WO2002052232A2 - Device for analysing an infrared laser beam and a laser proce ssing system of which the device forms part - Google Patents
Device for analysing an infrared laser beam and a laser proce ssing system of which the device forms part Download PDFInfo
- Publication number
- WO2002052232A2 WO2002052232A2 PCT/DK2001/000847 DK0100847W WO02052232A2 WO 2002052232 A2 WO2002052232 A2 WO 2002052232A2 DK 0100847 W DK0100847 W DK 0100847W WO 02052232 A2 WO02052232 A2 WO 02052232A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser beam
- analysing
- infrared
- image
- screen
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 23
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 229910052782 aluminium Inorganic materials 0.000 claims 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 239000000463 material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000001454 recorded image Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/42—Photometry, e.g. photographic exposure meter using electric radiation detectors
- G01J1/4257—Photometry, e.g. photographic exposure meter using electric radiation detectors applied to monitoring the characteristics of a beam, e.g. laser beam, headlamp beam
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
- G01J1/58—Photometry, e.g. photographic exposure meter using luminescence generated by light
Definitions
- Device for analysing an infrared laser beam and a laser processing system of which the device forms part.
- the invention relates to a device for analysing an infrared laser beam and comprising means for providing a two-dimensional image of the laser beam, means for scanning successive lines of images and for generating a time-varying output signal of an amplitude being proportional to the light intensity in each of the points of the scanned lines, means for digitalising the output signal to allow storage of data representing an image of the energy distribution in the laser beam, and means for signal processing the data and analysing each image.
- a known device of this type for analysing the energy distribution of a laser beam from a CO 2 laser emitting a beam of infrared light at a wavelength of about 10.6 ⁇ m is comparatively expensive, as an IR camera costing about DK 300,000 is needed.
- the object of the invention is thus to provide a more simple device for analysing the energy distribution of an infrared laser beam.
- a device of the above type is characterised in that the infrared laser beam or a suitable portion thereof is adapted to illuminate a surface and a screen, which is able to convert the incident infrared light into visible light which may be recorded by an inexpensive CCD camera, whereby the use of a fairly expensive infrared camera is avoided.
- the surface or screen to be illuminated may be a phosphorus surface or screen optionally bias illuminated for instance by means of ultraviolet light.
- the surface to be illuminated maybe a metal surface emitting visible light when heated.
- the invention also relates to a laser processing system for processing a workpiece by means of an infrared laser beam comprising a device according to the invention for analysing the laser beam.
- Fig. 1 illustrates a system for processing a workpiece by means of a CO 2 laser beam and which comprises sensors for characterising the laser beam,
- Fig. 2 illustrates a first sensor in form of an integrated low-cost beam analyser
- Fig. 3 illustrates a second sensor in form of a focal spot analyser
- Fig. 4 is a perspective view of the sensor shown in Fig. 3.
- the system shown in Fig. 1 for processing a material by means of a CO 2 laser beam comprises a device for characterising the laser beam.
- This device is formed of two sensors. These sensors are able to determine different laser beam parameter values such as the energy distribution, the centring, etc.
- the processing system further comprises a power supply supplying power to a CO 2 laser 2.
- the CO 2 laser 2 emits an infrared laser beam reaching an area of the material to be processed subsequent to reflection from two adjustable deflection mirrors 4, 5 and a fixed and partly translucent mirror 15 and focusing by means of a lens 9.
- Fig. 1 furthermore illustrates portions of a circuit for controlling the various units of the processing system.
- This control circuit comprises a CNC controller 10 including a CPU and the associated equipment.
- the CNC controller 10 communicates with the sensors via an internal bus and receives signals therefrom.
- the sensors consist of an integrated low-cost beam analyser ILBA and a focal spot analyser FSA.
- the former sensor is able to carry out measurements on the system in operation, while the latter sensor may only be used according to need and remains passive during most of the operation time.
- Control signals are initiated and transmitted to the sensors ILBA and FSA through separate channels communicating with the CNC controller 10.
- Each sensor further generates signals transmitted to the CNC controller 10 for signal analysis.
- the signals from the sensor ILBA serve to centre the laser beam in relation to the desired beam direction.
- the centring is performed by adjusting the two deflection mirrors 4, 5 by means of electromotors m b m 2 , m 3 i controlled by means of control signals from the CNC controller 10.
- the signals from the sensor ILBA are also used to determine the geometry and propagation of the raw laser beam including its diameter and the focal point position.
- Fig.2 illustrates the sensor ILBA arranged in a box located behind a deflection mirror 7 transmitting in the range of 1% of the infrared laser light.
- the sensor ILBA illustrated in Fig. 2 may be arranged behind a movable mirror to allow measurement of the raw basic beam in several different positions in relation to the processing area.
- the sensor ILBA comprises a phosphorus screen 15.
- An ultraviolet light source 11 bias illuminates the phosphorus screen 15 causing it to shine. When hit by an infrared laser beam, the bias illuminated screen 15 becomes dark at the spot hit by the beam allowing an identification of the position thereof.
- the phosphorus screen 15 may be placed on a transparent glass substrate and may be observed from the rear by means of a CCD camera 13 adapted to perform a successive scanning of an image and generating a time- varying output signal of an amplitude being proportional to the light intensity in each of the points of the scanned lines.
- the signals from the CCD camera 13 are digitized and the position and the diameter of the raw laser beam are determined by a digital signal processing of the digitized image signals.
- the phosphorus screen 15 may be provided with different sensitivities. It may be necessary to use several different phosphorus screens depending on how large a variation in the output of the laser is to be measured. Usually lasers in the power range of 1-4 kW are used. A chopper mechanism may further be incorporated, whereby a protective shield is either inserted in front of the phosphorus screen 15 or removed from the laser beam, when measurements are not performed.
- the output signals from the sensor ILBA are transmitted to the controller 10 and form the basis of the calculation of the diameter of the laser beam and of the weighted centre position of the raw laser beam.
- the focal spot analyser FSA is shown in Fig. 3 and comprises a rotary chopper disk 14 transmitting an amount of energy to a material through a slot in the disk 14, said material for instance being an absorbing surface subsequently emitting light when subjected to heating or excitation.
- a CCD camera 16 is arranged such that it records images of the luminous spot on the absorbing surface.
- the recorded image(s) is/are transmitted to the controller 10, in which a simple image processing procedure may be used for determining the diameter and position of the laser beam.
- Such an image processing procedure may for instance consist of determining where the spot begins and where it ends by performing a horizontal scanning of the circular spot and setting a threshold value. Several horizontal scannings are then carried out at different levels. The centre, which is the centre of the spot, is found at the scanning showing the largest distance between the points of intersections.
- the software needed for this procedure may be programmed on a software platform such as Delphi or CA
- the communication between the camera 16 and the controller 10 may for instance take place using the UBS Standard.
- the calculations may be based on the calculation principles determined in the ISO standard No 1114.
- the systems may, however, not necessarily be able to provide sufficiently detailed data so as to obtain the necessary accuracy in the results stated in the said standard for the measurements to comply with the standard.
- the focal spot analyser FSA may be arranged in a comer of the working area of the laser processing system.
- control circuit may place the processing optics 9 of the processing system to a position over the focal spot analyser FSA to allow the focal spot analyser to measure the laser beam.
- the relative distance between the lens 9 and the focal spot analyser FSA may be varied by means of the height control of a cutting machine.
- successive images of the spot of the laser beam may be recorded using the FSA such that the diameter and position of the laser beam may be determined at a number of levels. As a result information about the propagation, the focusing, the beam quality and the alignment of the laser beam through the cutting machine may be determined.
- This information may be used for diagnosing the laser and the lens 9 and optionally to finely align the laser beam for instance by means of the mirrors 4 and 5.
- FSA field-semiconductor
- mount it in a suitable manner under the focusing optics of the laser processing system such that it may follow the optics through the system.
- the FSA may be used to analyse different points in the working area of the system as part of an extensive measuring of the processing system.
- the sensitivity is controlled in various focal point positions and at different power levels by the following measures:
- the output signals from the focal spot analyser FSA may be used to calculate the beam diameter and the weighted centre position of the raw beam.
- the unused energy reflected by the chopper disk 14 is transmitted to an energy absorber 17 optionally being water-cooled.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Laser Beam Processing (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01271973A EP1346195A2 (en) | 2000-12-27 | 2001-12-20 | Device for analysing an infrared laser beam and a laser proce ssing system of which the device forms part |
AU2002221586A AU2002221586A1 (en) | 2000-12-27 | 2001-12-20 | Device for analysing an infrared laser beam and a laser processing system of which the device forms part |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200001938 | 2000-12-27 | ||
DKPA200001938 | 2000-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002052232A2 true WO2002052232A2 (en) | 2002-07-04 |
WO2002052232A3 WO2002052232A3 (en) | 2002-09-19 |
Family
ID=8159930
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DK2001/000847 WO2002052232A2 (en) | 2000-12-27 | 2001-12-20 | Device for analysing an infrared laser beam and a laser proce ssing system of which the device forms part |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1346195A2 (en) |
AU (1) | AU2002221586A1 (en) |
WO (1) | WO2002052232A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033261A (en) * | 2012-12-26 | 2013-04-10 | 中国科学院上海光学精密机械研究所 | On-line detection method of focal spot energy distribution |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4634870A (en) * | 1985-05-06 | 1987-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Thermal image dynamic range expander |
US4663513A (en) * | 1985-11-26 | 1987-05-05 | Spectra-Physics, Inc. | Method and apparatus for monitoring laser processes |
US4817020A (en) * | 1987-06-22 | 1989-03-28 | General Electric Company | Cooling rate determination apparatus for laser material processing |
DE3841244A1 (en) * | 1988-12-07 | 1990-06-13 | Erwin Strigl | Device for measuring the intensity profile of an infrared laser beam |
US5438198A (en) * | 1993-05-12 | 1995-08-01 | Nichia Chemical Industries, Ltd. | Infrared-to-visible converter |
-
2001
- 2001-12-20 AU AU2002221586A patent/AU2002221586A1/en not_active Abandoned
- 2001-12-20 WO PCT/DK2001/000847 patent/WO2002052232A2/en not_active Application Discontinuation
- 2001-12-20 EP EP01271973A patent/EP1346195A2/en not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4634870A (en) * | 1985-05-06 | 1987-01-06 | The United States Of America As Represented By The Secretary Of The Navy | Thermal image dynamic range expander |
US4663513A (en) * | 1985-11-26 | 1987-05-05 | Spectra-Physics, Inc. | Method and apparatus for monitoring laser processes |
US4817020A (en) * | 1987-06-22 | 1989-03-28 | General Electric Company | Cooling rate determination apparatus for laser material processing |
DE3841244A1 (en) * | 1988-12-07 | 1990-06-13 | Erwin Strigl | Device for measuring the intensity profile of an infrared laser beam |
US5438198A (en) * | 1993-05-12 | 1995-08-01 | Nichia Chemical Industries, Ltd. | Infrared-to-visible converter |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103033261A (en) * | 2012-12-26 | 2013-04-10 | 中国科学院上海光学精密机械研究所 | On-line detection method of focal spot energy distribution |
CN103033261B (en) * | 2012-12-26 | 2014-12-17 | 中国科学院上海光学精密机械研究所 | On-line detection method of focal spot energy distribution |
Also Published As
Publication number | Publication date |
---|---|
WO2002052232A3 (en) | 2002-09-19 |
EP1346195A2 (en) | 2003-09-24 |
AU2002221586A1 (en) | 2002-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2974775B2 (en) | Non-contact shape detection method and apparatus in three dimensions | |
KR100224506B1 (en) | Method and gauge for measuring the sculpture depth of a motor vehicle tyre | |
US4761072A (en) | Electro-optical sensors for manual control | |
US4152069A (en) | Process and apparatus for ascertainment of the valuation data of gems | |
US4473750A (en) | Three-dimensional shape measuring device | |
EP3165872A1 (en) | Compensation of light intensity across a line of light providing improved measuring quality | |
JPH0599617A (en) | Method and device for detecting edge section and hole by optical scanning head | |
CN101115970A (en) | Measuring device and method that operates according to the basic principles of confocal microscopy | |
US6927863B2 (en) | Apparatus for measuring a measurement object | |
US4453083A (en) | Apparatus for the determination of the position of a surface | |
CA2115859A1 (en) | Method and apparatus for optimizing sub-pixel resolution in a triangulation based distance measuring device | |
US6509964B2 (en) | Multi-beam apparatus for measuring surface quality | |
US4713537A (en) | Method and apparatus for the fine position adjustment of a laser beam | |
JP4646165B2 (en) | Method and apparatus for detecting medical objects, in particular dental specimen models | |
JPS6219685B2 (en) | ||
US20210260663A1 (en) | Methods for detecting a working area of a generative manufacturing device and manufacturing devices for generatively manufacturing components from a powder material | |
US6181422B1 (en) | Optical surface measurement apparatus and methods | |
US20020080264A1 (en) | Method and apparatus for direct image pick-up of granular speck pattern generated by reflecting light of laser beam | |
CA2398540A1 (en) | Method for generating control output for a position control loop | |
CN110726382B (en) | Device and method for detecting the surface of an object by means of an electromagnetic beam | |
EP0627610A1 (en) | Two-stage detection noncontact positioning apparatus | |
US5568258A (en) | Method and device for measuring distortion of a transmitting beam or a surface shape of a three-dimensional object | |
EP1346195A2 (en) | Device for analysing an infrared laser beam and a laser proce ssing system of which the device forms part | |
EP3514484B1 (en) | Optical measurement device and optical measurement method | |
US10203201B2 (en) | Measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ CZ DE DE DK DK DM DZ EC EE EE ES FI FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2001271973 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001271973 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001271973 Country of ref document: EP |
|
NENP | Non-entry into the national phase in: |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: JP |