran, furan, dioxane, ethylene glycolone resin methinolate ether, and diethylene glycol.
  • Ether-based solvents such as cornoremethine oleate ethere and triethylene glycolone methine oleate ethere; hydrocarbon-based solvents such as benzene, toluene, n-hexane, and cyclohexane; methylene chloride, chloroform, Halogen solvents such as 1,1-trichloroethane; and aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, and hexametinoleic acid triamide. These may be used alone or in combination of two or more.
  • a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane or the like, or an ether such as getyl ether, diisopropinoleatenole, tert-butinolemethinoleatenole, tetrahydrofuran, dioxane or the like
  • a system solvent more preferably toluene or tetrahydrofuran.
  • the reaction temperature in the reaction of the method B is not particularly limited, but is preferably from 100 to 120. C, more preferably 150 to 50 ° C.
  • the order of mixing the respective materials in the reaction of the method B is arbitrary and is not particularly limited.
  • the mixing can be performed by the following procedure. First, a base and an acetic acid derivative (2) are mixed in a reaction solvent to prepare an enolate solution. Next, the optically active imine (1) may be added to the prepared enolate solution. As another method, an enolate solution prepared by the same method as described above may be added to the optically active imine (1) or a solution thereof.
  • the time until the completion of the reaction depends on the reaction temperature, but is about 10 minutes to 24 hours, preferably 1 to 5 hours.
  • the degree of progress of the reaction can be determined by high performance liquid chromatography, gas chromatography, etc. Can be observed by the analysis means.
  • the post-treatment method for obtaining the optically active aminobutyric acid derivative (3) from the mixture after the reaction is not particularly limited.
  • an optically active aminobutyric acid derivative (3) can be obtained by mixing the reaction mixture with water or a dilute acid, extracting the mixture with a common extraction solvent, and concentrating the organic layer under reduced pressure. .
  • R 5 is preferably a hydrogen atom, a tert-butyl group, a benzyl group or the like.
  • the malonic acid derivative (4) of Method C is malonic acid or tert-butyl malonate.
  • the amount of the malonic acid derivative (4) used in Method C is 1 to 5 moles, preferably 1 to 3 moles, per 1 mole of the optically active imine (1).
  • a reaction solvent can be used.
  • the reaction solvent is not particularly limited, and a wide variety of protic or aprotic solvents can be selected.
  • reaction temperature in the reaction of the method C is not particularly limited, but is preferably ⁇ 50 to 120 ° C., and more preferably 120 to 120 ° C.
  • the carboxylic acid that can be used in the reaction of the method C is, for example, a carboxylic acid having 1 to 20 carbon atoms, and specifically, formic acid, acetic acid, propionic acid, butyric acid, hexanoic acid, octanoic acid, oxalic acid, and benzoic acid Acids and the like, and preferably acetic acid and the like.
  • the amount of the carboxylic acid used in the reaction of the method C is 1 to 10 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active imine (1).
  • the order of mixing the respective materials in the reaction of Method C is arbitrary and is not particularly limited.
  • a malonic acid derivative (4), an optically active imine (1) and, if necessary, carboxylic acid may be mixed in a reaction solvent.
  • the time until the completion of the reaction depends on the reaction temperature, but is about 1 to 24 hours, preferably 5 to 20 hours.
  • the progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
  • the treatment method is not particularly limited, but usually, the reaction solvent may be concentrated from the reaction mixture under reduced pressure.
  • the configuration at the 3-position of the optically active aminobutyric acid derivative (3) obtained by the production method of the above methods A to C, that is, the configuration of the newly formed asymmetric carbon is R or S, preferably S. is there. That is, it is preferable to stereoselectively produce the (3S) form as an optically active aminobutyric acid derivative.
  • optically active aminobutyric acid derivative (3) obtained by the production methods of the above methods A to C is insufficient in optical purity, for example, crystallization and purification may be carried out by forming a salt with an appropriate acid.
  • the optically active aminobutyric acid derivative represented by the general formula (3) or the salt thereof represented by the general formula (3) prepared in the step [2] is reacted with an acid to stereoselectively form a cyclized lactone, thereby obtaining a compound represented by the general formula (8) It is converted to amino ratatotone derivative.
  • R x R 2 is an aryl group.
  • R 1 is more preferably an alkyl group such as a methyl group or an ethyl group
  • R 2 is more preferably an aryl group such as a phenyl group, a tolyl group, or a -methoxyphenyl group.
  • R 1 is a methyl group
  • R 2 is a phenyl group.
  • R 3 and R 4 are each a methyl group or an ethyl group.
  • R 5 is a tert-butyl group.
  • the configuration at the 3-position of the optically active aminobutyric acid derivative is R or S, and preferably S.
  • the configuration of the asymmetric carbon formed by R 1 and R 2 is R or S, and preferably R.
  • an optically active aminobutyric acid derivative can be used as a salt.
  • the salt means a salt formed by adding an optional acid to the optically active aminobutyric acid derivative (3).
  • the type of the acid that forms the salt is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, acetic acid, trichloroacetic acid, benzoic acid, methanesulfonic acid, and p-toluenesulfonic acid. Among them, p-toluenesulfonic acid is an optically active amino acid. It is particularly preferred because it forms a good salt with the butyric acid derivative.
  • the acid used in the cyclization lactonization reaction in this step is a protic acid or a Lewis acid.
  • protic acid examples include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, and caustic acid; sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid; Carboxylic acids such as trifluoroacetic acid and trichloroacetic acid are exemplified.
  • inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, and caustic acid
  • sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid
  • Carboxylic acids such as trifluoroacetic acid and trichloroacetic acid are exemplified.
  • sulfonic acids such as methanesnolefonic acid, benzeneszolefonic acid, p-tonolenesnolefonic acid, and trifluoromethanesulfonic acid are preferable, and methanesulphonic acid is preferred. Particularly preferred.
  • the Lewis acid for example, aluminum chloride, boron fluoride, titanium chloride, tin (IV) chloride, iron (II) chloride, zinc chloride, zinc bromide, magnesium chloride, trimethylsilinoletrifluoromethanesulfonate and the like are preferable.
  • the amount of the acid used in this step is preferably 0.1 to 30 molar equivalents with respect to the optically active aminobutyric acid derivative (3), and 1 to 20 molar equivalents from the viewpoint of yield and economy. More preferred.
  • the optically active aminolactone derivative (8) (4S, 5R) produced by the stereoselective cyclized ratatone conversion of the present invention is required. It is preferable to have a tetrahydrofuran-1-one skeleton.
  • a reaction solvent can be used in the cyclization ratatonization reaction.
  • the reaction solvent is not particularly limited. Ether solvents such as benzene, tonolene, n- hexane, cyclohexane, etc .; hydrocarbon solvents such as methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol, methoxyethanol, etc .; acetonitrile, Nitril solvents such as propionitrile; Halogen solvents such as methylene chloride, chlorophonolem and 1,1,1-trichloroethane; dimethylformamide, N-methylpyrrolidone, and hexane It can be exemplified non-pro ton polar solvents such as Chirurin acid Toria Mi de.
  • hydrocarbon solvents such as benzene, toluene, n-hexane and cyclohexane are preferred, and toluene is particularly preferred. .
  • the reaction temperature in the cyclized lactonization reaction is preferably from ⁇ 50 to 100 ° C., and more preferably from 130 to 30 ° C. in order to promote a high yield and high stereoselective reaction.
  • the reaction time depends on the reaction temperature, but is about 1 to 24 hours, preferably 2 to 12 hours.
  • a general post-treatment may be performed to obtain a product from the reaction solution.
  • the reaction solution after the completion of the reaction is mixed with water or weakly alkaline water, and extraction is performed using a common extraction solvent such as ethyl acetate, getyl ether, methylene chloride, toluene, hexane, and the like.
  • a common extraction solvent such as ethyl acetate, getyl ether, methylene chloride, toluene, hexane, and the like.
  • the reaction solvent and the extraction solvent are distilled off from the obtained extract by an operation such as heating under reduced pressure, the desired product is obtained.
  • the same operation may be performed immediately after distilling off the reaction solvent by an operation such as heating under reduced pressure.
  • the target product thus obtained is almost pure, but may be further purified by a general method such as crystallization purification, fractional distillation, or column chromatography to further increase the purity.
  • Example 6 The same operation as in Example 6 was carried out except that methanesulfonic acid was used at 8 molar equivalents, the methanesulfonic acid dropping temperature, the reaction temperature was set at 120 ° C, and the reaction time was set at 8 hours.
  • an optically active aminolactone derivative useful as a pharmaceutical intermediate and an optically active aminobutyric acid derivative as an intermediate thereof can be stereoselectively produced from commercially available raw materials in a small number of steps.

Abstract

Optically active aminobutyric acid derivatives can be efficiently prepared, which are important intermediates of interleukin-1β-converting enzyme inhibitors. An optically active imine (1) is prepared by condensation of an optically active amine (6) with a dialkoxyaldehyde through dehydration, and then converted into an optically active aminobutyric acid derivative (3) through stereoselective addition; and the derivative (3) is further converted into an optically active aminolactone derivative (8) through stereoselective lactonization with an acid. (6) (1) (3) (8)

Description

明細書  Specification
光学活性アミノラクトン誘導体の製造法およびその中間体 技術分野  Method for producing optically active aminolactone derivatives and intermediates thereof
本発明は、 医薬品中間体、 特に、 インターロイキン一 1ベータ変換酵素阻害剤 (例えば、 WO 9 9 0 3 8 5 2に記载) を製造する上での重要中間体およびその 製造法に関連する。 背景技術  The present invention relates to a pharmaceutical intermediate, in particular, an important intermediate for producing an interleukin-1-1beta converting enzyme inhibitor (for example, described in WO9903852) and a method for producing the same. . Background art
一般式 (3 )General formula (3)
Figure imgf000003_0001
Figure imgf000003_0001
(式中、 R R2、 R3、 R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表し、 R5 は水素原子、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または 炭素数 7〜1 8のァラルキル基を表し、 *は不斉炭素を表す) で表される光学活 性ァミノ酪酸誘導体の一般的な製造法として、 Lーァスパラギン酸のカルポキシ ル基とアミノ基を順次保護した後に、 1—位カルボキシル基を選択的にヒドロキ シル基へ還元し、 引き続きジメチルスルホキシドによりヒドロキシル基を酸化す る方法が用いられてきた (特開平 1 1— 6 9 9 7 2号公報) 。 しかし、 この方法 は工程数が多く、 操作が煩雑であるため効率が悪い。 また、 ジメチルスルホキシ ドによる酸化で多量に生成するジメチルスルフィ ドが悪臭を放つなど、 工業的大 規模生産において問題が多い。 (Wherein, RR 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms; R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom. As a general method for producing an optically active aminobutyric acid derivative, a carboxyl group and an amino group of L-aspartic acid are sequentially protected, and then the 1-position carboxyl group is selectively reduced to a hydroxyl group, followed by dimethylsulfoxide. A method of oxidizing a hydroxyl group has been used (JP-A-11-96972). However, this method is inefficient due to the large number of steps and complicated operations. In addition, there are many problems in large-scale industrial production, such as dimethyl sulfide generated in large amounts by oxidation with dimethyl sulfoxide, which gives off a bad smell.
また一般式 (8 )
Figure imgf000004_0001
The general formula (8)
Figure imgf000004_0001
(式中、 R R 2、 R 3はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭 素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 *は不 斉炭素を表す) で表される光学活性アミノラタトン誘導体の製造法として、 5— アルコキシ一 2—フラノンへ光学活性アミンをマイケル付加する方法が知られて いる (WO 9 9 0 3 8 5 2 ) 。 しかしこの方法ではマイケル付加反応時の立体識 別が全くなされていない。 その結果として生成するアミノラタトンが 1 : 1の光 学異性体混合物となり、 非効率的であり、 かつ医薬品中間体として好ましい立体 配置を有する化合物の取得方法が煩雑である。 従ってこの方法は、 工業的に光学 活性アミノラクトンを製造する上で不向きな方法であると言える。 一方、 別の製 造法として、 光学活性 5—アルコキシ— 2—フラノンにァミンをマイケル付加す る方法が知られている (Tetrahedron Asymmetry, 1991 年、 2卷、 7 7 5ページ ) 。 この方法においてマイケル付加反応は立体選択的に進行しているが、 原料に 用いられている光学活性 5—アルコキシ一 2—フラノンの安価大量入手は極めて 困難である。 発明の要約 (Wherein, RR 2 and R 3 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, As an example of a method for producing an optically active aminolatatatone derivative represented by the following formula: However, this method does not provide any stereoscopic identification during the Michael addition reaction. The resulting aminolatatatone is a 1: 1 mixture of optical isomers, which is inefficient and requires a complicated method for obtaining a compound having a preferred configuration as a pharmaceutical intermediate. Therefore, it can be said that this method is unsuitable for industrially producing optically active aminolactone. On the other hand, as another production method, a method of adding an amine to an optically active 5-alkoxy-2-furanone by Michael is known (Tetrahedron Asymmetry, 1991, Vol. 2, p. 775). In this method, the Michael addition reaction proceeds in a stereoselective manner, but it is extremely difficult to obtain optically active 5-alkoxy-12-furanone used as a raw material at low cost and in large quantities. Summary of the Invention
本発明は、 上記現状に鑑み、 光学活性アミノラタ トン誘導体およびその中間体 である光学活性アミノ酪酸誘導体の極めて効率のよい製造法、 すなわち工程数が 少なく立体選択的な製造法を提供するものである。  The present invention has been made in view of the above circumstances, and provides an extremely efficient method for producing an optically active aminolatatatone derivative and an optically active aminobutyric acid derivative as an intermediate thereof, that is, a stereoselective production method with a small number of steps. .
すなわち、 本発明は、 一般式 (2 )  That is, the present invention provides a compound represented by the general formula (2):
X^C 02R5 X ^ C 0 2 R 5
(2)  (2)
(式中、 R5は水素原子、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜 1 8のァリ ール基または炭素数 7〜1 8のァラルキル基を表し、 Xはハロゲンまたは水素原 子を表す) で表される酢酸誘導体に低原子価の金属または塩基を反応させて調製 したエノラートと、 一般式 (1 )
Figure imgf000005_0001
(In the formula, R 5 is a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms. An enolate prepared by reacting a low-valent metal or a base with an acetic acid derivative represented by the formula (I) or an aralkyl group having 7 to 18 carbon atoms, and X represents a halogen or a hydrogen atom. Equation (1)
Figure imgf000005_0001
(式中、 R R R R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性イミンを反応させ、 一般式 (3 )
Figure imgf000005_0002
(Wherein, RRRR 4 independently represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom. Is reacted with an optically active imine represented by the general formula (3)
Figure imgf000005_0002
(式中、 R R R R4、 R 5、 *は前記に同じ) で表される光学活性アミノ 酪酸誘導体を立体選択的に製造する方法に関する。 (Wherein, RRRR 4 , R 5 , and * are the same as those described above).
また、 本発明は、 一般式 (4 ) Further, the present invention provides a compound represented by the following general formula (4):
Figure imgf000005_0003
Figure imgf000005_0003
(式中、 R5は水素原子、 炭素数 1〜1 8のアルキル基、 炭素数 5〜 1 8のァリ ール基または炭素数 7〜1 8のァラルキル基を表す) で表されるマロン酸誘導体 と、 一般式 (1 )
Figure imgf000006_0001
(Wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms) An acid derivative and the general formula (1)
Figure imgf000006_0001
(式中、 R R2、 R3、 R4はそれぞれ独立して、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性イミンを反応させ、 一般式 (5) (Wherein, RR 2 , R 3 , and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms; * Represents an asymmetric carbon), and reacted with an optically active imine represented by the general formula (5)
R3 R 3
Figure imgf000006_0002
Figure imgf000006_0002
(式中、 R R R3、 R R5、 *は前記に同じ) で表されるカルボキシアミ ノ酪酸誘導体を調製し、 これを脱炭酸させて、 一般式 (3)
Figure imgf000006_0003
(Wherein, RRR 3 , RR 5 , and * are the same as those described above), and are decarboxylated to obtain a compound represented by the general formula (3)
Figure imgf000006_0003
(式中、 R R R3、 R R5、 *は前記に同じ) で表される光学活性アミノ 酪酸誘導体を立体選択的に製造する方法に関する。 (Wherein, RRR 3 , RR 5 and * are the same as described above).
さらに、 本発明は、 一般式 (1)  Further, the present invention provides a compound represented by the general formula (1):
Figure imgf000006_0004
Figure imgf000006_0004
(式中、 R1は炭素数 8のアルキル基を表し、 R2は炭素数 5〜1 8のァ リール基を表し、 R3、 R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5〜 1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性ィミンに関し、 これは、 本発明者らによつ て医薬品中間体、 特にインターロイキン一 1ベータ変換酵素阻害剤の中間体とし ての用途とその製造法が見いだされた新規化合物である。 また、 一般式 (6 ) (In the formula, R 1 represents an alkyl group having 8 carbon atoms, and R 2 represents an alkyl group having 5 to 18 carbon atoms. Represents a reel group; R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms; The present invention relates to an optically active imine represented by the formula (I), which is used by the present inventors as a pharmaceutical intermediate, in particular, as an intermediate of an interleukin-11beta converting enzyme inhibitor and its production. It is a new compound for which a method has been found. The general formula (6)
H2N八 R2 (6) H 2 N 8 R 2 (6)
(式中、 R 1は炭素数 1〜 1 8のアルキル基を表し、 R2は炭素数 5〜1 8のァ リール基を表し、 *は不斉炭素を表す) で表される光学活性ァミンと一般式 (7 ) (Wherein, R 1 represents an alkyl group having 1 to 18 carbon atoms, R 2 represents an aryl group having 5 to 18 carbon atoms, and * represents an asymmetric carbon). And the general formula (7)
R3
Figure imgf000007_0001
R 3
Figure imgf000007_0001
(式中、 R3、 R4はそれぞれ独立して、 炭素数 1〜 1 8のアルキル基、 炭素数 5 〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表す) で表されるジ アルコキシアルデヒドを脱水縮合して、 当該新規化合物を製造する方法に関する。 また、 本発明は、 一般式 (3 ) (Wherein, R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms) The present invention relates to a method for producing the novel compound by dehydration condensation of a dialkoxyaldehyde. Further, the present invention provides a compound represented by the general formula (3):
Figure imgf000007_0002
Figure imgf000007_0002
(式中、 R R 2、 R 3、 R 4はそれぞれ独立して、 炭素数 1〜1 8のアルキル 基、 炭素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 R 5は水素原子、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜 1 8のァリ一ル基ま たは炭素数 7〜1 8のァラルキル基を表し、 *は不斉炭素を表す) で表される光 学活性アミノ酪酸誘導体またはその塩に対し、 酸を作用させ立体選択的に環化ラ クトン化させて、 一般式 (8) (Wherein, RR 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon. ) The acid is allowed to act on the optically active aminobutyric acid derivative represented by Converted to couton, general formula (8)
Figure imgf000008_0001
Figure imgf000008_0001
(式中、 R R R3、 *は前記に同じ) で表される光学活性アミノラタトン 誘導体を製造する方法に関する。 発明の詳細な開示 (Wherein, RRR 3 and * are the same as described above). Detailed Disclosure of the Invention
本発明における製造法の概略は、 下記式 (I ) によって表される,  The outline of the production method in the present invention is represented by the following formula (I),
( I ) (I)
Figure imgf000008_0002
Figure imgf000008_0002
(式中、 R R R3、 R4、 R5、 *は前記に同じ) (Where RRR 3 , R 4 , R 5 and * are the same as above)
すなわち、 工程 [1] において、 光学活性アミン (6) とジアルコキシアルデ ヒ ド (7) を脱水縮合して光学活性イミン (1) を調製し、 工程 [2] において 光学活性イミン (1) を光学活性アミノ酪酸誘導体 (3) へ誘導し、 工程 [3] において光学活性アミノ酪酸誘導体 (3) を光学活性アミノラタトン誘導体 (8 ) へと誘導する。  That is, in the step [1], the optically active amine (6) and the dialkoxy aldehyde (7) are dehydrated and condensed to prepare the optically active imine (1), and in the step [2], the optically active imine (1) is converted to the optically active imine (1). The optically active aminobutyric acid derivative (3) is derived to the optically active aminobutaic acid derivative (8) in the step [3].
上記式 (1 ) 〜 (8) で用いられる各基等について以下に説明する。 R \ R R R 4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素 数 5〜 1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表し、 R5は水 素原子、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素 数 7〜 1 8のァラルキル基を表し、 Xはハロゲンまたは水素原子を表し、 *は不 斉炭素を表す。 Each group used in the above formulas (1) to (8) will be described below. R \ RRR 4 each independently represents an alkyl group, Ariru group or Ararukiru group with carbon number 7-1 8 5-1 8 carbon atoms having 1 to 1 8 carbon atoms, R 5 is water atom, carbon Represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, X represents a halogen or a hydrogen atom, and * represents an asymmetric carbon.
R R R3、 R 4、 R5における炭素数 1〜1 8のアルキル基としては、 置換 されても良い炭素数 1〜1 8の直鎖状、 分岐状および環状のアルキル基であり、 より詳細には、 ハロゲンぉよびアルコキシからなる群より選ばれた 1〜 3個の同 —または相異なる置換基で置換されても良い直鎖状、 分岐状および環状のアルキ ル基である。 具体的には、 メチル基、 ェチル基、 メ トキシェチル基、 イソプロピ ノレ基、 t e r t—ブチル基、 ペンチル基、 シクロへキシル基、 n—ォクチル基、 n—ドデシル基等が挙げられ、 好ましくは置換されても良い炭素数 1〜1 0のァ ルキル基である。 The alkyl group having 1 to 18 carbon atoms in RRR 3 , R 4 and R 5 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms which may be substituted. Is a linear, branched or cyclic alkyl group which may be substituted with 1 to 3 identical or different substituents selected from the group consisting of halogen and alkoxy. Specific examples include a methyl group, an ethyl group, a methoxyl group, an isopropyl group, a tert-butyl group, a pentyl group, a cyclohexyl group, an n-octyl group, and an n-dodecyl group. It may be an alkyl group having 1 to 10 carbon atoms.
I 1、 R R3、 R4、 R 5における炭素数 5〜1 8のァリール基としては、 置換 されても良い炭素数 5〜 1 8のァリール基であり、 より詳細には、 ハロゲン、 ァ ルキルおよびアルコキシからなる群より選ばれた 1〜 3個の同一または相異なる 置換基で置換されても良い炭素数 5〜1 8のァリール基である。 具体的には、 フ ェニノレ基、 トリノレ基、 p —クロ口フエ二ノレ基、 p—メ トキシフエ二ノレ基、 ナフチ ル基、 ピリジル基等が挙げられ、 好ましくは置換されても良い炭素数 6〜1 2の ァリール基である。 The aryl group having 5 to 18 carbon atoms in I 1 , RR 3 , R 4 , and R 5 is an aryl group having 5 to 18 carbon atoms which may be substituted, and more specifically, halogen and alkyl. And an aryl group having 5 to 18 carbon atoms which may be substituted with 1 to 3 identical or different substituents selected from the group consisting of alkoxy and alkoxy. Specific examples include a phenyl group, a trinole group, a p-chloropheninole group, a p-methoxypheninole group, a naphthyl group, a pyridyl group, and the like. ~ 12 aryl groups.
R 1, R2、 R3、 R4、 R5における炭素数 7〜1 8のァラルキル基としては、 置 換されても良い炭素数 7〜1 8のァラルキル基であり、 より詳細には、 ハロゲン、 アルキルおよびアルコキシからなる群より選ばれた 1〜 3個の同一または相異な る置換基で置換されても良い炭素数 7〜 1 8のァラルキル基である。 具体的には、 ベンジル基、 1 —フエニノレエチノレ基、 1 —フエ二ノレプロピル基、 ジフエニノレメチ ル基、 ρ—メ トキシベンジル基、 p—メ トキシフエニルェチル基おょぴナフチル メチル基等が挙げられ、 好ましくは置換されても良い炭素数 7〜1 1のァラルキ ル基である。 The aralkyl group having 7 to 18 carbon atoms in R 1 , R 2 , R 3 , R 4 , and R 5 is an aralkyl group having 7 to 18 carbon atoms which may be substituted. It is an aralkyl group having 7 to 18 carbon atoms which may be substituted with 1 to 3 identical or different substituents selected from the group consisting of halogen, alkyl and alkoxy. Specifically, benzyl group, 1-phenylenoethyl group, 1-phenylenopropyl group, diphenylenomethyl group, ρ-methoxybenzyl group, p-methoxyphenylethyl group, naphthylmethyl group, etc. And preferably an aralkyl group having 7 to 11 carbon atoms which may be substituted.
なお、 上記各基における置換基として用いられるハロゲンとしては、 例えばフ ッ素、 塩素、 臭素、 ヨウ素等が挙げられ;アルキルとしては、 例えばメチル、 ェ チル、 プロピル等が挙げられ;アルコキシとしては、 例えばメ トキシ、 エトキシ、 プロポキシ等が挙げられる。 As the halogen used as a substituent in each of the above groups, for example, Alkyl, for example, methyl, ethyl, propyl, etc .; and alkoxy, for example, methoxy, ethoxy, propoxy and the like.
Xにおけるハロゲンとしては、 フッ素、 塩素、 臭素、 ヨウ素等が挙げられ、 好 ましくは臭素、 ョゥ素である。  Examples of the halogen in X include fluorine, chlorine, bromine, iodine and the like, and preferably bromine and iodine.
以下に本発明を工程ごとに詳述する。  Hereinafter, the present invention will be described in detail for each step.
工程 「1 Ί Process “1 Ί
本工程においては、 一般式 (6 )  In this step, the general formula (6)
H2 " 、R2 (6) H 2 ", R 2 (6)
で表される光学活性ァミンと一般式 (7 ) Optically active amine represented by the general formula (7)
Figure imgf000010_0001
Figure imgf000010_0001
で表されるジアルコシキアルデヒ ドを脱水縮合して、 一般式 (1 ) Dehydration condensation of the dialkoxyaldehyde represented by the general formula (1)
Figure imgf000010_0002
Figure imgf000010_0002
で表される光学活性ィミンを製造する。 To produce an optically active imine represented by
R R R R 4の基の説明は上述のとおりである。 The description of the group of RRRR 4 is as described above.
光学活性アミン (6 ) において、 R R2は、 好ましくはメチル基、 ェチル基、 フエニル基、 トリノレ基、 : —メ トキシフエニル基等である。 In the optically active amine (6), RR 2 is preferably a methyl group, an ethyl group, a phenyl group, a trinole group, or a methoxyphenyl group.
また、 光学活性アミン (6 ) において、 *は不斉炭素を表すので、 R 1 と R2 が互いに異なる基である必要がある。 当該不斉炭素の立体配置は、 Rまたは Sであり、 好ましくは Rである。 In the optically active amine (6), * represents an asymmetric carbon, so that R 1 and R 2 must be different from each other. The configuration of the asymmetric carbon is R or S, preferably R.
特に、 R 1がメチル基、 ェチル基等のアルキル基であり、 R2がフエニル基、 トリル基、 p—メ トキシフエニル基等のァリール基であるとさらに好ましい。 最 も好ましい組み合わせは、 R 1がメチル基で、 R2がフエニル基である。 In particular, R 1 is more preferably an alkyl group such as a methyl group or an ethyl group, and R 2 is more preferably an aryl group such as a phenyl group, a tolyl group, or a p-methoxyphenyl group. In a most preferred combination, R 1 is a methyl group and R 2 is a phenyl group.
従って、 最も好ましい光学活性アミンは、 (R) —フエネチルァミンである。 ジアルコキシアルデヒド (7 ) において、 R3、 R4は、 好ましくはメチル基、 ェチル基、 ベンジル基等であり、 より好ましくはメチル基、 ェチル基であり、 さ らに好ましくはェチル基である。 Accordingly, the most preferred optically active amine is (R) -phenethylamine. In the dialkoxyaldehyde (7), R 3 and R 4 are preferably a methyl group, an ethyl group, a benzyl group or the like, more preferably a methyl group or an ethyl group, and further preferably an ethyl group.
最も好ましいジアルコキシアルデヒドは、 グリオキサールジェチルァセタール である。  The most preferred dialkoxy aldehyde is glyoxal getyl acetal.
上記光学活性アミン (6 ) 、 ジアルコキシアルデヒ ド (7 ) は、 いずれも市販 されているものを使用することができる。  As the optically active amine (6) and the dialkoxyaldehyde (7), those commercially available can be used.
本工程の脱水縮合反応は、 上記の光学活性アミン (6 ) とジアルコキシアルデ ヒ ド (7 ) を混合するだけで、 自発的に進行する。  The dehydration-condensation reaction in this step proceeds spontaneously only by mixing the above-mentioned optically active amine (6) and dialkoxyaldehyde (7).
光学活性ァミン ( 6 ) とジアルコキシアルデヒ ド ( 7 ) の混合モル比は、 好ま しくは 1 : 0 . 5〜 1 . 5、 より好ましくは 1 : 0 . 8〜 1 . 2、 さらに好まし くは 1 : 1である。  The molar ratio of the optically active amine (6) to the dialkoxyaldehyde (7) is preferably 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.2, and still more preferably. Is 1: 1.
また、 当該脱水縮合反応は無溶媒でも進行するが、 反応溶媒を使用しても良い。 当該反応溶媒は特に限定されないが、 非プロトン性のものが好ましく、 例えば、 ジェチルエーテル、 ジイソプロピルエーテル、 t e r t—ブチルメチルエーテル、 テトラヒ ドロフラン、 ジォキサン、 エチレングリコーノレジメチルエーテノレ、 ジェ チレングリコールジメチルエーテル、 トリエチレングリコ一/レジメチノレエーテノレ 等のエーテノレ系溶媒;ベンゼン、 トノレェン、 n—へキサン、 シクロへキサン等の 炭化水素系溶媒;塩化メチレン、 クロ口ホルム、 1 , 1 , 1—トリクロロェタン 等のハロゲン系溶媒;ジメチルホルムアミ ド、 N—メチルピロリ ドン、 へキサメ チルリン酸トリアミ ド等の非プロトン性極性溶媒等を挙げることができる。 これ らは単独で用いてもよく、 2種以上を併用してもよい。 好ましくはベンゼン、 ト ルェン、 n—へキサン、 シクロへキサン等の炭化水素系溶媒、 または、 ジェチル エーテル、 ジイソプロピルエーテル、 t e r t—ブチルメチルエーテル、 テトラ ヒドロフラン、 ジォキサン等のエーテル系溶媒であり、 より好ましくはトルエン またはテトラヒドロフランである。 In addition, the dehydration-condensation reaction proceeds without a solvent, but a reaction solvent may be used. The reaction solvent is not particularly limited, but is preferably an aprotic solvent. Examples thereof include getyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, ethylene glycolone dimethyl ether, ethylene glycol dimethyl ether, and triethyl ether. Ethanol solvents such as ethyleneglycol / resin-methinole ether; hydrocarbon solvents such as benzene, tonolene, n- hexane and cyclohexane; methylene chloride, chloroform, 1,1,1-trichloroethane And aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, and hexamethyl phosphate triamide. These may be used alone or in combination of two or more. Preferably, a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane, etc., or getyl ether, diisopropyl ether, tert-butyl methyl ether, tetra Ether solvents such as hydrofuran and dioxane, and more preferably toluene or tetrahydrofuran.
本工程の脱水縮合反応は、 常温で効率よく進行するので、 特に加熱あるいは冷 却といった操作を必要としない。 したがって、 反応温度は特に限定されないが、 例えば一 2◦〜 1 8 0 °Cの範囲で反応は円滑に進行し、 好ましくは一 1 0〜8 0 °Cである。  The dehydration-condensation reaction in this step efficiently proceeds at room temperature, and thus does not require any operation such as heating or cooling. Therefore, the reaction temperature is not particularly limited, but the reaction proceeds smoothly, for example, in the range of 12 ° C. to 180 ° C., and preferably 110 ° C. to 80 ° C.
尚、 本工程の脱水縮合反応が進行するにつれて、 水が生成する。 この時生成す る水を積極的に除去しなくても反応は円滑に進行するが、 反応溶媒による共沸脱 水あるいは乾燥剤を加えるなどして、 生成する水を反応系外に除去しても良い。 反応終了までの時間は、 反応温度にも依存するが、 0 . 5〜 1 2時間程度であ り、 好ましくは 1〜 5時間である。  In addition, water is generated as the dehydration condensation reaction in this step proceeds. The reaction proceeds smoothly without actively removing the water generated at this time, but the generated water is removed outside the reaction system by azeotropic dehydration with a reaction solvent or by adding a drying agent. Is also good. The time until the completion of the reaction depends on the reaction temperature, but is about 0.5 to 12 hours, preferably 1 to 5 hours.
反応の進行度合を、 高速液体ク口マトグラフィ一やガスクロマトグラフィー等 の分析手段によつて観測できる。  The degree of progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
反応終了後、 本工程において特別な後処理を必要とせず、 粗反応生成物をその まま工程 [ 2 ] に使用できる。 反応溶媒を用いている場合は、 溶媒を減圧留去し ても良いし、 溶媒を含んだまま次の工程に使用しても良い。 また、 極めて純度の 高い光学活性イミン (1 ) を取得したいときは、 例えば、 粗生成物を蒸留すれば 良い。  After the completion of the reaction, the crude reaction product can be used as it is in Step [2] without requiring any special post-treatment in this step. When a reaction solvent is used, the solvent may be distilled off under reduced pressure, or the solvent may be used for the next step while containing the solvent. When it is desired to obtain an optically active imine (1) having extremely high purity, for example, the crude product may be distilled.
尚、 本工程の製造法によって合成できる光学活性イミン (1 ) において、 特に、 R 1が置換されても良い炭素数 1〜1 8のアルキル基であり、 R2が置換されて も良い炭素数 5〜1 8のァリール基であり、 R3、 R4がそれぞれ独立して、 置換 されても良い炭素数 1〜1 8のアルキル基、 置換されても良い炭素数 5〜1 8の 了リール基または置換されても良い炭素数 7〜 1 8のァラルキル基である化合物 は、 本発明の目的であるインターロイキン一 1ベータ変換酵素阻害剤の重要中間 体として特に好ましく、 本発明者らによって用途が見いだされた新規化合物であ る。 In the optically active imine (1) which can be synthesized by the production method of this step, particularly, R 1 is an alkyl group having 1 to 18 carbon atoms which may be substituted, and R 2 is a carbon atom which may be substituted. 5 to 18 aryl groups, wherein R 3 and R 4 are each independently an alkyl group having 1 to 18 carbon atoms which may be substituted, and an alkyl group having 5 to 18 carbon atoms which may be substituted. Compounds that are a group or an aralkyl group having 7 to 18 carbon atoms which may be substituted are particularly preferred as important intermediates of the interleukin-11beta converting enzyme inhibitor, which is the object of the present invention, and are used by the present inventors. Is a new compound found.
本発明の光学活性イミン (1 ) において、 R 1がメチル基、 R2がフヱニル基 が特に好ましく、 また、 R3および R4は、 それぞれメチル基またはェチル基が 特に好ましい。 本発明の光学活性イミン (1) の具体的な例としては、 N 1— [ (1 R) 一 1 —フエニルェチル] — 2, 2—ジ (エトキシ) ェタン一 1ーィミン、 N 1— [ ( 1 R) — 1—フエニルェチル] — 2, 2—ジ (メ トキシ) ェタン一 1—ィミン、 N 1 - [ ( 1 R) 一 1一フエニノレエチノレ] — 2, 2—ジ (ベンジロキシ) ェタン — 1ーィミン、 N 1— [ ( 1 R) 一 1一ナフチルェチル] — 2, 2—ジ (ェトキ シ) ェタン一 1—ィミン、 N 1— [ (1 R) 一 1— (4—メ トキシフエニル) ェ チル] — 2, 2—ジ (エトキシ) ェタン一 1ーィミン、 N 1— [ ( 1 S) - 1 - フエニルェチル] 一 2, 2—ジ (ェトキシ) ェタン一 1—イミン等が挙げられ、 N 1 - [ ( 1 R) — 1—フエニノレエチノレ] 一 2, 2—ジ (エトキシ) ェタン一 1 ーィミンが特に好ましい。 In the optically active imine (1) of the present invention, R 1 is particularly preferably a methyl group, R 2 is particularly preferably a phenyl group, and R 3 and R 4 are each particularly preferably a methyl group or an ethyl group. Specific examples of the optically active imine (1) of the present invention include N 1 — [(1R) 1-1—phenylethyl) —2,2-di (ethoxy) ethane-1-imine and N 1— [(1 R) — 1-phenylethyl] — 2,2-di (methoxy) ethane 1-imine, N 1-[(1 R) 1-1-phenylenethyl]] — 2,2-di (benzyloxy) ethane — 1-imine, N 1— [(1 R) 1-11 naphthylethyl] — 2,2-di (ethoxy) 1-imine, N 1— [(1 R) 1 1— (4-methoxyphenyl) Tyl] — 2,2-di (ethoxy) ethane-1-imine, N 1— [(1S) -1 -phenylenyl) -1,2,2-di (ethoxy) ethane-1-imine, and N 1 -[(1 R) — 1-pheninoleethinole] 1,2,2-di (ethoxy) ethane-1-imine is particularly preferred.
工程 [2] Process [2]
本工程においては、 工程 [1] で調製した一般式 (1 )  In this step, the general formula (1) prepared in step [1]
Figure imgf000013_0001
Figure imgf000013_0001
で表される光学活性イミンを、 一般式 (3) The optically active imine represented by the general formula (3)
Figure imgf000013_0002
で表される光学活性ァミノ酪酸誘導体に変換する。
Figure imgf000013_0002
To an optically active aminobutyric acid derivative represented by
R1, R R R R5の基の説明は上述のとおりである。 The description of the groups of R 1 and RRRR 5 is as described above.
本発明者らは、 光学活性イミン (1) から光学活性アミノ酪酸誘導体 (3) の変換方法として、 3種類の方法 (方法 A、 方法 B、 方法 C) を開発しており 以下に各々について説明する。  The present inventors have developed three methods (Method A, Method B, and Method C) as methods for converting an optically active imine (1) into an optically active aminobutyric acid derivative (3). I do.
<方法 A> 方法 Aでは、 一般式 (2 ) X^C 02R5 <Method A> In method A, the general formula (2) X ^ C 0 2 R 5
(2) で表される酢酸誘導体に低原子価の金属を反応させて調製したエノラートと、 光 学活性イミン (1 ) を反応させ、 光学活性アミノ酪酸誘導体 (3 ) を立体選択的 に製造する。  An enolate prepared by reacting a low-valent metal with the acetic acid derivative represented by (2) is reacted with an optically active imine (1) to stereoselectively produce an optically active aminobutyric acid derivative (3). .
方法 Aの酢酸誘導体 (2 ) において、 R 5の基の説明は上述のとおりであり、 R 5は、 好ましくは t e r t一ブチル基、 ベンジル基等である。 In the acetic acid derivative (2) of the method A, the description of the group of R 5 is as described above, and R 5 is preferably a tert-butyl group, a benzyl group or the like.
方法 Aの酢酸誘導体 (2 ) においては、 Xはハロゲンを表し、 好ましくは臭素、 ヨウ素等が挙げられ、 より好ましくは臭素である。  In the acetic acid derivative (2) of the method A, X represents a halogen, preferably bromine, iodine or the like, and more preferably bromine.
方法 Aの酢酸誘導体 (2 ) として、 最も好ましい化合物は、 臭化酢酸 t e r t —プチルである。 ·  The most preferred compound as the acetic acid derivative (2) of Method A is tert-butyl bromoacetate. ·
方法 Aの酢酸誘導体 (2 ) の使用量は、 光学活性イミン (1 ) に対し、 1 ~ 5 倍モル、 好ましくは 1〜 3倍モルである。  The amount of the acetic acid derivative (2) used in Method A is 1 to 5 moles, preferably 1 to 3 moles, per 1 mole of the optically active imine (1).
方法 Aにおける低原子価の金属は、 例えば、 長周期表上の第 3 ~ 6周期かつ II Α、 ΠΒ、 IIIA、 IIIB、 IVA、 IVB、 VIB属かつ 0〜 3価の金属であり、 具体的には、 The low-valent metal in the method A is, for example, a metal of the third to sixth periods on the long-period table and a group of II 属, ΠΒ, IIIA, IIIB, IVA, IVB, VIB and a 0 to 3 valent metal. In
0価の亜鉛、 0価のマグネシウム、 0価のアルミニウム、 0価または 2価のスズ、Zero-valent zinc, zero-valent magnesium, zero-valent aluminum, zero- or divalent tin,
2価のクロム、 0価のガリウム、 0価のインジウム、 2価のサマリウム、 0価ま たは 3価のセリゥム等が挙げられる。 好ましくは 0価の亜鉛または 0価のマグネ シゥム、 最も好ましくは 0価の亜鉛が挙げられる。 Examples include divalent chromium, zero-valent gallium, zero-valent indium, divalent samarium, zero-valent or trivalent cell, and the like. Preferred are zero-valent zinc or zero-valent magnesium, and most preferred is zero-valent zinc.
方法 Aにおける低原子価金属の使用量は、 光学活性イミン (1 ) に対し、 1〜 The amount of low-valent metal used in Method A is 1 to 1 with respect to the optically active imine (1).
5倍モル、 好ましくは 1〜 3倍モルである。 It is 5 moles, preferably 1 to 3 moles.
必須ではないが、 方法 Aの反応において、 低原子価金属を活性化してエノレー ト形成を容易にする目的で、 各種活性化剤を添加しても良い。 当該活性化剤とし ては、 例えば: Reformatsky反応試薬調製時の活性化剤としてよく知られているも のを使用できる。 好ましくは、 ハロゲン、 モノまたはジハロゲン化アルカン、 ノ、 ロゲン化シラン等であり、 具体的には、 ヨウ素、 ヨウ化メタン、 ジブロモェタン、 塩化トリメチルシラン等を挙げることができる。 方法 Aの反応においては、 反応溶媒を使用することが好ましい。 当該反応溶媒 は特に限定されないが、 非プロトン性のものが好ましく、 例えば、 ジェチルエー テル、 ジイソプロピルエーテル、 t e r tーブチルメチルエーテル、 テトラヒド 口フラン、 ジ才キサン、 エチレングリコーノレジメチノレエーテノレ、 ジエチレングリ コールジメチノレエーテノレ、 トリエチレングリコーノレジメチノレエ一テル等のエーテ ル系溶媒;ベンゼン、 トルエン、 n—へキサン、 シクロへキサン等の炭化水素系 溶媒;塩化メチレン、 クロ口ホルム、 1, 1, 1—トリクロロェタン等のハロゲ ン系溶媒;ジメチルホルムアミ ド、 N—メチルピロリ ドン、 へキサメチルリン酸 トリアミド等の非プロトン性極性溶媒等を挙げることができる。 これらは単独で 用いてもよく、 2種以上を併用してもよい。 好ましくはベンゼン、 トルエン、 n 一へキサン、 シクロへキサン等の炭化水素系溶媒、 または、 ジェチルエーテル、 ジィソプロピノレエーテノレ、 t e r t—プチノレメチノレエーテノレ、 テトラヒドロフラ ン、 ジォキサン等のエーテル系溶媒であり、 より好ましくはトルエンまたはテト ラヒドロフランである。 Although not essential, in the reaction of Method A, various activators may be added for the purpose of activating low-valent metals to facilitate enolate formation. As the activator, for example, a well-known activator for preparing a Reformatsky reaction reagent can be used. Preferred are halogen, mono- or di-halogenated alkanes, benzenes, logenated silanes and the like, and specific examples include iodine, methane iodide, dibromoethane, and trimethylsilane chloride. In the reaction of Method A, it is preferable to use a reaction solvent. The reaction solvent is not particularly limited, but is preferably an aprotic solvent.Examples include getyl ether, diisopropyl ether, tert-butyl methyl ether, tetrahydrofuran, dithioxane, ethylene glycolone resin methinolate ether, and diethylene glycol. Ether solvents such as dimethinoleate and triethylene glycolone resin, etc .; hydrocarbon solvents such as benzene, toluene, n-hexane and cyclohexane; methylene chloride, chloroform and 1,1 And halogen solvents such as 1,1-trichloroethane; aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric acid triamide. These may be used alone or in combination of two or more. Preferably, a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane or the like, or an ether such as getyl ether, diisopropinoleatenole, tert-butinolemethinoleatenole, tetrahydrofuran, dioxane or the like It is a system solvent, more preferably toluene or tetrahydrofuran.
方法 Aの反応における反応温度は、 特に限定されないが、 好ましくは一 5 0〜 1 2 0 °C、 より好ましくは一 2 0〜8 0 °Cである。  The reaction temperature in the reaction of the method A is not particularly limited, but is preferably from 150 to 120 ° C, more preferably from 120 to 80 ° C.
方法 Aの反応における各材料の混合順序は任意であり、 特に限定されないが、 例えば以下のような手順で実施できる。 まず、 反応溶媒中で低原子価の金属と酢 酸誘導体 (2 ) を混合し、 エノラート溶液を調製する。 次に、 調製したエノラー ト溶液に光学活性イミン (1 ) を加えるとよい。 また別の方法として、 光学活性 ィミン (1 ) またはその溶液に、 上記と同様の方法で調製したエノラート溶液を 加えてもよい。  The order of mixing the respective materials in the reaction of the method A is arbitrary and is not particularly limited. For example, the mixing can be performed by the following procedure. First, a low-valent metal and an acetic acid derivative (2) are mixed in a reaction solvent to prepare an enolate solution. Next, the optically active imine (1) may be added to the prepared enolate solution. As another method, an enolate solution prepared by the same method as described above may be added to the optically active imine (1) or a solution thereof.
尚、 上記のような手順で調製したエノラートは、 長期保存が可能であり、 一度 調製したエノラートを作業員の都合にあわせて、 後日光学活性イミン (1 ) と混 合し反応させても良い。 エノラートは、 溶液状態でも保存できるし、 溶液を濃縮 あるいは晶析させるなどした後に固体のエノラートを取得して保存することもで きる。  The enolate prepared by the above procedure can be stored for a long period of time, and the enolate once prepared may be mixed with the optically active imine (1) and reacted at a later date according to the convenience of the worker. The enolate can be stored in solution, or the solid enolate can be obtained and stored after concentration or crystallization of the solution.
反応終了までの時間は、 反応温度にも依存するが、 1〜 2 4時間程度であり、 好ましくは 2〜 1 2時間である。 反応の進行度合を、 高速液体ク口マトグラフィ一やガスクロマトグラフィー等 の分析手段によって観測できる。 The time until the end of the reaction depends on the reaction temperature, but is about 1 to 24 hours, preferably 2 to 12 hours. The progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
反応終了後の混合物から光学活性アミノ酪酸誘導体 (3 ) を取得するための後 処理方法は特に限定されない。 例えば、 反応混合物を水または希酸と混合し、 一 般的な抽出溶媒で混合物を抽出後、 有機層を減圧下に濃縮すれば、 光学活性アミ ノ酪酸誘導体 (3 ) を取得することができる。  The post-treatment method for obtaining the optically active aminobutyric acid derivative (3) from the mixture after the reaction is not particularly limited. For example, an optically active aminobutyric acid derivative (3) can be obtained by mixing the reaction mixture with water or a dilute acid, extracting the mixture with a common extraction solvent, and concentrating the organic layer under reduced pressure. .
<方法 B > <Method B>
方法 Bでは、 一般式 (2 )  In method B, the general formula (2)
X、 ,C 02R5 X,, C 0 2 R 5
(2) で表される酢酸誘導体に塩基を反応させて調製したエノラートと、 光学活性イミ ン (1 ) を反応させ、 光学活性アミノ酪酸誘導体 (3 ) を立体選択的に製造する c 方法 Bの酢酸誘導体 (2 ) において、 R 5の基の説明は上述のとおりであり、 R 5は、 好ましくは水素原子、 t e r t—ブチル基、 ベンジル基等である。 And enolate prepared by the base is reacted in acetic acid derivative represented by (2), by reacting an optically active imines (1), the c Method B for producing an optically active amino acid derivative (3) stereoselectively In the acetic acid derivative (2), the description of the group of R 5 is as described above, and R 5 is preferably a hydrogen atom, a tert-butyl group, a benzyl group, or the like.
方法 Bの酢酸誘導体 (2 ) においては、 Xは水素原子を表す。  In the acetic acid derivative (2) of Method B, X represents a hydrogen atom.
方法 Bの酢酸誘導体 (2 ) として、 最も好ましい化合物は、 酢酸 t e r t—ブ チルである。  The most preferred compound as the acetic acid derivative (2) of Method B is tert-butyl acetate.
方法 Bの酢酸誘導体 (2 ) の使用量は、 光学活性イミン (1 ) に対し、 1〜5 倍モル、 好ましくは 1〜 3倍モルである。  The amount of the acetic acid derivative (2) used in the method B is 1 to 5 moles, preferably 1 to 3 moles relative to the optically active imine (1).
方法 Bで使用する塩基としては、 例えば、 リチウムジィソプロピルアミ ド、 リ チウムイソプロピルシク口へキシルァミ ド、 塩化マグネシゥムジイソプロピルァ ミ ド、 リチウムへキサメチルジシラジド、 ナトリウムへキサメチルジシラジド、 力リゥムへキサメチルジシラジド、 ナトリゥムアミ ド等の金属アミ ド;プチルリ チウム、 塩化 t e r t—ブチルマグネシウム等のアルキル金属;水素化ナトリウ ム、 水素化力リゥム、 水素化カルシウム等の金属水素化物;ナトリゥムメ トキシ ド、 ナトリゥムエトキシド、 力リゥムェトキシド、 カリウム t e r t—ブトキシ ド、.マグネシウムメ トキシド等の金属アルコキシド;金属ナトリウム、 金属カリ ゥム等の金属単体等が挙げられる。 好ましくは、 リチウムジイソプロピルアミ ド、 リチウムへキサメチルジシラジド、 ナトリゥムへキサメチルジシラジド等の金属 アミ ド等が挙げられる。 Examples of the base used in the method B include lithium disopropylamide, lithium isopropylcyclohexylamide, magnesium diisopropylamide, lithium hexamethyldisilazide, and sodium hexamethyldisilazide. Metal amides such as zide, potassium hexamethyldisilazide, sodium amide; alkyl metals such as butyllithium, tert-butylmagnesium chloride; metal hydrides such as sodium hydride, hydrogen hydride, calcium hydride Metal alkoxides such as sodium methoxide, sodium methoxide, potassium methoxide, potassium tert-butoxide, and magnesium methoxide; and simple metals such as metal sodium and metal potassium. Preferably, lithium diisopropylamide, Examples include metal amides such as lithium hexamethyldisilazide and sodium hexamethyldisilazide.
方法 Bにおける塩基の使用量は、 光学活性イミン (1 ) に対し、 1〜5倍モル、 好ましくは 1〜 3倍モルである。  The amount of the base used in the method B is 1 to 5 moles, preferably 1 to 3 moles relative to the optically active imine (1).
方法 Bの反応においては、 反応溶媒を使用することが好ましい。 当該反応溶媒 は特に限定されないが、 非プロトン性のものが好ましく、 例えば、 ジェチルエー テル、 ジィソプロピルエーテル、 t e r t一ブチルメチルエーテル、 テトラヒ ド 口フラン、 ジォキサン、 エチレングリコーノレジメチノレエーテノレ、 ジエチレングリ コーノレジメチノレエーテノレ、 トリエチレングリコーノレジメチノレエーテノレ等のエーテ ル系溶媒;ベンゼン、 トルエン、 n—へキサン、 シクロへキサン等の炭化水素系 溶媒;塩化メチレン、 クロ口ホルム、 1 , 1 , 1一トリクロロェタン等のハロゲ ン系溶媒; ジメチルホルムアミ ド、 N—メチルピロリ ドン、 へキサメチノレリン酸 トリアミ ド等の非プロトン性極性溶媒等を挙げることができる。 これらは単独で 用いてもよく、 2種以上を併用してもよい。 好ましくはベンゼン、 トルエン、 n —へキサン、 シクロへキサン等の炭化水素系溶媒、 または、 ジェチルエーテル、 ジイソプロピノレエーテノレ、 t e r t—プチノレメチノレエーテノレ、 テトラヒ ドロフラ ン、 ジォキサン等のエーテル系溶媒であり、 より好ましくはトルエンまたはテト ラヒ ドロフランである。  In the reaction of Method B, it is preferable to use a reaction solvent. The reaction solvent is not particularly limited, but is preferably an aprotic solvent.Examples include getyl ether, diisopropylpropyl ether, tert-butyl methyl ether, tetrahydrofuran, furan, dioxane, ethylene glycolone resin methinolate ether, and diethylene glycol. Ether-based solvents such as cornoremethine oleate ethere and triethylene glycolone methine oleate ethere; hydrocarbon-based solvents such as benzene, toluene, n-hexane, and cyclohexane; methylene chloride, chloroform, Halogen solvents such as 1,1-trichloroethane; and aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone, and hexametinoleic acid triamide. These may be used alone or in combination of two or more. Preferably, a hydrocarbon solvent such as benzene, toluene, n-hexane, cyclohexane or the like, or an ether such as getyl ether, diisopropinoleatenole, tert-butinolemethinoleatenole, tetrahydrofuran, dioxane or the like It is a system solvent, more preferably toluene or tetrahydrofuran.
方法 Bの反応における反応温度は、 特に限定されないが、 好ましくは一 1 0 0 〜 1 2 0。C、 より好ましくは一 5 0〜 5 0 °Cである。  The reaction temperature in the reaction of the method B is not particularly limited, but is preferably from 100 to 120. C, more preferably 150 to 50 ° C.
方法 Bの反応における各材料の混合順序は任意であり、 特に限定されないが、 例えば以下のような手順で実施できる。 まず、 反応溶媒中で塩基と酢酸誘導体 ( 2 ) を混合し、 エノラート溶液を調製する。 次に、 調製したエノラート溶液に光 学活性イミン (1 ) を加えるとよい。 また別の方法として、 光学活性イミン (1 ) またはその溶液に、 上記と同様の方法で調製したエノラート溶液を加えてもよ い。  The order of mixing the respective materials in the reaction of the method B is arbitrary and is not particularly limited. For example, the mixing can be performed by the following procedure. First, a base and an acetic acid derivative (2) are mixed in a reaction solvent to prepare an enolate solution. Next, the optically active imine (1) may be added to the prepared enolate solution. As another method, an enolate solution prepared by the same method as described above may be added to the optically active imine (1) or a solution thereof.
反応終了までの時間は、 反応温度にも依存するが、 1 0分〜 2 4時間程度であ り、 好ましくは 1〜 5時間である。  The time until the completion of the reaction depends on the reaction temperature, but is about 10 minutes to 24 hours, preferably 1 to 5 hours.
反応の進行度合を、 高速液体クロマトグラフィーやガスクロマトグラフィー等 の分析手段によって観測できる。 The degree of progress of the reaction can be determined by high performance liquid chromatography, gas chromatography, etc. Can be observed by the analysis means.
反応終了後の混合物から光学活性アミノ酪酸誘導体 (3) を取得するための後 処理方法は特に限定されない。 例えば、 反応混合物を水または希酸と混合し、 一 般的な抽出溶媒で混合物を抽出後、 有機層を減圧下に濃縮すれば、 光学活性アミ ノ酪酸誘導体 (3) を取得することができる。  The post-treatment method for obtaining the optically active aminobutyric acid derivative (3) from the mixture after the reaction is not particularly limited. For example, an optically active aminobutyric acid derivative (3) can be obtained by mixing the reaction mixture with water or a dilute acid, extracting the mixture with a common extraction solvent, and concentrating the organic layer under reduced pressure. .
<方法 C> <Method C>
方法 Cでは、 一般式 (4)
Figure imgf000018_0001
で表されるマロン酸誘導体と、 光学活性イミン (1) を反応させ、 一般式 (5)
In method C, the general formula (4)
Figure imgf000018_0001
Reaction of a malonic acid derivative represented by the formula (1) with an optically active imine (1)
Figure imgf000018_0002
Figure imgf000018_0002
で表されるカルボキシァミノ酪酸誘導体を調製し、 これを脱炭酸させて光学活性 ァミノ酪酸誘導体 (3) を立体選択的に製造する。 Is prepared and decarboxylated to stereoselectively produce an optically active aminobutyric acid derivative (3).
R1, R2、 R3、 R4、 R5の基の説明は上述のとおりである。 The description of the groups R 1 , R 2 , R 3 , R 4 and R 5 is as described above.
方法 Cのマロン酸誘導体 (4) において、 R5は、 好ましくは水素原子、 t e r t一ブチル基、 ベンジル基等である。 In the malonic acid derivative (4) of Method C, R 5 is preferably a hydrogen atom, a tert-butyl group, a benzyl group or the like.
方法 Cのマロン酸誘導体 (4) として、 最も好ましい化合物は、 マロン酸また はマロン酸 t e r t—プチルである。  As the malonic acid derivative (4) of Method C, the most preferred compound is malonic acid or tert-butyl malonate.
方法 Cのマロン酸誘導体 (4) の使用量は、 光学活性イミン (1) に対し、 1 〜 5倍モル、 好ましくは 1〜 3倍モルである。  The amount of the malonic acid derivative (4) used in Method C is 1 to 5 moles, preferably 1 to 3 moles, per 1 mole of the optically active imine (1).
方法 Cの反応においては、 反応溶媒を使用することができる。 当該反応溶媒は 特に限定されず、 プロトン性あるいは非プロトン性の幅広い種類のものが選択で きる。 例えば、 ジェチルエーテノレ、 ジィソプロピルエーテル、 t e r t—プチル メチノレエーテノレ、 テトラヒ ドロフラン、 ジ才キサン、 エチレングリコーノレジメチ ノレエーテノレ、 ジエチレングリコーノレジメチノレエーテノレ、 トリエチレングリコーノレ ジメチルエーテル等のエーテル系溶媒;ベンゼン、 トルエン、 n—へキサン、 シ クロへキサン等の炭化水素系溶媒;塩化メチレン、 クロ口ホルム、 1 , 1 , 1一 トリクロロェタン等のハロゲン系溶媒;ジメチルホルムアミド、 N—メチルピロ リ ドン、 へキサメチルリン酸トリアミド等の非プロトン性極性溶媒;メタノール、 エタノール、 1: e r t—ブタノール等のアルコール系溶媒;その他、 アセトン、 ァセトニトリル、 水等を挙げることができる。 これらは単独で用いてもよく、 2 種以上を併用してもよい。 好ましくはトルエン、 テトラヒドロフラン、 ァセトニ トリル等が挙げられ、 より好ましくはトルエン、 テトラヒドロフランである。 方法 Cの反応における反応温度は、 特に限定されないが、 好ましくは— 5 0〜 1 2 0 °C、 より好ましくは一 2 0〜: L 0 0 °Cである。 In the reaction of Method C, a reaction solvent can be used. The reaction solvent is not particularly limited, and a wide variety of protic or aprotic solvents can be selected. For example, getyl ether, diisopropyl ether, tert-butyl methinoole ether, tetrahydrofuran, dioxane, ethylene glycolone resin Ether-based solvents such as phenol, diethylene glycolone resin, dimethyl ether, and triethylene glycolone; hydrocarbon solvents such as benzene, toluene, n-hexane, and cyclohexane; methylene chloride, chloroform, Halogen solvents such as 1,1 trichloroethane; aprotic polar solvents such as dimethylformamide, N-methylpyrrolidone and hexamethylphosphoric triamide; alcohol solvents such as methanol, ethanol, 1: ert-butanol; , Acetone, acetonitrile, water and the like. These may be used alone or in combination of two or more. Preferred are toluene, tetrahydrofuran, acetonitrile and the like, and more preferred are toluene and tetrahydrofuran. The reaction temperature in the reaction of the method C is not particularly limited, but is preferably −50 to 120 ° C., and more preferably 120 to 120 ° C.
尚、 方法 Cの製造法において、 途中で形成されるカルボキシァミノ酪酸誘導体 ( 5 ) は、 上記反応条件下で自発的な脱炭酸を受けて、 ァミノ酪酸誘導体 (3 ) に至る。  In the production method of Method C, the carboxaminobutyric acid derivative (5) formed in the course of the reaction undergoes spontaneous decarboxylation under the above-mentioned reaction conditions, leading to the aminobutyric acid derivative (3).
また、 方法 Cの反応においてカルボン酸を共存させると、 副反応を抑制するこ とができる。  When a carboxylic acid is present in the reaction of the method C, side reactions can be suppressed.
方法 Cの反応において使用できるカルボン酸としては、 例えば炭素数 1〜2 0 のカルボン酸であり、 具体的には、 ギ酸、 酢酸、 プロピオン酸、 酪酸、 へキサン 酸、 オクタン酸、 シユウ酸、 安息香酸等が挙げられ、 好ましくは酢酸等である。 方法 Cの反応のカルボン酸使用量は、 光学活性イミン (1 ) に対し、 1 ~ 1 0 モル当量、 好ましくは 1〜 3モル当量である。  The carboxylic acid that can be used in the reaction of the method C is, for example, a carboxylic acid having 1 to 20 carbon atoms, and specifically, formic acid, acetic acid, propionic acid, butyric acid, hexanoic acid, octanoic acid, oxalic acid, and benzoic acid Acids and the like, and preferably acetic acid and the like. The amount of the carboxylic acid used in the reaction of the method C is 1 to 10 molar equivalents, preferably 1 to 3 molar equivalents, relative to the optically active imine (1).
方法 Cの反応における各材料の混合順序は任意であり、 特に限定されない。 例 えば、 反応溶媒中でマロン酸誘導体 (4 ) と光学活性イミン ( 1 ) と必要なら力 ルボン酸を混合すればよい。  The order of mixing the respective materials in the reaction of Method C is arbitrary and is not particularly limited. For example, a malonic acid derivative (4), an optically active imine (1) and, if necessary, carboxylic acid may be mixed in a reaction solvent.
反応終了までの時間は、 反応温度にも依存するが、 1〜 2 4時間程度であり、 好ましくは 5〜 2 0時間である。  The time until the completion of the reaction depends on the reaction temperature, but is about 1 to 24 hours, preferably 5 to 20 hours.
反応の進行度合を、 高速液体クロマトグラフィーやガスクロマトグラフィー等 の分析手段によつて観測できる。  The progress of the reaction can be monitored by analytical means such as high performance liquid chromatography and gas chromatography.
反応終了後の混合物から光学活性アミノ酪酸誘導体 (3 ) を取得するための後 処理方法は特に限定されないが、 通常、 反応混合物から反応溶媒を減圧下に濃縮 すればよい。 After obtaining the optically active aminobutyric acid derivative (3) from the mixture after the reaction, The treatment method is not particularly limited, but usually, the reaction solvent may be concentrated from the reaction mixture under reduced pressure.
上記方法 A〜Cの製造法によって得られる光学活性アミノ酪酸誘導体 (3) の 3—位の立体配置、 すなわち新しく形成される不斉炭素の立体配置は、 Rまたは Sであり、 好ましくは Sである。 すなわち、 光学活性アミノ酪酸誘導体として ( 3 S) 体を立体選択的に製造することが好ましい。  The configuration at the 3-position of the optically active aminobutyric acid derivative (3) obtained by the production method of the above methods A to C, that is, the configuration of the newly formed asymmetric carbon is R or S, preferably S. is there. That is, it is preferable to stereoselectively produce the (3S) form as an optically active aminobutyric acid derivative.
上記方法 A〜Cの製造法によって得られる光学活性アミノ酪酸誘導体 (3) の 光学純度が不足している場合には、 例えば適当な酸と塩を形成させて晶析精製す ればよい。  When the optically active aminobutyric acid derivative (3) obtained by the production methods of the above methods A to C is insufficient in optical purity, for example, crystallization and purification may be carried out by forming a salt with an appropriate acid.
工程 [3] Process [3]
本工程においては、 工程 [2] で調製した一般式 (3) で表される光学活性ァ ミノ酪酸誘導体またはその塩に対し、 酸を作用させ立体選択的に環化ラクトン化 して、 一般式 (8) で表されるアミノラタ トン誘導体に変換する。  In this step, the optically active aminobutyric acid derivative represented by the general formula (3) or the salt thereof represented by the general formula (3) prepared in the step [2] is reacted with an acid to stereoselectively form a cyclized lactone, thereby obtaining a compound represented by the general formula (8) It is converted to amino ratatotone derivative.
R R2、 R R4、 R5の基の説明は上述の通りである。 The description of the groups RR 2 , RR 4 and R 5 is as described above.
Rx R2の少なくとも一方がァリール基であることが好ましい。 特に、 R1が メチル基、 ェチル基等のアルキル基であり、 R2がフエニル基、 トリル基、 - メ トキシフエ二ル基等のァリール基であるとさらに好ましい。 最も好ましい組み 合わせは、 R1がメチル基で、 R2がフエニル基である。 また、 R3および R4が それぞれ、 メチル基またはェチル基であることが好ましい。 さらに、 R5が t e r t一プチル基であることが好ましい。 Preferably, at least one of R x R 2 is an aryl group. In particular, R 1 is more preferably an alkyl group such as a methyl group or an ethyl group, and R 2 is more preferably an aryl group such as a phenyl group, a tolyl group, or a -methoxyphenyl group. The most preferred combination is where R 1 is a methyl group and R 2 is a phenyl group. Further, it is preferable that R 3 and R 4 are each a methyl group or an ethyl group. Further, it is preferable that R 5 is a tert-butyl group.
光学活性ァミノ酪酸誘導体の 3—位の立体配置は、 Rまたは Sであり、 好まし くは Sである。 また、 R1および R2によって形成される不斉炭素の立体配置は、 Rまたは Sであり、 好ましくは Rである。 The configuration at the 3-position of the optically active aminobutyric acid derivative is R or S, and preferably S. The configuration of the asymmetric carbon formed by R 1 and R 2 is R or S, and preferably R.
本工程においては、 光学活性アミノ酪酸誘導体を塩として使用できる。 ここで 言う塩とは、 光学活性アミノ酪酸誘導体 (3) に任意の酸を加えることによって 形成される塩を意味する。 塩を形成する酸の種類は特に限定されないが、 例えば 塩酸、 硫酸、 酢酸、 トリクロロ酢酸、 安息香酸、 メタンスルホン酸、 p―トルェ ンスルホン酸等が挙げられ、 中でも p—トルエンスルホン酸が光学活性アミノ酪 酸誘導体と良好な塩を形成するので特に好ましい。 本工程の環化ラクトン化反応で用いられる酸は、 プロトン酸またはルイス酸で ある。 プロトン酸としては、 例えば、 塩酸、 硫酸、 硝酸、 リン酸、 ホウ酸、 ケィ 酸等の無機酸; メタンスルホン酸、 ベンゼンスルホン酸、 p—トルエンスルホン 酸、 トリフルォロメタンスルホン酸等のスルホン酸類; トリフルォロ酢酸、 トリ クロ口酢酸等のカルボン酸類等が挙げられる。 高収率かつ高立体選択的な反応を 進めるためには、 メタンスノレホン酸、 ベンゼンスゾレホン酸、 p—トノレエンスノレホ ン酸、 トリフルォロメタンスルホン酸等のスルホン酸類が好ましく、 メタンスル ホン酸が特に好ましい。 ルイス酸としては、 例えば、 塩化アルミニウム、 フッ化 ホウ素、 塩化チタン、 塩化スズ (IV)、 塩化鉄 (ΙΠ)、 塩化亜鉛、 臭化亜鉛、 塩化マ グネシゥム、 トリメチルシリノレトリフルォロメタンスルホネート等が好ましい。 本工程で用いられる酸の使用量は、 光学活性アミノ酪酸誘導体 (3 ) に対して、 0 . 1〜3 0モル当量が好ましく、 収率および経済性の観点から 1〜2 0モル当 量がより好ましい。 In this step, an optically active aminobutyric acid derivative can be used as a salt. Here, the salt means a salt formed by adding an optional acid to the optically active aminobutyric acid derivative (3). The type of the acid that forms the salt is not particularly limited, and examples thereof include hydrochloric acid, sulfuric acid, acetic acid, trichloroacetic acid, benzoic acid, methanesulfonic acid, and p-toluenesulfonic acid. Among them, p-toluenesulfonic acid is an optically active amino acid. It is particularly preferred because it forms a good salt with the butyric acid derivative. The acid used in the cyclization lactonization reaction in this step is a protic acid or a Lewis acid. Examples of the protic acid include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, and caustic acid; sulfonic acids such as methanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, and trifluoromethanesulfonic acid; Carboxylic acids such as trifluoroacetic acid and trichloroacetic acid are exemplified. In order to promote a high yield and high stereoselective reaction, sulfonic acids such as methanesnolefonic acid, benzeneszolefonic acid, p-tonolenesnolefonic acid, and trifluoromethanesulfonic acid are preferable, and methanesulphonic acid is preferred. Particularly preferred. As the Lewis acid, for example, aluminum chloride, boron fluoride, titanium chloride, tin (IV) chloride, iron (II) chloride, zinc chloride, zinc bromide, magnesium chloride, trimethylsilinoletrifluoromethanesulfonate and the like are preferable. . The amount of the acid used in this step is preferably 0.1 to 30 molar equivalents with respect to the optically active aminobutyric acid derivative (3), and 1 to 20 molar equivalents from the viewpoint of yield and economy. More preferred.
WO 9 9 0 3 8 5 2に記載の医薬品中間体を製造するためには、 本発明の立体 選択的な環化ラタ トン化によって生成する光学活性アミノラク トン誘導体 (8 ) ( 4 S , 5 R ) —テトラヒ ドロフラン一 2—オン骨格体を有することが好まし い。  In order to produce the pharmaceutical intermediate described in WO9903852, the optically active aminolactone derivative (8) (4S, 5R) produced by the stereoselective cyclized ratatone conversion of the present invention is required. It is preferable to have a tetrahydrofuran-1-one skeleton.
尚、 環化ラタ トン化反応において反応溶媒を使用することができる。 反応溶媒 は特に限定されず、 例えば、 ジェチルエーテル、 ジイソプロピルエーテル、 t e r t一ブチルメチルエーテル、 テトラヒ ドロフラン、 ジォキサン、 エチレングリ コーノレジメチノレエーテノレ、 ジエチレングリコーノレジメチノレエ一テル、 トリェチレ ングリコールジメチルエーテル等のエーテル系溶媒;ベンゼン、 トノレェン、 n— へキサン、 シク口へキサン等の炭化水素系溶媒;メタノール、 エタノール、 ブタ ノール、 イソプロピルアルコール、 エチレングリコール、 メ トキシエタノール等 のアルコール系溶媒;ァセトニトリノレ、 プロピオ二トリル等の二トリル系溶媒; 塩化メチレン、 クロロホノレム、 1, 1 , 1—トリクロロェタン等のハロゲン系溶 媒;ジメチルホルムアミ ド、 N—メチルピロリ ドン、 へキサメチルリン酸トリァ ミ ド等の非プロ トン性極性溶媒等を挙げることができる。 これらは単独で用いて もよく、 2種以上を併用してもよい。 高収率かつ高立体選択的な反応を進めるた めには、 ベンゼン、 トルエン、 n—へキサン、 シクロへキサン等の炭化水素系溶 媒が好ましく、 トルエンが特に好ましい。 . In addition, a reaction solvent can be used in the cyclization ratatonization reaction. The reaction solvent is not particularly limited. Ether solvents such as benzene, tonolene, n- hexane, cyclohexane, etc .; hydrocarbon solvents such as methanol, ethanol, butanol, isopropyl alcohol, ethylene glycol, methoxyethanol, etc .; acetonitrile, Nitril solvents such as propionitrile; Halogen solvents such as methylene chloride, chlorophonolem and 1,1,1-trichloroethane; dimethylformamide, N-methylpyrrolidone, and hexane It can be exemplified non-pro ton polar solvents such as Chirurin acid Toria Mi de. These may be used alone or in combination of two or more. To promote high yield and high stereoselective reactions For this purpose, hydrocarbon solvents such as benzene, toluene, n-hexane and cyclohexane are preferred, and toluene is particularly preferred. .
環化ラクトン化反応における反応温度は、 — 5 0〜1 0 0 °Cが好ましく、 高収 率かつ高立体選択的な反応を進めるために一 3 0〜 3 0 °Cがより好ましい。  The reaction temperature in the cyclized lactonization reaction is preferably from −50 to 100 ° C., and more preferably from 130 to 30 ° C. in order to promote a high yield and high stereoselective reaction.
反応時間は、 反応温度にもよるが、 1〜 2 4時間程度であり、 好ましくは 2〜 1 2時間である。  The reaction time depends on the reaction temperature, but is about 1 to 24 hours, preferably 2 to 12 hours.
反応終了後、 反応液から生成物を取得するためには、 一般的な後処理を行えば よい。 例えば、 反応終了後の反応液と水または弱アルカリ水を混合し、 一般的な 抽出溶媒、 例えば酢酸ェチル、 ジェチルエーテル、 塩化メチレン、 トルエン、 へ キサン等を用いて抽出操作を行う。 得られた抽出液から、 減圧加熱等の操作によ り反応溶媒及び抽出溶媒を留去すると、 目的物が得られる。 また反応終了後、 直 ちに減圧加熱等の操作により反応溶媒を留去してから、 同様の操作を行ってもよ い。 このようにして得られる目的物は、 ほぼ純粋なものであるが、 晶析精製、 分 別蒸留、 カラムクロマトグラフィー等の一般的な手法により精製を加え、 さらに 純度を高めてもよい。 発明を実施するための最良の形態  After completion of the reaction, a general post-treatment may be performed to obtain a product from the reaction solution. For example, the reaction solution after the completion of the reaction is mixed with water or weakly alkaline water, and extraction is performed using a common extraction solvent such as ethyl acetate, getyl ether, methylene chloride, toluene, hexane, and the like. When the reaction solvent and the extraction solvent are distilled off from the obtained extract by an operation such as heating under reduced pressure, the desired product is obtained. After the reaction is completed, the same operation may be performed immediately after distilling off the reaction solvent by an operation such as heating under reduced pressure. The target product thus obtained is almost pure, but may be further purified by a general method such as crystallization purification, fractional distillation, or column chromatography to further increase the purity. BEST MODE FOR CARRYING OUT THE INVENTION
以下に実施例を掲げて本発明をさらに詳しく説明するが、 本発明はこれら実施 例に限定されるものではない。  Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
実施例 1 : N 1 - [ ( 1 R ) — 1—フエ二ルェチノレ Ί - 2 , 2—ジ (エトキシ) エタンー 1ーィ ミン Example 1: N 1-[(1 R) — 1-Fenrj チ cinole Ί-2, 2-Di (ethoxy) ethane-1-imine
EtO^ JL EtO ^ JL
丫 、H  、, H
OEt  OEt
2, 2ージ (ェトキシ) ェタナール 2 . 0 g ( 1 5 . 1 mm o 1 ) を 1 5 m 1 のトルエンに溶解し、 氷冷撹拌下に (R) —フエネチルァミン 1 . 5 3 g ( 1 2 . 6 mm o 1 ) の 5 m 1 トルェン溶液を 5分間で滴下した。 滴下終了と同時に氷浴 を除去し、 室温 (20°C) で撹拌した。 室温撹拌 2時間の後に、 反応混合物から 減圧下にトルエンを留去し、 表題化合物 3. O gを得た (定量的) 。 Dissolve 2.0 g (15.1 mm o 1) of 2,2 di (ethoxy) ethanal in 15 ml of toluene and stir under ice-cooling and stirring (R) -phenethylamine 1.53 g (1 2.6 mm o 1) of a 5 ml toluene solution was added dropwise over 5 minutes. Ice bath at the end of dripping Was removed and the mixture was stirred at room temperature (20 ° C). After 2 hours of stirring at room temperature, toluene was distilled off from the reaction mixture under reduced pressure to obtain 3.0 g of the title compound (quantitative).
1H-NM (400 MHz, CDC13) δ 7.57(lH,dJ=5.1Hz); 7.2-7.4(5H,m), 4.80(lH,d,J=5. 1Hz), 4.37(lH,q,J=6.4Hz), 3.4-3.8(4H,m), 1.50(3H,d,J=6.4Hz), 1.24(3H,t,J=6.8Hz), 1.16(3H,t,J=6.8Hz) ppm 1H-NM (400 MHz, CDC1 3) δ 7.57 (lH, dJ = 5.1Hz); 7.2-7.4 (5H, m), 4.80 (. LH, d, J = 5 1Hz), 4.37 (lH, q, J = 6.4Hz), 3.4-3.8 (4H, m), 1.50 (3H, d, J = 6.4Hz), 1.24 (3H, t, J = 6.8Hz), 1.16 (3H, t, J = 6.8Hz) ppm
13H-NMR (100 MHz, CDC13) d 159.7, 144.1, 128.4, 127.0, 126.5, 101.9, 69.1, 62.5, 62.3, 24.2, 15.2, 15.1 ppm 実施例 2 : N 1 - [ ( 1 R) —1—フエニルェチル] —2, 2—ジ (メ トキシ) エタンー 1—ィミン 13 H-NMR (100 MHz, CDC1 3) d 159.7, 144.1, 128.4, 127.0, 126.5, 101.9, 69.1, 62.5, 62.3, 24.2, 15.2, 15.1 ppm Example 2: N 1 - [(1 R) -1 —Phenylethyl] —2,2-di (methoxy) ethane-1-imine
N八 Ph N eight Ph
MeO.丫人 H  MeO. 丫 人 H
OMe  OMe
2, 2—ジ (メ トキシ) エタ^ "一ル 1. 6 g (15. 4mm o 1 ) を 1 5 m 1 のトルエンに溶解し、 氷冷撹拌下に (R) —フエネチルァミン 1. 53 g (12. 6mmo 1) の 〗 トルエン溶液を 5分間で滴下した。 滴下終了と同時に氷浴 を除去し、 室温 (20°C) で撹拌した。 室温撹拌 2時間の後に、 反応混合物から 減圧下にトルエンを留去し、 表題化合物 2. 6 gを得た (定量的) 。 Dissolve 1.6 g (15.4 mm o 1) of 2,2-di (methoxy) ethanol in 15 ml of toluene and stir with ice-cooled (R) -phenethylamine 1.53 g A toluene solution of (12.6 mmo 1) was added dropwise over 5 minutes, and upon completion of the addition, the ice bath was removed, and the mixture was stirred at room temperature (20 ° C). The toluene was distilled off to obtain 2.6 g of the title compound (quantitative).
1H-NMR (400 MHz, CDCI3) δ 7.57(lH,d,J=4.6Hz), 7.2-7.3(5H,m), 4.72(lH,d,J=4. 6Hz), 4.40(lH,q,J=6.8Hz), 3.43(3H,s), 3.37(3H,s), 1.53(3H,d,J=6.8Hz) ppm 13H- MR (100 MHz, CDCI3) d 159.0, 143.9, 128.5, 127.0, 126.6, 103.1, 69.3, 54.0, 53.9, 24.2 ppm 実施例 3 : (3 S) —4, 4—ジ (エトキシ) 一 3— { 「 (1 R) — 1一フエ二 ルェチル] アミノ } 酪酸 t e r t—ブチル [方法 A] ζΖ radd (zH8'9=iVH£ ΐ.ί '(ζ
Figure imgf000024_0001
'(ZH6.S 'I'SK'PP'HI)ん
Figure imgf000024_0002
1H-NMR (400 MHz, CDCI3) δ 7.57 (lH, d, J = 4.6Hz), 7.2-7.3 (5H, m), 4.72 (lH, d, J = 4.6Hz), 4.40 (lH, q, J = 6.8Hz), 3.43 (3H, s), 3.37 (3H, s), 1.53 (3H, d, J = 6.8Hz) ppm 13 H-MR (100 MHz, CDCI3) d 159.0, 143.9, 128.5, 127.0 , 126.6, 103.1, 69.3, 54.0, 53.9, 24.2 ppm Example 3: (3S) —4,4-di (ethoxy) -13 — {“(1R) —1-phenyl-2-ethyl] amino} tert-butyric acid —Butyl [Method A] ζΖ radd (zH8'9 = iVH £ ΐ.ί '(ζ
Figure imgf000024_0001
'(ZH6.S'I'SK'PP'HI)
Figure imgf000024_0002
ί¾'Ηΐ)88·£ c(zH^ =XcP¾l)83 '(∞¾S)ん £'ん ん 9 (εΌαθ 頭 00ρ) ¾Ν[Μ-ΗΤ ί¾'Ηΐ) 88 · £ c (zH ^ = X c P¾l) 83 '(∞¾S) n £' n 9 ( ε Όαθ head 00 ρ) ¾Ν [Μ-Η Τ
。^ (% s Ζ) § oz s - z ^m ^ っ璩 ¾、 (s : 8 ^エ翘S/ 一 乙  . ^ (% s Ζ) § oz s-z ^ m ^ 璩, (s: 8 ^ 翘 S /
^4ム a マ /' ( ¾ ¾ 、つ辛爵^瀚缀 。 ο Τ : 06 = (Η ε) : (s ε) (rau o s s : 、つ。 o ^ 4 mu a ma / '(¾ ¾, つ 辛 ^ 缀 缀 ο ο ο 06 06 : Τ Τ Τ Τ : : 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06 06
: 、 /
Figure imgf000024_0003
4 4 : 軎馑 o s-v/sao/OHA: τό^) dH .^' Ba)^ 。 つ ςι
:, /
Figure imgf000024_0003
44: 軎 馑 o sv / sao / OHA: τό ^) dH. ^ 'Ba) ^. Tsu ςι
^ ^- i Ci i -(-m - ^^ ^M^m ^m^-^^-n 、 ? s^ ^-i Ci i-(-m-^^ ^ M ^ m ^ m ^-^^- n ,? s
• 8 H a 、ェ 丄续¾¾缀氺マ fi
Figure imgf000024_0004
0 ε 、^ω ΐ ο
• 8 Ha, e-ma fi
Figure imgf000024_0004
0 ε, ^ ω ΐ ο
τ ^m ^m^ Ψ ^9ΜΜ 。 つ 凝' (つ。 o s) ¾ つ辛^! τ ^ m ^ m ^ Ψ ^ 9ΜΜ. Tsu tsu '(Ts. O s) ¾ Tsu spicy ^!
^ ^ ¾丄 ^丄继 ° っ丄毁 ¾ 缀 エ /4 1 ^0 Ο) ( ΐ o xnin g , 8) S^ ^ ¾ 丄 ^ 丄 继 ° 丄 毁 / 4 ¾ 缀 d / 4 1 ^ 0 Ο) (ΐ o xnin g, 8 ) S
0 ' ζ - τ - ^m ( 、 ^4ェ) ' z - [ /^ /二 T一 οι ( τ ) ] 一 τ N^ a. i \ 、丄 氺 :^r 、 慇觀: ^ / 4 D 1 ^0 'ζ-τ-^ m (, ^ 4e)' z-[/ ^ / T1 οι (τ)] τ N ^ a. I \, 丄 氺: ^ r, politeness: ^ / 4 D 1 ^
08丄^固 峯暴 ¾ (〖 orauis -Q s) § 9 * 9 @ ^ ¾ ΐα ¾ 0-¾ 08 丄 ^ au ¾ (〖orauis -Q s) § 9 * 9 @ ^ ¾ ΐα ¾ 0-¾
。 ¾ 3 s ·91^@¾^ 4— 4 ,ェ ^ ^w ^^^mm^ . ¾ 3 s · 91 ^ @ ¾ ^ 4— 4, e ^ ^ w ^^^ mm ^
¾an。 ·^¾ ' 4 η、 ^^^^^^m ^ ^n ^mm^im^m^^^¾ a n. · ^ ¾ '4 η, ^^^^^^ m ^ ^ n ^ mm ^ im ^ m ^^^
$ 、つ fig¾ ¾a¾ つ ½ 、 っ晖^ ^^萆 。 つ ^^て $' 0。0 S$, Tsu fig¾ ¾ a ¾ tsu ½, tsu ^ ^ ^ 萆. ^^ and $ '0. 0 S
、つ丄鳞 06 I 0 τ Λ(^ - ^ J Θ ^ Μ^- ,α ο g ^ ^ o , Tsutsu 06 I 0 τ Λ (^-^ J Θ ^ Μ ^-, α ο g ^ ^ o
^ ¾¾ liL¾ B τ ^ ^H^- ΐ ra T · 0ぺ ェ η — Ζ ' I ¾ 軍 、っ翳觀 : 、 I ra s¾s 6 ' 率 亜 M^ffl塞峯暴 ^ ¾¾ liL¾ B τ ^ ^ H ^-ΐ ra T · 0 ぺ ェ η — Ζ 'I ¾ ¾, っ 觀: I ra s¾s 6'
Figure imgf000024_0005
zz
Figure imgf000024_0005
zz
LZ9ll/l0dr/∑Jd LtSSO/ZO OAV 実施例 4 : ( 3 S) 一 4 , 4ージ (エトキシ) 一 3— { [ ( 1 R) 一 1一フエ二 ルェチル] アミノ } 酪酸 t e r t—ブチル [方法 B] LZ9ll / l0dr / ∑Jd LtSSO / ZO OAV Example 4: (3 S) one 4, 4-di (ethoxy) one 3- {[(1 R) Single 1 one phenylene Ruechiru] amino} butyric acid t er t-butyl [Method B]
窒素雰囲気下、 ジイソプロピルアミン 0. 6 5 g (6. 4mmo 1 ) の 1 0m 1テトラヒドロフラン溶液に、 0 °C撹拌下、 1. 6 NZn—ブチルリチウム/ n —へキサン溶液 4. Om l (6. 4mm o 1 ) を滴下した。 滴下終了後の溶液を — 7 8°Cに冷却し、 撹拌下、 酢酸 t e r t—ブチル 0. 74 g (6. 4 mm o 1 ) の 1 0m lテトラヒドロフラン溶液を滴下した。 さらに撹拌 3 0分間の後に、 実施例 1で得た N 1— [ ( 1 R) — 1一フエニルェチル] — 2, 2—ジ (ェトキ シ) エタン一 1ーィミン 0. 5 g (2. 1 2 mm o 1 ) の 5m lテトラヒ ドロ フラン溶液を滴下した。 撹拌 2時間後、 '反応液を氷浴撹拌中の 1 N塩酸 2 5m l に加え、 さらに 3 0 %水酸化ナトリウム水溶液を滴下して、 p H8. 5とした。 n—へキサンで抽出、 飽和食塩水で洗浄後、 無水硫酸ナトリゥムで乾燥して、 溶 媒を減圧下で留去した。 このようにして得られた濃縮物を HP LC分析 (カラム : YMC/OD S/A- 3 0 3、 移動層:ァセトニトリルノ酢酸緩衝溶液- 5 0 Z 5 0、 流速: 1. 0m lノ分、 温度: 4 0 °C、 検出波長: 2 20 n m) を行つ たところ、 表題化合物の収率は 4 0 %、 立体選択性は (3 S) : (3 R) = 7 0 : 3 0であった。 実施例 5 : ( 3 S) 一 4, 4ージ (エトキシ) 一 3— { 「 (1 R) — 1—フエ二 ルェチル] アミノ } 酪酸 t e r t—ブチル [方法。]  Under a nitrogen atmosphere, a solution of 0.65 g (6.4 mmo 1) of diisopropylamine in 10 ml of tetrahydrofuran was stirred at 0 ° C under stirring at 1.6 ° C for 1.6 NZn-butyllithium / n-hexane solution. 4 mm o 1) was added dropwise. After the completion of the dropwise addition, the solution was cooled to −78 ° C., and a solution of 0.74 g (6.4 mmol) of tert-butyl acetate in 10 ml of tetrahydrofuran was added dropwise with stirring. After a further 30 minutes of stirring, the N 1 — [(1R) —1-phenylethyl) —2,2-di (ethoxy) ethane-1-imine obtained in Example 1 0.5 g (2.12) 5 ml of tetrahydrofuran solution of mmo1) was added dropwise. After 2 hours of stirring, the reaction mixture was added to 25 ml of 1N hydrochloric acid in an ice bath, and a 30% aqueous sodium hydroxide solution was added dropwise to adjust the pH to 8.5. After extraction with n-hexane and washing with a saturated saline solution, the mixture was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The concentrate obtained in this way was analyzed by HP LC (column: YMC / ODS / A-303, mobile phase: acetonitrile acetic acid buffer solution-50 Z50, flow rate: 1.0 ml, Temperature: 40 ° C, detection wavelength: 220 nm), the yield of the title compound was 40%, and the stereoselectivity was (3S): (3R) = 70: 30. there were. Example 5: (3S) -14,4-di (ethoxy) -13-{"(1R) -1-phenylethyl] amino} tert-butyl butyrate [Method]
実施例 1で得た N l— [ ( 1 R) — 1—フユニルェチル] 一 2, 2—ジ (エト キシ) ェタン一 1—ィミン 0. 5 g (2. 1 2mm o 1 ) とマロン酸モノ t e r t—プチノレエステノレ 0. 3 4 g (2. 1 2mm o 1 ) を 1 0 m lのトルエンに 溶解し、 酢酸 0. 2 5 g (4. 1 6mm o 1 ) を加え、 0°Cで 3時間、 さらに 3 0 °Cで 1 5時間撹拌した。  0.5 g (2.12 mmo1) of N l — [(1 R) —1-fuunylethyl) -1,2,2-di (ethoxy) ethane-1-imine obtained in Example 1 and monomalonic acid Dissolve 0.34 g (2.12 mm o 1) of tert-peptinole in 10 ml of toluene, add 0.25 g of acetic acid (4.16 mm o 1), and at 0 ° C. The mixture was stirred for 3 hours and further at 30 ° C for 15 hours.
反応液を減圧下に濃縮し、 得られた濃縮物を H P L C分析 (カラム: YMC/ OD SZA— 3 0 3、 移動層: ァセトニトリル /酢酸緩衝溶液 = 5 0/5 0、 流 速: 1. 0m lノ分、 温度: 4 0。C、 検出波長: 2 2 0 n m) を行ったところ、 表題化合物の収率は 4 1 %、 立体選択性は (3 S) : (3 R) = 6 0 : 4 0であ つた。 実施例 6 : (4 S, 5 R) —5—エトキシ一 4— { [ ( 1 R) —1一フエニルェ チノレ] ァミノ) テトラヒ ドロフラン一 2—オンの合成 1 The reaction solution was concentrated under reduced pressure, and the obtained concentrate was analyzed by HPLC (column: YMC / OD SZA—303, moving layer: acetonitrile / acetate buffer solution = 50/50, flow rate: 1.0 m) The yield of the title compound was 41%, and the stereoselectivity was (3S): (3R) = 60. : 40 I got it. Example 6: Synthesis of (4S, 5R) -5-ethoxy-4-({[(1R) -1-1-phenylenetinole] amino) tetrahydrofuran-1-one 1
Figure imgf000026_0001
Figure imgf000026_0001
(3 S) —4, 4—ジエトキシー 3— { 〔 (1 R) — 1—フエニルェチル] ァ ミノ} 酪酸 t e r tーブチノレ 2. 0 g ( 5. 69 mm o 1 ) を 20m 1の トノレエ ンに溶解し、 0°Cで撹拌下、 メタンスルホン酸 6 m l (14モル当量) を 10分 かけて滴下した。 0°Cでさらに 6時間撹拌後、 トリェチルァミン 14 m 1を滴下 した。 次にこの混合物を水洗し、 減圧下に溶媒を留去して 1. 58 gの粗生成物 を得た。 この時点で HP LC分析 (カラム : YMCZOD S/A— 303、 溶離 液:ァセトニトリル 水= 50/50, 流速: 0. 8m l Z分、 温度: 40 °C、 検出波長: 210 nm) を行ったところ、 立体選択性は (4 S, 5 R) : (4 S, 5 S) =88 : 1 2であった。 さらに粗生成物をシリカゲルカラムクロマトグラ フィー (へキサン/酢酸ェチル 5 : 5) で精製し、 純粋な表題化合物 1. 02 g (収率 72%) を得た。  (3 S) —4,4-Diethoxy 3-— {[(1 R) — 1-phenylethyl] amino} tert-butynole butyrate 2.0 g (5.69 mm o 1) was dissolved in 20 ml of tonoleene. Under stirring at 0 ° C., 6 ml (14 molar equivalents) of methanesulfonic acid was added dropwise over 10 minutes. After stirring at 0 ° C. for further 6 hours, 14 ml of triethylamine was added dropwise. Next, the mixture was washed with water, and the solvent was distilled off under reduced pressure to obtain 1.58 g of a crude product. At this point, HP LC analysis (column: YMCZOD S / A-303, eluent: acetonitrile water = 50/50, flow rate: 0.8 ml / min, temperature: 40 ° C, detection wavelength: 210 nm) was performed However, the stereoselectivity was (4S, 5R) :( 4S, 5S) = 88: 12. The crude product was further purified by silica gel column chromatography (hexane / ethyl acetate 5: 5) to obtain 1.02 g (yield: 72%) of the pure title compound.
1H- MR (400 MHz, CDC13) δ 7.25-7.36(5H,m), 4.96(lH,d,J=4.9Hz), 3.74-3.81( 2H,m), 3.33-3.47(2H,m), 2.61(lH,dd,J=16.6,7.6Hz), 2.39(lH,dd,J=16.6,10.7Hz), 1.87(lH,bs), 1.40(3H,d,J=6.8Hz), 1.23(3H,t,J=7.1Hz) ppm 実施例 7 : (4 S, 5 R) ー5—エトキシ一 4— { 「 (1 R) —1—フエニルェ チル] ァミノ) テトラヒ ドロフラン一 2—オンの合成 2 1H- MR (400 MHz, CDC1 3 ) δ 7.25-7.36 (5H, m), 4.96 (lH, d, J = 4.9Hz), 3.74-3.81 (2H, m), 3.33-3.47 (2H, m), 2.61 (lH, dd, J = 16.6,7.6Hz), 2.39 (lH, dd, J = 16.6,10.7Hz), 1.87 (lH, bs), 1.40 (3H, d, J = 6.8Hz), 1.23 (3H , t, J = 7.1Hz) ppm Example 7: Synthesis of (4S, 5R) -5-ethoxy-1-({((1R) —1-phenylenyl] amino) tetrahydrofuran-1-one 2
(3 S) 一 4, 4—ジェトキシー 3— { [ (1 R) 一 1—フエニルェチル] 了 ミノ } 酪酸 t e r t—ブチルの p—トルエンスルホン酸塩 37. 5 g (71. 6 mmo 1 ) を 260 m 1のトルエンに懸濁し、 0°Cで撹拌下、 メタンスルホン酸 5 5 g (8モル当量) を 20分かけて滴下した。 0 °Cでさらに 4時間撹拌後、 こ の混合物を炭酸水素ナトリゥム溶液に 10°C以下で冷却撹拌しながら注いだ。 撹 拌を停止し、 有機層と水層を分離後、 水層を n—へキサンで 2回抽出し、 すべて の有機層をあわせて水で洗浄した。 減圧下に溶媒を留去すると 38. 5 gの粗生 成物が得られた。 この時点で H PLC分析 (カラム: YMC/OD S/A— 30(3S) -1,4—Jetoxy 3 -— {[(1R) -11-phenylethyl] amino} p-toluenesulfonate of tert-butyl butyrate 37.5 g (71.6 mmo 1) in 260 The resulting suspension was suspended in toluene at 0 ° C and 55 g (8 molar equivalents) of methanesulfonic acid was added dropwise over 20 minutes while stirring at 0 ° C. After stirring at 0 ° C for another 4 hours, Was poured into a sodium hydrogencarbonate solution at 10 ° C or lower while cooling and stirring. After stopping the stirring and separating the organic layer and the aqueous layer, the aqueous layer was extracted twice with n-hexane, and all the organic layers were combined and washed with water. The solvent was distilled off under reduced pressure to obtain 38.5 g of a crude product. At this point, HPLC analysis (column: YMC / OD S / A—30
3、 溶離液: ァセトニトリル /水 = 50/50、 流速: 0. 8ml Z分、 温度:3. Eluent: acetonitrile / water = 50/50, flow rate: 0.8 ml Z min, temperature:
40°C、 検出波長: 210 nm) を行ったところ、 立体選択性は (4 S, 5 R)At 40 ° C, detection wavelength: 210 nm), the stereoselectivity was (4 S, 5 R)
: (4 S, 5 S) =89 : 1 1であった。 さらに粗生成物をシリカゲルカラムク 口マトグラフィー (へキサン 酢酸ェチル 5 : 5) で精製し、 純粋な表題化合物 14. 4 g (収率 8 1 %) を得た。 実施例 8 : (4 S, 5 R) —5—エトキシ一 4一 { [ ( 1 R) 一 1一フエニルェ チル] アミノ } テトラヒ ドロフラン一 2—オンの合成 3 : (4 S, 5 S) = 89: 11 The crude product was further purified by silica gel column chromatography (hexane: ethyl acetate 5: 5) to obtain 14.4 g (yield: 81%) of the pure title compound. Example 8: Synthesis of (4S, 5R) -5-ethoxy-1-41 {[(1R) -11-phenylethyl] amino} tetrahydrofuran-2-one 3-
メタンスルホン酸を 8モル当量使用し、 メタンスルホン酸滴下温度および反応 温度を一 20°C、 反応時間を 8時間とする以外は、 実施例 6と同様の操作を行つ たところ、 生成物の立体選択性は (4 S, 5R) : (4 S, 5 S) =90 : 10、 収率は 89 %であった。 産業上の利用可能性  The same operation as in Example 6 was carried out except that methanesulfonic acid was used at 8 molar equivalents, the methanesulfonic acid dropping temperature, the reaction temperature was set at 120 ° C, and the reaction time was set at 8 hours. The stereoselectivity was (4S, 5R) :( 4S, 5S) = 90: 10, and the yield was 89%. Industrial applicability
本発明によって、 医薬品中間体として有用な光学活性アミノラクトン誘導体お よびその中間体である光学活性アミノ酪酸誘導体を、 市販されている原料から少 ない工程数で立体選択的に製造することができる。  According to the present invention, an optically active aminolactone derivative useful as a pharmaceutical intermediate and an optically active aminobutyric acid derivative as an intermediate thereof can be stereoselectively produced from commercially available raw materials in a small number of steps.

Claims

請求の範囲 The scope of the claims
1 . 一般式 (2 )1. General formula (2)
Figure imgf000028_0001
Figure imgf000028_0001
(2)  (2)
(式中、 R5 は水素原子、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜 1 8のァリ ール基または炭素数 7〜1 8のァラルキル基を表し、 Xはハロゲンまたは水素原 子を表す) で表される酢酸誘導体に低原子価の金属または塩基を反応させて調製 したエノラートと、'一般式 (1 )
Figure imgf000028_0002
(In the formula, R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and X represents halogen or hydrogen. An enolate prepared by reacting a low-valent metal or base with an acetic acid derivative represented by the following formula:
Figure imgf000028_0002
(式中、 R R R R4はそれぞれ独立して、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性イミンを反応させ、 一般式 (3 )
Figure imgf000028_0003
(Wherein, RRRR 4 independently represents an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom. Is reacted with an optically active imine represented by the general formula (3)
Figure imgf000028_0003
(式中、 R R R R R5、 *は前記に同じ) で表される光学活性アミノ 酪酸誘導体を立体選択的に製造する方法。 (Wherein, RRRRR 5 and * are the same as above). A method for stereoselectively producing an optically active aminobutyric acid derivative represented by the formula:
2 . 一般式 (2 ) において Xがハロゲンである酢酸誘導体に、 低原子価の金属 を反応させて調製したエノラートを使用する請求の範囲 1記載の製造法。 2. The production method according to claim 1, wherein an enolate prepared by reacting a low-valent metal with an acetic acid derivative in which X is a halogen in the general formula (2) is used.
3 . 低原子価の金属として、 0価の亜鉛または 0価のマグネシウムを使用する 請求の範囲 2記載の製造法。 3. The production method according to claim 2, wherein zero-valent zinc or zero-valent magnesium is used as the low-valent metal.
4 . Xが臭素である請求の範囲 2または 3記載の製造法。 4. The production method according to claim 2, wherein X is bromine.
5 . 一般式 (2 ) において Xが水素原子である酢酸誘導体に、 塩基を反応させ て調製したエノラートを使用する請求の範囲 1記載の製造法。 5. The method according to claim 1, wherein an enolate prepared by reacting a base with an acetic acid derivative in which X is a hydrogen atom in the general formula (2) is used.
6 . 塩基として、 リチウムジイソプロピルアミ ド、 リチウムへキサメチルジシ ラジド、 ナトリウムへキサメチルジシラジドから選ばれる少なくとも 1種を使用 する請求の範囲 5記載の製造法。 6. The production method according to claim 5, wherein at least one selected from lithium diisopropylamide, lithium hexamethyldisilazide, and sodium hexamethyldisilazide is used as the base.
7 . —般式 (4 ) ,G 02R5 7. — General formula (4), G 0 2 R 5
r  r
C02H (4) (式中、 R5は水素原子、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜 1 8のァリ ール基または炭素数 7〜1 8のァラルキル基を表す) で表されるマロン酸誘導体 と、 一般式 (1 ) C0 2 H (4) (wherein, R 5 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms, or an aralkyl group having 7 to 18 carbon atoms. ) And a malonic acid derivative represented by the general formula (1)
Figure imgf000029_0001
Figure imgf000029_0001
(式中、 R R2、 R R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性イミンを反応させ、 一般式 (5 )
Figure imgf000030_0001
(Wherein RR 2 and RR 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, Reacting an optically active imine represented by the general formula (5)
Figure imgf000030_0001
(式中、 R R R3、 R4、 R5、 *は前記に同じ) で表されるカルボキシアミ ノ酪酸誘導体を調製し、 これを脱炭酸させて、 一般式 (3)
Figure imgf000030_0002
(Wherein, RRR 3 , R 4 , R 5 , and * are the same as those described above), and are decarboxylated to obtain a compound of the general formula (3)
Figure imgf000030_0002
(式中、 R R2、 R R R5、 *は前記に同じ) で表される光学活性アミノ 酪酸誘導体を立体選択的に製造する方法。 (Wherein, RR 2 , RRR 5 , and * are the same as above) stereoselectively producing an optically active aminobutyric acid derivative represented by the formula:
8. 脱炭酸の際に炭素数 1〜 20のカルボン酸を共存させる請求の範囲 7記載 の製造法。 8. The production method according to claim 7, wherein a carboxylic acid having 1 to 20 carbon atoms coexists during decarboxylation.
9. カルボン酸として酢酸を使用する請求の範囲 8記載の製造法。 9. The process according to claim 8, wherein acetic acid is used as the carboxylic acid.
1 0. 一般式 ( 1 )
Figure imgf000030_0003
1 0. General formula (1)
Figure imgf000030_0003
(式中、 I 1、 R R R4はそれぞれ独立して、 炭素数 1〜 1 8のアルキル基、 炭素数 5〜 1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表し、 *は 不斉炭素を表す) で表される光学活性ィミンとして、 一般式 (6) R1 (Wherein, I 1 and RRR 4 independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents An optically active imine represented by the general formula (6) R 1
(6) (6)
(式中、 R R *は前記に同じ) で表される光学活性ァミンと一般式 (7) 0  (Wherein R R * is the same as described above) and the general formula (7) 0
R30ゝ人 R 3 0 people
丫 、H  、, H
OR4 OR 4
(7)  (7)
(式中、 R3、 R4は前記に同じ) で表されるジアルコキシアルデヒドを脱水縮合 して得られたものを使用する請求の範囲 1〜 9のいずれかに記載の製造法。 (Wherein R 3 and R 4 are the same as described above). The process according to any one of claims 1 to 9, wherein a product obtained by dehydration condensation of a dialkoxyaldehyde represented by the following formula is used.
1 1. 反応溶媒としてトルエンまたはテトラヒドロフランの少なくとも 1種を 使用する請求の範囲 1 ~ 1 0のいずれかに記載の製造法。 1 1. The production method according to any one of claims 1 to 10, wherein at least one of toluene and tetrahydrofuran is used as a reaction solvent.
1 2. R1がメチル基である請求の範囲 1〜1 1のいずれかに記載の製造法。 12. The production method according to any one of claims 1 to 11, wherein R1 is a methyl group.
1 3. R2がフエニル基である請求の範囲 1〜 1 2のいずれかに記載の製造法。 13. The production method according to any one of claims 1 to 12, wherein R 2 is a phenyl group.
14. R3および R4がそれぞれ、 メチル基またはェチル基である請求の範囲 1〜 1 3のいずれかに記載の製造法。 Process according to any one of 14. R 3 and R 4 are each, range 1-1 3 according methyl or Echiru group.
1 5. R.5力 S t e r t—プチル基である請求の範囲 1〜 14のいずれかに記載 の製造法。 1 5. Process according to any one of R. 5 force S tert-heptyl group range 1-14 claims is.
'  '
1 6. R1および R2によって形成される不斉炭素の立体配置が Rである請求 の範囲 1〜 1 5のいずれかに記載の製造法。 1 6. Process according to any range 1-1 5 according the configuration of the asymmetric carbon is formed by R 1 and R 2 are R.
1 7. 光学活性アミノ酪酸誘導体として (3 S) 体を立体選択的に製造する請 求の範囲 1〜 1 6のいずれかに記載の製造法。 17. The process according to any one of claims 1 to 16, wherein the (3S) form is stereoselectively produced as an optically active aminobutyric acid derivative.
1 8. 一般式 ( 1 ) 1 8. General formula (1)
Figure imgf000032_0001
Figure imgf000032_0001
(式中、 R1は炭素数 1〜 18のアルキル基を表し、 R2は炭素数 5〜18のァ リール基を表し、 R3、 R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基または炭素数 7〜18のァラルキノレ基を表し、 *は 不斉炭素を表す) で表される光学活性ィミン。 (Wherein, R 1 represents an alkyl group having 1 to 18 carbon atoms, R 2 represents an aryl group having 5 to 18 carbon atoms, and R 3 and R 4 each independently represent a C 1 to C 18 Represents an alkyl group, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, and * represents an asymmetric carbon atom.
1 9. R1がメチル基である請求の範囲 1 8記載の化合物。 19. The compound according to claim 18, wherein R 1 is a methyl group.
20. R2がフエニル基である請求の範囲 1 8または 1 9記載の化合物。 20. The compound according to claim 18 or 19, wherein R 2 is a phenyl group.
2 1. · R3および R4がそれぞれ、 メチル基またはェチル基である請求の範囲 1 8〜20のいずれかに記載の化合物。 2 1. · R 3 and R 4 are each a compound according to any one of claims 1 8 to 20 according to a methyl group or Echiru group.
22. R1および R2によって形成される不斉炭素の立体配置が Rである請求 の範囲 1 8〜 2 1のいずれかに記載の化合物。 22. The compound according to any one of claims 18 to 21, wherein the configuration of the asymmetric carbon formed by R 1 and R 2 is R.
2 3. 一般式 ( 6 ) 2 3. General formula (6)
R1 R 1
H i22rT、R2 Hi 22 rT, R2
(6) (式中、 R1は炭素数 1〜1 8のアルキル基を表し、 R2は炭素数 5〜1 8のァ リール基を表し、 *は不斉炭素を表す) で表される光学活性ァミンと一般式 (7 ) (6) (Wherein, R 1 represents an alkyl group having 1 to 18 carbon atoms, R 2 represents an aryl group having 5 to 18 carbon atoms, and * represents an asymmetric carbon). And the general formula (7)
R3
Figure imgf000033_0001
R 3
Figure imgf000033_0001
(式中、 R3、 R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル基、 炭素数 5 〜1 8のァリール基または炭素数 7〜 1 8のァラルキル基を表す) で表されるジ アルコキシアルデヒドを脱水縮合して、 一般式 (1) (Wherein, R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms) Dealkoxyaldehyde is dehydrated and condensed to give general formula (1)
Figure imgf000033_0002
Figure imgf000033_0002
(式中、 R R R3、 R4、 *は前記に同じ) で表される光学活性イミンを製 造する方法。 (Wherein, RRR 3 , R 4 , and * are the same as described above).
24. R1がメチル基である請求の範囲 2 3記載の製造法。 24. The production method according to claim 23, wherein R 1 is a methyl group.
2 5. R2がフエニル基である請求の範囲 2 3または 24記載の製造法。 25. The production method according to claim 23, wherein R 2 is a phenyl group.
2 6. R3および R4がそれぞれ、 メチル基またはェチル基である請求の範囲 2 3〜 2 5のいずれかに記載の製造法。 2 6. R 3 and R 4 are each, production method according to any one of claims 2 3-2 5 according a methyl group or Echiru group.
2 7. R1および R2によって形成される不斉炭素の立体配置が Rである請求 の範囲 2 3〜 2 6のいずれかに記載の製造法。 27. The process according to any one of claims 23 to 26, wherein the configuration of the asymmetric carbon formed by R 1 and R 2 is R.
2 8. 一般式 ( 3 )
Figure imgf000034_0001
2 8. General formula (3)
Figure imgf000034_0001
(式中、 R R2、 R3、 R4はそれぞれ独立して、 炭素数 1〜1 8のアルキル 基、 炭素数 5〜1 8のァリール基または炭素数 7〜1 8のァラルキル基を表し、 R 5は水素原子、 炭素数 1〜1 8のアルキル基、 炭素数 5〜1 8のァリール基ま たは炭素数 7〜1 8のァラルキル基を表し、 *は不斉炭素を表す) で表される光 学活性アミノ酪酸誘導体またはその塩に対し、 酸を作用させ立体選択的に環化ラ クトン化させて、 一般式 (8) (Wherein, RR 2 , R 3 and R 4 each independently represent an alkyl group having 1 to 18 carbon atoms, an aryl group having 5 to 18 carbon atoms or an aralkyl group having 7 to 18 carbon atoms, Table by R 5 represents a hydrogen atom, an alkyl group having 1 to 1 8 carbon atoms, were or Ariru group having a carbon number of 5 to 8 Ararukiru group having a carbon number of 7 to 8, and * represents an asymmetric carbon) The acid is acted on the optically active aminobutyric acid derivative or a salt thereof to be stereoselectively converted into a cyclized lactone to obtain a compound represented by the general formula (8)
Figure imgf000034_0002
Figure imgf000034_0002
(式中、 R R2、 R3、 *は前記に同じ) で表される光学活性アミノラタトン 誘導体を製造する方法。 (Wherein, RR 2 , R 3 , and * are the same as described above).
2 9. 光学活性ァミノ酪酸誘導体の 3—位の立体配置が Sである請求の範囲 2 8記載の製造法。 29. The process according to claim 28, wherein the 3-position of the optically active aminobutyric acid derivative is S.
3 0. R1および R2によって形成される不斉炭素の立体配置が Rである請求 の範囲 2 8または 2 9記載の製造法。 30. The process according to claim 28 or 29, wherein the configuration of the asymmetric carbon formed by R 1 and R 2 is R.
3 1. R \ R 2の少なくとも一方がァリール基である請求の範囲 2 8〜 3 0 のいずれかに記載の製造法。 3 1. A process according to any one of the R \ R range 2 8-3 0 according at least one of which is Ariru group 2.
3 2. R1がメチル基である請求の範囲 2 8〜3 1のいずれかに記載の製造法。 3 2. Process according to any one of claims 2 8 and 3 1 according R 1 is a methyl group.
3 3. R 2がフエニル基である請求の範囲 28〜32のいずれかに記載の製造 法。 - 33. The method according to any one of claims 28 to 32, wherein R 2 is a phenyl group. -
34. R3および R4がそれぞれ、 メチル基またはェチル基である請求の範囲 28〜 3 3のいずれかに記載の製造法。 34. The production method according to any one of claims 28 to 33, wherein R 3 and R 4 are each a methyl group or an ethyl group.
35. R5が t e r t—プチル基である請求の範囲 28〜34のいずれかに記 載の製造法。 35. The production method according to any one of claims 28 to 34, wherein R 5 is a tert-butyl group.
36. ラタトン化によって生成する光学活性アミノラタ トン誘導体が (4 S, 5 R) —テトラヒドロフラン一 2—オン骨格体を有する請求の範囲 28〜35の いずれかに記載の製造法。 36. The production method according to any one of claims 28 to 35, wherein the optically active amino ratatotone derivative formed by ratatonization has a (4S, 5R) -tetrahydrofuran-1-one skeleton.
37. ラタトン化の反応溶媒にトルエンを使用する請求の範囲 28〜36のい ずれかに記載の製造法。 37. The production method according to any one of claims 28 to 36, wherein toluene is used as a reaction solvent for ratatonization.
38. ラタトン化の際に使用する酸としてスルホン酸類を使用する請求の範囲 28〜 37のいずれかに記載の製造法。 38. The production method according to any one of claims 28 to 37, wherein a sulfonic acid is used as the acid used in the ratatonization.
39. スルホン酸類としてメタンスルホン酸を使用する請求の範囲 38記載の 製造法。 39. The production method according to claim 38, wherein methanesulfonic acid is used as the sulfonic acids.
40. 光学活性アミノ酪酸誘導体を p—トルエンスルホン酸の塩として使用す る請求の範囲 28〜 39のいずれかに記載の製造法。 40. The production method according to any one of claims 28 to 39, wherein the optically active aminobutyric acid derivative is used as a salt of p-toluenesulfonic acid.
PCT/JP2001/011627 2001-01-16 2001-12-28 Process for preparation of optically active aminolactone derivatives and intermediates of the derivatives WO2002055478A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002556153A JPWO2002055478A1 (en) 2001-01-16 2001-12-28 Process for producing optically active aminolactone derivatives and intermediates thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-7415 2001-01-16
JP2001007415 2001-01-16
JP2001225851 2001-07-26
JP2001-225851 2001-07-26

Publications (1)

Publication Number Publication Date
WO2002055478A1 true WO2002055478A1 (en) 2002-07-18

Family

ID=26607752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011627 WO2002055478A1 (en) 2001-01-16 2001-12-28 Process for preparation of optically active aminolactone derivatives and intermediates of the derivatives

Country Status (2)

Country Link
JP (1) JPWO2002055478A1 (en)
WO (1) WO2002055478A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533350A1 (en) * 1991-08-16 1993-03-24 Merck & Co. Inc. DNA encoding precursor interleukin 1B converting enzyme
WO1999003852A1 (en) * 1997-07-15 1999-01-28 Hoechst Marion Roussel Method for preparing alkyloxy furanone derivatives, compounds obtained by said method and use of said compounds

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0533350A1 (en) * 1991-08-16 1993-03-24 Merck & Co. Inc. DNA encoding precursor interleukin 1B converting enzyme
WO1999003852A1 (en) * 1997-07-15 1999-01-28 Hoechst Marion Roussel Method for preparing alkyloxy furanone derivatives, compounds obtained by said method and use of said compounds

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LUBBEN M. ET AL.: "Asymmetric synthesis of beta-lactams via amine additions to 5(R)-methyloxy-2(5H)-furanone", TETRAHEDRON:ASYMMETRY, vol. 2, no. 8, 1991, pages 775 - 778, XP002950509 *

Also Published As

Publication number Publication date
JPWO2002055478A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5081163B2 (en) Asymmetric alkylation of carbonyl
Destro et al. Reaction of azides and enolisable aldehydes under the catalysis of organic bases and Cinchona based quaternary ammonium salts
JP6000277B2 (en) 2- (alkoxy or alkoxycarbonyl) -4-methyl-6- (2,6,6-trimethylcyclohexa-1-enyl) hex-2-enoic acid compound, its preparation and its use
Carda et al. Aldol Reactions with Erythrulose Derivatives: Stereoselective Synthesis of Differentially Protected syn-α, β-Dihydroxy Esters
Garcı́a et al. An imino-Diels–Alder route to meso-2, 6-disubstituted-4-piperidones
WO2002055478A1 (en) Process for preparation of optically active aminolactone derivatives and intermediates of the derivatives
JP4892472B2 (en) Process for producing 5-chloro-2,4-dihydroxypyridine
EP1716088A1 (en) Catalytic asymmetric synthesis of optically active alpha-halo-car bonyl compounds
JP3937489B2 (en) Method for producing propargylamine compound
JP2622651B2 (en) Method for producing 1,3-dioxane-4,6-dione derivative
Higashiyama et al. Diastereoselective Addition of Silyl Enol Ether to Chiral Imines and 1, 3-Oxazolidines Using a Lewis Acid
JPH10310563A (en) Production of chloroketone with oxazoline
CA2649506C (en) 2-alkenyl-3-aminothiophene derivative and process for producing thereof
EP1735297B1 (en) Synthesising method and benzoxathiepine intermediates
Głuszyńska et al. Enantioselective addition of methyllithium to a prochiral imine—the substrate in the Pomeranz–Fritsch–Bobbitt synthesis of tetrahydroisoquinoline derivatives mediated by chiral monooxazolines
Larsson et al. Diastereoselective addition of methylmetal reagents to 2-methylaldehydes
JP4722413B2 (en) Improved process for asymmetric hydrogenation
JPH0623176B2 (en) Process for producing asymmetric dithioacetal and dithioketal
JP2008503452A (en) Method for producing nitriles by elimination of water from aldehyde oximes with alkylphosphonic anhydrides
JP3387723B2 (en) Method for producing 2-nitroiminohexahydro-1,3,5-triazines
Tilekar et al. ‘One-pot’organocatalyzed enantioselective synthesis of highly functionalized 3, 4, 5, 6-tetrasubstituted dihydropyrans by sequential Knoevenagel condensation/Michael addition and hemiacetalization
CN113185376A (en) Synthesis method of (Z) -3-methylthio-2-bromoacrylate compound
JP2002069026A (en) Method for manufacturing (e)-3-methyl-2- cyclopentadecenone
Arai et al. Diastereoselective Imino–Aldol Condensation of Chiral 3-(p-Tolylsulfinyl)-2-furaldimine and Ester Enolates
CN113354559A (en) 2- (2-benzoyl-5-oxo-3, 5-diphenyl amyl) malononitrile derivative and preparation method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 556153

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase