WO2002053795A1 - Device and method for deposition, electron beam exposure device, deflecting device, and method of manufacturing deflecting device - Google Patents

Device and method for deposition, electron beam exposure device, deflecting device, and method of manufacturing deflecting device Download PDF

Info

Publication number
WO2002053795A1
WO2002053795A1 PCT/JP2001/010364 JP0110364W WO02053795A1 WO 2002053795 A1 WO2002053795 A1 WO 2002053795A1 JP 0110364 W JP0110364 W JP 0110364W WO 02053795 A1 WO02053795 A1 WO 02053795A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
unit
base material
electron beam
boat
Prior art date
Application number
PCT/JP2001/010364
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuto Ashihara
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2002053795A1 publication Critical patent/WO2002053795A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • H01J37/3177Multi-beam, e.g. fly's eye, comb probe

Definitions

  • the present invention relates to a vapor deposition device, a vapor deposition method, an electron beam exposure device, a deflecting device, and a method for manufacturing a deflecting device.
  • the present invention relates to a vapor deposition apparatus and a vapor deposition method for vapor-depositing a conductive material on an inner surface of a cylindrical base material, and an electron beam exposure apparatus, a deflection apparatus, and a method of manufacturing a deflection apparatus for accurately deflecting an electron beam.
  • An electron beam exposure apparatus that exposes a pattern on a wafer with an electron beam has a deflecting unit that deflects the electron beam so that a predetermined region on the wafer is irradiated with the electron beam.
  • the deflecting unit has a cylindrical base material and an electrode provided on an inner surface of the base material for deflecting the electron beam.
  • the electrodes of the deflection section are formed by plating, and therefore contain a large amount of impurities. Therefore, when deflecting the electron beam by the deflecting unit, it was difficult to accurately deflect the electron beam due to the influence of impurities contained in the electrodes. Disclosure of the invention
  • a first aspect of the present invention is directed to a vapor deposition apparatus for vapor-depositing a conductive material on an inner surface of a cylindrical base material, the port having a groove for accommodating the conductive material.
  • a substrate support that supports the substrate, and a port into the substrate
  • the present invention provides a vapor deposition apparatus comprising: a driving unit that moves at least one of a vapor deposition unit and a substrate support unit so as to perform heating; and a heating unit that heats a boat unit.
  • the boat preferably has a plurality of grooves formed along the direction of insertion of the boat.
  • the boat preferably has a protective layer for protecting the surface of the groove.
  • the heating section preferably applies a constant voltage to the boat section.
  • the drive section preferably has means for rotating the substrate support section.
  • the vapor deposition apparatus may further include a measuring unit that measures a position of the port unit with respect to the substrate in a plane perpendicular to the moving direction of the vapor deposition unit or the substrate support unit.
  • the vapor deposition apparatus may further include a transport unit that transports the substrate to the substrate support.
  • a vapor deposition chamber for storing the vapor deposition section and the base material supporting section; a preliminary chamber provided next to the vapor deposition chamber; and a vapor deposition chamber provided between the vapor deposition chamber and the preliminary chamber. And a shirt that isolates or releases the air.
  • a vapor deposition method for vapor-depositing a conductive material on an inner surface of a cylindrical base material, wherein a boat part containing the conductive material is inserted into the base material; An evaporation step of heating the boat part to evaporate the conductive material, and a movement of moving at least one of the port part and the base material so that the port part moves relative to the base material in the base material. And a step of providing a vapor deposition method.
  • the moving step preferably includes a rotating step of moving at least one of the boat section and the substrate in one direction and rotating the substrate.
  • the moving step includes a first moving step of moving at least one of the port portion and the base material in the first moving direction while rotating the base material in the first rotation direction, and a base portion in a state where the boat portion and the base material are not moved.
  • the method further includes a second moving step of moving at least one of the boat portion and the base material to a second movement opposite to the first movement direction while rotating in a second rotation direction opposite to the one rotation direction.
  • the moving speed of the boat portion or the substrate in the first moving step and the second moving step is constant.
  • the buttons in the first movement step and the second movement step The moving speed of the tip or the substrate may be substantially equal.
  • the distance that the boat portion or the substrate moves during one rotation of the substrate may be smaller than twice the vapor deposition width of the conductive material.
  • an electron beam exposure apparatus for exposing a pattern on a wafer with an electron beam, comprising: an electron beam generating section for generating an electron beam; and an electron beam generating section for generating an electron beam.
  • An electron beam exposure apparatus comprising: a plurality of electrodes for deflecting; and a deflecting unit having a conductive material deposited on the electrodes.
  • the conductive material is a noble metal.
  • the conductive material is preferably formed on the electrode to a uniform thickness.
  • the deflecting unit may have a cylindrical base material, and the electrode may be provided on an inner surface of the base material. It is preferable that the conductive material is provided on each of the plurality of electrodes facing each other.
  • a deflecting device for deflecting an electron beam, comprising: a cylindrical base material; And a conductive material deposited on the electrode.
  • a method for manufacturing a deflecting device for deflecting an electron beam comprising: an insertion step of inserting a boat portion containing a conductive material into a cylindrical base material; An evaporation step of heating to evaporate the conductive material; and a moving step of moving at least one of the boat part and the base material so that the boat part moves relative to the base material in the base material.
  • a method of manufacturing a deflection device characterized by the following.
  • FIG. 1 is a configuration diagram showing a vapor deposition apparatus according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a vapor deposition unit according to the present embodiment.
  • FIG. 3 is a perspective view showing the boat unit according to the present embodiment.
  • FIG. 4 is a schematic view showing a procedure for depositing a conductive material on the inner surface of a base material by the deposition apparatus according to the present embodiment.
  • FIG. 5 is a schematic diagram showing a procedure for transporting the base material from the preliminary chamber to the vapor deposition chamber in the vapor deposition apparatus according to the present embodiment.
  • FIG. 6 is a cross-sectional view illustrating a vapor deposition unit in a vapor deposition apparatus according to another embodiment of the present invention.
  • FIG. 7 is a perspective view showing a partially enlarged view of the vapor deposition section shown in FIG.
  • FIG. 8 is a configuration diagram of an electron beam exposure apparatus according to one embodiment of the present invention.
  • FIG. 9 is a cross-sectional view of the deflecting unit according to the present embodiment as viewed from the direction of electron beam irradiation.
  • FIG. 1 is a configuration diagram showing a vapor deposition apparatus 10 according to one embodiment of the present invention.
  • the vapor deposition device 10 vapor-deposits a conductive material on the inner surface of the cylindrical base material 50.
  • the vapor deposition device 10 is suitable for vapor-depositing a conductive material on the inner surface of a cylindrical base material 50 having a large aspect ratio.
  • the substrate 50 may have a diameter of 4 to 6 mm and a length of about 100 mm, for example.
  • the vapor deposition apparatus 10 includes a vapor deposition section 20 for vapor-depositing a conductive material on the inner surface of the substrate 50, a substrate support section 30 for supporting the substrate 50, and a boat section 22 for converting the boat section 22 to the substrate 50.
  • a driving unit 40 for moving at least one of the vapor deposition unit 20 and the substrate support unit 30 so as to enter, a heating unit 42 for heating the port unit 22, and a base unit 50 for the boat unit 22.
  • a measuring unit 44 for measuring the position and a transport unit 46 for transporting the substrate 50 to the substrate support unit 30 are provided.
  • the vapor deposition apparatus 10 includes a vapor deposition chamber 12 for storing a vapor deposition section 20 and a substrate support section 30, a preliminary chamber 14 provided next to the vapor deposition chamber 12, a vapor deposition chamber 12 and a preliminary chamber. 1 and 4, and the evaporation chambers 1 and 2 It is desirable to further include a shirt 16 that isolates or opens between the spare room 14.
  • the vapor deposition section 20 has a boat section 22 having a groove for accommodating a conductive material, and a boat fixing section 24 for fixing the port section 22.
  • the vapor deposition section 20 has a cantilever structure in which a boat section 22 is provided at one end and the other end is fixed.
  • the driving section 40 preferably has a rotating means for rotating the base material supporting section 30. It is preferable that the heating section 42 heats the boat section 22 by applying a constant voltage to the port section 22.
  • the measuring section 44 preferably measures the position of the boat section 22 with respect to the substrate 50 in a plane perpendicular to the moving direction of the vapor deposition section 20 or the substrate supporting section 30.
  • the measuring section 44 is preferably a means for optically measuring the position of the boat section 22 with respect to the substrate 50.
  • the measuring section 44 is preferably installed at a position where the inner surface of the substrate 50 can be observed when the substrate supporting section 30 supports the substrate 50.
  • the vapor deposition apparatus 10 may further include control means for controlling the driving section 40 based on the measurement result of the measuring section 44 so that the boat section 22 does not contact the inner surface of the base material 50. Further, the user of the vapor deposition device 10 may manually control the driving unit 40 based on the measurement result of the measuring unit 44.
  • the preparatory chamber 14 has a preparatory substrate supporting portion 32 that supports a preparatory substrate 52 that is a substrate 50 before being introduced into the vapor deposition chamber 12.
  • the transport section 46 introduces the preliminary substrate 52 into the preliminary chamber 14 with the shutter 16 between the vapor deposition chamber 12 and the preliminary chamber 14 closed.
  • the preliminary substrate supporting portion 32 supports the preliminary substrate 52.
  • the pressure in the preliminary chamber 14 is reduced.
  • the transport section 46 transports the preliminary substrate 52 from the preliminary substrate support section 32 to the substrate support section 30. Since the preliminary chamber 14 is decompressed in the same manner as the vapor deposition chamber 12, even when the shirt 16 is opened when the preliminary base material 5 2 is introduced from the preliminary chamber 14 to the vapor deposition chamber 12, The reduced pressure state can be maintained.
  • the vapor deposition device 10 may have a plurality of preliminary chambers 14.
  • the transfer section 46 may transfer the substrate 50 having the inner surface deposited in the evaporation chamber 12 to one of the preliminary chambers 14.
  • the substrate 50 after the vapor deposition is transferred from the vapor deposition chamber 12 to one of the preliminary chambers 14.
  • the preliminary substrate 52 before vapor deposition can be transferred from another preliminary chamber 14 to the vapor deposition chamber 12. Therefore, a conductive material can be efficiently vapor-deposited on the inner surface of the substrate 50.
  • FIG. 2 is a schematic diagram illustrating the vapor deposition unit 20 according to the present embodiment.
  • the vapor deposition section 20 has a boat section 22 having a groove for accommodating a conductive material, and a port fixing section 24 for fixing the boat section 22.
  • the boat fixing part 24 includes, for example, a conductive rod 60 a and a conductive cylinder 60 b made of copper (Cu) as a material, and an insulating tube 6 that insulates between the conductive rod 60 a and the conductive cylinder 60 b. 2 and a holding part (64a, 64b and 464c) for holding the boat part 22.
  • the holding parts (64a, 64b and 64c) are made of a conductor.
  • the holding portion 64a is connected to the conductive cylinder 60b and the boat portion 22, the holding portion 64b is connected to the conductive rod 60a and the holding portion 64c, and the holding portion 64c is Holder 6 4 b and boat part 22 are connected.
  • the heating section 42 applies a certain voltage to the port section 22, the conductive rods 60 a and Z or the conductive cylinders pass through the holding sections (64 a, 64 b and 64 c). Current flows through port 22.
  • arrows indicate the flow of current.
  • the heating section 42 preferably applies a constant voltage to the port section 22.
  • a constant voltage to the port 22.
  • the power does not increase even if the electric resistance of the boat 22 increases when the boat 22 is inserted into the base material 50. Therefore, it is possible to prevent the port portion 22 and the base material 50 from being destroyed due to a rapid increase in electric power.
  • FIG. 3 is a perspective view showing the boat part 22 according to the present embodiment.
  • the boat part 22 includes a boat 70, a groove part 72 for accommodating the conductive material 80, and a protective layer 74 for protecting the surface of the groove part 72.
  • the port 22 preferably has a plurality of grooves 72 formed along the direction in which the port 22 is inserted.
  • the boat 70 is preferably formed using graphite.
  • the boat portion 22 since the boat portion 22 has the plurality of grooves 72, the conductive material 80 accommodated in each groove 72 is melted in each groove 72. Therefore, the conductive material 80 contained in the plurality of grooves 72 of the port 22 evaporates.
  • the deposition range in which the deposition section 20 deposits the conductive material 80 on the base material 50 is widened.
  • the conductive material 80 since the conductive material 80 is dispersed and melted in each groove 72, the conductive material 80 does not become a large spherical mass. In other words, since the conductive material 80 is housed in the groove 72, the conductive material housed in the plurality of grooves 72 forms one large spherical mass when the conductive material 80 is melted. There is no. Therefore, it is possible to prevent the base material 50 from breaking down due to the contact of the conductive material 80 with the inner surface of the base material 50.
  • the protective layer 74 is preferably provided on the surface of the port 70, and is particularly preferably provided on the surface of the groove 72 that contains the conductive material 80.
  • the protective layer 74 is preferably formed of a material having insulation and heat resistance such as alumina.
  • the boat portion 22 since the boat portion 22 has the protective layer 74, even if the port portion 22 is heated and the carbon of the boat 70 including graphite is melted out, the carbon is formed of the conductive material 80. It does not get mixed in. Therefore, deterioration of the conductive material 80 due to the incorporation of carbon can be prevented. Therefore, a high-purity conductive material 80 is deposited on the substrate 50 by vapor deposition.
  • FIG. 4 is a schematic diagram showing a procedure for depositing a conductive material on the inner surface of the base material 50 by the deposition apparatus 10 according to the present embodiment.
  • the drive unit 40 moves the substrate support unit 30 in order to insert the boat unit 22 into the substrate 50.
  • the drive unit 40 may move the vapor deposition unit 20 so as to insert the port unit 22 into the base material 50.
  • the drive section 40 moves the base member support section 30 and the base member 50 to move the boat section 22 to the base member 5.
  • the heating section 42 inserts at one end of 0.
  • the heating section 42 heats the boat section 22 by supplying current to the boat section 22.
  • the heating section 42 heats the port section 22 by applying a constant voltage to the port section 22.
  • the heating section 42 evaporates the conductive material by heating the port section 22.
  • the driving section 40 moves the base support section 30 so that the boat section 22 moves relative to the base 50 within the base 50. 1 Move in the movement direction.
  • the driving section 40 rotates the substrate 50 in the first rotation direction by the rotating means while moving the substrate support section 30 in the first movement direction.
  • the drive section 40 moves the substrate support section 30 in the first movement direction until the boat section 22 is located at the other end of the substrate 50. Then, the movement of the base member 30 is stopped. With the boat 22 and the base 50 stopped, the base support 30 is rotated half a turn in the first rotation direction.
  • the driving section 40 moves the base member support section 30 in the first movement direction until the boat section 22 exceeds the other end of the base member 50 and is positioned outside the base member 50. After that, the movement of the base support 30 may be stopped, and the base support 30 may be rotated half a turn in the first rotation direction with the boat 22 and the base 50 stopped.
  • the driving unit 40 moves the base member 50 in the first direction while rotating the substrate 50 in the second rotation direction opposite to the first rotation direction by the rotating means. Move in the second movement direction opposite to the direction.
  • the driving section 40 moves the base material supporting section 30 at substantially the same speed, at a constant speed, in the first moving direction and the second moving direction.
  • FIG. 4E shows the state of vapor deposition of the conductive material when the conductive material is vapor-deposited in the substrate 50 by the above method.
  • the conductive material deposited on the base material 50 when the driving part 40 moves the base material support part 30 in the first movement direction is indicated by oblique lines.
  • the conductive material is helically vapor-deposited on the base material 50 only by the drive unit 40 moving the base material support unit 30 in the first movement direction, and the conductive material is deposited on the base material 50. There are areas where no material has been deposited.
  • the conductive material deposited on the base material 50 when the drive part 40 moves the base material support part 30 in the second movement direction is indicated by a horizontal line.
  • the drive unit 40 moves the base material support unit 30 in the second movement direction.
  • the conductive material is deposited on the resulting region of the substrate 50 where the conductive material is not deposited.
  • the driving unit 40 moves the base material support unit 30 in the second movement direction so that 0 is rotated half a turn in the first rotation direction.
  • the conductive material can be deposited on a region where the conductive material is not deposited when the base material supporting portion 30 is moved in the first movement direction.
  • the drive unit 40 controls the distance by which the substrate 50 moves in the first movement direction or the second movement direction while the base material 50 makes one rotation in the first rotation direction or the second rotation direction. It is preferable that the width is smaller than twice the vapor deposition width of the conductive material on the inner surface of the material 50.
  • the vapor deposition width is formed on the inner surface of the substrate 50 when the substrate 50 moves in either the first moving direction or the second moving direction, as described in FIG. Refers to the width of the spiral conductive material.
  • the conductive material is deposited thinly at both ends of the deposition width.
  • the thickness of the conductive member deposited on the substrate 50 can be made uniform.
  • FIG. 5 is a schematic diagram showing a procedure for transporting the preliminary substrate 52 from the preliminary chamber 14 to the vapor deposition chamber 12 in the vapor deposition apparatus 10 according to the present embodiment.
  • the transport section 46 has an arm section for holding the spare base material 52.
  • the transport unit 46 lifts the preliminary substrate 52 supported by the preliminary substrate support unit 32 by the arm unit.
  • the transfer section 46 opens the shirt 16 to open the space between the preliminary chamber 14 and the vapor deposition chamber 12.
  • the transport section 46 moves the preliminary base material 52 to the vapor deposition chamber 12.
  • the transfer section 46 moves the substrate 52 to a predetermined position in the vapor deposition chamber 12, and makes the substrate support section 30 support the preliminary substrate 52.
  • the base material supporting unit 30 may lift the spare base material 52 and receive the spare base material 52 from the transport unit 46.
  • the transfer section 46 moves to the preliminary chamber 14.
  • the transfer section 46 closes the shutter 16 to isolate the preparatory chamber 14 from the vapor deposition chamber 12.
  • FIG. 6 is a cross-sectional view showing a vapor deposition unit in a vapor deposition device according to another embodiment of the present invention.
  • the vapor deposition device includes a plurality of port portions 22 each having a groove for accommodating a conductive material, and a plurality of boat fixing portions 22 each for fixing the port portions 22.
  • 4 includes a vapor deposition section 220 having 4.
  • the vapor deposition section 220 further has a heating section 230 for heating the boat section 222.
  • the vapor deposition section 220 has a port section 222 at one end of each boat fixing section 222, and has a cantilever structure in which the other end of each boat fixing section 222 is fixed to the heating section 230. Preferably it is.
  • Each boat section 222 has the same or the same function and configuration as the boat section 222 described with reference to FIGS.
  • each boat fixing portion 224 has the same or similar function and configuration as the boat fixing portion 24 described with reference to FIGS.
  • the vapor deposition section 220 and the heating section 230 have the same or similar functions and configurations as the vapor deposition section 20 and the heating section 42 described with reference to FIG. 1 and FIG.
  • the vapor deposition section 220 in the present embodiment is used for vapor-depositing a conductive material on the inner surface of the deflection section 240 used in an electron beam exposure apparatus that generates a plurality of electron beams.
  • the vapor deposition section 222 preferably has a number of boat sections 222 and a number of boat fixing sections 224 corresponding to the number of cylindrical base materials of the deflecting section 240.
  • FIG. 7 is a perspective view showing a partially enlarged view of the vapor deposition section 220 shown in FIG.
  • the vapor deposition section 220 has a boat section 222 at the tip of the boat fixing section 222.
  • the boat part 222 has a groove part 272 for accommodating the conductive material 280.
  • the plurality of boat sections 222 of the vapor deposition section 220 are respectively introduced into the base material of the deflection section 240, and the port section 222 is formed.
  • the conductive material is vapor-deposited on the inner surface of the substrate of the deflecting unit 240.
  • the boat section 222 is provided at the tip of the port fixing section 222, when the port section 222 is heated and inserted into the base material of the deflection section 240, The conductive material can be uniformly deposited inside the material.
  • FIG. 8 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention.
  • the electron beam exposure apparatus 100 includes an exposure unit 102 for performing a predetermined exposure process on the wafer 150 by an electron beam, and a control for controlling the operation of each component included in the exposure unit 102.
  • System 160 for controlling the operation of each component included in the exposure unit 102.
  • the exposure unit 102 generates a plurality of electron beams inside the casing 104, Electron beam shaping means 110 for shaping the cross-sectional shape as desired; and irradiation switching means 130 for independently switching whether or not to irradiate the wafer 150 with a plurality of electron beams for each electron beam,
  • An electron optical system including a wafer projection system 140 for adjusting the direction and size of an image of a pattern transferred to the wafer 150 is provided.
  • the exposure unit 102 includes a stage system including a wafer stage 152 on which the wafer 150 is mounted, and a wafer stage driving unit 154 for driving the wafer stage 152.
  • the electron beam shaping means 110 includes a plurality of electron guns 112 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam.
  • Member 1 14 and 2nd shaping member 1 2 2 and 1st multi-axis to independently focus multiple electron beams and adjust the focus of electron beam 1
  • Electron lens 1 16 and 1st shaping It has a first shaping / deflecting unit 118 and a second shaping / deflecting unit 120 for independently deflecting a plurality of electron beams passing through the member 114.
  • the irradiation switching means 130 independently converges the plurality of electron beams and adjusts the focal point of the electron beam, and deflects the plurality of electron beams independently for each electron beam.
  • An electron beam shielding member for shielding the electron beam deflected by the ranking electrode array.
  • blanking electrode array 134 may be a blanking aperture array 'device.
  • the projection system 140 for C has a third multi-axis electron lens 142 that focuses a plurality of electron beams independently and reduces the irradiation diameter of the electron beam, and converges the plurality of electron beams independently, A fourth multi-axis electron lens 144 for adjusting the focus of the beam, a deflecting unit 144 for independently deflecting a plurality of electron beams to desired positions on the wafer 150 for each electron beam, and a wafer. And a fifth multi-axis electron lens 148 that functions as an objective lens for 150 and converges a plurality of electron beams independently.
  • the deflecting unit 146 includes a plurality of deflectors. Each deflector has a plurality of electrodes.
  • the deflecting unit 146 further includes a conductive material 200 deposited on a plurality of electrodes of each deflector.
  • Conductive The material is preferably a noble metal, for example, gold (Au), platinum (Pt), aluminum (A1), or the like.
  • the conductive material is preferably formed on each electrode in a uniform thickness along the direction of electron beam irradiation in the deflection section 146.
  • the control system 160 includes an overall control unit 170 and an individual control unit 180.
  • the individual control section 180 includes an electron beam control section 182, a multi-axis electron lens control section 1884, a shaping / deflection control section 1886, a blanking electrode array control section 1888, and a deflection control. And a wafer stage control unit 192.
  • the general control unit 170 is, for example, a work station, and performs general control of each control unit included in the individual control unit 180.
  • the electron beam control unit 18 controls the electron gun 11.
  • the multi-axis electronic lens controller 18 4 is composed of the first multi-axis electronic lens 1 16, the second multi-axis electronic lens 13 2, the third multi-axis electronic lens 14 2, and the fourth multi-axis electronic lens 1 4 4 Also controls the current supplied to the fifth multi-axis electron lens 148.
  • the shaping / deflecting controller 186 controls the first shaping / deflecting unit 118 and the second shaping / deflecting unit 120.
  • the blanking electrode array controller 188 controls the voltage applied to the deflection electrodes included in the blanking electrode array 134.
  • the deflection control unit 190 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 146.
  • Wafer stage controller 194 controls wafer stage driver 154 to move wafer stage 152 to a predetermined position.
  • FIG. 9 is a cross-sectional view of the deflection unit 146 according to the present embodiment as viewed from the direction of electron beam irradiation.
  • the deflecting unit 146 has a cylindrical base 202, and the electrode 204 is provided on the inner surface of the base. It is preferable that the conductive material 200 is provided on each of the surfaces where the plurality of electrodes 204 face each other. Further, the conductive material 200 is preferably formed on each electrode 204 with a uniform thickness.
  • the generated electron beam is applied to the first shaping member 114 to be shaped.
  • a plurality of electron beams may be generated by further including means for dividing the electron beam generated by the electron gun 112 into a plurality of electron beams.
  • the first multi-axis electron lens 1 16 independently converges a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second shaping member 122 for each electron beam.
  • the first shaping / deflecting unit 118 deflects the plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam.
  • the second shaping / deflecting unit 120 deflects the plurality of electron beams deflected by the first shaping / deflecting unit 118 in a direction substantially perpendicular to the second shaping member 122 independently for each electron beam.
  • the second shaping member 122 including a plurality of openings having a rectangular shape is provided with a plurality of electron beams having a rectangular cross-sectional shape applied to each of the openings. It is further shaped into an electron beam having a rectangular cross section.
  • the second multi-axis electron lens 132 converges a plurality of electron beams independently, and independently adjusts the focus of the electron beam with respect to the blanking electrode array 134 for each electron beam.
  • the electron beam focused by the second multi-axis electron lens 13 2 passes through a plurality of apertures included in the blanking electrode array 1 34.
  • the blanking electrode array control unit 188 controls whether or not to apply a voltage to a deflection electrode formed in the blanking electrode array 134 and provided near each aperture.
  • the blanking electrode array 134 switches whether or not to apply the electron beam to the wafer 150 based on the voltage applied to the deflection electrode.
  • the electron beam that is not deflected by the blanking electrode array 134 has its electron beam diameter reduced by the third multi-axis electron lens 142 and passes through an opening included in the electron beam shielding member 136.
  • the fourth multi-axis electron lens 144 independently converges the plurality of electron beams, and independently adjusts the focus of the electron beam with respect to the deflection unit 144 for each electron beam. Is incident on the deflector included in the deflecting unit 146.
  • the deflection control unit 190 controls the plurality of deflectors included in the deflection unit 146 independently.
  • the deflecting unit 146 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 150 independently for each electron beam.
  • the deflecting unit 146 since the deflecting unit 146 has the deposited conductive material 200, the surface of the deflecting unit 146 through which the electron beam passes can be protected by the high-purity conductive material 200. . Therefore, the electron beam exposure apparatus 100 can reduce the influence of charging due to impurities in the electrode 204 of the deflecting unit 146. Therefore, the deflection of the electron beam can be appropriately controlled. Deflection unit 1
  • the plurality of electron beams that passed through the wafer 6 were transferred to the wafer 1 by the fifth multi-axis electron lens 1 48.
  • the focus for 50 is adjusted, and the wafer 150 is irradiated.
  • the wafer stage controller 192 powers the wafer stage 152 in a fixed direction.
  • the blanking electrode array control unit 188 determines apertures through which the electron beam passes based on the exposure pattern data, and controls power for each aperture. Exposure of the desired circuit pattern on the wafer 150 by appropriately changing the aperture through which the electron beam passes according to the movement of the wafer 150, and further deflecting the electron beam by the deflecting unit 146. Becomes possible.
  • a conductive material can be deposited on the inner surface of a cylindrical base material. Further, the electron beam can be accurately deflected in the electron beam exposure apparatus and the deflection apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Physical Vapour Deposition (AREA)
  • Electron Beam Exposure (AREA)

Abstract

A deposition device (10) capable of depositing a conductive material on the internal surface of a cylindrical base material, comprising a deposition part (20) having a boat part (22) with a groove part for storing the conductive material, a base material support part (30) for supporting the base material (50), a drive part (40) for moving at least one of the deposition part (20) and the base material support part (30) to insert the boat part (22) into the base material (50), and a heating part (42) for heating the boat part (22).

Description

明 細 書 蒸着装置、 蒸着方法、 電子ビーム露光装置、 偏向装置及び偏向装置の製造方法 技術分野  Description Evaporation apparatus, evaporation method, electron beam exposure apparatus, deflection apparatus, and method of manufacturing deflection apparatus
本発明は、 蒸着装置、 蒸着方法、 電子ビーム露光装置、 偏向装置及び偏向装置 の製造方法に関する。特に本発明は、筒形状の基材の内面に導電材料を蒸着する 蒸着装置及び蒸着方法、並びに精度良く電子ビームを偏向させる電子ビーム露光 装置、偏向装置及び偏向装置の製造方法に関する。 また本出願は、 下記の日本特 許出願に関連する。 文献の参照による組み込みが認められる指定国については、 下記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一 部とする。  The present invention relates to a vapor deposition device, a vapor deposition method, an electron beam exposure device, a deflecting device, and a method for manufacturing a deflecting device. In particular, the present invention relates to a vapor deposition apparatus and a vapor deposition method for vapor-depositing a conductive material on an inner surface of a cylindrical base material, and an electron beam exposure apparatus, a deflection apparatus, and a method of manufacturing a deflection apparatus for accurately deflecting an electron beam. This application is related to the following Japanese patent application. For those designated countries that are permitted to be incorporated by reference to the literature, the contents described in the following application are incorporated into this application by reference and are part of the description of this application.
特願 2 0 0 0— 3 9 8 1 1 5 出願日 平成 1 2年 1 2月 2 7日 背景技術  Japanese Patent Application No. 2 0 0—3 9 8 1 1 5 Filing Date 1 2/27/2012 Background Art
電子ビームによりウェハにパターンを露光する電子ビーム露光装置は、 ウェハ上 の所定の領域に電子ビームが照射されるように、 電子ビームを偏向する偏向部を有 する。 偏向部は、 筒形状の基材と、 当該基材の内面に設けられ、 電子ビームを偏向 するための電極とを有する。  An electron beam exposure apparatus that exposes a pattern on a wafer with an electron beam has a deflecting unit that deflects the electron beam so that a predetermined region on the wafer is irradiated with the electron beam. The deflecting unit has a cylindrical base material and an electrode provided on an inner surface of the base material for deflecting the electron beam.
し力、し、 偏向部の電極は、 メツキにより形成されるため、 不純物を多く含む。 そ のため、 偏向部により電子ビームを偏向させるときに、 電極に含まれる不純物の影 響で、 電子ビームを精度良く偏向させるのが困難であった。 発明の開示  The electrodes of the deflection section are formed by plating, and therefore contain a large amount of impurities. Therefore, when deflecting the electron beam by the deflecting unit, it was difficult to accurately deflect the electron beam due to the influence of impurities contained in the electrodes. Disclosure of the invention
上記課題を解決するために、 本発明の第 1の形態においては、 筒形状を有する基 材の内面に導電材料を蒸着する蒸着装置であって、 導電材料を収容する溝部を有す るポート部を含む蒸着部と、 基材を支持する基材支持部と、 ポート部を基材に揷入 するように蒸着部又は基材支持部の少なくとも一方を移動させる駆動部と、 ボート 部を加熱する加熱部とを備えることを特徴とする蒸着装置を提供する。 In order to solve the above-mentioned problems, a first aspect of the present invention is directed to a vapor deposition apparatus for vapor-depositing a conductive material on an inner surface of a cylindrical base material, the port having a groove for accommodating the conductive material. , A substrate support that supports the substrate, and a port into the substrate The present invention provides a vapor deposition apparatus comprising: a driving unit that moves at least one of a vapor deposition unit and a substrate support unit so as to perform heating; and a heating unit that heats a boat unit.
ボート部は、 ボート部の挿入方向に沿って形成された複数の溝部を有するのが好 ましい。 ボート部は、 溝部の表面を保護する保護層を有するのが好ましい。  The boat preferably has a plurality of grooves formed along the direction of insertion of the boat. The boat preferably has a protective layer for protecting the surface of the groove.
加熱部は、 ボート部に一定の電圧を印加するのが好ましい。 駆動部は、 基材支持 部を回転させる手段を有するのが好ましい。  The heating section preferably applies a constant voltage to the boat section. The drive section preferably has means for rotating the substrate support section.
蒸着装置は、 蒸着部又は基材支持部の移動方向に垂直な面内におけるポート部の 基材に対する位置を測定する測定部をさらに備えてもよい。 蒸着装置は、 基材を基 材支持部に搬送する搬送部をさらに備えてもよい。  The vapor deposition apparatus may further include a measuring unit that measures a position of the port unit with respect to the substrate in a plane perpendicular to the moving direction of the vapor deposition unit or the substrate support unit. The vapor deposition apparatus may further include a transport unit that transports the substrate to the substrate support.
蒸着装置は、 蒸着部と基材支持部を格納する蒸着室と、 蒸着室の隣に設けられた 予備室と、 蒸着室と予備室との間に設けられ、 蒸着室と予備室との間を隔離又は開 放するシャツタとをさらに備えてもよい。  A vapor deposition chamber for storing the vapor deposition section and the base material supporting section; a preliminary chamber provided next to the vapor deposition chamber; and a vapor deposition chamber provided between the vapor deposition chamber and the preliminary chamber. And a shirt that isolates or releases the air.
本発明の第 2の形態によると、 筒形状の基材の内面に導電材料を蒸着する蒸着方 法であって、 導電材料を収容したボート部を、 基材に揷入する揷入ステップと、 ボ 一ト部を加熱して導電材料を蒸発させる蒸発ステップと、 ポート部が基材内で基材 に対して相対的に移動するように、 ポート部又は基材の少なくとも一方を移動させ る移動ステップとを備えることを特徴とする蒸着方法を提供する。  According to a second aspect of the present invention, there is provided a vapor deposition method for vapor-depositing a conductive material on an inner surface of a cylindrical base material, wherein a boat part containing the conductive material is inserted into the base material; An evaporation step of heating the boat part to evaporate the conductive material, and a movement of moving at least one of the port part and the base material so that the port part moves relative to the base material in the base material. And a step of providing a vapor deposition method.
移動ステップは、 ボート部又は基材の少なくとも一方を一方向に移動させると共 に基材を回転させる回転ステップを有するのが好ましい。  The moving step preferably includes a rotating step of moving at least one of the boat section and the substrate in one direction and rotating the substrate.
移動ステップは、 基材を第 1回転方向に回転させながらポート部又は基材の少な くとも一方を第 1移動方向に移動させる第 1移動ステップと、 ボート部及び基材が 移動されない状態で基材を第 1回転方向に半回転させる回転ステップと、 基材を第 The moving step includes a first moving step of moving at least one of the port portion and the base material in the first moving direction while rotating the base material in the first rotation direction, and a base portion in a state where the boat portion and the base material are not moved. A rotation step of half-turning the material in the first rotation direction;
1回転方向と反対の第 2回転方向に回転させながらボート部又は基材の少なくとも 一方を第 1移動方向と反対の第 2移動に移動させる第 2移動ステップとを有するの が好ましい。 It is preferable that the method further includes a second moving step of moving at least one of the boat portion and the base material to a second movement opposite to the first movement direction while rotating in a second rotation direction opposite to the one rotation direction.
第 1移動ステップと第 2移動ステップにおけるボート部又は基材の移動速度が一 定であるのが好ましい。 ここで、 第 1移動ステップと第 2移動ステップにおけるボ 一ト部又は基材の移動速度は略等しくてよい。 It is preferable that the moving speed of the boat portion or the substrate in the first moving step and the second moving step is constant. Here, the buttons in the first movement step and the second movement step The moving speed of the tip or the substrate may be substantially equal.
第 1移動ステップと第 2移動ステップにおける、 基材が 1回転する間にボート部 又は基材が移動する距離が、 導電材料の蒸着幅の 2倍より小さくてよい。  In the first moving step and the second moving step, the distance that the boat portion or the substrate moves during one rotation of the substrate may be smaller than twice the vapor deposition width of the conductive material.
本発明の第 3の形態によると、 電子ビームによりウェハにパターンを露光する電 子ビーム露光装置であって、 電子ビームを発生する電子ビーム発生部と、 電子ビー ム発生部が発生した電子ビームを偏向する複数の電極及び当該電極上に蒸着された 導電材料を有する偏向部とを備えることを特徴とする電子ビーム露光装置を提供す る。 導電材料は、 貴金属であるのが好ましい。 導電材料は、 電極上に均一な厚さに 形成されるのが好ましい。  According to a third aspect of the present invention, there is provided an electron beam exposure apparatus for exposing a pattern on a wafer with an electron beam, comprising: an electron beam generating section for generating an electron beam; and an electron beam generating section for generating an electron beam. An electron beam exposure apparatus comprising: a plurality of electrodes for deflecting; and a deflecting unit having a conductive material deposited on the electrodes. Preferably, the conductive material is a noble metal. The conductive material is preferably formed on the electrode to a uniform thickness.
偏向部は、 筒形状の基材を有し、 電極は基材の内面に設けられてもよい。 導電材 料は、 複数の電極が互いに対向する面にそれぞれ設けられるのが好ましい。  The deflecting unit may have a cylindrical base material, and the electrode may be provided on an inner surface of the base material. It is preferable that the conductive material is provided on each of the plurality of electrodes facing each other.
本発明の第 4の形態によると、 電子ビームを偏向する偏向装置であって、 筒形状 の基材と、 基材の内面に設けられ、 電子ビーム発生部が発生した電子ビームを偏向. する複数の電極と、 当該電極上に蒸着された導電材料とを備えることを特徴とする 偏向装置を提供する。  According to a fourth aspect of the present invention, there is provided a deflecting device for deflecting an electron beam, comprising: a cylindrical base material; And a conductive material deposited on the electrode.
本発明の第 5の形態によると、 電子ビームを偏向する偏向装置を製造する方法で あって、導電材料を収容したボート部を、筒形状の基材に揷入する挿入ステップと、 ポート部を加熱して導電材料を蒸発させる蒸発ステップと、 ボート部が基材内で基 材に対して相対的に移動するように、 ボート部又は基材の少なくとも一方を移動さ せる移動ステップとを備えることを特徴とする偏向装置を製造する方法を提供する。 尚、 上記の発明の概要は、 本発明の必要な特徴の全てを列挙したものではなく、 これらの特徴群のサブコンビネーションも又、 発明となりうる。 図面の簡単な説明  According to a fifth aspect of the present invention, there is provided a method for manufacturing a deflecting device for deflecting an electron beam, comprising: an insertion step of inserting a boat portion containing a conductive material into a cylindrical base material; An evaporation step of heating to evaporate the conductive material; and a moving step of moving at least one of the boat part and the base material so that the boat part moves relative to the base material in the base material. And a method of manufacturing a deflection device characterized by the following. Note that the above summary of the present invention does not enumerate all of the necessary features of the present invention, and a sub-combination of these features may also be an invention. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施形態に係る蒸着装置を示す構成図である。  FIG. 1 is a configuration diagram showing a vapor deposition apparatus according to one embodiment of the present invention.
図 2は、 本実施形態に係る蒸着部を示す模式図である。  FIG. 2 is a schematic diagram illustrating a vapor deposition unit according to the present embodiment.
図 3は、 本実施形態に係るボート部を示す斜視図である。 図 4は、本実施形態に係る蒸着装置により基材の内面に導電材料を蒸着する 手順を示す模式図である。 FIG. 3 is a perspective view showing the boat unit according to the present embodiment. FIG. 4 is a schematic view showing a procedure for depositing a conductive material on the inner surface of a base material by the deposition apparatus according to the present embodiment.
図 5は、本実施形態に係る蒸着装置において、基材を予備室から蒸着室に搬 送する手順を示す模式図である。  FIG. 5 is a schematic diagram showing a procedure for transporting the base material from the preliminary chamber to the vapor deposition chamber in the vapor deposition apparatus according to the present embodiment.
図 6は、本発明の他の実施形態に係る蒸着装置における蒸着部を示す断面図 である。  FIG. 6 is a cross-sectional view illustrating a vapor deposition unit in a vapor deposition apparatus according to another embodiment of the present invention.
図 7は、 図 6に示す蒸着部の部分拡大図を示す斜視図である。  FIG. 7 is a perspective view showing a partially enlarged view of the vapor deposition section shown in FIG.
図 8は、 本発明の一実施形態に係る電子ビーム露光装置の構成図である。 図 9は、本実施形態に係る偏向部を電子ビームの照射方向から見た切断断面 図である。 発明を実施するための最良の形態  FIG. 8 is a configuration diagram of an electron beam exposure apparatus according to one embodiment of the present invention. FIG. 9 is a cross-sectional view of the deflecting unit according to the present embodiment as viewed from the direction of electron beam irradiation. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 発明の実施の形態を通じて本発明を説明するが、 以下の実施形態は特許請 求の範囲にかかる発明を限定するものではなく、 又実施形態の中で説明されている 特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。  Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the invention according to the scope of the patent request, and all combinations of the features described in the embodiments are described. Is not necessarily essential to the solution of the invention.
図 1は、 本発明の一実施形態に係る蒸着装置 1 0を示す構成図で る。  FIG. 1 is a configuration diagram showing a vapor deposition apparatus 10 according to one embodiment of the present invention.
蒸着装置 1 0は、 筒形状の基材 5 0の内面に導電材料を蒸着する。 蒸着装置 1 0 は、 ァスぺクト比の大きい円筒形状の基材 5 0の内面に導電材料を蒸着するのに好 適である。 基材 5 0は、 例えば、 直径 4〜6 mmであって長さ 1 0 0 mm程度の大 きさであってよい。  The vapor deposition device 10 vapor-deposits a conductive material on the inner surface of the cylindrical base material 50. The vapor deposition device 10 is suitable for vapor-depositing a conductive material on the inner surface of a cylindrical base material 50 having a large aspect ratio. The substrate 50 may have a diameter of 4 to 6 mm and a length of about 100 mm, for example.
蒸着装置 1 0は、 基材 5 0の内面に導電材料を蒸着する蒸着部 2 0と、 基材 5 0 を支持する基材支持部 3 0と、 ボート部 2 2を基材 5 0に揷入するように蒸着部 2 0又は基材支持部 3 0の少なくとも一方を移動させる駆動部 4 0と、 ポート部 2 2 を加熱する加熱部 4 2と、 ボート部 2 2の基材 5 0に対する位置を測定する測定部 4 4と、 基材 5 0を基材支持部 3 0に搬送する搬送部 4 6とを備える。 蒸着装置 1 0は、 蒸着部 2 0と基材支持部 3 0を格納する蒸着室 1 2と、 蒸着室 1 2の隣に設 けられた予備室 1 4と、 蒸着室 1 2と予備室 1 4との間に設けられ、 蒸着室 1 2と 予備室 1 4との間を隔離又は開放するシャツタ 1 6とをさらに備えるのが望ましい。 蒸着部 2 0は、 導電材料を収容する溝部を有するボート部 2 2と、 ポート部 2 2 を固定するボート固定部 2 4を有する。 蒸着部 2 0は、 その一端にボート部 2 2が 設けられ、 他端が固定された片持ち構造であるのが好ましい。 The vapor deposition apparatus 10 includes a vapor deposition section 20 for vapor-depositing a conductive material on the inner surface of the substrate 50, a substrate support section 30 for supporting the substrate 50, and a boat section 22 for converting the boat section 22 to the substrate 50. A driving unit 40 for moving at least one of the vapor deposition unit 20 and the substrate support unit 30 so as to enter, a heating unit 42 for heating the port unit 22, and a base unit 50 for the boat unit 22. A measuring unit 44 for measuring the position and a transport unit 46 for transporting the substrate 50 to the substrate support unit 30 are provided. The vapor deposition apparatus 10 includes a vapor deposition chamber 12 for storing a vapor deposition section 20 and a substrate support section 30, a preliminary chamber 14 provided next to the vapor deposition chamber 12, a vapor deposition chamber 12 and a preliminary chamber. 1 and 4, and the evaporation chambers 1 and 2 It is desirable to further include a shirt 16 that isolates or opens between the spare room 14. The vapor deposition section 20 has a boat section 22 having a groove for accommodating a conductive material, and a boat fixing section 24 for fixing the port section 22. Preferably, the vapor deposition section 20 has a cantilever structure in which a boat section 22 is provided at one end and the other end is fixed.
駆動部 4 0は、 基材支持部 3 0を回転させる回転手段を有するのが好ましい。 加 熱部 4 2は、 ポート部 2 2に一定の電圧を印加することによりボート部 2 2を加熱 するのが好ましい。  The driving section 40 preferably has a rotating means for rotating the base material supporting section 30. It is preferable that the heating section 42 heats the boat section 22 by applying a constant voltage to the port section 22.
測定部 4 4は、 蒸着部 2 0又は基材支持部 3 0の移動方向に垂直な面内における ボート部 2 2の基材 5 0に対する位置を測定するのが好ましい。 測定部 4 4は、 ボ ート部 2 2の基材 5 0に対する位置を光学的に測定する手段であるのが好ましい。 測定部 4 4は、 基材支持部 3 0が基材 5 0を支持するときに基材 5 0の内面を観察 可能な位置に設置されるのが好ましい。 蒸着装置 1 0は、 測定部 4 4の測定結果に 基づいて、 ボート部 2 2が基材 5 0の内面に接触しないように駆動部 4 0を制御す る制御手段をさらに備えてもよい。 また、 測定部 4 4の測定結果に基づいて、 蒸着 装置 1 0の使用者が手動で駆動部 4 0を制御してもよい。  The measuring section 44 preferably measures the position of the boat section 22 with respect to the substrate 50 in a plane perpendicular to the moving direction of the vapor deposition section 20 or the substrate supporting section 30. The measuring section 44 is preferably a means for optically measuring the position of the boat section 22 with respect to the substrate 50. The measuring section 44 is preferably installed at a position where the inner surface of the substrate 50 can be observed when the substrate supporting section 30 supports the substrate 50. The vapor deposition apparatus 10 may further include control means for controlling the driving section 40 based on the measurement result of the measuring section 44 so that the boat section 22 does not contact the inner surface of the base material 50. Further, the user of the vapor deposition device 10 may manually control the driving unit 40 based on the measurement result of the measuring unit 44.
蒸着部 2 0が基材 5 0に導電材料を蒸着するとき、 蒸着室 1 2は減圧される。 予 備室 1 4は、 蒸着室 1 2に導入される前の基材 5 0である予備基材 5 2を支持する 予備基材支持部 3 2を有する。 搬送部 4 6は、 蒸着室 1 2と予備室 1 4の間のシャ ッタ 1 6を閉じた状態で予備室 1 4に予備基材 5 2を導入する。 予備基材支持部 3 2は、 予備基材 5 2を支持する。 その後、 予備室 1 4は減圧される。 予備室 1 4が 十分減圧されると、 搬送部 4 6は、 予備基材支持部 3 2から基材支持部 3 0に予備 基材 5 2を搬送する。 予備室 1 4は蒸着室 1 2と同様に減圧されるため、 予備基材 5 2を予備室 1 4から蒸着室 1 2に導入するときにシャツタ 1 6を開いても、 蒸着 室 1 2の減圧状態を保つことができる。  When the vapor deposition section 20 vapor-deposits a conductive material on the base material 50, the pressure in the vapor deposition chamber 12 is reduced. The preparatory chamber 14 has a preparatory substrate supporting portion 32 that supports a preparatory substrate 52 that is a substrate 50 before being introduced into the vapor deposition chamber 12. The transport section 46 introduces the preliminary substrate 52 into the preliminary chamber 14 with the shutter 16 between the vapor deposition chamber 12 and the preliminary chamber 14 closed. The preliminary substrate supporting portion 32 supports the preliminary substrate 52. Thereafter, the pressure in the preliminary chamber 14 is reduced. When the pressure in the preliminary chamber 14 is sufficiently reduced, the transport section 46 transports the preliminary substrate 52 from the preliminary substrate support section 32 to the substrate support section 30. Since the preliminary chamber 14 is decompressed in the same manner as the vapor deposition chamber 12, even when the shirt 16 is opened when the preliminary base material 5 2 is introduced from the preliminary chamber 14 to the vapor deposition chamber 12, The reduced pressure state can be maintained.
蒸着装置 1 0は複数の予備室 1 4を有してもよい。 この場合、 搬送部 4 6は、 蒸 着室 1 2で内面が蒸着された基材 5 0を予備室 1 4の一つに搬送してもよい。 この ようにすると、 蒸着された後の基材 5 0を蒸着室 1 2から予備室 1 4の一つに搬送 すると共に蒸着前の予備基材 5 2を別の予備室 1 4から蒸着室 1 2に搬送すること ができる。 そのため、 基材 5 0の内面に導電材料を効率よく蒸着できる。 The vapor deposition device 10 may have a plurality of preliminary chambers 14. In this case, the transfer section 46 may transfer the substrate 50 having the inner surface deposited in the evaporation chamber 12 to one of the preliminary chambers 14. In this way, the substrate 50 after the vapor deposition is transferred from the vapor deposition chamber 12 to one of the preliminary chambers 14. In addition, the preliminary substrate 52 before vapor deposition can be transferred from another preliminary chamber 14 to the vapor deposition chamber 12. Therefore, a conductive material can be efficiently vapor-deposited on the inner surface of the substrate 50.
図 2は、 本実施形態に係る蒸着部 2 0を示す模式図である。  FIG. 2 is a schematic diagram illustrating the vapor deposition unit 20 according to the present embodiment.
蒸着部 2 0は、 導電材料を収容する溝部を有するボート部 2 2と、 ボート部 2 2 を固定するポート固定部 2 4とを有する。 ボート固定部 2 4は、 例えば銅 ( C u ) を材料とする導電棒 6 0 a及び導電筒 6 0 bと、 導電棒 6 0 a及び導電筒 6 0 bと の間を絶縁する絶縁管 6 2と、 ボート部 2 2を保持する保持部 ( 6 4 a、 6 4 b及 ぴ 6 4 c ) とを有する。 保持部 (6 4 a、 6 4 b及び 6 4 c ) は、 導電体を材料と する。 また、 保持部 6 4 aは導電筒 6 0 b及びボート部 2 2と接続され、 保持部 6 4 bは導電棒 6 0 a及ぴ保持部 6 4 cと接続され、 保持部 6 4 cは保持部 6 4 b及 ぴボート部 2 2と接続される。 加熱部 4 2がポート部 2 2に一定の電圧を印加する と、 導電棒 6 0 a及ぴ Z又は導電筒から、 保持部 (6 4 a、 6 4 b及ぴ 6 4 c ) を 介してポート部 2 2に電流が流れる。 図中、 矢印は電流の流れを示す。  The vapor deposition section 20 has a boat section 22 having a groove for accommodating a conductive material, and a port fixing section 24 for fixing the boat section 22. The boat fixing part 24 includes, for example, a conductive rod 60 a and a conductive cylinder 60 b made of copper (Cu) as a material, and an insulating tube 6 that insulates between the conductive rod 60 a and the conductive cylinder 60 b. 2 and a holding part (64a, 64b and 464c) for holding the boat part 22. The holding parts (64a, 64b and 64c) are made of a conductor. The holding portion 64a is connected to the conductive cylinder 60b and the boat portion 22, the holding portion 64b is connected to the conductive rod 60a and the holding portion 64c, and the holding portion 64c is Holder 6 4 b and boat part 22 are connected. When the heating section 42 applies a certain voltage to the port section 22, the conductive rods 60 a and Z or the conductive cylinders pass through the holding sections (64 a, 64 b and 64 c). Current flows through port 22. In the figure, arrows indicate the flow of current.
加熱部 4 2は、 ポート部 2 2に一定の電圧を印加するのが好ましい。 ポート部 2 2に一定の電圧を印加することにより、.ボート部 2 2が基材 5 0内に挿入された場 合にボート部 2 2の電気抵抗が増大しても、 電力は増加しない。 従って、 電力の急 激な増加によるポート部 2 2ゃ基材 5 0の破壊を防ぐことができる。  The heating section 42 preferably applies a constant voltage to the port section 22. By applying a constant voltage to the port 22, the power does not increase even if the electric resistance of the boat 22 increases when the boat 22 is inserted into the base material 50. Therefore, it is possible to prevent the port portion 22 and the base material 50 from being destroyed due to a rapid increase in electric power.
図 3は、 本実施形態に係るボート部 2 2を示す斜視図である。  FIG. 3 is a perspective view showing the boat part 22 according to the present embodiment.
ボート部 2 2は、 ボート 7 0と、 導電材料 8 0を収容する溝部 7 2と、 溝部 7 2 の表面を保護する保護層 7 4とを有する。 ポート部 2 2は、 ポート部 2 2の挿入方 向に沿って形成された複数の溝部 7 2を有するのが好ましい。本実施形態において、 ボート 7 0は、 グラフアイトを素材として形成されるのが好ましい。 導電材料 8 0 を溝部 7 2に収容した後に加熱部 4 2がボート部 2 2を加熱すると、 導電材料 8 0 は溶融する。  The boat part 22 includes a boat 70, a groove part 72 for accommodating the conductive material 80, and a protective layer 74 for protecting the surface of the groove part 72. The port 22 preferably has a plurality of grooves 72 formed along the direction in which the port 22 is inserted. In the present embodiment, the boat 70 is preferably formed using graphite. When the heating portion 42 heats the boat portion 22 after the conductive material 80 is accommodated in the groove portion 72, the conductive material 80 melts.
本実施形態において、 ボート部 2 2が複数の溝部 7 2を有するので、 各溝部 7 2 に収容された導電材料 8 0は各溝部 7 2において、 それぞれ溶融する。 そのため、 ポート部 2 2の複数の溝部 7 2に収容された導電材料 8 0がそれぞれ蒸発するので、 蒸着部 2 0が基材 5 0に導電材料 8 0を蒸着する蒸着範囲が広くなる。 また、 導電 材料 8 0を各溝部 7 2に分散されて溶融するので、 導電材料 8 0が大きな球状の塊 になることもない。 つまり、 導電材料 8 0はそれぞれ溝部 7 2に収容されているた め、 導電材料 8 0が溶融する場合に複数の溝部 7 2に収容された導電材料が 1つの 大きな球状の塊を形成することがない。 従って、 基材 5 0の内面に導電材料 8 0が 接触することによる基材 5 0の破壌を防ぐことができる。 In the present embodiment, since the boat portion 22 has the plurality of grooves 72, the conductive material 80 accommodated in each groove 72 is melted in each groove 72. Therefore, the conductive material 80 contained in the plurality of grooves 72 of the port 22 evaporates. The deposition range in which the deposition section 20 deposits the conductive material 80 on the base material 50 is widened. In addition, since the conductive material 80 is dispersed and melted in each groove 72, the conductive material 80 does not become a large spherical mass. In other words, since the conductive material 80 is housed in the groove 72, the conductive material housed in the plurality of grooves 72 forms one large spherical mass when the conductive material 80 is melted. There is no. Therefore, it is possible to prevent the base material 50 from breaking down due to the contact of the conductive material 80 with the inner surface of the base material 50.
保護層 7 4は、 ポート 7 0の表面に設けられるのが好ましく、 特に導電材料 8 0 を収容する'溝部 7 2の表面に設けられるのが好ましい。 保護層 7 4は、 例えばアル ミナ等の絶縁性及び耐熱性を有する材料により形成されるのが好ましい。 本実施形 態において、 ボート部 2 2が保護層 7 4を有するので、 ポート部 2 2が加熱される ことによりグラフアイトを含むボート 7 0のカーボンが溶け出しても、 カーボンが 導電材料 8 0に混入することがない。 そのため、 カーボンの混入による導電材料 8 0の変質を防ぐことができる。 従って、 基材 5 0に高純度の導電材料 8 0を蒸着で さる。  The protective layer 74 is preferably provided on the surface of the port 70, and is particularly preferably provided on the surface of the groove 72 that contains the conductive material 80. The protective layer 74 is preferably formed of a material having insulation and heat resistance such as alumina. In the present embodiment, since the boat portion 22 has the protective layer 74, even if the port portion 22 is heated and the carbon of the boat 70 including graphite is melted out, the carbon is formed of the conductive material 80. It does not get mixed in. Therefore, deterioration of the conductive material 80 due to the incorporation of carbon can be prevented. Therefore, a high-purity conductive material 80 is deposited on the substrate 50 by vapor deposition.
図 4は、 本実施形態に係る蒸着装置 1 0により基材 5 0の内面に導電材料を蒸着 する手順を示す模式図である。 以下において、 ボート部 2 2を基材 5 0に挿入すベ く、 駆動部 4 0が基材支持部 3 0を移動させる場合を説明する。 他の例において、 ポート部 2 2を基材 5 0に揷入すべく、 駆動部 4 0は蒸着部 2 0を移動させてもよ い。  FIG. 4 is a schematic diagram showing a procedure for depositing a conductive material on the inner surface of the base material 50 by the deposition apparatus 10 according to the present embodiment. Hereinafter, a case will be described in which the drive unit 40 moves the substrate support unit 30 in order to insert the boat unit 22 into the substrate 50. In another example, the drive unit 40 may move the vapor deposition unit 20 so as to insert the port unit 22 into the base material 50.
図 4 ( a ) に示すように、 駆動部 4 0 (図 1参照) は、 基材支持部 3 0を移動さ せ、基材 5 0を移動させることにより、ボート部 2 2を基材 5 0の一端に揷入する。 次に、 加熱部 4 2 (図 1参照) は、 ボート部 2 2に電流を供給することによりボー ト部 2 2を加熱する。 このとき、 加熱部 4 2は、 ポート部 2 2に一定の電圧を印加 してポート部 2 2を加熱するのが好ましい。 加熱部 4 2は、 ポート部 2 2を加熱す ることにより導電材料を蒸発させる。  As shown in FIG. 4 (a), the drive section 40 (see FIG. 1) moves the base member support section 30 and the base member 50 to move the boat section 22 to the base member 5. Insert at one end of 0. Next, the heating section 42 (see FIG. 1) heats the boat section 22 by supplying current to the boat section 22. At this time, it is preferable that the heating section 42 heats the port section 22 by applying a constant voltage to the port section 22. The heating section 42 evaporates the conductive material by heating the port section 22.
図 4 ( b ) に示すように、 駆動部 4 0は、 ボート部 2 2が基材 5 0内で基材 5 0 に対して相対的に移動するように、 基材支持部 3 0を第 1移動方向に移動させる。 駆動部 4 0は基材支持部 3 0を第 1移動方向に移動させながら、 回転手段により基 材 5 0を第 1回転方向に回転させる。 As shown in FIG. 4 (b), the driving section 40 moves the base support section 30 so that the boat section 22 moves relative to the base 50 within the base 50. 1 Move in the movement direction. The driving section 40 rotates the substrate 50 in the first rotation direction by the rotating means while moving the substrate support section 30 in the first movement direction.
図 4 ( c ) に示すように、 駆動部 4 0は、 ボート部 2 2が基材 5 0の他端に位置 するまで基材支持部 3 0を第 1移動方向に移動させる。 そして、 基材支持部 3 0の 移動を停止する。 ボート部 2 2及び基材 5 0が停止した状態で、 基材支持部 3 0を 第 1回転方向に半回転させる。 ここで、 駆動部 4 0は、 ボート部 2 2が基材 5 0の 他端を越えて、 基材 5 0の外部に位置するまで基材支持部 3 0を第 1移動方向に移 動させてから基材支持部 3 0の移動を停止して、 ボート部 2 2及び基材 5 0が停止 した状態で、 基材支持部 3 0を第 1回転方向に半回転させてもよい。  As shown in FIG. 4 (c), the drive section 40 moves the substrate support section 30 in the first movement direction until the boat section 22 is located at the other end of the substrate 50. Then, the movement of the base member 30 is stopped. With the boat 22 and the base 50 stopped, the base support 30 is rotated half a turn in the first rotation direction. Here, the driving section 40 moves the base member support section 30 in the first movement direction until the boat section 22 exceeds the other end of the base member 50 and is positioned outside the base member 50. After that, the movement of the base support 30 may be stopped, and the base support 30 may be rotated half a turn in the first rotation direction with the boat 22 and the base 50 stopped.
図 4 ( d ) に示すように、 駆動部 4 0は、 回転手段により基材 5 0を第 1回転方 向と反対の第 2回転方向に回転させながら基材支持部 3 0を第 1移動方向と反対の 第 2移動方向に移動させる。 ここで、 駆動部 4 0は、 基材支持部 3 0を第 1移動方 向と第 2移動方向に対して略等しレ、速度で、一定の速度で移動させるのが好ましい。 駆動部 4 0が基材支持部 3 0を移動させる速度を一定にすることにより、 導電材料 が基材 5 0に蒸着される厚さを均一にすることができる。  As shown in FIG. 4 (d), the driving unit 40 moves the base member 50 in the first direction while rotating the substrate 50 in the second rotation direction opposite to the first rotation direction by the rotating means. Move in the second movement direction opposite to the direction. Here, it is preferable that the driving section 40 moves the base material supporting section 30 at substantially the same speed, at a constant speed, in the first moving direction and the second moving direction. By making the speed at which the driving unit 40 moves the substrate supporting unit 30 constant, the thickness of the conductive material deposited on the substrate 50 can be made uniform.
図 4 ( e ) は、 以上の方法により基材 5 0内に導電材料を蒸着したときの導電材 料の蒸着状態を示す。 駆動部 4 0が基材支持部 3 0を第 1移動方向に移動させると きに基材 5 0に蒸着された導電材料を斜線で示す。 図に示すように、 駆動部 4 0が 基材支持部 3 0を第 1移動方向に移動させただけでは、 導電材料は基材 5 0に螺旋 状に蒸着され、 基材 5 0には導電材料が蒸着されていない領域が生じる。 駆動部 4 0が基材支持部 3 0を第 2移動方向に移動させるときに基材 5 0に蒸着された導電 材料を横線で示す。 図に示すように、 駆動部 4 0が基材支持部 3 0を第 2移動方向 に移動させることにより、 駆動部 4 0が基材支持部 3 0を第 1移動方向に移動させ たときに生じた基材 5 0の導電材料が蒸着されない領域に導電材料が蒸着される。 本実施形態においては、 図 4 ( c ) に示すように、 駆動部 4 0は、 ボート部 2 2 が基材 5 0の他端に位置するときに駆動部 4 0の回転手段が基材 5 0を第 1回転方 向に半回転させるため、 駆動部 4 0が基材支持部 3 0を第 2移動方向に移動させる ときに、 基材支持部 3 0を第 1移動方向に移動させたときに導電材料が蒸着されな い領域に導電材料を蒸着することができる。 FIG. 4E shows the state of vapor deposition of the conductive material when the conductive material is vapor-deposited in the substrate 50 by the above method. The conductive material deposited on the base material 50 when the driving part 40 moves the base material support part 30 in the first movement direction is indicated by oblique lines. As shown in the figure, the conductive material is helically vapor-deposited on the base material 50 only by the drive unit 40 moving the base material support unit 30 in the first movement direction, and the conductive material is deposited on the base material 50. There are areas where no material has been deposited. The conductive material deposited on the base material 50 when the drive part 40 moves the base material support part 30 in the second movement direction is indicated by a horizontal line. As shown in the figure, when the drive unit 40 moves the base material support unit 30 in the second movement direction, the drive unit 40 moves the base material support unit 30 in the first movement direction. The conductive material is deposited on the resulting region of the substrate 50 where the conductive material is not deposited. In the present embodiment, as shown in FIG. 4 (c), when the boat unit 22 is located at the other end of the base material 50, the driving unit 40 The drive unit 40 moves the base material support unit 30 in the second movement direction so that 0 is rotated half a turn in the first rotation direction. In some cases, the conductive material can be deposited on a region where the conductive material is not deposited when the base material supporting portion 30 is moved in the first movement direction.
また、 駆動部 4 0は、 基材 5 0が第 1回転方向又は第 2回転方向に 1回転する間 に、 基材 5 0が第 1移動方向又は第 2移動方向に移動する距離が、 基材 5 0の内面 における導電材料の蒸着幅の 2倍より小さいことが好ましい。 ここで、 当該蒸着幅 は、 図 4 ( e ) において説明したように、 基板 5 0が第 1移動方向又は第 2移動方 向のいずれかに移動する場合に、 基板 5 0の内面に形成される螺旋状の導電材料の 幅を指す。 ボート部 2 2が加熱されて導電材料が基材 5 0に蒸着されるとき、 導電 材料は、 蒸着幅の両端において薄く蒸着される。 そのため、 基材 5 0が 1回転する 間に基材支持部 3 0に支持された基材 5 0が移動する距離が、 蒸着幅の 2倍より小 さいと、 蒸着幅の両端部分が重なり、 全体として基材 5 0に蒸着される導電部材の 厚さを均一にすることができる。  Further, the drive unit 40 controls the distance by which the substrate 50 moves in the first movement direction or the second movement direction while the base material 50 makes one rotation in the first rotation direction or the second rotation direction. It is preferable that the width is smaller than twice the vapor deposition width of the conductive material on the inner surface of the material 50. Here, the vapor deposition width is formed on the inner surface of the substrate 50 when the substrate 50 moves in either the first moving direction or the second moving direction, as described in FIG. Refers to the width of the spiral conductive material. When the boat part 22 is heated and the conductive material is deposited on the substrate 50, the conductive material is deposited thinly at both ends of the deposition width. Therefore, if the distance traveled by the substrate 50 supported by the substrate supporting portion 30 during one rotation of the substrate 50 is smaller than twice the vapor deposition width, both ends of the vapor deposition width overlap, As a whole, the thickness of the conductive member deposited on the substrate 50 can be made uniform.
図 5は、 本実施形態に係る蒸着装置 1 0において、 予備基材 5 2を予備室 1 4か ら蒸着室 1 2に搬送する手順を示す模式図である。  FIG. 5 is a schematic diagram showing a procedure for transporting the preliminary substrate 52 from the preliminary chamber 14 to the vapor deposition chamber 12 in the vapor deposition apparatus 10 according to the present embodiment.
図 5 ( a ) に示すように、 搬送部 4 6は、 予備基材 5 2を保持するアーム部を有 する。 搬送部 4 6は、 予備基材支持部 3 2が支持する予備基材 5 2をアーム部で持 ち上げる。 図 5 ( b ) に示すように、 搬送部 4 6は、 シャツタ 1 6を開いて予備室 1 4と蒸着室 1 2との間を開放する。 搬送部 4 6は予備基材 5 2を蒸着室 1 2に移 動する。 図 5 ( c ) に示すように、 搬送部 4 6は、 基材 5 2を蒸着室 1 2の所定の 位置に移動し、 基材支持部 3 0に予備基材 5 2を支持させる。 ここで、 基材支持部 3 0が、 予備基材 5 2を持ち上げ、 搬送部 4 6から予備基材 5 2を受け取ってもよ い。 図 5 ( d )に示すように、搬送部 4 6は予備室 1 4に移動する。搬送部 4 6は、 シャツタ 1 6を閉じて予備室 1 4と蒸着室 1 2との間を隔離する。  As shown in FIG. 5 (a), the transport section 46 has an arm section for holding the spare base material 52. The transport unit 46 lifts the preliminary substrate 52 supported by the preliminary substrate support unit 32 by the arm unit. As shown in FIG. 5B, the transfer section 46 opens the shirt 16 to open the space between the preliminary chamber 14 and the vapor deposition chamber 12. The transport section 46 moves the preliminary base material 52 to the vapor deposition chamber 12. As shown in FIG. 5 (c), the transfer section 46 moves the substrate 52 to a predetermined position in the vapor deposition chamber 12, and makes the substrate support section 30 support the preliminary substrate 52. Here, the base material supporting unit 30 may lift the spare base material 52 and receive the spare base material 52 from the transport unit 46. As shown in FIG. 5 (d), the transfer section 46 moves to the preliminary chamber 14. The transfer section 46 closes the shutter 16 to isolate the preparatory chamber 14 from the vapor deposition chamber 12.
図 6は、 本発明の他の実施形態に係る蒸着装置における蒸着部を示す断面図であ る。  FIG. 6 is a cross-sectional view showing a vapor deposition unit in a vapor deposition device according to another embodiment of the present invention.
本実施形態において、 蒸着装置は、 導電材料を収容する溝部をそれぞれ有する複 数のポート部 2 2 2とポート部 2 2 2をそれぞれ固定する複数のボート固定部 2 2 4を有する蒸着部 2 2 0を含む。 蒸着部 2 2 0は、 ボート部 2 2 2を加熱する加熱 部 2 3 0をさらに有する。 蒸着部 2 2 0は、 各ボート固定部 2 2 4の一端にポート 部 2 2 2を有し、 各ボート固定部 2 2 4の他端が加熱部 2 3 0に固定された片持ち 構造であるのが好ましい。 それぞれのボート部 2 2 2は、 図 1から図 5に関連して 説明したボート部 2 2と同一又は同; f の機能及び構成を有する。 また、 それぞれの ボート固定部 2 2 4は、 図 1から図 5に関連して説明したボート固定部 2 4と同一 又は同様の機能及ぴ構成を有する。 また、 蒸着部 2 2 0及び加熱部 2 3 0は、 図 1 力、ら図 5に関連して説明した蒸着部 2 0及ぴ加熱部 4 2と同一又は同様の機能及ぴ 構成を有する。 本実施形態における蒸着部 2 2 0は、 複数の電子ビームを発生する 電子ビーム露光装置に用いられる偏向部 2 4 0の内面に導電材料を蒸着するのに用 いられる。 蒸着部 2 2 0は、 偏向部 2 4 0の筒形状の基材の数に応じた数のボート 部 2 2 2及ぴボート固定部 2 2 4を有するのが好ましい。 In the present embodiment, the vapor deposition device includes a plurality of port portions 22 each having a groove for accommodating a conductive material, and a plurality of boat fixing portions 22 each for fixing the port portions 22. 4 includes a vapor deposition section 220 having 4. The vapor deposition section 220 further has a heating section 230 for heating the boat section 222. The vapor deposition section 220 has a port section 222 at one end of each boat fixing section 222, and has a cantilever structure in which the other end of each boat fixing section 222 is fixed to the heating section 230. Preferably it is. Each boat section 222 has the same or the same function and configuration as the boat section 222 described with reference to FIGS. Further, each boat fixing portion 224 has the same or similar function and configuration as the boat fixing portion 24 described with reference to FIGS. Further, the vapor deposition section 220 and the heating section 230 have the same or similar functions and configurations as the vapor deposition section 20 and the heating section 42 described with reference to FIG. 1 and FIG. The vapor deposition section 220 in the present embodiment is used for vapor-depositing a conductive material on the inner surface of the deflection section 240 used in an electron beam exposure apparatus that generates a plurality of electron beams. The vapor deposition section 222 preferably has a number of boat sections 222 and a number of boat fixing sections 224 corresponding to the number of cylindrical base materials of the deflecting section 240.
図 7は、 図 6に示す蒸着部 2 2 0の部分拡大図を示す斜視図である。  FIG. 7 is a perspective view showing a partially enlarged view of the vapor deposition section 220 shown in FIG.
本実施形態において、 蒸着部 2 2 0は、 ボート固定部 2 2 4の先端にボート部 2 2 2を有する。ボート部 2 2 2は、導電材料 2 8 0を収容する溝部 2 7 2を有する。 加熱部 2 3 0によりボート部 2 2 2を加熱しながら、 蒸着部 2 2 0の複数のボート 部 2 2 2をそれぞれ偏向部 2 4 0の基材に揷入し、 ポート部 2 2 2が基材内で基材 に対して相対的に移動するように、蒸着部 2 2 0又は偏向部 2 4 0を移動させると、 偏向部 2 4 0の基材の内面に導電材料が蒸着する。 '  In the present embodiment, the vapor deposition section 220 has a boat section 222 at the tip of the boat fixing section 222. The boat part 222 has a groove part 272 for accommodating the conductive material 280. While heating the boat section 222 by the heating section 230, the plurality of boat sections 222 of the vapor deposition section 220 are respectively introduced into the base material of the deflection section 240, and the port section 222 is formed. When the vapor deposition unit 220 or the deflecting unit 240 is moved so as to move relative to the substrate within the substrate, the conductive material is vapor-deposited on the inner surface of the substrate of the deflecting unit 240. '
本実施形態において、 ボート部 2 2 2は、 ポート固定部 2 2 4の先端に設けられ ているため、 ポート部 2 2 2を加熱しながら偏向部 2 4 0の基材に揷入すると、 基 材の内部に導電材料を均一に蒸着することができる。  In the present embodiment, since the boat section 222 is provided at the tip of the port fixing section 222, when the port section 222 is heated and inserted into the base material of the deflection section 240, The conductive material can be uniformly deposited inside the material.
図 8は、 本発明の一実施形態に係る電子ビーム露光装置 1 0 0の構成を示す。 電 子ビーム露光装置 1 0 0は、 電子ビームによりウェハ 1 5 0に所定の露光処理を施 すための露光部 1 0 2と、 露光部 1 0 2に含まれる各構成の動作を制御する制御系 1 6 0とを備える。  FIG. 8 shows a configuration of an electron beam exposure apparatus 100 according to one embodiment of the present invention. The electron beam exposure apparatus 100 includes an exposure unit 102 for performing a predetermined exposure process on the wafer 150 by an electron beam, and a control for controlling the operation of each component included in the exposure unit 102. System 160.
露光部 1 0 2は、 筐体 1 0 4内部で、 複数の電子ビームを発生し、 電子ビームの 断面形状を所望に整形する電子ビーム整形手段 1 1 0と、 複数の電子ビームをゥェ ハ 1 5 0に照射するか否かを、 電子ビーム毎に独立に切替える照射切替手段 1 3 0 と、 ウェハ 1 5 0に転写されるパターンの像の向き及びサイズを調整するウェハ用 投影系 1 4 0を含む電子光学系を備える。 また、 露光部 1 0 2は、 ゥヱハ 1 5 0を 載置するウェハステージ 1 5 2と、 ウェハステージ 1 5 2を駆動するウェハステー ジ駆動部 1 5 4とを含むステージ系を備える。 The exposure unit 102 generates a plurality of electron beams inside the casing 104, Electron beam shaping means 110 for shaping the cross-sectional shape as desired; and irradiation switching means 130 for independently switching whether or not to irradiate the wafer 150 with a plurality of electron beams for each electron beam, An electron optical system including a wafer projection system 140 for adjusting the direction and size of an image of a pattern transferred to the wafer 150 is provided. The exposure unit 102 includes a stage system including a wafer stage 152 on which the wafer 150 is mounted, and a wafer stage driving unit 154 for driving the wafer stage 152.
電子ビーム整形手段 1 1 0は、 複数の電子ビームを発生させる複数の電子銃 1 1 2と、 電子ビームを通過させることにより、 電子ビームの断面形状を整形する複数 の開口部を有する第 1整形部材 1 1 4およぴ第 2整形部材 1 2 2と、 複数の電子ビ ームを独立に収束し、 電子ビームの焦点を調整する第 1多軸.電子レンズ 1 1 6と、 第 1整形部材 1 1 4を通過した複数の電子ビームを独立に偏向する第 1整形偏向部 1 1 8および第 2整形偏向部 1 2 0とを有する。  The electron beam shaping means 110 includes a plurality of electron guns 112 for generating a plurality of electron beams, and a first shaping device having a plurality of openings for shaping the cross-sectional shape of the electron beam by passing the electron beam. Member 1 14 and 2nd shaping member 1 2 2 and 1st multi-axis to independently focus multiple electron beams and adjust the focus of electron beam 1 Electron lens 1 16 and 1st shaping It has a first shaping / deflecting unit 118 and a second shaping / deflecting unit 120 for independently deflecting a plurality of electron beams passing through the member 114.
照射切替手段 1 3 0は、 複数の電子ビームを独立に収束し、 電子ビームの焦点を 調整する第 2多軸電子レンズ 1 3 2と、 複数の電子ビームを、 電子ビーム毎に独立 に偏向させることにより、 電子ビームをウェハ 1 5 0に照射するか否かを、 電子ビ ーム毎に独立に切替えるブランキング電極アレイ 1 3 4と、 電子ビームを通過させ る複数の開口部を含み、 ブランキング電極アレイ 1 3 4で偏向された電子ビームを 遮蔽する電子ビーム遮蔽部材 1 3 6とを有する。 他の例においてブランキング電極 アレイ 1 3 4は、 プランキング .アパーチャ ·アレイ 'デバイスであってもよい。 ゥヱハ用投影系 1 4 0は、複数の電子ビームを独立に集束し、電子ビームの照 射径を縮小する第 3多軸電子レンズ 1 4 2と、 複数の電子ビームを独立に収束 し、電子ビームの焦点を調整する第 4多軸電子レンズ 1 4 4と、複数の電子ビー ムを、 ウェハ 1 5 0の所望の位置に、電子ビーム毎に独立に偏向する偏向部 1 4 6と、 ウェハ 1 5 0に対する対物レンズとして機能し、複数の電子ビームを独立 に収束する第 5多軸電子レンズ 1 4 8とを有する。偏向部 1 4 6は、複数の偏向 器を含む。 各偏向器は複数の電極を有する。 本実施形態において、偏向部 1 4 6 は、各偏向器の複数の電極上に蒸着された導電材料 2 0 0をさらに有する。導電 材料は、 貴金属であるのが好ましく、 例えば金 (A u ) 、 白金 (P t ) 、 アルミ ニゥム (A 1 ) 等である。 導電材料は、 偏向部 1 4 6における電子ビームの照射 方向に沿って、 各電極上に均一な厚さに形成されるのが好ましい。 The irradiation switching means 130 independently converges the plurality of electron beams and adjusts the focal point of the electron beam, and deflects the plurality of electron beams independently for each electron beam. This includes a blanking electrode array 134 for independently switching whether or not the electron beam is irradiated on the wafer 150 for each electron beam, and a plurality of openings for passing the electron beam. An electron beam shielding member for shielding the electron beam deflected by the ranking electrode array. In another example, blanking electrode array 134 may be a blanking aperture array 'device. The projection system 140 for C has a third multi-axis electron lens 142 that focuses a plurality of electron beams independently and reduces the irradiation diameter of the electron beam, and converges the plurality of electron beams independently, A fourth multi-axis electron lens 144 for adjusting the focus of the beam, a deflecting unit 144 for independently deflecting a plurality of electron beams to desired positions on the wafer 150 for each electron beam, and a wafer. And a fifth multi-axis electron lens 148 that functions as an objective lens for 150 and converges a plurality of electron beams independently. The deflecting unit 146 includes a plurality of deflectors. Each deflector has a plurality of electrodes. In the present embodiment, the deflecting unit 146 further includes a conductive material 200 deposited on a plurality of electrodes of each deflector. Conductive The material is preferably a noble metal, for example, gold (Au), platinum (Pt), aluminum (A1), or the like. The conductive material is preferably formed on each electrode in a uniform thickness along the direction of electron beam irradiation in the deflection section 146.
制御系 1 6 0は、 統括制御部 1 7 0及び個別制御部 1 8 0を備える。 個別制御部 1 8 0は、 電子ビーム制御部 1 8 2と、 多軸電子レンズ制御部 1 8 4と、 整形偏向 制御部 1 8 6と、 ブランキング電極ァレイ制御部 1 8 8と、 偏向制御部 1 9 0と、 ウェハステージ制御部 1 9 2とを有する。 統括制御部 1 7 0は、 例えばワークステ ーシヨンであって、 個別制御部 1 8 0に含まれる各制御部を統括制御する。 電子ビ ーム制御部 1 8 2は、 電子銃 1 1 2を制御する。 多軸電子レンズ制御部 1 8 4は、 第 1多軸電子レンズ 1 1 6、 第 2多軸電子レンズ 1 3 2、 第 3多軸電子レンズ 1 4 2、 第 4多軸電子レンズ 1 4 4およぴ第 5多軸電子レンズ 1 4 8に供給する電流を 制御する。  The control system 160 includes an overall control unit 170 and an individual control unit 180. The individual control section 180 includes an electron beam control section 182, a multi-axis electron lens control section 1884, a shaping / deflection control section 1886, a blanking electrode array control section 1888, and a deflection control. And a wafer stage control unit 192. The general control unit 170 is, for example, a work station, and performs general control of each control unit included in the individual control unit 180. The electron beam control unit 18 controls the electron gun 11. The multi-axis electronic lens controller 18 4 is composed of the first multi-axis electronic lens 1 16, the second multi-axis electronic lens 13 2, the third multi-axis electronic lens 14 2, and the fourth multi-axis electronic lens 1 4 4 Also controls the current supplied to the fifth multi-axis electron lens 148.
整形偏向制御部 1 8 6は、 第 1整形偏向部 1 1 8および第 2整形偏向部 1 2 0を 制御する。 ブランキング電極アレイ制御部 1 8 8は、 ブランキング電極アレイ 1 3 4に含まれる偏向電極に印加する電圧を制御する。 偏向制御部 1 9 0は、 偏向部 1 4 6に含まれる複数の偏向器が有する偏向電極に印加する電圧を制御する。 ウェハ ステージ制御部 1 9 4は、 ウェハステージ駆動部 1 5 4を制御し、 ウェハステージ 1 5 2を所定の位置に移動させる。  The shaping / deflecting controller 186 controls the first shaping / deflecting unit 118 and the second shaping / deflecting unit 120. The blanking electrode array controller 188 controls the voltage applied to the deflection electrodes included in the blanking electrode array 134. The deflection control unit 190 controls the voltage applied to the deflection electrodes of the plurality of deflectors included in the deflection unit 146. Wafer stage controller 194 controls wafer stage driver 154 to move wafer stage 152 to a predetermined position.
図 9は、 本実施形態に係る偏向部 1 4 6を電子ビームの照射方向から見た切断断 面図である。  FIG. 9 is a cross-sectional view of the deflection unit 146 according to the present embodiment as viewed from the direction of electron beam irradiation.
偏向部 1 4 6は、 筒形状の基材 2 0 2を有し、 電極 2 0 4は基材の内面に設けら れる。 導電材料 2 0 0は、 複数の電極 2 0 4が互いに対向する面にそれぞれ設けら れるのが好ましい。 また導電材料 2 0 0は、 各電極 2 0 4上に均一な厚さに形成さ れるのが好ましい。  The deflecting unit 146 has a cylindrical base 202, and the electrode 204 is provided on the inner surface of the base. It is preferable that the conductive material 200 is provided on each of the surfaces where the plurality of electrodes 204 face each other. Further, the conductive material 200 is preferably formed on each electrode 204 with a uniform thickness.
図 8及ぴ図 9を参照して、 本実施形態に係る電子ビーム露光装置 1 0 0の動作を 説明する。  The operation of the electron beam exposure apparatus 100 according to the present embodiment will be described with reference to FIGS.
ウェハステージ 1 5 2には、 露光処理が施されるウェハ 1 5 0が載置される。 複 数の電子銃 1 1 2力 複数の電子ビームを生成する。 電子ビーム整形手段 1 1 0に おいて、 発生された電子ビームは、 第 1整形部材 1 1 4に照射され、 整形される。 他の例においては、 電子銃 1 1 2において発生した電子ビームを複数の電子ビーム に分割する手段を更に有することにより、 複数の電子ビームを生成してもよい。 第 1多軸電子レンズ 1 1 6は、 矩形に整形された複数の電子ビームを独立に収束 し、 第 2整形部材 1 2 2に対する電子ビームの焦点調整を、 電子ビーム毎に独立に 行う。 第 1整形偏向部 1 1 8は、 矩形に整形された複数の電子ビームを、 電子ビー ム毎に独立して、 第 2整形部材に対して所望の位置に偏向する。 第 2整形偏向部 1 2 0は、 第 1整形偏向部 1 1 8で偏向された複数の電子ビームを、 電子ビーム毎に 独立に第 2整形部材 1 2 2に対して略垂直方向に偏向する。 矩形形状を有する複数 の開口部を含む第 2整形部材 1 2 2は、 各開口部に照射された矩形の断面形状を有 する複数の電子ビームを、 ゥヱハ 1 5 0に照射されるべき所望の矩形の断面形状を 有する電子ビームにさらに整形する。 On wafer stage 152, wafer 150 to be subjected to exposure processing is placed. Duplicate Number of electron guns 1 1 2 force Generates multiple electron beams. In the electron beam shaping means 110, the generated electron beam is applied to the first shaping member 114 to be shaped. In another example, a plurality of electron beams may be generated by further including means for dividing the electron beam generated by the electron gun 112 into a plurality of electron beams. The first multi-axis electron lens 1 16 independently converges a plurality of rectangularly shaped electron beams, and independently adjusts the focus of the electron beam on the second shaping member 122 for each electron beam. The first shaping / deflecting unit 118 deflects the plurality of rectangularly shaped electron beams to a desired position with respect to the second shaping member independently for each electron beam. The second shaping / deflecting unit 120 deflects the plurality of electron beams deflected by the first shaping / deflecting unit 118 in a direction substantially perpendicular to the second shaping member 122 independently for each electron beam. . The second shaping member 122 including a plurality of openings having a rectangular shape is provided with a plurality of electron beams having a rectangular cross-sectional shape applied to each of the openings. It is further shaped into an electron beam having a rectangular cross section.
第 2多軸電子レンズ 1 3 2は、 複数の電子ビームを独立に収束して、 ブランキン グ電極アレイ 1 3 4に対する電子ビームの焦点調整を、電子ビーム毎に独立に行う。 第 2多軸電子レンズ 1 3 2より焦点調整された電子ビームは、 ブランキング電極ァ レイ 1 3 4に含まれる複数のアパーチャを通過する。  The second multi-axis electron lens 132 converges a plurality of electron beams independently, and independently adjusts the focus of the electron beam with respect to the blanking electrode array 134 for each electron beam. The electron beam focused by the second multi-axis electron lens 13 2 passes through a plurality of apertures included in the blanking electrode array 1 34.
ブランキング電極アレイ制御部 1 8 8は、 プランキング電極アレイ 1 3 4に形成 された、 各アパーチャの近傍に設けられた偏向電極に電圧を印加する力否かを制御 する。 ブランキング電極アレイ 1 3 4は、 偏向電極に印加される電圧に基づいて、 電子ビームをウェハ 1 5 0に照射させる力否かを切替える。  The blanking electrode array control unit 188 controls whether or not to apply a voltage to a deflection electrode formed in the blanking electrode array 134 and provided near each aperture. The blanking electrode array 134 switches whether or not to apply the electron beam to the wafer 150 based on the voltage applied to the deflection electrode.
ブランキング電極アレイ 1 3 4により偏向されない電子ビームは、 第 3多軸電子 レンズ 1 4 2により電子ビーム径を縮小されて、 電子ビーム遮蔽部材 1 3 6に含ま れる開口部を通過する。 第 4多軸電子レンズ 1 4 4が、 複数の電子ビームを独立に 収束して、 偏向部 1 4 6に対する電子ビームの焦点調整を、 電子ビーム毎に独立に 行い、 焦点調整をされた電子ビームは、 偏向部 1 4 6に含まれる偏向器に入射され る。 偏向制御部 1 9 0が、 偏向部 1 4 6に含まれる複数の偏向器を独立に制御する。 偏向部 1 4 6は、 複数の偏向器に入射される複数の電子ビームを、 電子ビーム毎に 独立にウェハ 1 5 0の所望の露光位置に偏向する。 ここで、 偏向部 1 4 6は蒸着さ れた導電材料 2 0 0を有するので、 偏向部 1 4 6における電子ビームが通過する表 面を高純度の導電材料 2 0 0で保護することができる。 そのため、 電子ビーム露光 装置 1 0 0は、 偏向部 1 4 6の電極 2 0 4中の不純物による帯電の影響を減らすこ とができる。 従って、 電子ビームの偏向を適切に制御することができる。 偏向部 1The electron beam that is not deflected by the blanking electrode array 134 has its electron beam diameter reduced by the third multi-axis electron lens 142 and passes through an opening included in the electron beam shielding member 136. The fourth multi-axis electron lens 144 independently converges the plurality of electron beams, and independently adjusts the focus of the electron beam with respect to the deflection unit 144 for each electron beam. Is incident on the deflector included in the deflecting unit 146. The deflection control unit 190 controls the plurality of deflectors included in the deflection unit 146 independently. The deflecting unit 146 deflects the plurality of electron beams incident on the plurality of deflectors to a desired exposure position on the wafer 150 independently for each electron beam. Here, since the deflecting unit 146 has the deposited conductive material 200, the surface of the deflecting unit 146 through which the electron beam passes can be protected by the high-purity conductive material 200. . Therefore, the electron beam exposure apparatus 100 can reduce the influence of charging due to impurities in the electrode 204 of the deflecting unit 146. Therefore, the deflection of the electron beam can be appropriately controlled. Deflection unit 1
4 6を通過した複数の電子ビームは、 第 5多軸電子レンズ 1 4 8により、 ウェハ 1The plurality of electron beams that passed through the wafer 6 were transferred to the wafer 1 by the fifth multi-axis electron lens 1 48.
5 0に対する焦点が調整され、 ウェハ 1 5 0に照射される。 The focus for 50 is adjusted, and the wafer 150 is irradiated.
露光処理中、 ウェハステージ制御部 1 9 2は、 一定方向にウェハステージ 1 5 2 を動力す。ブランキング電極アレイ制御部 1 8 8は露光パターンデータに基づいて、 電子ビームを通過させるアパーチャを定め、各アパーチャに対する電力制御を行う。 ウェハ 1 5 0の移動に合わせて、 電子ビームを通過させるアパーチャを適宜、 変更 し、 さらに偏向部 1 4 6により電子ビームを偏向することによりウェハ 1 5 0に所 望の回路パターンを露光することが可能となる。  During the exposure processing, the wafer stage controller 192 powers the wafer stage 152 in a fixed direction. The blanking electrode array control unit 188 determines apertures through which the electron beam passes based on the exposure pattern data, and controls power for each aperture. Exposure of the desired circuit pattern on the wafer 150 by appropriately changing the aperture through which the electron beam passes according to the movement of the wafer 150, and further deflecting the electron beam by the deflecting unit 146. Becomes possible.
以上、 本発明を実施の形態を用いて説明したが、 本発明の技術的範囲は上記実施 の形態に記載の範囲には限定されない。 上記実施の形態に、 多様な変更又は改良を 加えることが可能であることが当業者に明らかである。 その様な変更又は改良をカロ えた形態も本発明の技術的範囲に含まれ得ることが、 請求の範囲の記載から明らか である。 産業上の利用可能性  As described above, the present invention has been described using the embodiment, but the technical scope of the present invention is not limited to the scope described in the above embodiment. It is apparent to those skilled in the art that various changes or improvements can be added to the above embodiment. It is apparent from the description of the scope of the claims that embodiments in which such changes or improvements are made can be included in the technical scope of the present invention. Industrial applicability
上記説明から明らかなように、本発明によれば筒形状の基材の内面に導電材料 を蒸着することができる。 また、 電子ビーム露光装置及ぴ偏向装置において、精 度良く電子ビームを偏向させることができる。  As is clear from the above description, according to the present invention, a conductive material can be deposited on the inner surface of a cylindrical base material. Further, the electron beam can be accurately deflected in the electron beam exposure apparatus and the deflection apparatus.

Claims

請 求 の 範 囲 The scope of the claims
1 . 筒形状を有する基材の内面に導電材料を蒸着する蒸着装置であって、 1. A deposition apparatus for depositing a conductive material on an inner surface of a base material having a cylindrical shape,
前記導電材料を収容する溝部を有するボート部を含む蒸着部と、  A vapor deposition unit including a boat unit having a groove for accommodating the conductive material,
前記基材を支持する基材支持部と、  A substrate supporting portion that supports the substrate,
前記ボート部を前記基材に揷入するように前記蒸着部又は前記基材支持部の少な くとも一方を移動させる駆動部と、  A drive unit for moving at least one of the vapor deposition unit or the substrate support unit so as to insert the boat unit into the substrate;
前記ボート部を加熱する加熱部と  A heating unit for heating the boat unit;
を備えることを特徴とする蒸着装置。  A vapor deposition apparatus comprising:
2 . 前記ポート部は、 前記ボート部の挿入方向に沿って形成された複数の前記溝部 を有することを特徴とする請求項 1に記載の蒸着装置。  2. The vapor deposition apparatus according to claim 1, wherein the port portion has a plurality of the grooves formed along an insertion direction of the boat portion.
3 . 前記ボート部は、 前記溝部の表面を保護する保護層を有することを特徴とする 請求項 1に記載の蒸着装置。  3. The vapor deposition apparatus according to claim 1, wherein the boat section has a protective layer for protecting a surface of the groove section.
4 . 前記加熱部は、 前記ボート部に一定の電圧を印加することを特徴とする請求項 1に記載の蒸着装置。  4. The vapor deposition apparatus according to claim 1, wherein the heating unit applies a constant voltage to the boat unit.
5 . 前記駆動部は、 前記基材支持部を回転させる手段を有することを特徴とする請 求項 1に記載の蒸着装置。  5. The vapor deposition apparatus according to claim 1, wherein the driving unit has a unit for rotating the substrate supporting unit.
6 . 前記蒸着部又は前記基材支持部の移動方向に垂直な面内における前記ボート部 の前記基材に対する位置を測定する測定部をさらに備えることを特徴とする請求項 • 1に記載の蒸着装置。  6. The vapor deposition according to claim 1, further comprising a measuring unit that measures a position of the boat unit with respect to the substrate in a plane perpendicular to a moving direction of the vapor deposition unit or the substrate support unit. apparatus.
7 . 前記基材を前記基材支持部に搬送する搬送部をさらに備えることを特徴とする 請求項 1に記載の蒸着装置。  7. The vapor deposition apparatus according to claim 1, further comprising a transport unit that transports the substrate to the substrate support unit.
8 . 前記蒸着部と前記基材支持部を格納する蒸着室と、  8. A vapor deposition chamber for storing the vapor deposition section and the substrate support section,
前記蒸着室の隣に設けられた予備室と、  A preliminary chamber provided next to the vapor deposition chamber,
前記蒸着室と前記予備室との間に設けられ、 前記蒸着室と前記予備室との間を隔 離又は開放するシャツタと  A shirt provided between the vapor deposition chamber and the preliminary chamber to separate or open the vapor deposition chamber and the preliminary chamber;
をさらに備えることを特徴とする請求項 1に記載の蒸着装置。 The vapor deposition apparatus according to claim 1, further comprising:
9 . 筒形状の基材の内面に導電材料を蒸着する蒸着方法であって、 9. A deposition method for depositing a conductive material on an inner surface of a cylindrical base material,
前記導電材料を収容したポート部を、 前記基材に揷入する揷  A port part containing the conductive material is inserted into the base material.
前記ポート部を加熱して前記導電材料を蒸発させる蒸発」  Evaporation that heats the port to evaporate the conductive material "
前記ボート部が前記基材内で前記基材に対して相対的に移動するように、 前記ポ ート部又は前記基材の少なくとも一方を移動させる移動ステップと  A moving step of moving at least one of the port portion or the base material so that the boat portion moves relative to the base material within the base material;
を備えることを特徴とする蒸着方法。 A vapor deposition method comprising:
1 0 . 前記移動ステップは、 前記ポート部又は前記基材の少なくとも一方を一方向 に移動させると共に前記基材を回転させる回転ステップを有することを特徴とする 請求項 9に記載の蒸着方法。  10. The vapor deposition method according to claim 9, wherein the moving step includes a rotating step of moving at least one of the port portion and the base material in one direction and rotating the base material.
1 1 . 前記移動ステップは、 前記基材を第 1回転方向に回転させながら前記ボート 部又は前記基材の少なくとも一方を第 1移動方向に移動させる第 1移動ステップと、 前記ボート部及び前記基材が移動されない状態で前記基材を前記第 1回転方向に 半回転させる回転ステツプと、  11. The moving step includes: a first moving step of moving at least one of the boat unit or the base material in a first moving direction while rotating the base material in a first rotation direction; and the boat unit and the base unit. A rotation step of half-turning the base material in the first rotation direction without moving the material;
前記基材を前記第 1回転方向と反対の第 2回転方向に回転させながら前記ポート 部又は前記基材の少なくとも一方を前記第 1移動方向と反対の第 2移動に移動させ る第 2移動ステップと  A second movement step of moving at least one of the port portion and the base material to a second movement opposite to the first movement direction while rotating the base material in a second rotation direction opposite to the first rotation direction. When
を有することを特徴とする請求項 9に記載の蒸着方法。 10. The vapor deposition method according to claim 9, comprising:
1 2 . 前記第 1移動ステップと前記第 2移動ステップにおける前記ポート部又は前 記基材の移動速度が一定であることを特徴とする請求項 1 1に記載の蒸着方法。 12. The vapor deposition method according to claim 11, wherein the moving speed of the port portion or the base material in the first moving step and the second moving step is constant.
1 3 . 前記第 1移動ステップと前記第 2移動ステップにおける、 前記基材が 1回転 する間に前記ポート部又は前記基材が移動する距離が、 前記導電材料の蒸着幅の 2 倍より小さいことを特徴とする請求項 1 1に記載の蒸着方法。 13. The distance that the port portion or the base material moves during one rotation of the base material in the first movement step and the second movement step is smaller than twice the vapor deposition width of the conductive material. The vapor deposition method according to claim 11, wherein:
1 4 ·電子ビームによりウェハにパターンを露光する電子ビーム露光装置であって、 前記電子ビームを発生する電子ビーム発生部と、  An electron beam exposure apparatus that exposes a pattern on a wafer with an electron beam, comprising: an electron beam generator that generates the electron beam;
前記電子ビーム発生部が発生した電子ビームを偏向する複数の電極及び当該電極 上に蒸着された導電材料を有する偏向部と  A plurality of electrodes for deflecting the electron beam generated by the electron beam generation unit and a deflection unit having a conductive material deposited on the electrodes;
を備えることを特徴とする電子ビーム露光装置。 An electron beam exposure apparatus, comprising:
1 5 . 前記偏向部は、 筒形状の基材を有し、 15. The deflecting unit has a cylindrical base material,
前記電極は前記基材の内面に設けられることを特徴とする請求項 1 4に記载の電 子ビーム露光装置。  15. The electron beam exposure apparatus according to claim 14, wherein the electrode is provided on an inner surface of the substrate.
1 6 . 電子ビームを偏向する偏向装置であって、  1 6. A deflection device for deflecting an electron beam,
筒形状の基材と、  A cylindrical base material,
前記基材の内面に設けられ、 電子ビーム発生部が発生した電子ビームを偏向する 複数の電極と、  A plurality of electrodes provided on the inner surface of the substrate, for deflecting the electron beam generated by the electron beam generator,
当該電極上に蒸着された導電材料と  A conductive material deposited on the electrode;
を備えることを特^¾とする偏向装置。 A deflection device characterized by comprising:
1 7 . 電子ビームを偏向する偏向装置を製造する方法であって、  1 7. A method of manufacturing a deflection device for deflecting an electron beam,
導電材料を収容したボート部を、 筒形状の基材に挿入する揷  Insert the boat containing the conductive material into the cylindrical base material.
前記ポート部を加熱して前記導電材料を蒸発させる蒸発」  Evaporation that heats the port to evaporate the conductive material "
前記ボート部が前記基材内で前記基材に対して相対的に移動するように、 前記ポ 一ト部又は前記基材の少なくとも一方を移動させる移動ステップと  A moving step of moving at least one of the port part and the base material so that the boat part moves relative to the base material in the base material;
を備えることを特徴とする偏向装置を製造する方法。 A method for manufacturing a deflecting device, comprising:
PCT/JP2001/010364 2000-12-27 2001-11-28 Device and method for deposition, electron beam exposure device, deflecting device, and method of manufacturing deflecting device WO2002053795A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000398115A JP4684414B2 (en) 2000-12-27 2000-12-27 Vapor deposition apparatus, vapor deposition method, electron beam exposure apparatus, deflection apparatus, and manufacturing method of deflection apparatus
JP2000-398115 2000-12-27

Publications (1)

Publication Number Publication Date
WO2002053795A1 true WO2002053795A1 (en) 2002-07-11

Family

ID=18863144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010364 WO2002053795A1 (en) 2000-12-27 2001-11-28 Device and method for deposition, electron beam exposure device, deflecting device, and method of manufacturing deflecting device

Country Status (2)

Country Link
JP (1) JP4684414B2 (en)
WO (1) WO2002053795A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063388A (en) * 2004-08-26 2006-03-09 Dialight Japan Co Ltd Aluminum vacuum deposition method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973385A (en) * 1972-11-15 1974-07-16
JPS59177367A (en) * 1983-03-25 1984-10-08 Matsushita Electric Ind Co Ltd Vacuum deposition device having material conveying mechanism
JPS63199865A (en) * 1987-02-12 1988-08-18 Hitachi Ltd Ion-beam mixing device
JPH04272170A (en) * 1991-02-25 1992-09-28 Tokai Carbon Co Ltd Graphite crucible for vacuum vapor deposition
EP0792946A1 (en) * 1996-02-28 1997-09-03 Balzers und Leybold Deutschland Holding AG Evaporation crucibles for coating of substrates
EP0999572A2 (en) * 1998-11-02 2000-05-10 Advantest Corporation Electrostatic deflector for electron beam exposure apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000138036A (en) * 1998-11-02 2000-05-16 Advantest Corp Electrostatic deflecting system for electron beam irradiating device
JP2003138036A (en) * 2001-08-20 2003-05-14 Nissha Printing Co Ltd Mat printing film and mat molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4973385A (en) * 1972-11-15 1974-07-16
JPS59177367A (en) * 1983-03-25 1984-10-08 Matsushita Electric Ind Co Ltd Vacuum deposition device having material conveying mechanism
JPS63199865A (en) * 1987-02-12 1988-08-18 Hitachi Ltd Ion-beam mixing device
JPH04272170A (en) * 1991-02-25 1992-09-28 Tokai Carbon Co Ltd Graphite crucible for vacuum vapor deposition
EP0792946A1 (en) * 1996-02-28 1997-09-03 Balzers und Leybold Deutschland Holding AG Evaporation crucibles for coating of substrates
EP0999572A2 (en) * 1998-11-02 2000-05-10 Advantest Corporation Electrostatic deflector for electron beam exposure apparatus

Also Published As

Publication number Publication date
JP2002198300A (en) 2002-07-12
JP4684414B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
CN100420352C (en) Method and apparatus for producing extreme ultraviolett radiation or soft x-ray radiation
US6787780B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a semiconductor device
US20010028038A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method a semiconductor device
US20010028044A1 (en) Multi-beam exposure apparatus using a muti-axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US6914249B2 (en) Particle-optical apparatus, electron microscopy system and electron lithography system
US20030189180A1 (en) Multi-beam exposure apparatus using a multi- axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US6703624B2 (en) Multi-beam exposure apparatus using a multi-axis electron lens, electron lens convergencing a plurality of electron beam and fabrication method of a semiconductor device
US20040219728A1 (en) Extreme ultraviolet light generating device, exposure apparatus using the same and semiconductor manufacturing method
US20010028043A1 (en) Multi-beam exposure apparatus using a multi-axis electron lens, fabrication method of a multi-axis electron lens and fabrication method of a semiconductor device
JP5102968B2 (en) Conductive needle and method of manufacturing the same
US5739528A (en) Fast atom beam source
US5898177A (en) Electron microscope
WO2002053795A1 (en) Device and method for deposition, electron beam exposure device, deflecting device, and method of manufacturing deflecting device
US5936251A (en) Liquid metal ion source
US5811806A (en) Electron-beam biprism
JP2019153563A (en) Electron gun
JPH0684451A (en) Thermoelectric field emission cathode
JP4156809B2 (en) Electron beam exposure apparatus and electron lens
JP3730402B2 (en) Vapor deposition apparatus and sample analyzer including the vapor deposition apparatus
JP2003324050A (en) Aligner and cathode manufacturing method
Einstein et al. The design of an experimental electron beam machine
JP3554030B2 (en) Small thermoelectron vacuum arc evaporation source
JPH1025564A (en) Coating method and coating device
JPH01211848A (en) Method and apparatus for ion implantation
JP2005032946A (en) Method for forming wiring member

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE GB KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642