WO2002053798A1 - Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer - Google Patents

Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer Download PDF

Info

Publication number
WO2002053798A1
WO2002053798A1 PCT/FR2001/004102 FR0104102W WO02053798A1 WO 2002053798 A1 WO2002053798 A1 WO 2002053798A1 FR 0104102 W FR0104102 W FR 0104102W WO 02053798 A1 WO02053798 A1 WO 02053798A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
doped
sequence
nitrogen
oxide
Prior art date
Application number
PCT/FR2001/004102
Other languages
French (fr)
Inventor
Michel Cassir
Cécile BERNAY
Daniel Lincot
Fabrice Goubin
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to EP01989640A priority Critical patent/EP1356133A1/en
Publication of WO2002053798A1 publication Critical patent/WO2002053798A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for depositing thin layers of at least one solid ionic conductor on a porous substrate, to a solid oxide fuel cell cell comprising such an ionic conductor, and to an oxide fuel cell. solid, comprising such a cell, and operating at a temperature below about 800 ° C.
  • SOFC solid oxide fuel cells
  • an operating temperature between 850 ° C and 1000 ° C remains too high for correct thermal management of the system and obtaining a low cost of materials.
  • thermal management there is, on the one hand, a drop in efficiency during thermal losses with the outside, and, on the other hand, the time required to get the operating temperature is too long.
  • the desire to lower the operating temperature of SOFCs to a value between 600 ° and 700 ° C. essentially poses the problem of the ohmic drop linked to the electrolyte made of yttria zirconia (YSZ), the conductivity of which is insufficient in this temperature range.
  • YSZ yttria zirconia
  • a simple method for reducing this resistance consists in reducing the thickness of the electrolyte so as to obtain a thin layer.
  • the main drawback which arises, when producing thin layers on a substrate, relates to their densification rate, which remains insufficient vis-à-vis the passage of certain gases with which they are brought into contact.
  • the electrolyte must be impermeable to the oxidizing gas and to the combustible gas (in particular to hydrogen), and consequently must be as dense as possible.
  • the deposition of the electrolyte is annealed at high temperature (about 1300 ° - 1500 ° C).
  • this sintering step raises a problem due to the difference in coefficient of thermal expansion between the electrolyte in yttria zirconia and the support electrode of the deposit. This expansion gap can cause cracks to form in the deposit layer, making it unusable.
  • This annealing step can also be used to obtain the cubic phase of the crystalline state known to be the most conductive (see for example: KW CHO ⁇ R, J. CHEN and R. XU, Thin Solid. Films, 304 (1997) 106) .
  • KW CHO ⁇ R, J. CHEN and R. XU, Thin Solid. Films, 304 (1997) 106 can also be used to obtain the cubic phase of the crystalline state known to be the most conductive.
  • KW CHO ⁇ R, J. CHEN and R. XU Thin Solid. Films, 304 (1997) 106
  • the subject of the invention is therefore a process for depositing on the surface of a porous substrate, atomic layer by atomic layer, thin layers of at least one solid ionic conductor, said ionic conductor consisting of at least one oxide of base and at least one doping agent, all of said thin layers constituting an electrolyte, said deposit being produced from at least one precursor I n of the metal ion of one of the base oxides, of a precursor II making it possible to produce an oxide from the precursor I n , and at least one precursor III m of one of the oxides providing one of the doping agents, said precursors being placed in the vapor state, n and m each being an integer greater than or equal to 1, characterized in that it consists in depositing at least one basic oxide according to at least a first sequence, and at least one doping agent according to at least a second sequence, each first sequence being repeated 1 to 10 times fa successive lesson before, after or in admixture, with or without contact with precursor II, with at least a second sequence,
  • the ionic conductor also called an oxide ion conductor, is defined as being a compound of at least one metal oxide doped with at least one other metallic element.
  • the ionic conductor makes it possible to obtain the migration of the O 2- oxide ions through its own structure.
  • the method according to the invention has the advantage of allowing a fine and dense deposit of electrolyte, in the form of at least one thin layer, having an average thickness ranging from about 0.1. at 10 ⁇ m, and having a shallow penetration depth in the porous substrate contrary to what one might expect by the use of the technique of atomic layer epitaxy.
  • Another subject of the invention is a solid oxide fuel cell cell comprising at least one solid ionic conductor present in at least one thin layer, and deposited by the process as defined above.
  • a final object of the invention is a solid oxide fuel cell comprising at least one cell as defined above.
  • the precursor I n is chosen from zirconium hologenides and in particular zirconium chloride, cerium halides and in particular cerium chloride, cerium beta-diketonates and in particular tetrakis (2,2, 6,6- tetramethyl-3-5-heptanedionato) cerium, and their mixture.
  • the precursor II can be chosen from water, oxygen, ozone or an alcohol, and the precursor III m can be chosen from: - yttriu halides and in particular yttrium chloride,
  • gadolinium beta-diketonates and in particular. tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) gadolinium, and samarium halides and in particular samarium chloride, samarium beta-diketonates and in particular tris, (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) samarium, and mixtures thereof.
  • the first sequence can be defined as desired by the successions of the following elements: first succession: a) precursor I n b) nitrogen c) precursor II d) nitrogen
  • precursors III m and III (m + 1)
  • nitrogen b) nitrogen
  • the process of the invention can make it possible to deposit at least one basic oxide and at least one doping agent simultaneously, with durations of contact with the surface of the substrate, identical or different for each precursor I n , II or III m .
  • the method can also make it possible to deposit, at first, at least one basic oxide according to a first sequence, then at least one doping agent, according to a second sequence, following the first sequence.
  • the ionic conductor is preferably chosen from zirconia doped with yttrium, zirconia doped with scandium, zirconia doped with ytterbium, cerine doped with gadolinium, cerine doped with samarium, and their mixtures.
  • the duration during which a precursor in the vapor state is brought into contact with the surface of the substrate ranges from 0.1 to 20 seconds, and more preferably from 0.1 to 5 seconds.
  • the number of cycles can range from 500 to 50,000, and preferably from 500 to 5,000.
  • the atomic ratio of the doping agent (s) to the base oxide (s) can range from 2 to 25%.
  • the thickness of each thin layer can range from 0.1 to 10 ⁇ m.
  • Gradients of compositions in the ionic conductor can moreover be produced by varying the proportion of the sequences of synthesis of the base oxide (s) relative to the sequences of syntheses of the doping agent (s) during the deposition of thin layers.
  • LSM lanthanum anganite doped with strontium
  • - Figure 1 shows a schematic view, from above, obtained by the scanning electron microscopy technique of a substrate sample covered with thin layers according to the method of the invention
  • - Figure 2 shows a schematic view, in perspective, obtained by the scanning electron microscopy technique of a sample of the substrate covered with two thin layers, according to the method of the invention.
  • the reactor of the atomic layer epitaxy technique used is of the alternating flow type (F120 manufactured by ASM-Microche isty Ltd.). Nitrogen is used as the carrier gas.
  • the deposits are made on a porous substrate, such as a lanthanum manganite plate doped with strontium (La 0 , 8, s ⁇ o, 2 ⁇ Mn0 3 or LSM) which can be used as a SOFC cathode, or a plate of cermet of nickel and yttria zirconia (Ni / YSZ) which can serve as an anode of SOFC.
  • a porous substrate such as a lanthanum manganite plate doped with strontium (La 0 , 8, s ⁇ o, 2 ⁇ Mn0 3 or LSM) which can be used as a SOFC cathode, or a plate of cermet of nickel and yttria zirconia (Ni / YSZ) which can serve as an anode of SOFC.
  • the precursors are heated to the following temperatures
  • the substrate is heated from 200 ° to 600 ° C before carrying out the process and is maintained at a temperature ranging from 205 ° to 600 ° C during the carrying out of the process of the invention.
  • n zirconia synthesis sequences n being able to vary from 1 to 10. The sequence is defined as follows:
  • the number of yttrium oxide synthesis sequences relative to the number of zirconia synthesis sequences is adjusted as a function of the concentration of doping agent desired in the thin layer present on the surface of the substrates.
  • the combination of the “n” zirconia synthesis sequences and the unique yttrium oxide synthesis sequence constitutes a basic cycle for zirconia doped with yttrium.
  • the thickness of the thin layer depends on the number of cycles performed.
  • a cycle consists of the following two sequences 1 st sequence
  • This second sequence is performed only once.
  • the cycle is performed from 1800 to 2000 times.
  • porous substrate of doped lanthanum manganite 1 is covered by two thin layers 2, 3, arranged successively and each constituted by zirconia doped with yttrium. All of layers 2 and 3 form the top 4 of the sample obtained at the end of the process.
  • the set of these two layers is dense, and that it covers the pores of the substrate 1 well (see FIG. 1).
  • the first layer 2 has a thickness of approximately 1.4 ⁇ m, and the second a thickness of approximately 1.1 ⁇ m.

Abstract

The invention concerns a method for depositing on the surface of a porous substrate, thin layers of at least a solid ionic conductor comprising at least a base oxide and at least a doping agent. The deposition is carried out from precursor ln of the metal ion of one of the base oxides, precursor II oxidising the precursor In and, precursor IIIm of one of the oxides inputting one of the doping agents; n and m being each an integer not less than 1. Said method consists in providing at least a base oxide in a first sequence, and at least a doping agent in a second sequence. The first sequence is repeated from 1 to 10 times, the second only once; the whole process constitutes a cycle. The deposition is produced for a (first/second) sequence ratio determined on the basis on the (doping agent(s)/basic oxide(s)) atomic ratio and for a number of cycles determined on the basis of the thickness of the thin layer, and finally for a specific contacting duration between precursors and substrate. The invention also concerns a fuel cell, and a cell containing such a thin layer.

Description

PROCEDE POUR DEPOSER DES COUCHES MINCES SUR UN SUBSTRATPROCESS FOR DEPOSITING THIN FILMS ON A SUBSTRATE
POREUX, CELLULE DE PILE A COMBUSTIBLE ET PILE APOROUS, FUEL CELL AND CELL
COMBUSTIBLE COMPORTANT UNE TELLE COUCHE MINCE.FUEL COMPRISING SUCH A THIN FILM.
L'invention se rapporte à un procédé pour déposer des couches minces d'au moins un conducteur ionique solide sur un substrat poreux, à une cellule de pile à combustible à oxyde solide comportant un tel conducteur ionique, et à une pile à combustible à oxyde solide, comportant une telle cellule, et fonctionnant à une température inférieure à environ 800°C.The invention relates to a method for depositing thin layers of at least one solid ionic conductor on a porous substrate, to a solid oxide fuel cell cell comprising such an ionic conductor, and to an oxide fuel cell. solid, comprising such a cell, and operating at a temperature below about 800 ° C.
Dans le domaine des piles à combustible fonctionnant à haute température, les piles à combustible à oxyde solide (SOFC) présentent des perspectives de rendement et de densités de puissances intéressantes.In the field of fuel cells operating at high temperature, solid oxide fuel cells (SOFC) present prospects of yield and interesting power densities.
De plus, le fonctionnement à des températures voisines de celles du procédé de reformage donne la possibilité d'oxyder directement le onoxyde de carbone.In addition, operating at temperatures close to those of the reforming process gives the possibility of directly oxidizing carbon onoxide.
Le fonctionnement avec des carburants usuels est donc réalisable avec un reformage simplifié par rapport aux technologies de piles à combustible fonctionnant à une température inférieure à environ 200°C.Operation with conventional fuels is therefore achievable with simplified reforming compared to fuel cell technologies operating at a temperature below about 200 ° C.
Néanmoins, une température de fonctionnement comprise entre 850°C et 1000°C reste trop élevée pour une gestion thermique correcte du système et l'obtention d'un faible coût en matériaux.However, an operating temperature between 850 ° C and 1000 ° C remains too high for correct thermal management of the system and obtaining a low cost of materials.
Concernant la gestion thermique, il se produit, d'une part, une baisse de rendement lors de pertes thermiques avec l'extérieur, et, d'autre part, la durée nécessaire pour obtenir la température de fonctionnement est trop longue.Regarding thermal management, there is, on the one hand, a drop in efficiency during thermal losses with the outside, and, on the other hand, the time required to get the operating temperature is too long.
Aussi, le souhait d'abaisser la température de fonctionnement des SOFC à une valeur comprise entre 600° et 700°C pose essentiellement le problème de la chute ohmique liée à 1 ' électrolyte en zircone yttriée (YSZ) , dont la conductivité est insuffisante dans cette gamme de température.Also, the desire to lower the operating temperature of SOFCs to a value between 600 ° and 700 ° C. essentially poses the problem of the ohmic drop linked to the electrolyte made of yttria zirconia (YSZ), the conductivity of which is insufficient in this temperature range.
Une méthode simple pour réduire cette résistance consiste à diminuer l'épaisseur de 1 ' électrolyte de manière à obtenir une couche mince.A simple method for reducing this resistance consists in reducing the thickness of the electrolyte so as to obtain a thin layer.
II existe déjà différentes techniques de réalisation de couches minces de YSZ sur un substrat, telles que celle de la pulvérisation cathodique avec plusieurs déclinaisons (voir par exemple : L.S. WANG et S.A. BARNETT, Solide State Ionics, 61 (1993) 273) , celle des procédés sol-gel et notamment le dépôt par trempageThere are already different techniques for producing thin layers of YSZ on a substrate, such as that of sputtering with several variations (see for example: LS WANG and SA BARNETT, Solide State Ionics, 61 (1993) 273), that of sol-gel processes and in particular the dip deposit
(voir par exemple : C. SAKURAI, T. FUKUI et M. OKUYAMA,(see for example: C. SAKURAI, T. FUKUI and M. OKUYAMA,
J. Am. Ceram. Soc, 76(4) (1993) 1061) ou le dépôt par rotation (voir par exemple : H. NAGAMOTO et Z.H. CAI,J. Am. Ceram. Soc, 76 (4) (1993) 1061) or the deposit by rotation (see for example: H. NAGAMOTO and Z.H. CAI,
Proc 6th Int. Symp. SOFC, 99-19 (1999) 163), celle des dépôts de colloïdes (voir par exemple : C. WANG, W.L. WORREL, S. PARK, J.M. VOHS ET R.J. GORTE, Proc 6th Int. Symp. SOFC, 99-19 (1999) 851) ou de suspensions (voir par exemple : S . DE SOUZA, S.J. VISCO et J.L. DE JONGHE, J. Electrochem. Soc 144(3) (1997) L35) et 1' électrophorèse (voir par exemple : R.N. BASϋ , C.A. RANDA L et M.J. MAYO, Proc 6zn Int. Sym. SOFC, 99-19 (1999) 153) , celle du coulage en bande (voir par exemple : M.CHEN, T-L. WEN, Z. HϋANG, P-C . WANG, H-Y TU et Z-Y LU, Proc 6th Int. Symp. SOFC, 99-19 (1999) 144) , la sérigraphie, ou encore celle des dépôts chimiques en phase vapeur (voir par exemple : US 4, 831, 965 G-Z . CAO, H .W . BRINIŒAN, K .J .DE VRIES et A .J . BURGGRAF, J . AM. Ceram . Soc , 76 (9) (1993) 2201) .Proc 6 th Int. Symp. SOFC, 99-19 (1999) 163), that of colloid deposits (see for example: C. WANG, WL WORREL, S. PARK, JM VOHS ET RJ GORTE, Proc 6 th Int. Symp. SOFC, 99-19 (1999) 851) or suspensions (see for example: S. DE SOUZA, SJ VISCO and JL DE JONGHE, J. Electrochem. Soc 144 (3) (1997) L35) and 1 electrophoresis (see for example: RN BASϋ , CA RANDA L and MJ MAYO, Proc 6 zn Int. Sym. SOFC, 99-19 (1999) 153), that of strip casting (see for example: M.CHEN, TL. WEN, Z. HϋANG, PC. WANG, HY TU and ZY LU, Proc 6 th Int. Symp. SOFC, 99-19 (1999) 144), serigraphy, or even that of deposits chemical vapor phase (see for example: US 4, 831, 965 GZ. CAO, H .W. BRINIŒAN, K .J. DE VRIES and A .J. BURGGRAF, J. AM. Ceram. Soc, 76 (9) (1993) 2201).
Le principal inconvénient qui se pose, lors de la réalisation de couches minces sur un substrat, se rapporte à leur taux de densification, qui reste insuffisant vis-à-vis du passage de certains gaz avec lesquels ils sont mis en contact.The main drawback which arises, when producing thin layers on a substrate, relates to their densification rate, which remains insufficient vis-à-vis the passage of certain gases with which they are brought into contact.
En effet, 1 ' électrolyte doit être imperméable au gaz comburant et au gaz combustible (notamment à l'hydrogène), et par conséquent doit être le plus dense possible.Indeed, the electrolyte must be impermeable to the oxidizing gas and to the combustible gas (in particular to hydrogen), and consequently must be as dense as possible.
Pour réduire la porosité du substrat dans la plupart des études déjà réalisées, le dépôt de 1 ' électrolyte est recuit à haute température (environ 1300° - 1500°C) . Or, cette étape de frittage soulève un problème du fait de la différence de coefficient dé dilatation thermique entre 1 ' électrolyte en zircone yttriée et l'électrode support du dépôt. Cet écart de dilatation peut provoquer la formation de fissures dans la couche du dépôt, la rendant ainsi inutilisable.To reduce the porosity of the substrate in most of the studies already carried out, the deposition of the electrolyte is annealed at high temperature (about 1300 ° - 1500 ° C). However, this sintering step raises a problem due to the difference in coefficient of thermal expansion between the electrolyte in yttria zirconia and the support electrode of the deposit. This expansion gap can cause cracks to form in the deposit layer, making it unusable.
Cette étape de recuit peut également servir a obtenir la phase cubique de l'état cristallin connue pour être la plus conductrice (voir par exemple : K.W. CHOϋR, J . CHEN et R . XU, Thin Solid . Films, 304 (1997) 106) . Mais une telle étape ne suffit pas toujours pour obtenir une densification correcte du dépôt de couches minces.This annealing step can also be used to obtain the cubic phase of the crystalline state known to be the most conductive (see for example: KW CHOϋR, J. CHEN and R. XU, Thin Solid. Films, 304 (1997) 106) . However, such a step is not always sufficient to obtain a correct densification of the deposit of thin layers.
Aussi, il subsiste le besoin de disposer d'un procédé, utilisant la technique d'épitaxie de couches atomiques (en anglais « Atomic Layer Epitaxy » ou ALE) telle que décrite dans les documents US 4,058,430, et T. SUNTOLA, Handboo of Crystal Growth, Thin Film and Epitaxy, Elsevier (1994) pour déposer directement, couche atomique par couche atomique, des couches minces d'au moins un conducteur ionique solide sur la surface d'un substrat poreux, présentant une très grande densité grâce à la croissance du dépôt par couches atomiques, effectuée à des températures inférieures à environ 800°C, sans obstruer les pores internes du substrat du fait de la pénétration limitée des gaz réactifs, tout en réalisant un compromis entre la conductivité ionique de l1 électrolyte et sa résistance mécanique.Also, there remains the need for a process, using the atomic layer epitaxy technique (in English "Atomic Layer Epitaxy" or ALE) such as described in documents US 4,058,430, and T. SUNTOLA, Handboo of Crystal Growth, Thin Film and Epitaxy, Elsevier (1994) for directly depositing, atomic layer by atomic layer, thin layers of at least one solid ionic conductor on the surface of a porous substrate, having a very high density thanks to the growth of the deposit by atomic layers, carried out at temperatures below approximately 800 ° C., without obstructing the internal pores of the substrate due to the limited penetration of the reactive gases, all by making a compromise between the ionic conductivity of the electrolyte 1 and its mechanical strength.
L'invention a donc pour objet un procédé pour déposer sur la surface d'un substrat poreux, couche atomique par couche atomique, des couches minces d'au moins un conducteur ionique solide, ledit conducteur ionique étant constitué d'au moins un oxyde de base et d'au moins un agent dopant, l'ensemble desdites couches minces constituant un électrolyte, ledit dépôt étant réalisé à partir d'au moins un précurseur In de l'ion métallique d'un des oxydes de base, d'un précurseur II permettant de réaliser un oxyde à partir du précurseur In, et d'au moins un précurseur IIIm d'un des oxydes apportant l'un des agents dopants, lesdits précurseurs étant mis à l'état de vapeur, n et m étant chacun un entier supérieur ou égal à 1, caractérisé en ce qu'il consiste à déposer au moins un oxyde de base selon au moins une première séquence, et au moins un agent dopant selon au moins une seconde séquence, chaque première séquence étant répétée de 1 à 10 fois de façon successive avant, après ou en mélange, avec ou sans mise en contact avec le précurseur II, avec au moins une seconde séquence, chaque seconde séquence n'étant réalisée qu'une seule fois, l'ensemble comprenant les première et seconde séquences constituant un cycle, le dépôt du ou des oxydes de base et du ou des agents dopants étant réalisé, d'une part, pour un rapport de séquences (première/seconde) défini en fonction du rapport atomique (agent(s) dopant (s) /oxyde (s) de base) souhaité dans chaque couche mince, d'autre part pour un nombre de cycles défini en fonction de l'épaisseur de couches minces souhaitée, et enfin, pour une durée de mise en contact d'un précurseur (In, IHm) avec la surface du substrat définie.The subject of the invention is therefore a process for depositing on the surface of a porous substrate, atomic layer by atomic layer, thin layers of at least one solid ionic conductor, said ionic conductor consisting of at least one oxide of base and at least one doping agent, all of said thin layers constituting an electrolyte, said deposit being produced from at least one precursor I n of the metal ion of one of the base oxides, of a precursor II making it possible to produce an oxide from the precursor I n , and at least one precursor III m of one of the oxides providing one of the doping agents, said precursors being placed in the vapor state, n and m each being an integer greater than or equal to 1, characterized in that it consists in depositing at least one basic oxide according to at least a first sequence, and at least one doping agent according to at least a second sequence, each first sequence being repeated 1 to 10 times fa successive lesson before, after or in admixture, with or without contact with precursor II, with at least a second sequence, each second sequence being carried out only once, the whole comprising the first and second sequences constituting a cycle, the deposition of the base oxide (s) and of the doping agent (s) being carried out, on the one hand, for a sequence ratio (first / second) defined as a function of the atomic ratio (agent (s) dopant (s) / oxide (s) base) desired in each thin layer, on the other hand for a number of cycles defined according to the thickness of thin layers desired, and finally, for a setting time in contact with a precursor (I n , IH m ) with the defined substrate surface.
Le conducteur ionique, encore appelé, conducteur d'ions oxydes, est défini comme étant un composé d'au moins un oxyde métallique dopé avec au moins un autre élément métallique. Le conducteur ionique permet d'obtenir la migration des ions oxydes O2- à travers sa propre structure.The ionic conductor, also called an oxide ion conductor, is defined as being a compound of at least one metal oxide doped with at least one other metallic element. The ionic conductor makes it possible to obtain the migration of the O 2- oxide ions through its own structure.
Le procédé selon l'invention présente l'avantage de permettre un dépôt fin et dense d ' électrolyte, sous forme d'au moins une couche mince, ayant une épaisseur moyenne allant d'environ 0,1. à 10 μm, et ayant une faible profondeur de pénétration dans le substrat poreux contrairement à ce que l'on pourrait attendre par l'utilisation de la technique d'épitaxie de couches atomiques.The method according to the invention has the advantage of allowing a fine and dense deposit of electrolyte, in the form of at least one thin layer, having an average thickness ranging from about 0.1. at 10 μm, and having a shallow penetration depth in the porous substrate contrary to what one might expect by the use of the technique of atomic layer epitaxy.
L'invention a encore pour objet une cellule de pile à combustible à oxyde solide comportant au moins un conducteur ionique solide présent en au moins une couche mince, et déposé par le procédé tel que défini précédemment. Un dernier objet de l'invention est une pile à combustible à oxyde solide comportant au moins une cellule telle que définie précédemment.Another subject of the invention is a solid oxide fuel cell cell comprising at least one solid ionic conductor present in at least one thin layer, and deposited by the process as defined above. A final object of the invention is a solid oxide fuel cell comprising at least one cell as defined above.
De préférence, le précurseur In est choisi parmi les hologenures de zirconium et en particulier le chlorure de zirconium, les halogénures de cérium et en particulier le chlorure de cérium, les béta-dikétonates de cérium et en particulier le tétrakis (2,2,6,6- tétraméthyl-3-5-heptanedionato) cérium, et leur mélange.Preferably, the precursor I n is chosen from zirconium hologenides and in particular zirconium chloride, cerium halides and in particular cerium chloride, cerium beta-diketonates and in particular tetrakis (2,2, 6,6- tetramethyl-3-5-heptanedionato) cerium, and their mixture.
Le précurseur II peut être choisi parmi l'eau, l'oxygène, l'ozone ou un alcool, et le précurseur IIIm peut être choisi parmi : - les halogénures d'yttriu et en particulier le chlorure d'yttrium,The precursor II can be chosen from water, oxygen, ozone or an alcohol, and the precursor III m can be chosen from: - yttriu halides and in particular yttrium chloride,
- les béta-dikétonates d'yttrium et en particulier le tris (2 , 2, 6, 6-tétramêthylheptan-3 , 5-dionato) yttriu , - les halogénures de scandium et en particulier le chlorure de scandium, les béta-dikétonates de scandium et en particulier le tris (2 , 2 , 6, 6-tétraméthyl-3 , 5- heptanedionato) scandium, - les halogénures d'ytterbium et en particulier le chlorure d ' ytterbium, les béta-dikétonates d'ytterbium et en particulier le tris (2 , 2 , 6, 6-tétraméthyl-3 , 5- heptanedionato) ytterbium, - les halogénures de gadolinium et en particulier le chlorure de gadolinium,- yttrium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethylheptan-3, 5-dionato) yttriu, - scandium halides and in particular scandium chloride, beta-diketonates scandium and in particular tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) scandium, - ytterbium halides and in particular ytterbium chloride, ytterbium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) ytterbium, - gadolinium halides and in particular gadolinium chloride,
- les béta-dikétonates de gadolinium et en particulier le. tris (2 , 2 , 6 , 6-tétraméthyl-3 , 5- heptanedionato) gadolinium, et les halogénures de samarium et en particulier le chlorure de samarium, les béta-dikétonates de samarium et en particulier le tris, (2 , 2 , 6, 6-tétraméthyl-3 , 5- heptanedionato) samarium, et leur mélanges.- gadolinium beta-diketonates and in particular. tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) gadolinium, and samarium halides and in particular samarium chloride, samarium beta-diketonates and in particular tris, (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) samarium, and mixtures thereof.
La première séquence peut être définie au choix par les successions d'éléments suivantes : première succession : a) précurseur In b) azote c) précurseur II d) azoteThe first sequence can be defined as desired by the successions of the following elements: first succession: a) precursor I n b) nitrogen c) precursor II d) nitrogen
seconde succession : a) précurseur In et I(n+i) b) azote c) précurseur II d) azotesecond succession: a) precursor I n and I (n + i ) b) nitrogen c) precursor II d) nitrogen
et, la seconde séquence peut être définie au choix par les successions d'éléments suivantes :and, the second sequence can be defined as desired by the successions of the following elements:
miè e succession : a) précurseur IIIm b) azote c) précurseur II d) azotenth succession: a) precursor III m b) nitrogen c) precursor II d) nitrogen
seconde succession : a) précurseurs IIIm et III (m+1) b) azote c) précurseur II d) azote Le procédé de 1 ' invention peut permettre de déposer au moins un oxyde de base et au moins un agent dopant simultanément, avec des durées de mise en contact avec la surface du substrat, identiques ou différentes pour chaque précurseur In, II ou IIIm.second succession: a) precursors III m and III (m + 1) b) nitrogen c) precursor II d) nitrogen The process of the invention can make it possible to deposit at least one basic oxide and at least one doping agent simultaneously, with durations of contact with the surface of the substrate, identical or different for each precursor I n , II or III m .
Le procédé peut également permettre de déposer en premier lieu au moins un oxyde de base selon une première séquence, puis au moins un agent dopant, selon une seconde séquence, à la suite de la première séquence .The method can also make it possible to deposit, at first, at least one basic oxide according to a first sequence, then at least one doping agent, according to a second sequence, following the first sequence.
Le conducteur ionique est de préférence choisi parmi la zircone dopée à l'yttrium, la zircone dopée au scandium, la zircone dopée à l'ytterbium, la cérine dopée au gadolinium, la cérine dopée au samarium, et leurs mélanges.The ionic conductor is preferably chosen from zirconia doped with yttrium, zirconia doped with scandium, zirconia doped with ytterbium, cerine doped with gadolinium, cerine doped with samarium, and their mixtures.
De préférence, la durée pendant laquelle un précurseur à l'état de vapeur est mis en contact avec la surface du substrat va de 0,1 à 20 secondes, et plus préférentiellement de 0,1 à 5 secondes.Preferably, the duration during which a precursor in the vapor state is brought into contact with the surface of the substrate ranges from 0.1 to 20 seconds, and more preferably from 0.1 to 5 seconds.
Le nombre de cycles peut aller de 500 à 50000, et de préférence de 500 à 5000.The number of cycles can range from 500 to 50,000, and preferably from 500 to 5,000.
Le rapport atomique du ou des agents dopants sur le ou les oxydes de base peut aller de 2 à 25 %.The atomic ratio of the doping agent (s) to the base oxide (s) can range from 2 to 25%.
L'épaisseur de chaque couche mince peut aller de 0,1 à 10 μm.The thickness of each thin layer can range from 0.1 to 10 μm.
Des gradients de compositions dans le conducteur ionique, peuvent par ailleurs être réalisés en faisant varier la proportion des séquences de synthèse du ou des oxydes de base par rapport aux séquences de synthèses du ou des agents dopants au cours du dépôt des couches minces.Gradients of compositions in the ionic conductor can moreover be produced by varying the proportion of the sequences of synthesis of the base oxide (s) relative to the sequences of syntheses of the doping agent (s) during the deposition of thin layers.
Le substrat poreux peut être choisi parmi un matériau de cathode poreux ou un matériau d'anode poreux pour pile à combustible à oxyde solide et de préférence parmi =le anganite de lanthane dopé au strontium (LSM) , le manganite de lanthane dopé au calcium, le manganite de lanthane dopé au fer, le cobaltate de lanthane dopé au strontium, et leurs mélanges, pour la cathode, et parmi le cermet de nickel et de zircone dopée à l'yttrium (Ni/YSZ) , le cermet de nickel et de zircone dopée au scandium, le cermet de nickel et de zircone dopée à l'ytterbium, le cermet de nickel et de cérine dopée au gadolinium, le cermet de nickel et de cérine dopée au samarium, la zircone stabilisée à l'yttrium dopée à l'oxyde de titane, et leur mélanges pour 1 'anode.The porous substrate can be chosen from a porous cathode material or a porous anode material for a solid oxide fuel cell and preferably from = lanthanum anganite doped with strontium (LSM), lanthanum manganite doped with calcium, iron-doped lanthanum manganite, strontium-doped lanthanum cobaltate, and mixtures thereof, for the cathode, and among the nickel and zirconia cermet doped with yttrium (Ni / YSZ), the cermet of nickel and scandium-doped zirconia, nickel and zirconia cermet doped with ytterbium, nickel and cerine cermet doped with gadolinium, nickel and cerine cermet doped with samarium, zirconia stabilized with yttrium doped with l titanium oxide, and mixtures thereof for the anode.
L'invention va maintenant être décrite à l'aide des exemples qui suivent, qui sont uniquement donnés à titre illustratif et, qui ne limitent en aucune façon la présente invention.The invention will now be described with the aid of the following examples, which are only given by way of illustration and which do not in any way limit the present invention.
- la figure 1 représente une vue schématique, de dessus, obtenue par la technique de microscopie électronique à balayage d'un échantillon de substrat recouvert de couches minces selon le procédé de l'invention, et - la figure 2 représente une vue schématique, en perspective, obtenue par la technique de microscopie électronique à balayage d'un échantillon du substrat recouvert de deux couches minces, selon le procédé de l'invention. Le réacteur de la technique d'épitaxie de couches atomiques utilisé, est du type flux alternés (F120 fabriqué par ASM-Microche isty Ltd.). L'azote est utilisé comme gaz vecteur.- Figure 1 shows a schematic view, from above, obtained by the scanning electron microscopy technique of a substrate sample covered with thin layers according to the method of the invention, and - Figure 2 shows a schematic view, in perspective, obtained by the scanning electron microscopy technique of a sample of the substrate covered with two thin layers, according to the method of the invention. The reactor of the atomic layer epitaxy technique used is of the alternating flow type (F120 manufactured by ASM-Microche isty Ltd.). Nitrogen is used as the carrier gas.
On utilise, dans les exemples qui suivent, - les précurseurs suivants :In the following examples, the following precursors are used:
- ZrCl pour le zirconium,- ZrCl for zirconium,
- de l'eau, et- water, and
- Y(thd)3 ou tris (2 , 2 , 6 , 6-tétraméthyl-3 , 5- heptadionato) yttrium pour l'yttrium,- Y (thd) 3 or tris (2, 2, 6, 6-tetramethyl-3, 5-heptadionato) yttrium for yttrium,
Les dépôts sont effectués sur un substrat poreux, tel qu'une plaque de manganite de lanthane dopé au strontium (La0,8, s^o, 2 ι Mn03 ou LSM) pouvant être utilisée comme cathode de SOFC, ou une plaque de cermet de nickel et de zircone yttriée (Ni/YSZ) pouvant servir d'anode de SOFC.The deposits are made on a porous substrate, such as a lanthanum manganite plate doped with strontium (La 0 , 8, s ^ o, 2 ι Mn0 3 or LSM) which can be used as a SOFC cathode, or a plate of cermet of nickel and yttria zirconia (Ni / YSZ) which can serve as an anode of SOFC.
Les précurseurs sont chauffés aux températures suivantesThe precursors are heated to the following temperatures
. Y(thd)3 110° à 150°C. Y (thd) 3 110 ° to 150 ° C
. ZrCl4 140° à 180°C. ZrCl 4 140 ° to 180 ° C
. eau 10° à 30°C. water 10 ° to 30 ° C
Le substrat est chauffé de 200° à 600°C avant la réalisation du procédé et est maintenu à une température allant de 205° à 600°C pendant la réalisation du procédé de l'invention.The substrate is heated from 200 ° to 600 ° C before carrying out the process and is maintained at a temperature ranging from 205 ° to 600 ° C during the carrying out of the process of the invention.
Pour l'obtention de couches minces de zircone ayant comme agent dopant l'yttrium, le cycle de base est le suivant : • n séquences de synthèse de zircone, n pouvant varier de 1 à 10. La séquence est définie comme suit :To obtain thin layers of zirconia having the yttrium doping agent, the basic cycle is as follows: • n zirconia synthesis sequences, n being able to vary from 1 to 10. The sequence is defined as follows:
*-*- ZrCl : 1 à 10 secondes* - * - ZrCl: 1 to 10 seconds
"→- azote : 1 à 5 secondes *→- eau : 0,5 à 10 secondes"→ - nitrogen: 1 to 5 seconds * → - water: 0.5 to 10 seconds
*-*- azote : 1 à 5 secondes* - * - nitrogen: 1 to 5 seconds
• 1 séquence de synthèse d'oxyde d'yttrium (dopant), telle que définie comme suit :• 1 sequence of synthesis of yttrium oxide (dopant), as defined as follows:
^ Y(thd)3 0,5 à 10 secondes ^ azote 0,5 à 10 secondes *-*- eau 0,5 à 10 secondes →- azote 0,5 à 10 secondes.^ Y (thd) 3 0.5 to 10 seconds ^ nitrogen 0.5 to 10 seconds * - * - water 0.5 to 10 seconds → - nitrogen 0.5 to 10 seconds.
Le nombre de séquences de synthèse d'oxyde d'yttrium par rapport au nombre de séquences de synthèse de zircone est ajusté en fonction de la concentration en agent dopant souhaité dans la couche mince présente à la surface des substrats.The number of yttrium oxide synthesis sequences relative to the number of zirconia synthesis sequences is adjusted as a function of the concentration of doping agent desired in the thin layer present on the surface of the substrates.
La combinaison des « n » séquences de synthèse de zircone et de l'unique séquence de synthèse d'oxyde d'yttrium constitue un cycle de base pour la zircone dopée à l'yttrium.The combination of the “n” zirconia synthesis sequences and the unique yttrium oxide synthesis sequence constitutes a basic cycle for zirconia doped with yttrium.
L'épaisseur de la couche mince est fonction du nombre de cycles effectué.The thickness of the thin layer depends on the number of cycles performed.
Après la montée en température du réacteur selon un gradient de température de la température de chauffage du précurseur d'yttrium (110°-150°C) à la température du substrat (200°-600°C) , on effectue entre environ 500 et 50 000 cycles de dépôt. Fyetnpl e 1 : Préparat i on d ' une cou che mi nce deAfter the temperature rise of the reactor according to a temperature gradient from the heating temperature of the yttrium precursor (110 ° -150 ° C) to the temperature of the substrate (200 ° -600 ° C), the reaction is carried out between approximately 500 and 50,000 deposition cycles. Fyetnpl e 1: Preparing an on layer for
7, i rcone ( env i on 1 7. um d ' épa i sseur ) dopé, avec Y_ 0-3_. présent en une, proportion a-Lian de 2__à 25 % atomique, sur une iaque ... e 8M .poreuse (2,5 x,.5cτn et 5 x7, i rcone (env i on 1 7. um thickness i sseur) doped, with Y_ 0- 3 _. present in a, a-Lian proportion of 2__ to 25 atomic%, on an ia ... e 8M. porous (2,5 x, .5cτn and 5 x
5om - ta lle des pores 0,5 à 1,5 jrm) .5om - pore size 0.5 to 1.5 dm).
1) Lavage de la plaque de LSM dans du propane -2-ol, pendant 10 à 30 minutes, sous ultrasons.1) Washing of the LSM plate in propane -2-ol, for 10 to 30 minutes, under ultrasound.
2) Rinçage à l'eau permutée puis à l'ethanol, séchage à l'air comprimé.2) Rinsing with deionized water then with ethanol, drying with compressed air.
3) Introduction de la plaque dans le réacteur.3) Introduction of the plate into the reactor.
4) Introduction du ZrCl4 - 0,5 à 1 gramme dans une nacelle dans le réacteur d'épitaxie de couches atomiques .4) Introduction of ZrCl 4 - 0.5 to 1 gram in a nacelle in the atomic layer epitaxy reactor.
5) Introduction du Y(thd)3 - 0,5 à 1 gramme dans la nacelle dans le réacteur.5) Introduction of Y (thd) 3 - 0.5 to 1 gram into the nacelle in the reactor.
6) Attente de la montée en température du réacteur, et par conséquent du précurseur Y(thd)3 de 125° à 130°C, de. ZrCl4 de 165° à 170°C et du substrat de 350° à 410°C.6) Waiting for the temperature rise of the reactor, and consequently of the precursor Y (thd) 3 from 125 ° to 130 ° C, from . ZrCl 4 from 165 ° to 170 ° C and substrate from 350 ° to 410 ° C.
7) Mise en oeuvre de 1800 à 2000 cycles de dépôt de couche mince.7) Implementation of 1800 to 2000 thin film deposition cycles.
Un cycle est constitué des deux séquences suivantes 1ere séquenceA cycle consists of the following two sequences 1 st sequence
Mise en contact pendant une durée allant de 1 à 2 s. du substrat avec du ZrCl4 vaporisé ;Contact for a period ranging from 1 to 2 s. substrate with vaporized ZrCl4;
Purge pendant une durée de 1,5 à 2 s. par de l'azote ;Purge for a period of 1.5 to 2 s. with nitrogen;
Mise en contact pendant une durée de 0,5 à 1 s. du substrat avec de 1 ' eau sous forme vapeur ;Contact for a period of 0.5 to 1 s. substrate with water in vapor form;
Purge pendant une durée de 1,5 à 2 s. par de 1 'azote.Purge for a period of 1.5 to 2 s. with nitrogen.
Cette première séquence, qui est répétée trois fois de façon successive, est suivie par la seconde séquence suivante :This first sequence, which is repeated three times in succession, is followed by the following second sequence:
?eme séquence :? th sequence:
Mise en contact pendant une durée de 1 à 2 s. du substrat avec des vapeurs de Y(thd)3 ;Contact for a period of 1 to 2 s. substrate with vapors of Y (thd) 3 ;
Purge pendant une durée de 1,5 à 2 s. par de l'azote ; - Mise en contact pendant une durée de 0,5 à 1 s. du substrat avec de 1 ' eau sous forme vapeur ;Purge for a period of 1.5 to 2 s. with nitrogen; - Contact for a period of 0.5 to 1 s. substrate with water in vapor form;
Purge pendant une durée de 1,5 à 2 s. par de l'azote.Purge for a period of 1.5 to 2 s. with nitrogen.
Cette seconde séquence n'est effectuée qu'une seule fois.This second sequence is performed only once.
Le cycle est effectué de 1800 à 2000 fois.The cycle is performed from 1800 to 2000 times.
Comme on peut le voir sur la figure 2, la surface de substrat poreux de manganite de lanthane dopé 1 est recouverte par deux couches minces 2, 3, disposées successivement et constituées, chacune, par de la zircone dopée à l'yttrium. L'ensemble des couches 2 et 3 forment le dessus 4 de l'échantillon obtenu à l'issu du procédé.As can be seen in FIG. 2, the surface of porous substrate of doped lanthanum manganite 1 is covered by two thin layers 2, 3, arranged successively and each constituted by zirconia doped with yttrium. All of layers 2 and 3 form the top 4 of the sample obtained at the end of the process.
On peut noter que 1 ' ensemble de ces deux couches est dense, et qu'il recouvre bien les pores du substrat 1 (Voir figure 1) .It can be noted that the set of these two layers is dense, and that it covers the pores of the substrate 1 well (see FIG. 1).
Il n'y a donc plus de porosité apparente. La première couche 2 présente une épaisseur d'environ 1,4 μm, et la seconde une épaisseur d'environ 1,1 μm.There is therefore no longer any apparent porosity. The first layer 2 has a thickness of approximately 1.4 μm, and the second a thickness of approximately 1.1 μm.
By.mpi p. ?. : Préparation d'une couche mince (environBy.mpi p. ?. : Preparation of a thin layer (approximately
1 à 2 urn d'épaisseur) ayant de 2 à 2 % atomique en Y.2Q-2. sur une plaque çLe cermet poreuse (5 x 5cm - taille des pores 0,5 à 1 ,5 jrm) .1 to 2 urn thick) having 2 to 2 atomic% in Y.2Q-2. on a plate çThe porous cermet (5 x 5cm - pore size 0.5 to 1.5 dm).
On applique, ici, le même procédé que celui détaillé dans 1 ' exemple 1. The same method is applied here as that detailed in Example 1.

Claims

R E V E N D I C A T I O N S
1. Procédé pour déposer sur la surface d'un substrat poreux, couche atomique par couche atomique, des couches minces d'au moins un conducteur ionique solide, ledit conducteur ionique étant constitué d'au moins un oxyde -de base et d'au moins un agent dopant, l'ensemble desdites couches minces constituant un électrolyte, ledit dépôt étant réalisé à partir d'au moins un précurseur In de l'ion métallique d'un des oxydes de base, d'un précurseur II permettant de réaliser un oxyde à partir du précurseur In, et d'au moins un précurseur IIIm d'un des oxydes apportant l'un des agents dopants, lesdits précurseurs étant mis à l'état de vapeur, n et m étant chacun un entier supérieur ou égal à 1, caractérisé en ce qu'il consiste à déposer au moins un oxyde de base selon au moins une première séquence, et au moins un agent dopant selon au moins une seconde séquence, chaque première séquence étant répétée de 1 à 10 fois de façon successive avant, après ou en mélange, avec ou sans mise en contact avec le précurseur II, avec au moins une seconde séquence, chaque seconde séquence n'étant réalisée qu'une seule fois, l'ensemble comprenant les première et seconde séquences constituant un cycle, le dépôt du ou des oxydes de base et du ou des agents dopants étant réalisé, d'une part, pour un rapport de séquences (première/seconde) défini en fonction du rapport atomique (agent(s) dopant (s) /oxyde (s) de base) souhaité dans chaque couche mince, d'autre part pour un nombre de cycles défini en fonction de l'épaisseur de couches minces souhaitée, et enfin, pour une durée de mise en contact d'un précurseur (In, IIIm) avec la surface du substrat définie. 1. Method for depositing on the surface of a porous substrate, atomic layer by atomic layer, thin layers of at least one solid ionic conductor, said ionic conductor consisting of at least one basic oxide and at least one at least one doping agent, all of said thin layers constituting an electrolyte, said deposit being produced from at least one precursor I n of the metal ion of one of the base oxides, of a precursor II making it possible to produce an oxide from the precursor I n , and from at least one precursor III m of one of the oxides providing one of the doping agents, said precursors being brought into the vapor state, n and m each being a greater integer or equal to 1, characterized in that it consists in depositing at least one basic oxide according to at least a first sequence, and at least one doping agent according to at least a second sequence, each first sequence being repeated from 1 to 10 times successively before, after or as a mixture, with or without contacting the precursor II, with at least a second sequence, each second sequence being carried out only once, the assembly comprising the first and second sequences constituting a cycle, the deposition the base oxide (s) and the doping agent (s) being produced, on the one hand, for a sequence ratio (first / second) defined as a function of the atomic ratio (doping agent (s) / oxide (s)) base) desired in each thin layer, on the other hand for a number of cycles defined as a function of the thickness of thin layers desired, and finally, for a period of contacting a precursor (I n , III m ) with the defined substrate surface.
2. Procédé selon la revendication 1, caractérisé en ce que le précurseur In est choisi parmi les halogénures de zirconium, et en particulier le chlorure de zirconium, les halogénures de cérium et en particulier le chlorure de cérium, les béta-dikétonates de cérium et en particulier le tétrakis (2, 2 , 6, 6-tétraméthyl- 3 , 5, -heptanedionato) cérium et leur mélange.2. Method according to claim 1, characterized in that the precursor I n is chosen from zirconium halides, and in particular zirconium chloride, cerium halides and in particular cerium chloride, cerium beta-diketonates and in particular the tetrakis (2, 2, 6, 6-tetramethyl- 3, 5, -heptanedionato) cerium and their mixture.
3. Procédé selon la revendication 1, caractérisé en ce que le précurseur II est choisi parmi l'eau, l'oxygène, l'ozone, ou un alcool.3. Method according to claim 1, characterized in that the precursor II is chosen from water, oxygen, ozone, or an alcohol.
4. Procédé selon la revendication 1, caractérisé en ce que le précurseur IIIm est choisi parmi : - les halogénures d'yttrium et en particulier le chlorure d'yttrium,4. Method according to claim 1, characterized in that the precursor III m is chosen from: - yttrium halides and in particular yttrium chloride,
- les béta-dikétonates d'yttrium et en particulier le tris (2 , 2, 6, 6-tétraméthylheptan-3 , 5-dionato) yttrium, - les halogénures de scandium et en particulier le chlorure de scandium,- yttrium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethylheptan-3, 5-dionato) yttrium, - scandium halides and in particular scandium chloride,
- les béta-dikétonates de scandium et en particulier le tris (2 , 2 , 6, 6-tétraméthyl-3 , 5- heptanedionato) scandium, - les halogénures d'ytterbium et en particulier le chlorure d'ytterbium,- scandium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) scandium, - ytterbium halides and in particular ytterbium chloride,
- les béta-dikétonates d'ytterbium et en particulier le tris (2 , 2 , 6 , 6-tétramëthyl-3 , 5- heptanedionato) ytterbium, - les halogénures de gadolinium et en particulier le chlorure de gadolinium,- ytterbium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) ytterbium, - gadolinium halides and in particular gadolinium chloride,
- les béta-dikétonates de gadolinium et en particulier le tris (2 , 2 , 6 , 6-tétraméthyl-3 , 5- heptanedionato) gadolinium, et - les halogénures de samarium et en particulier le chlorure de samarium, les béta-dikétonates de samarium et en particulier le tris (2 , 2 , 6, 6-tétraméthyl-3 , 5- heptanedionato) samarium, et leur mélanges.- gadolinium beta-diketonates and in particular the tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) gadolinium, and - samarium halides and in particular samarium chloride, samarium beta-diketonates and in particular tris (2, 2, 6, 6-tetramethyl-3, 5-heptanedionato) samarium, and mixtures thereof.
5. Procédé selon la revendication 1, caractérisé en ce que la première séquence est définie au choix par les successions d'éléments suivantes : première succession : a) précurseur In b) azote c) précurseur II d) azote5. Method according to claim 1, characterized in that the first sequence is defined as desired by the successions of the following elements: first succession: a) precursor I n b) nitrogen c) precursor II d) nitrogen
seconde succession : a) précurseurs In et I(n+ι) b) azote c) précurseur II d) azotesecond succession: a) precursors I n and I ( n + ι) b) nitrogen c) precursor II d) nitrogen
6. Procédé selon la revendication 1, caractérisé en ce que la seconde séquence est définie au choix par les successions d'éléments suivantes : première succession : a) précurseur IIIra b) azote c) précurseur II d) azote6. Method according to claim 1, characterized in that the second sequence is defined as desired by the successions of the following elements: first succession: a) precursor III ra b) nitrogen c) precursor II d) nitrogen
seconde succession : a) précurseurs Illm et III (m+i) b) azote c) précurseur II d) azote second succession: a) Illm and III precursors (m + i ) b) nitrogen c) precursor II d) nitrogen
7. Procédé selon la revendication 1, caractérisé en ce que le conducteur ionique est choisi parmi la zircone dopée à l'yttrium, la zircone dopée au scandium, la zircone dopée à l'ytterbium, la cérine dopée au gadolinium, la cérine dopée au samarium, et leurs mélanges .7. Method according to claim 1, characterized in that the ionic conductor is chosen from zirconia doped with yttrium, zirconia doped with scandium, zirconia doped with ytterbium, cerine doped with gadolinium, cerine doped with samarium, and mixtures thereof.
8. Procédé selon la revendication 1, caractérisé en ce que le rapport atomique (agent(s) dopan (s) /oxyde (s) de base) va de 2 à 25%.8. Method according to claim 1, characterized in that the atomic ratio (agent (s) dopan (s) / oxide (s) base)) ranges from 2 to 25%.
9. Procédé selon la revendication 1, caractérisé en ce que le nombre de cycles va de 500 à 50 000, et de préférence de 500 à 5 000.9. Method according to claim 1, characterized in that the number of cycles ranges from 500 to 50,000, and preferably from 500 to 5,000.
10. Procédé selon la revendication 1, caractérisé en ce que les durées de mise en contact d'un précurseur In, II ou IIIm et de la surface du substrat sont identiques ou différentes, et vont de 0,1 à 20 secondes, et de préférence de 0,1 à 5 secondes.10. Method according to claim 1, characterized in that the durations of bringing a precursor I n , II or III m into contact with the surface of the substrate are identical or different, and range from 0.1 to 20 seconds, and preferably from 0.1 to 5 seconds.
11. Procédé selon la revendication 1, caractérisé en ce que l'épaisseur de chaque couche mince va de 0,1 à 10 μm.11. Method according to claim 1, characterized in that the thickness of each thin layer ranges from 0.1 to 10 μm.
12. Procédé selon la revendication 1, caractérisé en ce que le substrat poreux est choisi parmi un matériau de cathode poreux ou un matériau d'anode poreux pour pile à combustible à oxyde solide (SOFC) .12. Method according to claim 1, characterized in that the porous substrate is chosen from a porous cathode material or a porous anode material for solid oxide fuel cell (SOFC).
13. Procédé selon la revendication 12 , caractérisé en ce que le matériau de cathode est choisi parmi le manganite de lanthane dopé au strontium (LSM) , le manganite de lanthane dopé au calcium, le manganite de lanthane dopé au fer, le colbatate de lanthane dopé au strontium, et leurs mélanges.13. Method according to claim 12, characterized in that the cathode material is chosen from lanthanum manganite doped with strontium (LSM), lanthanum manganite doped with calcium, manganite from lanthanum iron-doped, lanthanum colbatate doped strontium, and mixtures thereof.
14. Procédé selon la revendication 12, caractérisé en ce que le matériau d'anode est choisi parmi le cermet de nickel et de zircone dopée à l'yttrium (Ni/YSZ). , le cermet. de nickel et de zircone dopée au scandium, le cermet de nickel et de zircone dopée à l'ytterbium, le cermet de nickel et de cérine dopée au gadolinium, le cermet de nickel et de cérine dopée au samarium, la zircone stabilisée, à l'yttrium dopée à l'oxyde de titane, et leur mélanges.14. Method according to claim 12, characterized in that the anode material is chosen from nickel and zirconia cermet doped with yttrium (Ni / YSZ). , the cermet. of nickel and zirconia doped with scandium, the cermet of nickel and zirconia doped with ytterbium, the cermet of nickel and cerine doped with gadolinium, the cermet of nickel and cerine doped with samarium, stabilized zirconia 'yttrium doped with titanium oxide, and mixtures thereof.
15. Cellule de pile à combustible à oxyde solide comportant au moins un conducteur ionique solide présent en au moins une couche mince et, déposé par le procédé défini selon l'une des revendications précédentes.15. Solid oxide fuel cell cell comprising at least one solid ionic conductor present in at least one thin layer and deposited by the process defined according to one of the preceding claims.
16. Pile à combustible à oxyde solide comportant au moins une cellule telle que définie selon la revendication 15. 16. Solid oxide fuel cell comprising at least one cell as defined in claim 15.
PCT/FR2001/004102 2000-12-28 2001-12-20 Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer WO2002053798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01989640A EP1356133A1 (en) 2000-12-28 2001-12-20 Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0017225A FR2818993B1 (en) 2000-12-28 2000-12-28 METHOD FOR DEPOSITING THIN FILMS ON A POROUS SUBSTRATE, FUEL CELL CELL AND FUEL CELL HAVING SUCH A THIN FILM
FR00/17225 2000-12-28

Publications (1)

Publication Number Publication Date
WO2002053798A1 true WO2002053798A1 (en) 2002-07-11

Family

ID=8858345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/004102 WO2002053798A1 (en) 2000-12-28 2001-12-20 Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer

Country Status (3)

Country Link
EP (1) EP1356133A1 (en)
FR (1) FR2818993B1 (en)
WO (1) WO2002053798A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109628890B (en) * 2019-01-10 2020-12-29 河北大学 Strontium ruthenate/lanthanum strontium manganese oxygen transition metal oxide heterojunction and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403461A (en) * 1993-03-10 1995-04-04 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
US5693139A (en) * 1984-07-26 1997-12-02 Research Development Corporation Of Japan Growth of doped semiconductor monolayers
US5753385A (en) * 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
US5972430A (en) * 1997-11-26 1999-10-26 Advanced Technology Materials, Inc. Digital chemical vapor deposition (CVD) method for forming a multi-component oxide layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693139A (en) * 1984-07-26 1997-12-02 Research Development Corporation Of Japan Growth of doped semiconductor monolayers
US5403461A (en) * 1993-03-10 1995-04-04 Massachusetts Institute Of Technology Solid electrolyte-electrode system for an electrochemical cell
US5753385A (en) * 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
US5972430A (en) * 1997-11-26 1999-10-26 Advanced Technology Materials, Inc. Digital chemical vapor deposition (CVD) method for forming a multi-component oxide layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NILSEN O ET AL: "THIN FILM DEPOSITION OF LANTHANUM MANGANITE PEROVSKITE BY THE ALE PROCESS", JOURNAL OF MATERIALS CHEMISTRY, THE ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, GB, vol. 9, no. 8, August 1999 (1999-08-01), pages 1781 - 1784, XP000906224, ISSN: 0959-9428 *

Also Published As

Publication number Publication date
EP1356133A1 (en) 2003-10-29
FR2818993B1 (en) 2003-11-28
FR2818993A1 (en) 2002-07-05

Similar Documents

Publication Publication Date Title
EP2462644B1 (en) Electrochemical cell having a metal substrate, and method for manufacturing same
EP2356713B1 (en) Substrate made of a porous metal or metal alloy, its method of production and hte or sofc cells having a support metal comprising this substrate
EP2335311A1 (en) Electrolyte for an sofc battery, and method for making same
FR2930075A1 (en) TITANATES OF PEROVSKITE OR DERIVED STRUCTURE AND ITS APPLICATIONS
ES2912750T3 (en) A method for producing an SOFC cathode diffusion barrier layer and an SOFC
EP1358003B1 (en) Oxide ion conductive ceramic membrane stacked microstructures for high-pressure oxygen production
Menzler et al. SOC degradation: long-term and small-scale effects
EP2097940B1 (en) Gas electrode, method for making the same and uses thereof
EP1358002B1 (en) Oxide ion conductive ceramic membrane stacked microstructures; use for separating oxygen from air
WO2002053798A1 (en) Method for depositing thin layers on a porous substrate, fuel cell and fuel cell comprising such a thin layer
JPH1074528A (en) Solid electrolyte fuel cell and its manufacture
Cassir et al. Reduction in the operating temperature of solid oxide fuel cells—potential use in transport applications
EP2270914A1 (en) Fuel cell with built-in hydrogen purification membrane
Brahim Conception et performances électrochimiques de matériaux nanostructurés pour piles à combustible à oxyde solide
Lee et al. A New Strategy: Achieving High-Performed SOCs Using Sonic-Spraying as an Advanced Manufacturing
WO2006067301A1 (en) Method for making a solid oxide fuel cell in the form of thin films
Lin et al. Thin electrolyte layers for SOFC via modification of ceramic membranes by CVD and EVD
Martin et al. Ultrathin Solid Oxide Fuel Cell Fabrication
Beeaff et al. 5 RE-OXIDATION OF NI/YSZ-INFILTRATED ZIRCONIA HONEYCOMB
Chao Atomic Layer Deposition for Solid Oxide Fuel Cells
WO2010125254A2 (en) Barium titanates doubly substituted with cerium and iron or manganese with a perovskite structure
Wang Medium-temperature solid oxide fuel cells prepared using reactive magnetron sputtering
Haldane et al. Effect of Deposition Conditions on Pt‐YSZ Cermet Anodes Made by PEVD
Anderson et al. Characterization of oxides for low-temperature solid-oxide fuel cells. Annual report, September 1990-August 1991
Garcia et al. LaSrMnO {sub 3} thin films on YSZ/YSZ-NiO by the spin coating method: synthesis and microstructural characterization

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001989640

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001989640

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001989640

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP