JPS6219685B2 - - Google Patents

Info

Publication number
JPS6219685B2
JPS6219685B2 JP396179A JP396179A JPS6219685B2 JP S6219685 B2 JPS6219685 B2 JP S6219685B2 JP 396179 A JP396179 A JP 396179A JP 396179 A JP396179 A JP 396179A JP S6219685 B2 JPS6219685 B2 JP S6219685B2
Authority
JP
Japan
Prior art keywords
measured
periodic pattern
projection
signal
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP396179A
Other languages
Japanese (ja)
Other versions
JPS5596406A (en
Inventor
Yoshisada Oshida
Nobuyuki Akyama
Yasuo Nakagawa
Hiroshi Makihira
Yoshimasa Ooshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP396179A priority Critical patent/JPS5596406A/en
Publication of JPS5596406A publication Critical patent/JPS5596406A/en
Publication of JPS6219685B2 publication Critical patent/JPS6219685B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は物体表面の微細の凹凸を非接触で測定
する物体表面の凹凸測定装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an object surface unevenness measuring device that measures minute unevenness on an object surface in a non-contact manner.

従来物体の表面の微細な凹凸を測定する方法と
して鋭い先端を有する触針による接触型表面粗さ
計、細いノズルから噴出する空気の流れ抵抗から
ノズル端と凹凸面間の間隙を求める第1の装置あ
るいは静電容量から間隙を求める第2の装置など
があつた。従来のこれらの装置は以下に述べるご
とき欠点があつた。上記触針による接触型表面粗
さ計で表面粗さを測定する方法は表面の軟い物体
には傷を付けるため使用不可であつた。上記第1
の装置及び第2の装置で表面粗さを測定する方法
は被測定物体の微細領域(例えば100μm以下)
での測定は困難であつた。また上記第2の装置で
の表面粗さを測定する方法は測定対象に絶縁物を
選ぶことは不可能であり、上記第1の装置での表
面粗さを測定する方法は例えば空圧により表面形
状に変形を及ぼす、可塑性物体、粘性物体を測定
対象に選ぶことはできなかつた。
Conventional methods for measuring minute irregularities on the surface of an object include a contact type surface roughness meter using a stylus with a sharp tip, and a first method that measures the gap between the nozzle end and the uneven surface from the flow resistance of air ejected from a thin nozzle. There was a device or a second device that determined the gap from capacitance. These conventional devices have the following drawbacks. The method of measuring surface roughness using a contact-type surface roughness meter using a stylus cannot be used on objects with soft surfaces because it scratches them. 1st above
The method of measuring surface roughness using the device and the second device is to
measurement was difficult. In addition, the method for measuring surface roughness using the second device cannot select an insulating material as the measurement target, and the method for measuring surface roughness using the first device uses air pressure, for example, to measure the surface roughness of the surface. It was not possible to select a plastic object or a viscous object as the object of measurement because it causes deformation of the shape.

本発明の目的は上記した従来の問題点をなく
し、任意の被測定物体に対しても、被測定物体に
何ら影響を与えることなく高精度で表面を測定す
ることが可能な物体表面の凹凸測定装置を提供す
ることにある。
The purpose of the present invention is to eliminate the above-mentioned conventional problems and to provide a method for measuring irregularities on the surface of an object, which can measure the surface of any object with high precision without affecting the object in any way. The goal is to provide equipment.

上記目的を達成するために本発明においては微
細な周期性パターン、例えばグレーテイング等の
射影物体を光源で照明し、その透過光もしくは反
射光を被測定物体上に射影光学系を用いて結像す
る。このようにすることにより表面が滑らかで光
沢を有する物体に対しても物体表面にコントラス
トのある微細な周期性パターンが結像される。も
し所望の位置に物体がない場合にはコントラスト
の悪いぼけた微細パターンが投影される。従つて
本発明においては、透過もしくは反射性の微細な
周期性パターンを有する射影物体と、該射影物体
を照明する第1の光源と、該第1の光源により照
明された上記射影物体の周期性パターンの像を被
測定物上に投影し、且つ被測定物の上に投影され
た上記周期性パターンの像を結像せしめる光学系
と、該光学系によつて結像された周期性パターン
の像を撮像する撮像装置と、上記光学系もしくは
被測定物体のいずれか1つを微動せしめる合焦点
用微動機構と、上記撮像装置によつて検出された
映像信号について上記周期性パターンに対応させ
て微分もしくは差分をとつて積分し、上記周期性
パターンの周波数成分を検出する合焦点検出回路
と、該合焦点検出回路で検出される周期性パター
ンの周波数成分の信号が所定の値になるように上
記合焦点用微動機構を作動させて被測定物体の表
面を合焦点状態に位置付けする制御手段と、被測
定物体の表面において測定する位置を異ならし
め、その際上記制御手段によつて合焦点状態に位
置付けられた合焦点用微動機構の変位量を検出し
て被測定物体の表面の凹凸を測定する測定手段と
を備え付け、被測定物の表面の位置を測定するこ
とができる。上述の原理を用いる装置において上
記の射影物体を被測定物体に投影する射影光学系
と、被測定物体を撮像装置の撮像面に結像する撮
像光学系を同一のもので併用すれば、光学系が簡
素化される。また物体面上に数μmの微細パター
ンを投影して例えば40倍の対物レンズにより、こ
の被測定物体上に投影されたパターンを撮像面に
結像すると、焦点深度は数μmとなり、合焦点位
置より10μmもはずれた位置に被測定面がずれる
と合焦点信号が小さくなり、合焦点制御が不可能
となる。そこで上記の微細パターンよりも周期の
大きな成分を持つパターンを同時に投影すれば合
焦点から10μm以上はなれても撮像面上に上記の
大きな成分の明暗の周期が生じるため、この信号
を基に合焦点の粗調整を行なうことが可能にな
る。このような周期の大きなパターンを用いても
合焦点から例えば50μm以上もはなれた位置に被
測定面があるとこの大周期のパターンからも合焦
点信号を得ることが困難になる。そこで例えば
He―Neレーザ等を用いて被測定物体に、やや斜
の方向から光を照射し、その反射光を既に周知の
ポジシヨンセンサで受光し、検出信号を読むこと
により、50μm以上合焦点位置からずれていて
も、合焦点位置からの大略のずれ量を検出が可能
となる。このようにすることにより、被測定物体
を測定装置に設置した初期の段階で大幅に合焦点
からずれていても50μm以下のずれ量になる様
に、光学系と被測定物体の相対的位置関係を粗調
整することが可能となる。しかる後に上述の方法
で合焦点状態に微調することにより、表面の凹凸
を測定することが可能となる。
In order to achieve the above object, in the present invention, a projection object such as a fine periodic pattern such as a grating is illuminated with a light source, and the transmitted light or reflected light is imaged onto the object to be measured using a projection optical system. do. By doing this, even for objects with smooth and glossy surfaces, a fine periodic pattern with contrast can be imaged on the surface of the object. If there is no object at the desired position, a blurred fine pattern with poor contrast is projected. Therefore, in the present invention, a projection object having a fine periodic pattern of transmission or reflection, a first light source that illuminates the projection object, and a periodicity of the projection object illuminated by the first light source are provided. an optical system that projects an image of the pattern onto an object to be measured and forms an image of the periodic pattern projected onto the object; an imaging device that captures an image; a focusing fine movement mechanism that slightly moves either the optical system or the object to be measured; and a focusing point fine movement mechanism that causes a video signal detected by the imaging device to correspond to the periodic pattern. a focused point detection circuit that takes the differential or difference and integrates it to detect the frequency component of the periodic pattern; and a signal of the frequency component of the periodic pattern detected by the focused point detection circuit so that it becomes a predetermined value. a control means for activating the focusing point fine movement mechanism to position the surface of the object to be measured in a focused state; and a control means for positioning the surface of the object to be measured in a focused state; It is possible to measure the position of the surface of the object to be measured. In a device using the above principle, if the projection optical system that projects the above-mentioned projection object onto the object to be measured and the imaging optical system that images the object to be measured on the imaging surface of the imaging device are used together, the optical system is simplified. Furthermore, when a fine pattern of several micrometers is projected onto the object plane and the pattern projected onto the object to be measured is imaged onto the imaging surface using, for example, a 40x objective lens, the depth of focus becomes several micrometers, and the focal point position If the surface to be measured is shifted to a position deviated by 10 μm, the in-focus signal becomes small and in-focus control becomes impossible. Therefore, if a pattern with a component with a larger period than the above-mentioned fine pattern is simultaneously projected, the period of brightness and darkness of the above-mentioned large component will be generated on the imaging surface even if the pattern is 10 μm or more away from the focused point. Based on this signal, the focused point will be It becomes possible to make rough adjustments. Even if such a pattern with a large period is used, if the surface to be measured is located at a distance of, for example, 50 μm or more from the focused point, it will be difficult to obtain a focused point signal even from the pattern with this large period. So for example
By irradiating light onto the object to be measured from a slightly oblique direction using a He-Ne laser, etc., receiving the reflected light with a well-known position sensor, and reading the detection signal, the object can be measured by 50 μm or more from the focal point position. Even if there is a deviation, it is possible to detect the approximate amount of deviation from the in-focus position. By doing this, the relative positional relationship between the optical system and the measured object can be adjusted so that even if the measured object is significantly out of focus at the initial stage when it is installed in the measuring device, the deviation will be less than 50 μm. It becomes possible to make rough adjustments. Thereafter, by finely adjusting the focal point using the method described above, it becomes possible to measure surface irregularities.

以下本発明を実施例を用いて詳細に説明する。
第1図aは本発明の表面粗さ測定装置の一実施例
を示す図である。第1の光源1により射影物体2
を照明する。この射影物体2は第1図bに示すご
とく光を透過する幅aの部分2aと遮光する部分
2bが一定周期Pで配列されている。この射影物
体2の部分2aを透過した光は射影光学系3によ
り被測定物体4上に射影物体の像を結像する。本
実施例では射影物体の射影方向は被測定物体面に
対し斜めになつているため射影物体2は射影光学
系3の光軸1aに対し傾けて配置され、ちようど
被測定面が水平面である時に被測定面上に一様に
結像されるようになつている。被測定面に結像さ
れた射影物体の像は撮像光学系5により撮像装置
6の撮像面61上に結像される。射影光学系3お
よび撮像光学系5は以下に述べるように配置され
ている。即ち射影物体2が射影光学系により被測
定物体4上に合焦点状態で結像されている時、被
測定物体4の表面の像が撮像光学系5により撮像
面61上に合焦点状態で結像されている。従つて
射影物体2の結像面位置に被測定物体4の面がな
い時には被測定物体面上の射影物体の像はピンボ
ケになるとともに撮像面61上の像もピンボケと
なる。このようにして撮像されて電気信号に変換
された撮像信号は合焦点検出回路7に入力され
る。この合焦点検出回路7については後に詳細に
説明を行なう。この合焦点検出回路7は撮像信号
から被測定物体4が合焦点位置より上にあるか下
にあるかを判定する。このような判定を行なつた
後この判定信号を基に合焦点駆動回路8より合焦
点微動機構94を駆動させ、合焦点状態の方向に
向つて被測定物体4を上下方向に動かす。被測定
物体4の上下により新たな撮像信号が生じ、上述
の動作が閉ループとして連続して起り、合焦点状
態に到達する。次に合焦点検出回路7を第4図を
用いて説明する。第1図の撮像装置として例えば
テレビカメラを用いると撮像信号は第3図aのテ
レビ画像上にx,y座標を取ると得られる信号は
第3図bの様に時間軸tに対し、撮像信号強度I
が変化する。時間軸tは又テレビ画面のx軸にも
対応しており図のy0の領域はy=y0の1ラスタの
信号に対応している。隣接ラスタ間にある信号は
不要であるので信号処理には用いない。撮像信号
Iは第4図の実施例に示すように微分もしくは差
分され、その値の絶対値の積分もしくは和分、も
しくは最大値がまず演算回路で求められる。第4
図aはこの回路を示す。撮像信号Iは回路72に
より微分され、さらにその絶対値が求められる。
The present invention will be described in detail below using examples.
FIG. 1a is a diagram showing an embodiment of the surface roughness measuring device of the present invention. Projected object 2 by first light source 1
to illuminate. As shown in FIG. 1b, this projection object 2 has a portion 2a having a width a that transmits light and a portion 2b that blocks light, which are arranged at a constant period P. The light transmitted through the portion 2a of the projection object 2 forms an image of the projection object on the object to be measured 4 by the projection optical system 3. In this embodiment, since the projection direction of the projection object is oblique to the surface of the object to be measured, the projection object 2 is arranged at an angle with respect to the optical axis 1a of the projection optical system 3, just as the surface to be measured is a horizontal plane. At a certain time, a uniform image is formed on the surface to be measured. The image of the projection object formed on the surface to be measured is formed on the imaging surface 61 of the imaging device 6 by the imaging optical system 5. The projection optical system 3 and the imaging optical system 5 are arranged as described below. That is, when the projection object 2 is focused on the object to be measured 4 by the projection optical system, an image of the surface of the object to be measured 4 is focused by the imaging optical system 5 onto the imaging plane 61. It is imaged. Therefore, when the surface of the object to be measured 4 is not located at the imaging plane position of the projection object 2, the image of the projection object on the surface of the object to be measured will be out of focus, and the image on the imaging surface 61 will also be out of focus. The imaging signal thus captured and converted into an electrical signal is input to the focused point detection circuit 7. This focused point detection circuit 7 will be explained in detail later. The focused point detection circuit 7 determines from the image pickup signal whether the object to be measured 4 is above or below the focused point position. After making such a determination, the focusing point drive circuit 8 drives the focusing point fine movement mechanism 94 based on this judgment signal, and moves the object 4 to be measured in the vertical direction toward the in-focus state. A new imaging signal is generated due to the upper and lower positions of the object to be measured 4, and the above-described operations occur continuously in a closed loop until a focused state is reached. Next, the focused point detection circuit 7 will be explained using FIG. 4. If, for example, a television camera is used as the imaging device in FIG. 1, the imaging signal will be the signal obtained by taking the x and y coordinates on the television image in FIG. 3a, as shown in FIG. signal strength I
changes. The time axis t also corresponds to the x-axis of the television screen, and the area y 0 in the figure corresponds to one raster signal of y=y 0 . Signals between adjacent rasters are unnecessary and are not used for signal processing. The image signal I is differentiated or differentiated as shown in the embodiment of FIG. 4, and the integral or sum of the absolute value of the value or the maximum value is first determined by an arithmetic circuit. Fourth
Figure a shows this circuit. The image signal I is differentiated by a circuit 72, and further its absolute value is determined.

即ち、撮像信号Iについて撮像走査方向(射影
物体2のパターンの配列方向)xに対し微分或い
は差分して明暗差を求め、その絶対値Idを取る
と、各絵素(各走査位置)に於る撮像信号の変化
の度合が求められる。被測定物に射影されるパタ
ーンは、x方向に白,黒,白,黒…の様に変化す
るパターンであるから合焦点位置に近づくに従つ
て白,黒のコントラストの差、即ちコントラスト
信号Idの値は大きくなる。このように白,黒のコ
ントラストの差Idが大きく増大し、合焦点位置に
近づくと合焦点度が増大し、合焦点位置になると
最大となる。
That is, if the difference in brightness and darkness is obtained by differentiating or subtracting the imaging signal I with respect to the imaging scanning direction (the direction in which the pattern of the projection object 2 is arranged) x, and then taking the absolute value Id, then The degree of change in the imaging signal is determined. The pattern projected onto the object to be measured is a pattern that changes in the x direction like white, black, white, black, etc., so as it approaches the focal point position, the contrast difference between white and black, that is, the contrast signal Id. becomes larger. In this way, the contrast difference Id between white and black increases greatly, and the degree of in-focus increases as it approaches the in-focus position, and reaches its maximum at the in-focus position.

上記Idは各絵素で求められるが、検出撮像系の
ノイズや、被測定物の微小領域での凹凸の影響を
なくするために、回路73により或る程度広い範
囲即ち所望の画像領域Sに亘り、このコンラスト
信号Idを積分し、合焦点信号O1を得る。画像領
域Sは1ラスタ又はその一部分である。第4図b
は合焦点検出回路の他の実施例を示す図である。
72,73は第4図aの同一番号と同一物であ
る。1ラスタ分の積分値をA/D変換器74でデ
イジタル情報に変換し、デイジタル加算器から成
る二次元信号和回路75により、複数ラスタにつ
いての和を取り、二次元領域内での合焦点信号
O1を得る。第4図cは撮像信号から差分信号を
求め、さらにその絶対値を回路76で求め、結果
を回路77により和分演算している。この和分は
1ラスタあるいは複数のラスタについて行なわれ
る。第4図dに示す実施例は微分もしくは差分信
号のある領域S内の最大値を回路78で求めてい
る。上記の第4図a〜dで表わされる合焦点検出
回路7はいずれもその出力結果O1は合焦点状態
でその出力が最大となる。このようにして得られ
た合焦点検出信号O1は第4図eに示す様にメモ
リ回路791と、比較回路79に入力される。比
較回路79は時刻tの合焦点検出信号O1(t)
が入力されると同時にメモリ回路に保存されてい
た時刻t―Δtでの合焦点検出信号O1(t―Δ
t)が入力され、比較(O1(t)―O1(t―Δ
t))が行なわれ時刻t―Δtから時刻tの間に
生じた合焦点信号の変化値O2(t)が出力され
る。この変化値O2(t)は合焦点用駆動回路8
に入力されこの変化値に応じて被測定物体4を保
持しているステージ10を上下させるモータを駆
動させる信号を合焦点用駆動回路8で発生させ、
被測定物体表面が合焦点状態になるようにする。
上述の合焦点フイードバツクはΔtを周期として
行なわれ、合焦点状態になつた時ステージ10の
上下運動は止まる。本実施例ではステージを駆動
するモータとしてパルスモータを使用しており、
パルス数を合焦点駆動回路8内で計数することに
よりステージの上下移動量を測定する。またステ
ージ10は水平方向に低速度で送られているため
この計数値の変化から被測定物体表面の凹凸の変
化が測定される。
The above Id is obtained for each pixel, but in order to eliminate the effects of noise in the detection imaging system and unevenness in a minute area of the object to be measured, the Id is calculated over a somewhat wide range, that is, the desired image area S, by the circuit 73. This contrast signal Id is then integrated to obtain an in-focus signal O1 . The image area S is one raster or a portion thereof. Figure 4b
FIG. 7 is a diagram showing another embodiment of the focused point detection circuit.
72 and 73 are the same as the same numbers in FIG. 4a. An A/D converter 74 converts the integrated value for one raster into digital information, and a two-dimensional signal sum circuit 75 consisting of a digital adder calculates the sum of multiple rasters to obtain a focused signal within a two-dimensional area.
Get O 1 . In FIG. 4c, a differential signal is obtained from the image pickup signal, its absolute value is further obtained in a circuit 76, and the result is summed in a circuit 77. This summation is performed for one raster or multiple rasters. In the embodiment shown in FIG. 4d, the maximum value within a region S of the differential or difference signal is determined by a circuit 78. In each of the focused point detection circuits 7 shown in FIGS. 4A to 4D, the output result O1 is the maximum in the focused state. The focused point detection signal O 1 obtained in this manner is input to a memory circuit 791 and a comparison circuit 79 as shown in FIG. 4e. The comparison circuit 79 outputs the in-focus point detection signal O 1 (t) at time t.
The in-focus point detection signal O 1 (t-Δ
t) is input and comparison (O 1 (t)−O 1 (t−Δ
t)) is performed, and the change value O 2 (t) of the in-focus signal that occurs between time t-Δt and time t is output. This change value O 2 (t) is determined by the focusing point drive circuit 8
The focusing point drive circuit 8 generates a signal that drives a motor that moves the stage 10 holding the object to be measured 4 up and down in accordance with this change value.
Bring the surface of the object to be measured into focus.
The above-mentioned focused point feedback is performed at intervals of Δt, and when the focused point state is reached, the vertical movement of the stage 10 stops. In this example, a pulse motor is used as the motor to drive the stage.
The amount of vertical movement of the stage is measured by counting the number of pulses within the focusing point drive circuit 8. Furthermore, since the stage 10 is being fed at a low speed in the horizontal direction, changes in the unevenness of the surface of the object to be measured can be measured from changes in this count value.

第2図aは本発明の表面粗さ測定装置の他の一
実施例を示す図である。この図における部品番号
と第1図の部品番号が同一のものは同一物であ
る。光源1より出射した照明光は一様照明用レン
ズ11により射影物体2′を照明する。射影物体
2′は第2図bに示すように周期Pの格子とこの
周期の10倍の周期P′を持つ格子から成り立つてい
る。例えば周期Pは200μm,周期P′は2mmであ
る。射影物体を透過した光はハーフミラー36と
射影撮像レンズ35からなる射影光学系により、
被測定物体4の表面に射影物体2′の像を結像す
るように投影される。被測定物体表面の射影像は
射影撮像レンズ35からなる撮像光学系により、
撮像面61上に結像される。撮像装置6によつて
得られる撮像信号は合焦点検出回路71に入力さ
れ、前述の微分又は差分の絶対値の和または積分
値が得られる。本実施例において得られる合焦点
検出信号O1は第5図bに示すように被測定物体
が合焦点位置Z0からずれるに従つて変化する。こ
の信号は射影物体2′の周期PおよびP′の成分に
対してそれぞれ第5図aに示すように変化する。
すなわちPの周波数成分のみから成るパターンの
射影物体に対してはO1に示すように合焦点検出
信号は変化し、大きな周波数成分P′のみから成る
パターンの射影物体に対してはO1′に示す合焦点
検出信号が得られる。P成分のみのパターンでは
合焦点位置Z0よりΔZ0だけ離れると合焦点検出信
号はほとんど検出できなくなるが、P′の成分があ
るとΔZ1まで検出が可能になる。例えば前述のパ
ターン周期(P=0.2mm,P′=2mm)を用い、射
影撮像レンズ35として40倍の対物レンズを用い
ると、射影物体上に投影されるパターンのピツチ
は細かい方で5μm,粗い方で50μmとなり、対
物レンズの焦点深度と明るさの関係から実験によ
ると、ΔZ0は6μm,ΔZ1は30μm程度となり、
合焦点追従動作は±30μmの急激な変化にも対応
できるようになる。また本実施例においては、被
測定物体表面を合焦点位置に来るように制御する
方法として対物レンズから成る射影撮像レンズ3
5を上下に駆動する方法を用いている。またこの
レンズの駆動距離をこのレンズに直結したそれ自
体周知のリニアスケール101をリニアスケール
ヘツド102で読み取り、リニアスケール回路1
03で電気処理して変位検出出力104を得る方
法を用いている。なお上記実施例では2種類の周
期パターンを用いたが、更に大きな第3の周期パ
ターンを用いれば、更に広い範囲の粗調整が可能
となる。また本実施例の合焦点検出手段として以
下に示す他の実施方法によることも可能であり、
また効果も大きい。第6図を用いて説明する。第
6図aは撮像信号Iを周期PおよびP′のパターン
での差分信号値が大きくでる間隔ΔxpおよびΔ
p′で差分し、その絶対値を取る回路76および
76′からの信号の和を回路76でそれぞれ求
め、その値を比較回路793で比較し、大きい方
の値をスイツチ回路793で選択し、合焦点信号
O1とする。また第6図bの実施例では、撮像信
号Iを周期Pの信号を通過させる周波数フイルタ
回路701および周期P′の信号を通過させる周波
数フイルタ回路701′の出力信号をそれぞれ新
たな撮像信号I0,I0′とし、この信号から微分絶対
値化回路72および積分回路73で合焦点信号を
それぞれ求める。この際一方の信号をα倍して次
に行なう比較が最適に行なえるようにする。しか
る後に大きい方の値を合焦点信号とする。このよ
うにすることにより、各周期パターンに対し、最
適な合焦点信号パターン(第5図a参照)を与え
ることが可能となり、精度の高い合焦点制御が可
能となる。
FIG. 2a is a diagram showing another embodiment of the surface roughness measuring device of the present invention. Components having the same part numbers in this figure and those in FIG. 1 are the same. Illumination light emitted from a light source 1 illuminates a projection object 2' through a uniform illumination lens 11. As shown in FIG. 2b, the projection object 2' consists of a grating with a period P and a grating with a period P' ten times this period. For example, the period P is 200 μm and the period P' is 2 mm. The light transmitted through the projection object is transmitted through a projection optical system consisting of a half mirror 36 and a projection imaging lens 35.
The image of the projection object 2' is projected onto the surface of the object 4 to be measured. A projected image of the surface of the object to be measured is obtained by an imaging optical system consisting of a projection imaging lens 35.
An image is formed on the imaging surface 61. The imaging signal obtained by the imaging device 6 is input to the focused point detection circuit 71, and the sum or integral value of the absolute values of the above-mentioned differentials or differences is obtained. The focused point detection signal O 1 obtained in this embodiment changes as the object to be measured deviates from the focused point position Z 0 as shown in FIG. 5b. This signal changes as shown in FIG. 5a with respect to the period P and P' components of the projection object 2'.
That is, for a projected object with a pattern consisting only of frequency components of P, the in-focus point detection signal changes as shown in O 1 , and for a projected object with a pattern consisting only of large frequency components P', it changes to O 1 '. A focused point detection signal shown in FIG. In a pattern with only the P component, the focused point detection signal can hardly be detected when the distance from the focused point position Z0 is ΔZ 0 , but if the P' component is present, detection up to ΔZ 1 becomes possible. For example, if the aforementioned pattern period (P = 0.2 mm, P' = 2 mm) is used and a 40x objective lens is used as the projection imaging lens 35, the pitch of the pattern projected onto the projection object will be 5 μm on the fine side and 5 μm on the coarse side. According to experiments, ΔZ 0 is about 6 μm, ΔZ 1 is about 30 μm, based on the relationship between the depth of focus of the objective lens and the brightness.
The focused point tracking operation can now handle sudden changes of ±30 μm. In addition, in this embodiment, as a method of controlling the surface of the object to be measured to come to a focused position, a projection imaging lens 3 consisting of an objective lens is used.
5 is driven up and down. Further, the driving distance of this lens is read by a linear scale head 102 which is well known in itself and which is directly connected to this lens, and the linear scale circuit 1
03 is used to obtain the displacement detection output 104 through electrical processing. In the above embodiment, two types of periodic patterns are used, but if a third periodic pattern, which is larger, is used, coarse adjustment can be made over a wider range. It is also possible to use other implementation methods as the in-focus point detection means of this embodiment as shown below.
It is also highly effective. This will be explained using FIG. Figure 6a shows the imaging signal I at intervals Δx p and Δ where the difference signal value is large in patterns with periods P and P'.
A circuit 76 calculates the sum of the signals from circuits 76 and 76', which calculates the difference at , focused signal
Let it be O 1 . Further, in the embodiment shown in FIG. 6b, the output signals of the frequency filter circuit 701 that passes the image signal I with a period P and the frequency filter circuit 701' that passes the signal with the period P' are used as the new image signal I0. , I 0 ', and from this signal, a differential absolute value converting circuit 72 and an integrating circuit 73 obtain in-focus point signals, respectively. At this time, one signal is multiplied by α so that the next comparison can be performed optimally. Thereafter, the larger value is set as the in-focus signal. By doing so, it becomes possible to give an optimal focusing point signal pattern (see FIG. 5a) to each periodic pattern, and highly accurate focusing point control becomes possible.

第7図は本発明の表面粗さ測定装置の他の一実
施例を示す図である。同図における部品番号と第
2図における部品番号が同一のものは同一物であ
る。本実施例においては複数個の射影物体21,
22,23,24を射影光学系の光軸LL′近辺の
異なる位置に配置し、それぞれの射影物体を被測
定物体上に投影し、撮像する。この際各射影物体
は被測定物体上の異なる位置(水平面上で)に結
像するようにしておき、それぞれの射影物体に対
応する撮像信号を別々に得る。各撮像信号から上
述の方法と同様にして別々に得られる合焦点検出
信号を第8図aに示す各射影物体が合焦点状態で
結像される位置が異なるため図のように射影物体
21〜24に対応して合焦点信号O21〜O24が得
られる。O21,O22は周期pのパターンを用い、
O23,O24は大周期p′のパターンを用いているため
O23,O24はO21,O22に比べ据の広がつたパター
ンになつている。この合焦点信号からO22
O21,O24―O23の信号を形成する差動合焦点回路
を具備した合焦点検出回路71′を用いることに
より第8図bに示す差動信号を得る。それぞれの
差動信号の和信号第8図cを用いることにより、
合焦点状態から離れた距離から制御がかかり、精
度の高い測定が可能となる。
FIG. 7 is a diagram showing another embodiment of the surface roughness measuring device of the present invention. Components having the same part number in the same figure and the same part number in FIG. 2 are the same parts. In this embodiment, a plurality of projection objects 21,
22, 23, and 24 are arranged at different positions near the optical axis LL' of the projection optical system, and the respective projection objects are projected onto the object to be measured and imaged. At this time, each projection object is imaged at a different position (on a horizontal plane) on the object to be measured, and imaging signals corresponding to each projection object are obtained separately. In-focus point detection signals obtained separately from each imaging signal in the same manner as described above are shown in FIG. Focus point signals O 21 to O 24 are obtained corresponding to 24. O 21 and O 22 use a pattern with period p,
Since O 23 and O 24 use a large period p′ pattern,
O 23 and O 24 have a more widespread pattern than O 21 and O 22 . From this focused signal, O 22 -
A differential signal shown in FIG. 8b is obtained by using a focused point detection circuit 71' equipped with a differential focused point circuit that forms O 21 , O 24 -O 23 signals. By using the sum signal of each differential signal in Fig. 8c,
Control is applied from a distance away from the focused state, allowing highly accurate measurements.

次に本発明の表面粗さ測定装置の他の一実施例
を第9図を用いて説明する。本実施例において部
品の番号が第2図の部品の番号と同一のものは同
一物である。第2の光源10は例えばレーザ等、
指向性の優れた光源を用いる。この光を射影撮像
レンズ35により、物体に斜めから照射する。そ
の反射光をそれ自体周知の変位検出器62上に導
く。この際射影撮像レンズは被測定物体4が変位
検出器62の検出面および撮像面61に結像する
ように配置する第2の光源よりの光は被測定物体
が合焦点位置にある時には変位検出器の中心に反
射して来るが、合焦点位置から上下にずれると第
9図でそれぞれ変位検出面上を右左に反射光位置
がずれるため、これを電気信号として取り出せば
±1mm以上の上下変動に対して、この変動に対応
した信号を取り出すことができるため、粗調整を
行なうことが可能となる。また本実施例で第1の
光源と第2光源の波長が異なるものを選択し、フ
イルタ63,64で必要な波長の光のみを選択し
て取り出す波長選択手段を用いれば互に干渉の少
ない正確な測定が実現できる。
Next, another embodiment of the surface roughness measuring device of the present invention will be described using FIG. 9. In this embodiment, the parts whose numbers are the same as those in FIG. 2 are the same. The second light source 10 is, for example, a laser or the like.
Use a light source with excellent directionality. This light is irradiated obliquely onto the object by the projection imaging lens 35. The reflected light is directed onto a displacement detector 62, which is known per se. At this time, the projection imaging lens is arranged so that the object to be measured 4 is imaged on the detection surface and the imaging surface 61 of the displacement detector 62.The light from the second light source detects the displacement when the object to be measured is at the focused position. It is reflected to the center of the instrument, but if it deviates up or down from the focal point position, the position of the reflected light shifts to the left or right on the displacement detection surface as shown in Figure 9, so if you extract this as an electrical signal, you will see a vertical fluctuation of ±1 mm or more. However, since it is possible to extract a signal corresponding to this variation, it is possible to perform rough adjustment. In addition, in this embodiment, if the first light source and the second light source are selected to have different wavelengths, and a wavelength selection means is used in which the filters 63 and 64 select and extract only the light of the necessary wavelength, the light source can be used accurately with less mutual interference. measurements can be achieved.

次に本発明の表面粗さ測定装置の他の一実施例
を第10図を用いて説明する。
Next, another embodiment of the surface roughness measuring device of the present invention will be described using FIG. 10.

第10図における部品番号と第9図の部品番号
が同一のものは同一物を表わしている。第10図
で111は可変フイルタである。このフイルタ1
11は円板状の外形を持ち中心から一方向に向う
線上は同一の透過率を有し、角度に応じて透過率
は除々に変化する。113はこのフイルタを回転
させるためのモータである。撮像装置で得られる
信号は光量調整回路に入力され、一画面の平均輝
度が求められる。この平均輝度をあらかじめ設定
した値と比較し、その差の符号に対応した回転方
向でモータを回転させ、上記の設定値になるよう
に制御する。このような111,112,113
から成る光量調整手段を用いることにより、撮像
面に一定の平均レベルの輝度の像が受光される。
従つて例えば被測定物体が黒い部分と白い部分か
ら成る場合でもほぼ同等の信号が得られ、被測定
物体の反射率に依存しない精度の高い表面粗さの
測定が可能となる。なお上記実施例では光量調節
手段として可変フイルタを用いて光量の調整を行
なつているが、光源に与える電圧を変化させ、光
源の照射光量を調整する光量調節手段を用いるこ
とによつても本発明の目的を達成することができ
ることは言うまでもない。また第10図の実施例
では光源1に第3のフイルタ フイルタ(色フイ
ルタ)63′を付け、この色フイルタの透過波長
領域と第2の光源の波長(あるいは波長領域)重
畳しないようにする。さらに変位検出器の前面に
第1の光源の波長の光を遮光し、第2の光源の波
長を透過する第2のフイルタを、また撮像面61
の前面には第3のフイルタと同一のフイルタをそ
れぞれ設置した波長選択手段を設ける。このよう
にすることにより、変位検出器62および撮像面
61にはそれぞれ所望の光のみが入射され雑音の
少ない信号が得られる。
Part numbers in FIG. 10 and those in FIG. 9 that are the same represent the same item. In FIG. 10, 111 is a variable filter. This filter 1
11 has a disk-shaped outer shape and has the same transmittance on a line going in one direction from the center, and the transmittance gradually changes depending on the angle. 113 is a motor for rotating this filter. A signal obtained by the imaging device is input to a light amount adjustment circuit, and the average brightness of one screen is determined. This average brightness is compared with a preset value, and the motor is rotated in a rotational direction corresponding to the sign of the difference, thereby controlling to the above set value. 111, 112, 113 like this
By using the light amount adjusting means consisting of the following, an image having a constant average level of brightness is received on the imaging surface.
Therefore, for example, even if the object to be measured consists of a black part and a white part, substantially the same signals can be obtained, and it is possible to measure the surface roughness with high accuracy independent of the reflectance of the object to be measured. In the above embodiment, the light amount is adjusted by using a variable filter as the light amount adjusting means, but the present invention can also be achieved by using a light amount adjusting means that changes the voltage applied to the light source and adjusts the amount of light irradiated by the light source. It goes without saying that the purpose of the invention can be achieved. Further, in the embodiment shown in FIG. 10, a third filter (color filter) 63' is attached to the light source 1 so that the transmission wavelength range of this color filter does not overlap with the wavelength (or wavelength range) of the second light source. Furthermore, a second filter is installed in front of the displacement detector to block the light having the wavelength of the first light source and to transmit the wavelength of the second light source.
Wavelength selection means each having a filter identical to the third filter is provided on the front surface of the wavelength selection means. By doing so, only desired light is incident on the displacement detector 62 and the imaging surface 61, respectively, and signals with less noise can be obtained.

以上詳細に説明したごとく本発明によれば任意
の状態の被測定物体を、それに影響を与えること
なく、高精度で表面の凹凸を計測することが可能
になり画期的な効果を有する。
As described in detail above, according to the present invention, it is possible to measure the surface irregularities of an object in any state with high accuracy without affecting the object, which has an epoch-making effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の表面粗さ測定装置の一実施例
を示す概略構成図、第2図は本発明の表面粗さ測
定装置の他の一実施例を示す概略構成図、第3図
は撮像信号を示す図、第4図は第1図に用いられ
ている合焦点検出回路を示す構成図、第5図は第
2図に示す装置から得られる合焦点検出信号を示
す図、第6図は第2図に用いられている合焦点検
出回路図、第7図は本発明の表面粗さ測定装置の
他の一実施例を示す図、第8図は第7図に示す装
置から得られる合焦点検出信号を示す図、第9図
は本発明の表面粗さ測定装置の他の一実施例を示
す図、第10図は本発明の表面粗さ測定装置の他
の一実施例を示す図である。 符号の説明、1……第1の光源、2……射影物
体、3……射影光学系、4……被測定物体、5…
…撮像光学系、6……撮像装置、9,70……合
焦点検出回路、8……合焦点用駆動回路、94…
…合焦点微動機構、72……微分絶対値化回路、
76,76′……差分絶対値化回路。
FIG. 1 is a schematic diagram showing one embodiment of the surface roughness measuring device of the present invention, FIG. 2 is a schematic diagram showing another embodiment of the surface roughness measuring device of the present invention, and FIG. 4 is a block diagram showing the focused point detection circuit used in FIG. 1, FIG. 5 is a diagram showing the focused point detection signal obtained from the device shown in FIG. 2, and 6. The figure is a diagram of the in-focus point detection circuit used in Figure 2, Figure 7 is a diagram showing another embodiment of the surface roughness measuring device of the present invention, and Figure 8 is a diagram showing the circuit obtained from the device shown in Figure 7. FIG. 9 is a diagram showing another embodiment of the surface roughness measuring device of the present invention, and FIG. 10 is a diagram showing another embodiment of the surface roughness measuring device of the present invention. FIG. Explanation of symbols: 1... First light source, 2... Projection object, 3... Projection optical system, 4... Measured object, 5...
... Imaging optical system, 6... Imaging device, 9, 70... Focused point detection circuit, 8... Focused point drive circuit, 94...
... Focusing point fine movement mechanism, 72... Differential absolute value conversion circuit,
76, 76'...Difference absolute value conversion circuit.

Claims (1)

【特許請求の範囲】 1 透過もしくは反射性の微細な周期性パターン
を有する射影物体と、該射影物体を照明する第1
の光源と、該第1の光源により照明された上記射
影物体の周期性パターンの像を被測定物上に投影
し、且つ被測定物の上に投影された上記周期性パ
ターンの像を結像せしめる光学系と、該光学系に
よつて結像された周期性パターンの像を撮像する
撮像装置と、上記光学系もしくは被測定物体のい
ずれか1つを微動せしめる合焦点用微動機構と、
上記撮像装置によつて検出された映像信号につい
て上記周期性パターンに対応させて微分もしくは
差分と積分をとり、上記周期性パターンの周波数
成分を検出する合焦点検出回路と、該合焦点検出
回路で検出される周期性パターンの周波数成分の
信号が所定の値になるように上記合焦点用微動機
構を作動させて被測定物体の表面を合焦点状態に
位置付けする制御手段と、被測定物体の表面にお
いて測定する位置を異ならしめ、その際上記制御
手段によつて合焦点状態に位置付けられた合焦点
用微動機構の変位量を検出して被測定物体の表面
の凹凸を測定する測定手段とを備え付けたことを
特徴とする物体表面の凹凸測定装置。 2 上記射影物体は、第1の周期を有するパター
ンと該第1の周期に比べて大きな周期を有するパ
ターンとを有する合成パターンで形成された微細
な周期性パターンを備え、更に上記合焦点検出回
路は、上記第1の周期パターンに対応する第1の
周波数成分の信号と上記第2の周期パターンに対
応する第2の周波数成分の信号と検出する回路
と、これら周波数成分の信号を比較し、いずれか
の周波数成分の信号を選択する回路とを備えたこ
とを特徴とする特許請求の範囲第1項記載の物体
表面の凹凸測定装置。 3 上記周期性パターンを有する射影物体を、上
記射影光学系の光軸付近の異なる面上で、光軸方
向に変位させて少なくとも2個以上配置し、上記
合焦点検出回路は、それぞれ被測定物上に投影さ
れた各周期性パターンを光学系によつて結像して
撮像装置から得られる各映像信号に基いて検出さ
れる各周期性パターンの周波数成分の信号の差信
号を検出し、この差信号を周期性パターンの周波
数成分の信号とする差動合焦点回路を具備したこ
とを特徴とする特許請求の範囲第1項記載の物体
表面の凹凸測定装置。 4 透過もしくは反射性の微細な周期性パターン
を有する射影物体と、該射影物体を照明する第1
の光源と、上記被測定物体に指向性の優れた第2
の光源より出射した光ビームを被測定物体の被測
定位置もしくは被測定位置の近傍に斜めから照射
する照射手段と、上記第1の光源により照明され
た射影物体の周期性パターンの像を被測定物上に
投影し、且つ被測定物の上に投影された上記周期
性パターンの像を結像せしめ、更に上記照射手段
によつて照射され、被測定物体から反射した光を
指向せしめて所定の位置に結像せしめる光学系
と、該光学系によつて結像された周期性パターン
の像を撮像する撮像装置と、上記所定の位置に設
置され、且つ光軸に直角方向の変位を検出できる
変位検出器と、上記光学系もしくは被測定物成の
いずれか1つを微動せしめる合焦点用微動機構
と、上記変位検出器で得られた変位信号に基いて
上記被測定物体面が、上記光学系による上記撮像
装置の撮像面へほぼ合焦点の状態で結像すべく、
上記合焦点用微動機構を粗動させる第1の制御手
段と、上記撮像装置によつて検出された映像信号
について上記周期性パターンに対応させて微分も
しくは差分と積分をとり、上記周期性パターンの
周波数成分を検出する合焦点検出回路と、該合焦
点検出回路で検出される周期性パターンの周波数
成分の信号が所定の値になるように上記合焦点用
微動機構を精密に作動させて被測定物体の表面を
合焦点状態に位置付けする第2の制御手段と、被
測定物体の表面において測定する位置を異ならし
め、その際上記第2の制御手段によつて合焦点状
態に位置付けられた合焦点用微動機構の変位量を
検出して被測定物体の表面の凹凸を測定する測定
手段とを備え付けたことを特徴とする物体表面の
凹凸測定装置。 5 上記第1及び第2の光源から被測定物上に照
射される光がスペクトル特性の異なることを特徴
とする特許請求の範囲第4項記載の物体表面の凹
凸測定装置。 6 透過もしくは反射性の微細な周期性パターン
を有する射影物体と、該射影物体を照明する第1
の光源と、該第1の光源により被測定物体に投射
された上記射影物体の反射光の強度を可変ならし
める光量調節手段と、上記第1の光源により照明
された上記射影物体の周期性パターンの像を被測
定物上に投影し、且つ被測定物の上に投影された
上記周期性パターンの像を結像せしめる光学系
と、該光学系によつて結像された周期性パターン
の像を撮像する撮像装置と、上記光学系もしくは
被測定物体のいずれか1つを微動せしめる合焦点
用微動機構と、上記撮像装置によつて検出された
映像信号について上記周期性パターンに対応させ
て微分もしくは差分と積分をとり、上記周期性パ
ターンの周波数成分を検出する合焦点検出回路
と、該合焦点検出回路で検出される周期性パター
ンの周波数成分の信号が所定の値になるように上
記合焦点用微動機構を作動させて被測定物体の表
面を合焦点状態に位置付けする制御手段と、被測
定物体の表面において測定する位置を異ならし
め、その際上記制御手段によつて合焦点状態に位
置付けられた合焦点用微動機構の変位量を検出し
て被測定物体の表面の凹凸を測定する測定手段と
を備え付けたことを特徴とする物体表面の凹凸測
定装置。
[Claims] 1. A projection object having a fine periodic pattern of transmission or reflection, and a first projection object that illuminates the projection object.
and projecting an image of the periodic pattern of the projection object illuminated by the first light source onto the object to be measured, and forming an image of the periodic pattern projected onto the object to be measured. an imaging device that captures an image of a periodic pattern formed by the optical system; and a focusing fine movement mechanism that slightly moves either the optical system or the object to be measured;
a focused point detection circuit that takes differentiation or difference and integration of the video signal detected by the imaging device in correspondence with the periodic pattern and detects a frequency component of the periodic pattern; a control means for positioning the surface of the object to be measured in a focused state by activating the focusing point fine movement mechanism so that the signal of the frequency component of the detected periodic pattern becomes a predetermined value; and the surface of the object to be measured. and measuring means for measuring the unevenness of the surface of the object to be measured by varying the measurement position at and detecting the amount of displacement of the focusing point fine movement mechanism positioned in the focused state by the control means. A device for measuring unevenness on the surface of an object. 2 The projection object has a fine periodic pattern formed by a composite pattern having a pattern having a first period and a pattern having a period larger than the first period, and further includes the focused point detection circuit. A circuit detects a signal of a first frequency component corresponding to the first periodic pattern and a signal of a second frequency component corresponding to the second periodic pattern, and compares the signals of these frequency components, An apparatus for measuring irregularities on an object surface according to claim 1, further comprising a circuit for selecting a signal of one of the frequency components. 3. At least two or more projection objects having the periodic pattern are disposed on different planes near the optical axis of the projection optical system, and are displaced in the optical axis direction, and the focused point detection circuit is configured to detect the object to be measured, respectively. Each periodic pattern projected above is imaged by an optical system, and a difference signal between the frequency component signals of each periodic pattern detected based on each video signal obtained from the imaging device is detected. 2. An apparatus for measuring irregularities on an object surface according to claim 1, further comprising a differential focusing circuit which uses a difference signal as a signal of frequency components of a periodic pattern. 4 A projection object having a fine periodic pattern of transmission or reflection, and a first projection object that illuminates the projection object.
and a second light source with excellent directivity for the object to be measured.
irradiation means for obliquely irradiating a light beam emitted from a light source onto a position to be measured or in the vicinity of the position to be measured of an object to be measured; The periodic pattern is projected onto an object, and an image of the periodic pattern projected onto the object to be measured is formed, and the light irradiated by the irradiation means and reflected from the object to be measured is directed to a predetermined area. an optical system that forms an image at the position; an imaging device that captures an image of the periodic pattern formed by the optical system; and an imaging device that is installed at the predetermined position and is capable of detecting displacement in a direction perpendicular to the optical axis. a displacement detector; a focusing point fine movement mechanism for finely moving either the optical system or the object to be measured; In order to form an image in a substantially focused state on the imaging surface of the imaging device by the system,
A first control means for coarsely moving the focusing point fine movement mechanism; and a first control means for coarsely moving the focusing point fine movement mechanism, and taking differentiation or difference and integration of the video signal detected by the imaging device in correspondence with the periodic pattern, and A focused point detection circuit detects a frequency component, and the focused point fine movement mechanism is precisely operated so that the signal of the frequency component of the periodic pattern detected by the focused point detection circuit becomes a predetermined value. a second control means that positions the surface of the object in a focused state; and a focused point that is positioned in a focused state by the second control means for differentiating the measurement position on the surface of the object to be measured; 1. An apparatus for measuring unevenness on the surface of an object, characterized in that it is equipped with a measuring means for measuring the unevenness on the surface of an object to be measured by detecting the amount of displacement of a fine movement mechanism. 5. The apparatus for measuring irregularities on the surface of an object according to claim 4, wherein the light irradiated onto the object to be measured from the first and second light sources has different spectral characteristics. 6 A projection object having a fine periodic pattern of transmission or reflection, and a first projection object that illuminates the projection object.
a light source, a light amount adjusting means for varying the intensity of reflected light of the projection object projected onto the object to be measured by the first light source, and a periodic pattern of the projection object illuminated by the first light source. an optical system that projects an image of the periodic pattern onto an object to be measured and forms an image of the periodic pattern projected onto the object; and an image of the periodic pattern formed by the optical system. an imaging device configured to take an image of the image; a focusing fine movement mechanism that slightly moves either the optical system or the object to be measured; Alternatively, a focused point detection circuit detects the frequency component of the periodic pattern by taking the difference and integration, and the focused point detection circuit detects the frequency component of the periodic pattern so that the signal of the frequency component of the periodic pattern detected by the focused point detection circuit becomes a predetermined value. A control means for activating a focusing fine movement mechanism to position the surface of the object to be measured in a focused state, and a control means for positioning the surface of the object to be measured in a focused state at different positions on the surface of the measured object, at which time the control means positions the surface in a focused state. 1. A measuring device for measuring unevenness on the surface of an object, comprising: measuring means for measuring unevenness on the surface of an object to be measured by detecting the amount of displacement of the focusing fine movement mechanism.
JP396179A 1979-01-19 1979-01-19 Device for determining roughness of surface Granted JPS5596406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP396179A JPS5596406A (en) 1979-01-19 1979-01-19 Device for determining roughness of surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP396179A JPS5596406A (en) 1979-01-19 1979-01-19 Device for determining roughness of surface

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP25162786A Division JPS62115114A (en) 1986-10-24 1986-10-24 Automatic focusing control device

Publications (2)

Publication Number Publication Date
JPS5596406A JPS5596406A (en) 1980-07-22
JPS6219685B2 true JPS6219685B2 (en) 1987-04-30

Family

ID=11571681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP396179A Granted JPS5596406A (en) 1979-01-19 1979-01-19 Device for determining roughness of surface

Country Status (1)

Country Link
JP (1) JPS5596406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284182A (en) * 1999-03-11 2000-10-13 Corning Inc Focusing filament for automatic focusing system
JP2011047867A (en) * 2009-08-28 2011-03-10 Nikon Corp Scale, position detecting device, stage apparatus, and exposure apparatus

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3119505A1 (en) * 1981-05-15 1983-01-27 Siemens AG, 1000 Berlin und 8000 München Optical sensor for measuring three-dimensional objects
JPS5811803A (en) * 1981-07-15 1983-01-22 Hitachi Ltd Method and device for measuring film thickness
JPS5875005A (en) * 1981-10-30 1983-05-06 Hitachi Ltd Method and device for measuring thickness of plate
JPS6118913A (en) * 1984-07-06 1986-01-27 Kowa Co Automatic focus adjusting device
JPS6199113A (en) * 1984-10-22 1986-05-17 Toho Denshi Kogyo Kk Focusing method of microscope
JP2527159B2 (en) * 1984-12-11 1996-08-21 ミノルタ株式会社 Focus detection device
JPH0610694B2 (en) * 1985-04-12 1994-02-09 株式会社日立製作所 Automatic focusing method and device
US4743771A (en) * 1985-06-17 1988-05-10 View Engineering, Inc. Z-axis height measurement system
JPS627010U (en) * 1985-06-28 1987-01-16
JPS628437A (en) * 1985-07-04 1987-01-16 Jeol Ltd Particle beam micro-analyzer
JPH0697299B2 (en) * 1986-03-25 1994-11-30 旭光学工業株式会社 Auxiliary projector for focus detection
JPH0616402B2 (en) * 1986-04-11 1994-03-02 日本電子株式会社 X-ray micro analyzer-automatic focusing device for optical microscopes
JPS63212911A (en) * 1987-03-02 1988-09-05 Hitachi Electronics Eng Co Ltd Auto focus system
JPS63239412A (en) * 1987-03-27 1988-10-05 Hitachi Electronics Eng Co Ltd Automatic focusing system
EP1607064B1 (en) 2004-06-17 2008-09-03 Cadent Ltd. Method and apparatus for colour imaging a three-dimensional structure
JP2007155379A (en) * 2005-12-01 2007-06-21 Tokyo Univ Of Agriculture & Technology Three-dimensional shape measuring device and three-dimensional shape measuring method
WO2009113528A1 (en) 2008-03-11 2009-09-17 株式会社ニコン Shape measuring apparatus
JP2010026212A (en) * 2008-07-18 2010-02-04 Mitsutoyo Corp Autofocus device
US9675430B2 (en) 2014-08-15 2017-06-13 Align Technology, Inc. Confocal imaging apparatus with curved focal surface

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000284182A (en) * 1999-03-11 2000-10-13 Corning Inc Focusing filament for automatic focusing system
JP4668381B2 (en) * 1999-03-11 2011-04-13 コーニング インコーポレイテッド Focusing filament for automatic focusing system
JP2011047867A (en) * 2009-08-28 2011-03-10 Nikon Corp Scale, position detecting device, stage apparatus, and exposure apparatus

Also Published As

Publication number Publication date
JPS5596406A (en) 1980-07-22

Similar Documents

Publication Publication Date Title
JPS6219685B2 (en)
US4660980A (en) Apparatus for measuring thickness of object transparent to light utilizing interferometric method
CA1287486C (en) Method and system for high-speed, high-resolution, 3-d imaging of an object at a vision station
US4743771A (en) Z-axis height measurement system
US6856381B2 (en) Method for carrying out the non-contact measurement of geometries of objects
EP2362936B1 (en) Scanner with feedback control
US4299491A (en) Noncontact optical gauging system
US4920273A (en) Z-axis measurement system
US5432330A (en) Two-stage detection noncontact positioning apparatus having a first light detector with a central slit
US6421114B1 (en) Three-dimensional information measuring apparatus
US5104216A (en) Process for determining the position and the geometry of workpiece surfaces
JPH01287725A (en) Position designation device
JPH0787378A (en) Focusing detection device
JPS6243482B2 (en)
US4592650A (en) Apparatus for projecting a pattern on a semiconductor substrate
JPH1144515A (en) Active light irradiator, light detector and three-dimensional image input device
JPH0131124B2 (en)
EP1397639A1 (en) Sample positioning method for surface optical diagnostics using video imaging
JPH06258040A (en) Laser displacement meter
US4601581A (en) Method and apparatus of determining the true edge length of a body
JPS5826325Y2 (en) position detection device
JPS62291511A (en) Distance measuring apparatus
WO2009004108A1 (en) High-speed optical profilometer
JPH06137827A (en) Optical level difference measuring apparatus
Huhnke High-speed multichannel length measurement with a CCD scanning line