WO2002051608A1 - Metal mold device for forming optical disk - Google Patents

Metal mold device for forming optical disk Download PDF

Info

Publication number
WO2002051608A1
WO2002051608A1 PCT/JP2001/011362 JP0111362W WO02051608A1 WO 2002051608 A1 WO2002051608 A1 WO 2002051608A1 JP 0111362 W JP0111362 W JP 0111362W WO 02051608 A1 WO02051608 A1 WO 02051608A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature control
product cavity
distance
mold
flow path
Prior art date
Application number
PCT/JP2001/011362
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Chihara
Yoshihiro Horikawa
Original Assignee
Mitsubishi Materials Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corporation filed Critical Mitsubishi Materials Corporation
Priority to KR10-2003-7008539A priority Critical patent/KR20030060117A/en
Publication of WO2002051608A1 publication Critical patent/WO2002051608A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/263Preparing and using a stamper, e.g. pressing or injection molding substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/263Moulds with mould wall parts provided with fine grooves or impressions, e.g. for record discs
    • B29C45/2642Heating or cooling means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D17/00Producing carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records; Producing record discs from master stencils
    • B29D17/005Producing optically read record carriers, e.g. optical discs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2017/00Carriers for sound or information
    • B29L2017/001Carriers of records containing fine grooves or impressions, e.g. disc records for needle playback, cylinder records
    • B29L2017/003Records or discs
    • B29L2017/005CD''s, DVD''s

Definitions

  • the present invention relates to a mold device for molding an optical disk such as a CD (compact disk) and a DVD (digital video disk).
  • an optical disk such as a CD (compact disk) and a DVD (digital video disk).
  • the substrate is generally injection-molded with resin.
  • the fixed mold and the movable mold respectively attached to the fixed plate and the movable plate of the injection molding machine are closed to form a product cavity between the fixed mold and the movable mold, and the product is injected from the nozzle of the injection molding machine.
  • the molten thermoplastic resin, which is the molding material is filled into the product cavity, and the resin in the product cavity, that is, the optical disk is solidified in a mold adjusted to a predetermined low temperature, that is, the fixed mold and the movable mold. Open and take out the molded optical disk.
  • the mold is provided with a temperature control flow path through which a cooling liquid is passed, in order to keep the product capacity in the mold at a predetermined low temperature.
  • the cooling capacity per unit area of the product cavity is higher than the average, for example, in places where the temperature control flow path is dense, so it is necessary to lower the cooling capacity per unit area of the product cavity. There is. On the other hand, in locations where the temperature control flow path is sparse, the cooling capacity per unit area of the product cavity is lower than the average, so cooling per unit area of the product cavity You need to increase your ability. There is a need for improved temperature control in such locations where the mold temperature is not uniform.
  • the present invention is intended to solve such a problem, and it is possible to optimize a mold temperature around a product cavity, and as a result, to improve an optical disc's dimensional accuracy and the like.
  • An object is to provide a molding die apparatus. Summary of the Invention
  • the present invention has a mold having a fixed mold and a movable mold provided to face the fixed mold, and a product cavity is formed between the fixed mold and the movable mold.
  • a mold device for molding optical discs with a temperature control flow path through which heat flows the distance from the surface of the product cavity to the temperature control flow path should be reduced at locations where the cooling capacity per unit area of the product cavity by the temperature control flow path is reduced. It is characterized in that the distance from the surface of the product capital to the temperature control channel is shortened where it is longer or where the cooling capacity per unit area of the product cavity by the temperature control channel is increased.
  • This configuration optimizes the temperature distribution of the product cavity by adjusting the cooling capacity of the location where the cooling capacity per unit area of the product cavity is increased or decreased by the temperature control flow path, and the dimensional accuracy of the optical disc Etc. can be improved.
  • the temperature control flow path is formed in a groove shape, and the distance is a distance between the bottom surface of the groove-shaped temperature control flow path and the surface of the product cavity.
  • the mold is cooled by flowing the coolant through the groove-shaped temperature control flow path.
  • the temperature control channel is groove-shaped, the distance can be easily and accurately set.
  • a plurality of temperature control flow paths are formed so as to be concentric with the product cavity, and a communication path connecting the temperature control flow path part located inside and the temperature control flow path part located outside is formed. In the passage section, the distance is increased.
  • the distance from the surface of the product cavity to the temperature control flow path is long in the communication path portion where the cooling capacity per unit area is to be reduced. As a result, the adverse effect caused by excessive cooling in the communication path can be solved. More preferably, the distance is shortened on the outer peripheral side of the product cavity.
  • the distance from the surface of the product cavity to the temperature control flow path becomes shorter on the outer peripheral side of the product capital, which is a place where a large amount of heat is radiated.
  • the temperature distribution in the product cavity with a large heat dissipation can be set uniformly.
  • FIG. 1 is a cross-sectional view of a mold device for molding an optical disc, showing a first embodiment of the present invention.
  • FIG. 2 is a plan view of a main part of the optical disk molding die apparatus shown in FIG.
  • FIG. 3 is a cross-sectional view of the optical disk molding die apparatus shown in FIG.
  • FIG. 4 is a sectional view of a mold device for molding an optical disk, showing a second embodiment of the present invention.
  • FIG. 5 is a plan view of a main part of the optical disk molding die device shown in FIG. Preferred embodiment
  • FIG. 1 shows a first embodiment of the present invention.
  • reference numeral 1 denotes a fixed type
  • 2 denotes a movable type
  • a mold body The fixed type 1 and the movable type 2 (Opening / closing direction) to open and close, and when the mold is closed, two product cavities 3 forming an optical disc are formed between each other.
  • the fixed mold 1 includes a fixed-side mold plate 4 as a base, and a fixed-side receiving plate 5 fixed to a surface of the fixed-side mold plate 4 opposite to the movable mold 2 (upper surface in the drawing) and acting as a base. And Further, cold sprue bushes 6 corresponding to the product cavities 3 are fixed to the fixed-side receiving plate 5.
  • the head 7 of the cold sprue bush 6 fits into a recess 8 formed in the fixed-side receiving plate 5 and has a cylindrical projection 9 on the fixed-side mold plate 4 side. The part 9 extends from the stationary receiving plate 5 to the stationary template 4 further. Also, cold spruce bush 6
  • the head 7 is provided with a material supply nozzle 10.
  • a cold sprue 112 is formed in the cold sprue bush 6, which is a material passage from the bottom surface of the head 7 to which the raw material supply nozzle 10 is connected to the tip end surface of the protrusion 9.
  • the cold sprue 12 has a tapered shape whose diameter increases toward the product cavity 3, and communicates with the product cavity 3.
  • Reference numeral 13 denotes a recess formed in the head 7 and into which the raw material supply nozzle 10 is inserted.
  • the fixed mold plate 4 includes a positioning frame 14 fixed to the surface of the fixed mold plate 2 on the movable mold 2 side, and a cap that is fitted inside the positioning frame 14 and serves as a capty forming member. It is composed of a Viti block 15.
  • the cavity block 15 forms the product capacities 3, and an annular outer stamper retainer 16 is detachably attached to the outer periphery of the cavity block 15, and the inner periphery of the cavity block 15 is formed.
  • a cylindrical inner stamper retainer 17 is detachably attached to the portion.
  • the movable die 2 includes a movable mounting plate 20 mounted on a fixed platen of the injection molding machine, a movable receiving plate 21 fixed to a surface of the movable mounting plate 20 on the fixed die 1 side, and a movable receiving plate 21.
  • a movable mold plate 22 fixed to the surface of the plate 21 on the fixed mold 1 side.
  • the movable-side mold plate 22 includes a positioning frame 23 fixed to the surface of the movable-side receiving plate 21 on the fixed mold 1 side, and a core block 24 fitted inside the positioning frame 23 and acting as a cavity forming member. It is composed of The core blocks 24 form the above-mentioned product cavities 3, respectively, and the positioning frame 23 is tapered into the positioning frame of the fixed mold 1. In the core block 24, a temperature control passage 25 for passing the cooling liquid is formed.
  • An abutment ring 26 is fitted around the outer periphery of the core block 24. This thrust The contact ring 26 abuts the outer stamper holder 16 on the fixed mold 1 side when the mold is closed, and forms the outer peripheral surface of the product cavity 3.
  • a cylindrical air outlet / inlet 27 is fixed to the inner peripheral portion of the core block 24 in a penetrating state, and a cylindrical protruding sleeve 28 is provided on the inner peripheral side of the air outlet / inlet 27. It is slidably fitted within a predetermined range along the opening and closing direction of the mold.
  • a cylindrical gate cut sleeve 29 is slidably fitted to the inner peripheral side of the protruding sleeve 28 within a predetermined range along the opening / closing direction of the mold, and inside the gate cut sleeve 29,
  • the protruding pin 30 is slidably fitted in a predetermined range along the opening and closing direction of the mold.
  • the protruding sleeve 28 and the gate cut sleeve 29 are respectively urged to the opposite sides of the fixed mold 1.
  • the gate cut sleeve 29 has a receiving portion 31 protruding from the movable-side mounting plate 20.
  • the receiving portion 31 is pressed by a pressing rod (not shown) provided in the injection molding machine, the gate cut sleeve 29 moves to the fixed mold 1 side.
  • the protruding pin 30 is fixed to a protruding plate 32 provided in the movable-side mounting plate 20.
  • the ejection plate 32 is pushed by another pushing rod '(not shown) provided in the injection molding machine, the ejection pin 30 moves to the fixed mold 1 side.
  • an interlocking pin (not shown) fixed to the protruding plate 32 pushes the protruding sleeve 28, so that the protruding sleeve 28 moves to the fixed mold 1 side.
  • the gate cut sleeve 29 is removably fitted in the intermediate cylinder 18 of the fixed mold 1 to form an opening located at the center of the optical disc. Therefore, the protruding sleeve 28 and the air blowing insert 27 located on the outer peripheral side of the gate cut sleeve 29 form a part of the product capital 3. Also, between the outer peripheral portion of the distal end surface of the protrusion 9 provided on the cold sprue bush 6 on the fixed die 1 side and the outer peripheral portion of the distal end surface of the gate cut sleeve 29 on the movable die 2 side, A gate 34 is formed to allow the cold sprue 1 1 2 to communicate with the product cavity 3.
  • the temperature control passages 19A, 19B have first to third temperature control passages 19A and 19B, each of which has a substantially C-shaped plane centered on the center axis X of the product cavity 3 and gradually increases in diameter. , 19 C are provided concentrically.
  • a temperature control fluid supply passage (not shown), a supply inlet 36 for a coolant W as a temperature control fluid is provided, and at the end thereof, it is located outside toward the side opposite to the center axis X.
  • a first communication path portion 19D communicating with the start end of the second temperature control passage portion 19B is provided.
  • a second communication passage portion communicating with the start end of the third temperature control passage portion 19C located outside toward the side opposite to the center axis X is provided.
  • an outlet 37 for discharging the coolant W is provided at the end of the third temperature control passage 19C.
  • the discharge outlet 37 is connected to a temperature control fluid discharge passage (not shown).
  • the first to third temperature control passage portions 19A, 19B, 19C and the first and second communication passage portions 19C, 19E are formed in a groove shape from a surface opposite to the product cavity 3 by a cutting device 35 such as a ball end. It is formed.
  • the surface 3A of the product cavity is The distance A, which is the depth to the bottom of the temperature control passages 19A, 19B, and 19C, is the same.
  • the first communication passage 19D where the cooling capacity per unit area of the product cavity 3 by the temperature control flow path 19 needs to be reduced, the surface 3A of the product cavity and the first connection The distance B to the bottom of the passage 19D is longer than the distance A.
  • the distance ⁇ is longer than the distance ⁇ ⁇ ⁇ ⁇ also at a portion located near the first communication passage portion 19D.
  • the distance B is also longer than the distance A, and the distance B is longer than the distance A also in a portion of the second temperature control passage portion 19B that is located near the second communication passage portion 19E.
  • the adjustment of the distances A and B is performed during machining by the cutting device 35. That is, the temperature control passage 19 corresponding to the distance B is
  • the temperature control passage 25 has a substantially C-shaped flat surface from the inside to the outside with the center axis X of the product cavity 3 as the center.
  • 1-3 temperature control passages 25A, 25B, 25C are provided concentrically.
  • an inlet 38 for supplying the coolant W is provided, and at the end, A first communication passage portion 25D is provided, which is opposite to the center axis X and communicates with the start end of the second temperature control passage portion 25B.
  • a second communication passage 25E is provided at the end of the second temperature control passage portion 25B toward the side opposite to the central axis X and communicates with the start end of the third temperature control passage 25C.
  • an outlet 39 for discharging the coolant W is provided at the end of the third temperature control passage 25C.
  • the distance A ′ which is the depth between the surface 3B of the product cavity in the core block 24 and the bottom surface of the first to third temperature control passages 25A, 25B, 25C, is Both are the same.
  • the distance B ′ between the surface 3B of the product cavity and the bottom surface of the first communication passage 25D is longer than the distance A.
  • the distance B ′ is longer than the distance A ′ even in a portion of the first temperature control passage portion 25A that is located near the first communication passage portion 25D.
  • the distance B ′ between the surface 3B of the product cavity and the tip of the second communication passage 25E is longer than the distance A ′
  • the second temperature control passage 25B has the second distance B ′.
  • the distance B ′ is longer than the distance A ′ even at a position that is located near the communication passage 25E.
  • the fixed mold 1 and the movable mold 2 are closed, and two product cavities 3 are formed between the fixed mold 1 and the movable mold 2.
  • the abutment ring 26 of the movable die 2 abuts the outer stamper retainer 16 of the fixed die 1 and the positioning frames 14 of the fixed die 1 and the movable die 2 23 are tapered into each other.
  • a molten thermoplastic resin which is a thermoplastic molding material, is injected from an injection molding machine. The resin flows from the nozzle 10 through the cold sprue 12 sequentially, and flows into the product cavity 3 from the gate 34.
  • the receiving part 31 of the gate cut sleeve 29 is pushed toward the fixed mold 1 by a pressing rod (not shown) provided on the injection molding machine side.
  • the sleeve 29 moves to the fixed mold 1 side and fits in the intermediate cylinder 18 of the fixed mold 1.
  • the resin in the product cavity 3 is cooled by the coolant supplied from the supply inlets 36 and 38 passing through the temperature control passages 19 and 25.
  • the temperature control passage 19 is dense and the cooling capacity per unit area of the product cavity 3 is reduced.
  • the distance B between the surface 3A of the product cavity and the tip of the second communication passage 19E is longer than the distance A.
  • the heat conduction distance becomes longer, and as a result, the cooling capacity at the surface 3 A of the product cavity is reduced accordingly, and the cooling capacity becomes almost the same as other parts.
  • the temperature control passage 25 is dense, and the cooling capacity per unit area of the product cavity 3 needs to be reduced.
  • the product cavity In the vicinity of the first and second communication passages 25D and 25E, the product cavity is located.
  • the distance B 'between the surface 3B of the product and the front end of the second communication path 25E is longer than the distance A'.
  • the cooling capacity is reduced, and the cooling capacity is almost the same as other places.
  • the fixed mold 1 and the movable mold 2 are opened. Accordingly, the resin solidified in the molded optical disk and the cold sprue 12 first separates from the fixed mold 1. Next, the ejecting plate 32 is pushed toward the fixed mold 1 by the pushing port (not shown) provided on the injection molding machine side, so that the ejecting pin 30 moves together with the ejecting plate 32 to the fixed mold 1 side. Then, the resin solidified in the cold sprue 12 is protruded and released from the movable mold 2.
  • the protrusion sleeve 28 moves to the fixed mold 1 side, protrudes the inner peripheral portion of the optical disc, and is released from the movable mold 2.
  • the released optical disk is taken out by a take-out robot (not shown). Thereafter, the mold is closed again and the above molding cycle is repeated.
  • the product block 3 is provided between the cavity block 15 and the core block 24 with the cavity block 15 and the cavity block 24 provided facing the cavity block 15.
  • the cooling per unit area of the product cavity 3 by the temperature control flow paths 19 and 25 is performed.
  • the building passages 19D, 19E, 25D, and 25D from the surface 3A and 3B of the product cavity.
  • the temperature on the surfaces 3A and 3B of the product cavity can be made uniform.
  • the temperature control channels 19, 25 are formed by grooves, and the distances A, B, A ', B' are defined by the bottom surfaces of the groove-shaped temperature control channels 19, 25 and the surfaces 3A, 3B of the product cavities.
  • the distances A, B, A ′, and B ′ can be easily set by the cutting device 35 from the surface on the opposite side of the product cavity 3.
  • a plurality of temperature control channels 19 and 25 are formed concentrically with the product cavity 3, and the inner temperature control channels 19A, 19B, 25A and 25B and the outer temperature control channels 19B and 19C. , 25B, 25C, the product cavity surface 3A in the communication passage portions 19D, 19E, 25D, 25E by increasing the distances B, B 'in the communication passage portions 19D, 19E, 25D, 25E. , 3B lowers the cooling effect, raises the temperature, makes the surface temperature uniform, and can mold a precise optical disc.
  • the groove-shaped temperature control flow path 41 provided in the cap 15 has a semicircular shape formed on one surface of the cavity block 15 so as to be concentric with the product cavity 3.
  • the first to third temperature control channels 41A, 41B, and 41C are provided.
  • the other side of the cavity block 15 is provided with semicircular fourth to sixth temperature control channels 41D, 41E, 41F formed concentrically with the product cavity 3. I have it.
  • a cooling liquid supply inlet 42 is connected to the beginning of the first temperature control flow path 41A, and the end of the first temperature control flow path 41A and the second temperature control flow path 41B.
  • Start end, end of second temperature control flow path 41B, start end of third temperature control flow path 41C, end of third temperature control flow path 41C, and fourth temperature control flow path Start end of 41D, end of fourth temperature control channel 41D, start of fifth temperature control channel 41E, start of fifth temperature control channel 41E end of temperature control, and sixth temperature control channel
  • the communication passages 43 are connected to the start end of 41F.
  • a coolant outlet 44 is connected to the end of the sixth temperature control flow path 41F.
  • the outermost third temperature control channel portion 41C and the sixth temperature control channel portion 41F are provided so as to face the outer periphery of the product cavity 3, and
  • the distance C between the bottom surface of the groove forming the flow paths 41C and 41F and the product cavity surface 3A is the other temperature control flow paths 41A, 41B, 41D and 41E.
  • Form The distance between the bottom of the groove and the surface 3A of the product cavity is shorter than D.
  • the temperature control flow path 45 is formed by the first to sixth temperature control flow paths 45A, 45B, 45C, 45D, 45E, and 45F.
  • the third outermost temperature control channel portion 45C and the sixth outermost temperature control channel portion 45F are provided so as to face the outer periphery of the product capital 3.
  • the distance E between the tip of the groove forming the flow passages 45C and 45F of No. 6 and the product cavity surface 3B is the same as that of the other temperature control flow passages 45A, 45B, 45D and 45E of the other first, second, fourth and fifth.
  • the distance between the end of the groove and the product cavity surface 3B is shorter than F.
  • the resin in the product cavity 3 filled in the product cavity 3 is cooled by the coolant passing through the temperature control passages 41 and 45.
  • the heat radiation amount is large on the outer peripheral side of the product cavity 3, and it is necessary to increase the cooling capacity by the coolant.
  • the distances C and E to the product cavity surfaces 3 A and 3 B at the outermost third and sixth temperature control flow passages 41 C, 41 F, 45 C and 45 F are different from other temperature control flow passages.
  • the roads 41A, 41B, 41D, 41E, 45A, 45B, 45D, and 45E are formed shorter than the distances D and F at the roads.
  • the distance from the surface of the product capital 3 to the temperature control flow path becomes shorter on the outer peripheral side of the product capital 3.
  • the heat transfer distance of the coolant on the outer peripheral side of the product cavity 3 is shortened, so that the cooling capacity on the outer peripheral side of the product cavity 3 with a large amount of heat dissipation is relatively increased, and the temperature distribution of the product cavity 3 is reduced. It can be set uniformly.

Abstract

A metal mold device for forming an optical disk capable of uniformizing a metal mold temperature around a product cavity so that the dimensional accuracy of an optical disk can be increased, comprising a cavity block and a core block installed opposedly to the cavity block, wherein the product cavity is formed between the cavity block and the core block, a temperature adjusting flow passage allowing coolant to flow therein is provided in the cavity block and the core block, and a distance from the surface of the product cavity to a communication passage part of the product cavity is increased in the communication passage par for lowering the cooling capacity for each unit area the temperature adjusting flow passage, whereby the cooling capacity can be lowered by increasing a heat conductive distance to optimally adjust the surface temperature of the product cavity.

Description

明 細 書 光ディスク成形用金型装置 発明の背景  Description Optical Disc Molding Device Background of the Invention
1 . 発明の利用分野  1. Field of application of the invention
本発明は、 例えば C D (コンパクトディスク) や D V D (デジタルビデオディ スク) などの光ディスクの光ディスク成形用金型装置に関する。  The present invention relates to a mold device for molding an optical disk such as a CD (compact disk) and a DVD (digital video disk).
2 . 従来技術の記載  2. Description of the prior art
光ディスクは、 その基板が一般的に樹脂により射出成形される。 この成形では、 射出成形機の固定盤および可動盤にそれぞれ取り付けられた固定型および可動型 を閉じて、 固定型および可動型間に製品キヤビティを形成し、 射出成形機のノズ ルから射出された、 成形材料である溶融した熱可塑性樹脂を、 製品キヤビティに 充填し、 所定の低い温度に調節された金型内で製品キヤビティ内の樹脂、 すなわ ち光ディスクが固化した後、 固定型および可動型を開き、 成形された光ディスク を取り出す。 また、 金型内の製品キヤピティを所定の低い温度とするため、 金型 には、 冷却液を通すための温度調節流路が設けられている。  In an optical disk, its substrate is generally injection-molded with resin. In this molding, the fixed mold and the movable mold respectively attached to the fixed plate and the movable plate of the injection molding machine are closed to form a product cavity between the fixed mold and the movable mold, and the product is injected from the nozzle of the injection molding machine. The molten thermoplastic resin, which is the molding material, is filled into the product cavity, and the resin in the product cavity, that is, the optical disk is solidified in a mold adjusted to a predetermined low temperature, that is, the fixed mold and the movable mold. Open and take out the molded optical disk. In addition, the mold is provided with a temperature control flow path through which a cooling liquid is passed, in order to keep the product capacity in the mold at a predetermined low temperature.
ところで、 光ディスクの成形においては、 高い寸法精度が要求されるが、 上述 のように、 成形時には、 溶融させた樹脂を製品キヤビティに射出して高速充填し、 冷却液により所定の低い温度に調節された金型により冷却、 固化させるため、 冷 却途中の樹脂の収縮等によって、 厚みを正確に維持することができなくなる可能 性がある。 これは、 従来の金型装置では温度調節流路と製品キヤビティの表面と の距離がすべて同一に形成されているため、 製品キヤビティの表面における温度 管理が不十分となる可能性があり、 その結果、 製品キヤビティの表面で温度分布 が不均一となることに起因する。 このような金型装置において、 例えば温度調節 流路が密になる箇所では、 製品キヤビティの単位面積当たりの冷却能力が平均よ り高くなるため、 製品キヤビティの単位面積当たりの冷却能力を低くする必要が ある。 一方、 温度調節流路が疎となる箇所では、 製品キヤビティの単位面積当た りの冷却能力が平均より低くなるため、 製品キヤビティの単位面積当たりの冷却 能力を高くする必要がある。 そして、 このような、 金型温度が不均一になる箇所 における温度調節の改善が要望されている。 By the way, high dimensional accuracy is required in optical disk molding, but as mentioned above, during molding, molten resin is injected into product cavities, filled at high speed, and adjusted to a predetermined low temperature by a coolant. Since the mold is cooled and solidified by the mold, the thickness may not be able to be accurately maintained due to shrinkage of the resin during the cooling. This is because the temperature control channel and the surface of the product cavity are all formed at the same distance in the conventional mold device, and the temperature control on the surface of the product cavity may be insufficient. This is due to uneven temperature distribution on the surface of the product cavity. In such a mold device, the cooling capacity per unit area of the product cavity is higher than the average, for example, in places where the temperature control flow path is dense, so it is necessary to lower the cooling capacity per unit area of the product cavity. There is. On the other hand, in locations where the temperature control flow path is sparse, the cooling capacity per unit area of the product cavity is lower than the average, so cooling per unit area of the product cavity You need to increase your ability. There is a need for improved temperature control in such locations where the mold temperature is not uniform.
本発明は、 このような問題点を解決しょうとするもので、 製品キヤビティの周 囲における金型温度を最適にすることができ、 その結果、 光ディスクの寸法精度 等を向上させることが可能な光ディスク成形用金型装置を提供することを目的と する。 発明の要約  The present invention is intended to solve such a problem, and it is possible to optimize a mold temperature around a product cavity, and as a result, to improve an optical disc's dimensional accuracy and the like. An object is to provide a molding die apparatus. Summary of the Invention
本発明は、 固定型と固定型に対向して設けた可動型とを備える型体を有し、 こ れら固定型と可動型間に製品キヤビティを形成すると共に、 この型体に、 冷却液 を流す温度調節流路を設けた光ディスク成形用金型装置において、 温度調節流路 による製品キヤビティの単位面積当たりの冷却能力を低くする箇所では製品キヤ ビティの表面から温度調節流路までの距離を長くし、 または温度調節流路による 製品キヤビティの単位面積当たりの冷却能力を高くする箇所では製品キヤピティ の表面から温度調節流路までの距離を短く形成したことを特徴とする。  The present invention has a mold having a fixed mold and a movable mold provided to face the fixed mold, and a product cavity is formed between the fixed mold and the movable mold. In a mold device for molding optical discs with a temperature control flow path through which heat flows, the distance from the surface of the product cavity to the temperature control flow path should be reduced at locations where the cooling capacity per unit area of the product cavity by the temperature control flow path is reduced. It is characterized in that the distance from the surface of the product capital to the temperature control channel is shortened where it is longer or where the cooling capacity per unit area of the product cavity by the temperature control channel is increased.
この構成によれば、 温度調節流路による製品キヤビティの単位面積当たりの冷 却能力を高くする箇所や低くする箇所の冷却能力を調節して、 製品キヤビティの 温度分布を最適とし、 光ディスクの寸法精度等を向上させることができる。  This configuration optimizes the temperature distribution of the product cavity by adjusting the cooling capacity of the location where the cooling capacity per unit area of the product cavity is increased or decreased by the temperature control flow path, and the dimensional accuracy of the optical disc Etc. can be improved.
ここで、 望ましくは、 温度調節流路を溝状に形成し、 前記距離を、 溝状をなす 温度調節流路の底面と製品キヤビティの表面との間の距離とする。  Here, preferably, the temperature control flow path is formed in a groove shape, and the distance is a distance between the bottom surface of the groove-shaped temperature control flow path and the surface of the product cavity.
この構成によれば、 溝状をなす温度調節流路に冷却液を流すことにより金型が 冷却される。 また、 温度調節流路が溝状なので、 前記距離を容易に、 しかも正確 に設定することができる。  According to this configuration, the mold is cooled by flowing the coolant through the groove-shaped temperature control flow path. In addition, since the temperature control channel is groove-shaped, the distance can be easily and accurately set.
• また、 さらに望ましくは、 温度調節流路を製品キヤビティと同心円状をなす ように複数形成すると共に、 内側に位置する温度調節流路部と外側に位置する温 度調節流路部を連通する連通路部において、 前記距離を長くする。  • More preferably, a plurality of temperature control flow paths are formed so as to be concentric with the product cavity, and a communication path connecting the temperature control flow path part located inside and the temperature control flow path part located outside is formed. In the passage section, the distance is increased.
この構成によれば、 単位面積当たりの冷却能力を低くすべき箇所である連通路 部において、 製品キヤビティの表面から温度調節流路までの距離が長くなる。 そ の結果、 連通路部における過度な冷却による弊害を解決することができる。 また、 さらに望ましくは、 製品キヤビティの外周側において、 前記距離を短く する。 According to this configuration, the distance from the surface of the product cavity to the temperature control flow path is long in the communication path portion where the cooling capacity per unit area is to be reduced. As a result, the adverse effect caused by excessive cooling in the communication path can be solved. More preferably, the distance is shortened on the outer peripheral side of the product cavity.
この構成によれば、 放熱量の多い箇所である製品キヤピティの外周側において、 製品キヤビティの表面から温度調節流路までの距離が短くなる。 その結果、 放熱 量の多い製品キヤビティにおける温度分布を均一に設定することができる。 図面の簡単な説明  According to this configuration, the distance from the surface of the product cavity to the temperature control flow path becomes shorter on the outer peripheral side of the product capital, which is a place where a large amount of heat is radiated. As a result, the temperature distribution in the product cavity with a large heat dissipation can be set uniformly. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施例を示す、 光ディスク成形用金型装置の断面図であ る。  FIG. 1 is a cross-sectional view of a mold device for molding an optical disc, showing a first embodiment of the present invention.
図 2は、 図 1に示す光ディスク成形用金型装置の要部の平面図である。  FIG. 2 is a plan view of a main part of the optical disk molding die apparatus shown in FIG.
図 3は、 図 1に示す光ディスク成形用金型装置の温度調節流路部を展開した状 態の断面図である。  FIG. 3 is a cross-sectional view of the optical disk molding die apparatus shown in FIG.
図 4は、 本発明の第 2実施例を示す、 光ディスク成形用金型装置の断面図であ る。  FIG. 4 is a sectional view of a mold device for molding an optical disk, showing a second embodiment of the present invention.
図 5は、 図 4に示す光ディスク成形用金型装置の要部の平面図である。 好ましい実施様態  FIG. 5 is a plan view of a main part of the optical disk molding die device shown in FIG. Preferred embodiment
以下、 本発明の実施形態を添付図を参照して説明する。 図 1〜3は本発明の第 1実施例を示しており、 図 1において、 1は固定型、 2は可動型で、 型体である これら固定型 1および可動型 2は、 互いに図示上下方向 (開閉方向) に移動して 開閉し、 型体を閉じた際に、 光ディスクを形成する製品キヤビティ 3を相互間に 2つ形成する。  Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. 1 to 3 show a first embodiment of the present invention. In FIG. 1, reference numeral 1 denotes a fixed type, 2 denotes a movable type, and a mold body. The fixed type 1 and the movable type 2 (Opening / closing direction) to open and close, and when the mold is closed, two product cavities 3 forming an optical disc are formed between each other.
固定型 1は、 基体としての固定側型板 4と、 この固定側型板 4における可動型 2と反対側の面 (図示上側の面) に固定された、 基体として作用する固定側受け 板 5とを備えている。 また、 前記固定側受け板 5には、 製品キヤビティ 3にそれ ぞれ対応するコールドスプルーブッシュ 6が固定されている。 このコールドスプ ルーブッシュ 6の頭部 7は、 固定側受け板 5に形成された凹部 8内に嵌合し、 固 定側型板 4側に筒状の突出部 9を有しており、 この突出部 9は、 固定側受け板 5 からさらに固定側型板 4を貫通している。 また、 コールドスプル一ブッシュ 6の 頭部 7には、 原料供給ノズル 10が設けられている。 さらに、 コールドスプルーブ ッシュ 6内には、 頭部 7の原料供給ノズル 10が接続する底面から突出部 9の先端 面に至る材料通路である、 コールドスプル一 1 2が形成されている。 このコールド スプルー 1 2は、 製品キヤビティ 3側へ向かって径の大きくなるテーパー状をなし、 製品キヤビティ 3に連通している。 13は、 頭部 7に形成され、 原料供給ノズル 10 が揷入される凹部である。 The fixed mold 1 includes a fixed-side mold plate 4 as a base, and a fixed-side receiving plate 5 fixed to a surface of the fixed-side mold plate 4 opposite to the movable mold 2 (upper surface in the drawing) and acting as a base. And Further, cold sprue bushes 6 corresponding to the product cavities 3 are fixed to the fixed-side receiving plate 5. The head 7 of the cold sprue bush 6 fits into a recess 8 formed in the fixed-side receiving plate 5 and has a cylindrical projection 9 on the fixed-side mold plate 4 side. The part 9 extends from the stationary receiving plate 5 to the stationary template 4 further. Also, cold spruce bush 6 The head 7 is provided with a material supply nozzle 10. Further, a cold sprue 112 is formed in the cold sprue bush 6, which is a material passage from the bottom surface of the head 7 to which the raw material supply nozzle 10 is connected to the tip end surface of the protrusion 9. The cold sprue 12 has a tapered shape whose diameter increases toward the product cavity 3, and communicates with the product cavity 3. Reference numeral 13 denotes a recess formed in the head 7 and into which the raw material supply nozzle 10 is inserted.
固定側型板 4は、 固定側受け板 5における可動型 2側の面に固定された位置決 め枠 14と、 この位置決め枠 14の内側に嵌合された、 キヤピティ形成部材として作 用するキヤビティブロック 15とから構成されている。 キヤビティブロック 15は、 製品キヤピティ 3を形成するもので、 キヤビティブロック 1 5の外周部には、 環状 をなす外周スタンパー押え 1 6が着脱可能に取り付けられており、 キヤビティプロ ック 15の内周部には、 筒状をなす内周スタンパー押え 1 7が着脱可能に取り付けら れている。 これらスタンパー押え 1 6, Πは、 光ディスクのグループ部やランド部 を形成するスタンパ一をキヤビティブロック 1 5に着脱可能に保持するためのもの である。 また、 キヤビティブロック 1 5を貫通する内周スタンパ一押え 1 7内には、 中間筒 18が嵌合され、 この中間筒 1 8内に、 前記コールドスプル一ブッシュ 6の突 出部 9が嵌合している。 また、 内周スタンパー押え 1 7および中間筒 18は、 製品キ ャビティ 3の一部を形成する。 さらに、 キヤビティブロック 1 5内には、 水を始め とする冷却液 (温度調節用流体) を通すための温度調節通路 1 9が形成されている。 可動型 2は、 射出成形機の固定側プラテンに取り付けられる可動側取り付け板 20と、 この可動側取り付け板 20における固定型 1側の面に固定された可動側受け 板 21と、 この可動側受け板 21における固定型 1側の面に固定された可動側型板 22 とを備えている。 この可動側型板 22は、 可動側受け板 21における固定型 1側の面 に固定された位置決め枠 23と、 位置決め枠 23の内側に嵌合された、 キヤビティ形 成部材として作用するコアブロック 24とから構成される。 コアブロック 24は、 前 記製品キヤビティ 3をそれぞれ形成し、 位置決め枠 23は、 固定型 1の位置決め枠 にテ一パー嵌合する。 また、 コアブロック 24内には、 上記冷却液を通すための 温度調節通路 25が形成されている。  The fixed mold plate 4 includes a positioning frame 14 fixed to the surface of the fixed mold plate 2 on the movable mold 2 side, and a cap that is fitted inside the positioning frame 14 and serves as a capty forming member. It is composed of a Viti block 15. The cavity block 15 forms the product capacities 3, and an annular outer stamper retainer 16 is detachably attached to the outer periphery of the cavity block 15, and the inner periphery of the cavity block 15 is formed. A cylindrical inner stamper retainer 17 is detachably attached to the portion. These stamper retainers 16 and Π are used to detachably hold the stampers forming the optical disk group and land on the cavity block 15. An intermediate cylinder 18 is fitted into the inner stamper retainer 17 penetrating the cavity block 15, and the projecting portion 9 of the cold sprue bush 6 is fitted into the intermediate cylinder 18. I agree. The inner peripheral stamper retainer 17 and the intermediate cylinder 18 form a part of the product cavity 3. Further, a temperature control passage 19 through which coolant such as water (temperature control fluid) passes is formed in the cavity block 15. The movable die 2 includes a movable mounting plate 20 mounted on a fixed platen of the injection molding machine, a movable receiving plate 21 fixed to a surface of the movable mounting plate 20 on the fixed die 1 side, and a movable receiving plate 21. A movable mold plate 22 fixed to the surface of the plate 21 on the fixed mold 1 side. The movable-side mold plate 22 includes a positioning frame 23 fixed to the surface of the movable-side receiving plate 21 on the fixed mold 1 side, and a core block 24 fitted inside the positioning frame 23 and acting as a cavity forming member. It is composed of The core blocks 24 form the above-mentioned product cavities 3, respectively, and the positioning frame 23 is tapered into the positioning frame of the fixed mold 1. In the core block 24, a temperature control passage 25 for passing the cooling liquid is formed.
コアブロ ク 24の外周部には、 突き当てリング 26が嵌合されている。 この突き 当てリング 26は、 型体を閉じた際に固定型 1側の外周スタンパ一押え 16に突き当 たり、 製品キヤビティ 3の外周面を形成するものである。 An abutment ring 26 is fitted around the outer periphery of the core block 24. This thrust The contact ring 26 abuts the outer stamper holder 16 on the fixed mold 1 side when the mold is closed, and forms the outer peripheral surface of the product cavity 3.
また、 コアブロック 24の内周部には、 筒状をなすエア吹き出し入子 27が貫通状 態で固定され、 エア吹き出し入子 27の内周側には、 筒状をなす突き出しスリーブ 28が、 型体の開閉方向に沿って所定の範囲だけ摺動自在に嵌合されている。 突き 出しスリーブ 28の内周側には、 筒状をなすゲートカットスリーブ 29が、 型体の開 閉方向に沿って所定の範囲だけ摺動自在に嵌合され、 ゲートカツトスリーブ 29内 には、 突き出しピン 30が、 型体の開閉方向に沿って所定の範囲だけ摺動自在に嵌 合されている。 また、 突き出しスリーブ 28およびゲートカットスリーブ 29は、 そ れぞれ固定型 1と反対側へ付勢されている。  Further, a cylindrical air outlet / inlet 27 is fixed to the inner peripheral portion of the core block 24 in a penetrating state, and a cylindrical protruding sleeve 28 is provided on the inner peripheral side of the air outlet / inlet 27. It is slidably fitted within a predetermined range along the opening and closing direction of the mold. A cylindrical gate cut sleeve 29 is slidably fitted to the inner peripheral side of the protruding sleeve 28 within a predetermined range along the opening / closing direction of the mold, and inside the gate cut sleeve 29, The protruding pin 30 is slidably fitted in a predetermined range along the opening and closing direction of the mold. The protruding sleeve 28 and the gate cut sleeve 29 are respectively urged to the opposite sides of the fixed mold 1.
ゲートカツトスリーブ 29には、 可動側取り付け板 20を貫通する受け部 31が突設 されている。 この受け部 31が、 射出成形機に設けられた押圧ロッド (図示してい ない) によって押されることにより、 ゲートカットスリーブ 29が、 固定型 1側へ 移動する。 また、 突き出しピン 30は、 可動側取り付け板 20内に設けられた突き出 し板 32に固定されている。 この突き出し板 32が、 射出成形機に設けられた別の押 圧ロッド' (図示していない) によって押されることにより、 突き出しピン 30が、 固定型 1側へ移動する。 さらに、 突き出し板 32に固定された連動ピン (図示して いない) が突き出しスリーブ 28を押すことにより、 突き出しスリーブ 28が、 固定 型 1側へ移動する。  The gate cut sleeve 29 has a receiving portion 31 protruding from the movable-side mounting plate 20. When the receiving portion 31 is pressed by a pressing rod (not shown) provided in the injection molding machine, the gate cut sleeve 29 moves to the fixed mold 1 side. The protruding pin 30 is fixed to a protruding plate 32 provided in the movable-side mounting plate 20. When the ejection plate 32 is pushed by another pushing rod '(not shown) provided in the injection molding machine, the ejection pin 30 moves to the fixed mold 1 side. Further, an interlocking pin (not shown) fixed to the protruding plate 32 pushes the protruding sleeve 28, so that the protruding sleeve 28 moves to the fixed mold 1 side.
そして、 ゲートカットスリーブ 29は、 固定型 1の中間筒 1 8内に挿脱自在に嵌合 され、 光ディスクの中央に位置する開口孔を形成する。 したがって、 ゲートカツ トスリーブ 29の外周側に位置する突き出しスリーブ 28およびエア吹き出し入子 27 は、 製品キヤピティ 3の一部を形成する。 また、 固定型 1側のコールドスプル一 ブッシュ 6に設けられた突出部 9の先端面外周部と、 可動型 2側のゲートカツト スリーブ 29の先端面外周部との間には、 固定型 1側のコールドスプル一 1 2を製品 キヤビティ 3に連通させるゲート 34が形成される。  The gate cut sleeve 29 is removably fitted in the intermediate cylinder 18 of the fixed mold 1 to form an opening located at the center of the optical disc. Therefore, the protruding sleeve 28 and the air blowing insert 27 located on the outer peripheral side of the gate cut sleeve 29 form a part of the product capital 3. Also, between the outer peripheral portion of the distal end surface of the protrusion 9 provided on the cold sprue bush 6 on the fixed die 1 side and the outer peripheral portion of the distal end surface of the gate cut sleeve 29 on the movable die 2 side, A gate 34 is formed to allow the cold sprue 1 1 2 to communicate with the product cavity 3.
温度調節通路 1 9には、 製品キヤビティ 3の中心軸線 Xを中心として、 平面がほ ぼ C字型をなし、 かつ直径が次第に大きくなる第 1〜 3の温度調節通路部 19 A , 1 9 B , 1 9 Cが同心円状に設けられている。 第 1の温度調節通路部 1 9 Aの始端には、 温度調節用流体供給路 (図示せず) を介して、 温度調節用流体である冷却液 Wの 供給用入口 36が設けられ、 終端には、 中心軸線 Xと反対側に向かって外側に位置 する第 2の温度調節通路部 19 Bの始端と連通する、 第 1の連通路部 19Dが設けら れている。 さらに、 第 2の温度調節通路部 19 Bの終端には、 中心軸線 Xと反対側 に向かって外側に位置する第 3の温度調節通路部 19 Cの始端と連通する、 第 2の 連通路部 19Eが設けられると共に、 第 3の温度調節通路部 19Cの終端には、 冷却 液 Wの排出用出口 37が設けられている。 また、 排出用出口 37は、 温度調節用流体 排出路 (図示せず) に接続されている。 これら第 1〜3の温度調節通路部 19A, 19B, 19C及び第 1、 2の連通路部 19C, 19Eは、 製品キヤビティ 3と反対の面 から、 ボールエンドなどの切削装置 35により、 溝状に形成される。 The temperature control passages 19A, 19B have first to third temperature control passages 19A and 19B, each of which has a substantially C-shaped plane centered on the center axis X of the product cavity 3 and gradually increases in diameter. , 19 C are provided concentrically. At the beginning of the first temperature control passage 19 A, Through a temperature control fluid supply passage (not shown), a supply inlet 36 for a coolant W as a temperature control fluid is provided, and at the end thereof, it is located outside toward the side opposite to the center axis X. A first communication path portion 19D communicating with the start end of the second temperature control passage portion 19B is provided. Further, at the end of the second temperature control passage portion 19B, a second communication passage portion communicating with the start end of the third temperature control passage portion 19C located outside toward the side opposite to the center axis X is provided. In addition to the outlet 19E, an outlet 37 for discharging the coolant W is provided at the end of the third temperature control passage 19C. The discharge outlet 37 is connected to a temperature control fluid discharge passage (not shown). The first to third temperature control passage portions 19A, 19B, 19C and the first and second communication passage portions 19C, 19E are formed in a groove shape from a surface opposite to the product cavity 3 by a cutting device 35 such as a ball end. It is formed.
そして、 キヤビティブロック 15における製品キヤビティ 3の単位面積当たりの 冷却能力が平均的な箇所である、 第 1〜3の温度調節通路部 19A, 19B, 19Cで は、 製品キヤビティの表面 3 Aとこれら温度調節通路部 19A, 19B, 19Cの底面 までの深さである距離 Aが、 いずれも同一となっている。 一方、 温度調節流路 19 による製品キヤビティ 3の単位面積当たりの冷却能力を低くすることが必要な箇 所である、 第 1の連通路部 19Dでは、 製品キヤビティの表面 3 Aと第 1の連通路 部 19Dの底面までの距離 Bが、 前記距離 Aより長くなる。 なお、 第 1の温度調節 通路部 ί9Αのうち、 第 1の連通路部 19Dの近傍に位置する部位においても、 距離 Βが距離 Αより長くなる。 同様に、 温度調節流路 19による製品キヤピティ 3の単 位面積当たりの冷却能力を低くすることが必要な箇所である、 製品キヤビティ表 面 3 Aと第 2の連通路部 19 Eの底面までの距離 Bも、 前記距離 Aより長くなり、 また、 第 2の温度調節通路部 19Bのうち、 第 2の連通路部 19Eの近傍に位置する 部位においても、 距離 Bが距離 Aより長くなる。 距離 A, Bの調節は切削装置 35 による加工の際に行われる。 すなわち、 距離 Bに対応する温度調節通路 19は、 図 In the first to third temperature control passages 19A, 19B, and 19C, where the cooling capacity per unit area of the product cavity 3 in the cavity block 15 is an average, the surface 3A of the product cavity is The distance A, which is the depth to the bottom of the temperature control passages 19A, 19B, and 19C, is the same. On the other hand, in the first communication passage 19D, where the cooling capacity per unit area of the product cavity 3 by the temperature control flow path 19 needs to be reduced, the surface 3A of the product cavity and the first connection The distance B to the bottom of the passage 19D is longer than the distance A. Note that, of the first temperature control passage portion {9}, the distance Β is longer than the distance に お い て also at a portion located near the first communication passage portion 19D. Similarly, it is necessary to lower the cooling capacity per unit area of the product capacities 3 by the temperature control flow passages 19, between the product cavity surface 3A and the bottom surface of the second communication passage 19E. The distance B is also longer than the distance A, and the distance B is longer than the distance A also in a portion of the second temperature control passage portion 19B that is located near the second communication passage portion 19E. The adjustment of the distances A and B is performed during machining by the cutting device 35. That is, the temperature control passage 19 corresponding to the distance B is
2, 3において矢印 L, L 'で示された範囲となる。 The range indicated by arrows L and L 'in 2 and 3 is obtained.
コアブロック 24においても、 同様に、 温度調節通路 25には、 製品キヤビティ 3 の中心軸線 Xを中心として、 内側から外側へ向け、 平面がほぼ C字型をなす、 第 Similarly, in the core block 24, the temperature control passage 25 has a substantially C-shaped flat surface from the inside to the outside with the center axis X of the product cavity 3 as the center.
1〜3の温度調節通路部 25A, 25B, 25Cが同心円状に設けられている。 第 1の 温度調節通路部 25Aの始端には、 冷却液 Wの供給用入口 38が設けられ、 終端には、 中心軸線 Xと反対側に向かい、 第 2の温度調節通路部 25 Bの始端と連通する、 第 1の連通路部 25 Dが設けられる。 さらに、 第 2の温度調節通路部 25 Bの終端に中 心軸線 Xと反対側に向かい、 第 3の温度調節通路 25 Cの始端と連通する、 第 2の 連通路 25 Eが設けられると共に、 第 3の温度調節通路部 25 Cの終端には、 冷却液 Wの排出用出口 39が設けられている。 また、 コアブロック 24における製品キヤビ ティの表面 3 Bと第 1 ~ 3の温度調節通路部 25 A , 25 B , 25 Cとの底面までのそ れぞれの深さである距離 A 'は、 いずれも同一となっている。 一方、 製品キヤビ ティの表面 3 Bと、 第 1の連通路部 25 Dの底面までの距離 B 'は、 前記距離 Aよ り長くなる。 なお、 第 1の温度調節通路部 25Aのうち、 第 1の連通路部 25 Dの近 傍に位置する部位においても、 距離 B 'は距離 A 'より長くなる。 同様に、 製品 キヤビティの表面 3 Bと第 2の連通路部 25 Eの先端までの距離 B 'は、 前記距離 A 'より長くなり、 第 2の温度調節通路部 25 Bのうち、 第 2の連通路部 25 Eの近 傍も位置する部位においても、 距離 B 'は距離 A 'より長くなる。 1-3 temperature control passages 25A, 25B, 25C are provided concentrically. At the beginning of the first temperature control passage 25A, an inlet 38 for supplying the coolant W is provided, and at the end, A first communication passage portion 25D is provided, which is opposite to the center axis X and communicates with the start end of the second temperature control passage portion 25B. Further, a second communication passage 25E is provided at the end of the second temperature control passage portion 25B toward the side opposite to the central axis X and communicates with the start end of the third temperature control passage 25C. At the end of the third temperature control passage 25C, an outlet 39 for discharging the coolant W is provided. The distance A ′, which is the depth between the surface 3B of the product cavity in the core block 24 and the bottom surface of the first to third temperature control passages 25A, 25B, 25C, is Both are the same. On the other hand, the distance B ′ between the surface 3B of the product cavity and the bottom surface of the first communication passage 25D is longer than the distance A. The distance B ′ is longer than the distance A ′ even in a portion of the first temperature control passage portion 25A that is located near the first communication passage portion 25D. Similarly, the distance B ′ between the surface 3B of the product cavity and the tip of the second communication passage 25E is longer than the distance A ′, and the second temperature control passage 25B has the second distance B ′. The distance B ′ is longer than the distance A ′ even at a position that is located near the communication passage 25E.
つぎに、 前記金型装置を用いた光ディスクの成形方法について説明する。 成形 時には、 まず固定型 1と可動型 2とを閉じ、 これら固定型 1および可動型 2間に 2つの製品キヤビティ 3を形成する。 なお、 このように型体を閉じた状態で、 可 動型 2の突き当てリング 26が、 固定型 1の外周スタンパー押え 1 6に突き当たり、 また、 固定型 1および可動型 2の位置決め枠 14, 23が、 相互にテーパー嵌合する。 そして、 射出成形機から熱可塑性の成形材料である溶融した熱可塑性樹脂を射出 する。 この樹脂は、 ノズル 10から、 コールドスプル一 12を順次通って、 ゲ一ト 34 から製品キヤビティ 3内にそれぞれ流入する。  Next, a method of molding an optical disk using the mold apparatus will be described. At the time of molding, first, the fixed mold 1 and the movable mold 2 are closed, and two product cavities 3 are formed between the fixed mold 1 and the movable mold 2. With the mold closed, the abutment ring 26 of the movable die 2 abuts the outer stamper retainer 16 of the fixed die 1 and the positioning frames 14 of the fixed die 1 and the movable die 2 23 are tapered into each other. Then, a molten thermoplastic resin, which is a thermoplastic molding material, is injected from an injection molding machine. The resin flows from the nozzle 10 through the cold sprue 12 sequentially, and flows into the product cavity 3 from the gate 34.
製品キヤビティ 3内に樹脂が充填された後、 射出成形機側に設けられた図示し ていない押圧ロッドによってゲートカツトスリーブ 29の受け部 31が固定型 1の方 へ押され、 その結果、 ゲートカットスリーブ 29が固定型 1側へ移動し、 固定型 1 の中間筒 18内に嵌合する。 これにより、 ゲート 34において、 コールドスプル一 12 内の樹脂と製品キヤビティ 3内の樹脂すなわち光ディスクとが切断される。  After the resin is filled into the product cavity 3, the receiving part 31 of the gate cut sleeve 29 is pushed toward the fixed mold 1 by a pressing rod (not shown) provided on the injection molding machine side. The sleeve 29 moves to the fixed mold 1 side and fits in the intermediate cylinder 18 of the fixed mold 1. Thereby, at the gate 34, the resin in the cold sprue 12 and the resin in the product cavity 3, that is, the optical disk are cut.
また、 製品キヤビティ 3内の樹脂は、 供給用入口 36, 38から供給された冷却液 が温度調節通路 19, 25内を通ることにより冷却される。 この際に、 温度調節通路 19が密となっており、 製品キヤビティ 3の単位面積当たりの冷却能力を低くする 必要がある第 1, 2の連通路部 1 9 D , 19 Eの近傍では、 製品キヤビティの表面 3 Aと第 2の連通路部 1 9 Eの先端までの距離 Bを前記距離 Aより長くしたことによ り、 熱伝導距離が長くなる結果、 製品キヤビティの表面 3 Aにおける冷却能力が それだけ低下し、 他の箇所とほぼ同じ冷却能力となる。 同様に、 温度調節通路 25 が密となっており、 製品キヤビティ 3の単位面積当たりの冷却能力を低くする必 要がある第 1, 2の連通路部 25 D, 25 Eの近傍では、 製品キヤビティの表面 3 B と第 2の連通部路 25 Eの先端までの距離 B 'を前記距離 A 'より長くしたことに より、 熱伝導距離が長くなる結果、 製品キヤビティ表面 3 Bにおける冷却能力が それだけ低下し、 他の箇所とほぼ同じ冷却能力となる。 In addition, the resin in the product cavity 3 is cooled by the coolant supplied from the supply inlets 36 and 38 passing through the temperature control passages 19 and 25. At this time, the temperature control passage 19 is dense and the cooling capacity per unit area of the product cavity 3 is reduced. In the vicinity of the required first and second communication passages 19D and 19E, the distance B between the surface 3A of the product cavity and the tip of the second communication passage 19E is longer than the distance A. As a result, the heat conduction distance becomes longer, and as a result, the cooling capacity at the surface 3 A of the product cavity is reduced accordingly, and the cooling capacity becomes almost the same as other parts. Similarly, the temperature control passage 25 is dense, and the cooling capacity per unit area of the product cavity 3 needs to be reduced. In the vicinity of the first and second communication passages 25D and 25E, the product cavity is located. The distance B 'between the surface 3B of the product and the front end of the second communication path 25E is longer than the distance A'. The cooling capacity is reduced, and the cooling capacity is almost the same as other places.
そして、 製品キヤビティ 3内の樹脂が冷却して固化した後、 固定型 1と可動型 2とを開く。 それに伴い、 成形された光ディスクおよびコールドスプル一 12内で 固化した樹脂は、 まず固定型 1から離れる。 次に、 射出成形機側に設けられた図 示していない押圧口ッドによって突き出し板 32が固定型 1の方へ押されることに より、 突き出し板 32とともに突き出しピン 30が固定型 1側へ移動し、 コールドス プル一 12内で固化した樹脂を突き出して、 可動型 2から離型させる。 また、 突き 出し板 32に連動して、 突き出しスリーブ 28が固定型 1側へ移動し、 光ディスクの 内周部を突き出して、 可動型 2から離型させる。 離型した光ディスクは、 図示し ていない取り出しロボッ トにより取り出される。 その後、 再び型体を閉じ、 上記 の成形サイクルが繰り返される。  After the resin in the product cavity 3 has cooled and solidified, the fixed mold 1 and the movable mold 2 are opened. Accordingly, the resin solidified in the molded optical disk and the cold sprue 12 first separates from the fixed mold 1. Next, the ejecting plate 32 is pushed toward the fixed mold 1 by the pushing port (not shown) provided on the injection molding machine side, so that the ejecting pin 30 moves together with the ejecting plate 32 to the fixed mold 1 side. Then, the resin solidified in the cold sprue 12 is protruded and released from the movable mold 2. Further, in conjunction with the protrusion plate 32, the protrusion sleeve 28 moves to the fixed mold 1 side, protrudes the inner peripheral portion of the optical disc, and is released from the movable mold 2. The released optical disk is taken out by a take-out robot (not shown). Thereafter, the mold is closed again and the above molding cycle is repeated.
本実施例の構成によれば、 キヤビティブロック 15とキヤビティブロック 15に対 向して設けた 24とを備え、 これらキヤビティブロック 15とコアブロック 24間に製 品キヤピティ 3を形成すると共に、 前記キヤビティブロック 15、 コアプロック 24 に冷却液 Wを流す温度調節流路 19, 25を設けた光ディスク成形用金型装置におい て、 温度調節流路 19, 25による製品キヤビティ 3の単位面積当たりの冷却能力を 低くすることが必要な箇所である連通路部 19 D, 19 E , 25 D , 25 Eでは、 製品キ ャビティ表面の 3 A , 3 Bから建通路部 19 D, 19 E , 25 D , 25 Eまでの距離 B , B 'を長くすることにより、 熱伝導距離を長くして、 その冷却能力を低下させて いる。 その結果、 製品キヤビティの表面 3 A, 3 Bにおける温度を均一にするこ とができる。 さらに、 温度調節流路 19, 25が溝により形成され、 前記距離 A, B, A ' , B 'が、 溝状の温度調節流路 19, 25の底面と製品キヤビティの表面 3 A, 3 Bとの 閒の距離として設定されるため、 前記距離 A, B, A ' , B ' を、 切削装置 35に より、 製品キヤビティ 3の反対側の面から容易に設定することができる。 According to the configuration of the present embodiment, the product block 3 is provided between the cavity block 15 and the core block 24 with the cavity block 15 and the cavity block 24 provided facing the cavity block 15. In the optical disk molding apparatus provided with the temperature control flow paths 19 and 25 through which the cooling liquid W flows through the cavity block 15 and the core block 24, the cooling per unit area of the product cavity 3 by the temperature control flow paths 19 and 25 is performed. In the communication passages 19D, 19E, 25D, and 25E, where the capacity needs to be reduced, the building passages 19D, 19E, 25D, and 25D, from the surface 3A and 3B of the product cavity. By increasing the distances B and B 'up to 25E, the heat conduction distance is lengthened and the cooling capacity is reduced. As a result, the temperature on the surfaces 3A and 3B of the product cavity can be made uniform. Further, the temperature control channels 19, 25 are formed by grooves, and the distances A, B, A ', B' are defined by the bottom surfaces of the groove-shaped temperature control channels 19, 25 and the surfaces 3A, 3B of the product cavities. The distances A, B, A ′, and B ′ can be easily set by the cutting device 35 from the surface on the opposite side of the product cavity 3.
また、 温度調節流路 19, 25が、 製品キヤビティ 3と同心円状に複数形成される と共に、 内側の温度調節流路部 19A, 19B, 25A, 25 Bと外側の温度調節流路部 19B, 19C, 25B, 25 Cとを連通する連通路部 19D , 19E, 25D, 25Eにおける 前記距離 B, B ' を長くすることにより、 連通路部 19D, 19E, 25D, 25Eにお ける製品キヤビティ表面 3 A, 3 Bの冷却作用を低下させて温度を上げ、 表面温 度を均一化して、 精密な光ディスクを成形することができる。  A plurality of temperature control channels 19 and 25 are formed concentrically with the product cavity 3, and the inner temperature control channels 19A, 19B, 25A and 25B and the outer temperature control channels 19B and 19C. , 25B, 25C, the product cavity surface 3A in the communication passage portions 19D, 19E, 25D, 25E by increasing the distances B, B 'in the communication passage portions 19D, 19E, 25D, 25E. , 3B lowers the cooling effect, raises the temperature, makes the surface temperature uniform, and can mold a precise optical disc.
次に、 本発明の第 2実施例を図 4, 5を参照して説明する。 なお、 前記第 1実 施例と同一部分には同一符号を付し、 その詳細な説明を省略する。 キヤピティブ 口ック 15に設けられた溝状の温度調節流路部 41は、 キヤビティブロック 15の一方 の面に、 製品キヤビティ 3と同心円状をなすように形成された、 それぞれ半円孤 状をなす第 1〜3の温度調節流路部 41 A, 41B, 41 Cを備えている。 一方、 キヤ ビティブロック 15の他方の面には、 製品キヤビティ 3と同心円状をなすように形 成された、 半円孤状をなす第 4〜6の温度調節流路部 41D, 41E, 41Fを備えて いる。 第 1の温度調節流路部 41 Aの始端には、 冷却液の供給用入口 42が接続され、 第 1の温度調節流路部 41 Aの終端と第 2の温度調節流路部 41 Bの始端、 第 2の温 度調節流路部 41 Bの終端と第 3の温度調節流路部 41 Cの始端、 第 3の温度調節流 路部 41 Cの終端と第 4の温度調節流路部 41Dの始端、 第 4の温度調節流路部 41D の終端と第 5の温度調節流路部 41 Eの始端、 第 5の温度調節流路部 41 Eの終端と 第 6の温度調節流路部 41Fの始端との間には、 連通路部 43がそれぞれ接続されて いる。 また、 第 6の温度調節流路部 41Fの終端には、 冷却液の排水用出口 44が接, 続されている。  Next, a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted. The groove-shaped temperature control flow path 41 provided in the cap 15 has a semicircular shape formed on one surface of the cavity block 15 so as to be concentric with the product cavity 3. The first to third temperature control channels 41A, 41B, and 41C are provided. On the other hand, the other side of the cavity block 15 is provided with semicircular fourth to sixth temperature control channels 41D, 41E, 41F formed concentrically with the product cavity 3. I have it. A cooling liquid supply inlet 42 is connected to the beginning of the first temperature control flow path 41A, and the end of the first temperature control flow path 41A and the second temperature control flow path 41B. Start end, end of second temperature control flow path 41B, start end of third temperature control flow path 41C, end of third temperature control flow path 41C, and fourth temperature control flow path Start end of 41D, end of fourth temperature control channel 41D, start of fifth temperature control channel 41E, start of fifth temperature control channel 41E end of temperature control, and sixth temperature control channel The communication passages 43 are connected to the start end of 41F. In addition, a coolant outlet 44 is connected to the end of the sixth temperature control flow path 41F.
そして、 最も外側に位置する第 3の温度調節流路部 41 Cと第 6の温度調節流路 部 41Fは、 製品キヤビティ 3の外周に対向するように設けられており、 これら第 3, 6の流路部 41C, 41Fを形成する溝の底面と製品キヤビティ表面 3 Aとの距 離 Cが、 他の第 1 , 2, 4, 5の温度調節流路部 41 A, 41B, 41D, 41 Eを形成 する溝の底面と製品キヤビティ表面 3 Aとの距離 Dより短くなつている。 The outermost third temperature control channel portion 41C and the sixth temperature control channel portion 41F are provided so as to face the outer periphery of the product cavity 3, and The distance C between the bottom surface of the groove forming the flow paths 41C and 41F and the product cavity surface 3A is the other temperature control flow paths 41A, 41B, 41D and 41E. Form The distance between the bottom of the groove and the surface 3A of the product cavity is shorter than D.
同様に、 コアブロック 24においても、 第 1〜6の温度調節流路部 45A, 45B, 45C, 45D, 45E, 45Fにより、 温度調節流路 45が形成されている。 そして、 最 も外側に位置する第 3の温度調節流路部 45Cと第 6の温度調節流路部 45 Fは、 製 品キヤピティ 3の外周に対向するように設けられており、 これら第 3, 6の流路 部 45C, 45Fを形成する溝の先端と製品キヤビティ表面 3 Bとの距離 Eが、 他の 第 1 , 2, 4, 5の温度調節流路部 45A, 45B, 45D, 45Eにおける溝の先端と 製品キヤビティ表面 3 Bとの距離 Fより短くなつている。  Similarly, also in the core block 24, the temperature control flow path 45 is formed by the first to sixth temperature control flow paths 45A, 45B, 45C, 45D, 45E, and 45F. The third outermost temperature control channel portion 45C and the sixth outermost temperature control channel portion 45F are provided so as to face the outer periphery of the product capital 3. The distance E between the tip of the groove forming the flow passages 45C and 45F of No. 6 and the product cavity surface 3B is the same as that of the other temperature control flow passages 45A, 45B, 45D and 45E of the other first, second, fourth and fifth. The distance between the end of the groove and the product cavity surface 3B is shorter than F.
第 2実施例では、 製品キヤビティ 3内に充填された製品キヤビティ 3内の樹脂 が、 冷却液が温度調節通路 41, 45内を通ることにより冷却される。 この際に一般 的に製品キヤビティ 3の外周側では放熱量が多く、 冷却液による冷却能力を高く する必要がある。 これに対し、 最も外側に位置する第 3, 6の温度調節流路部 41 C, 41 F, 45 C, 45Fにおける製品キヤビティ表面 3 A, 3 Bとの距離 C, Eが 他の温度調節流路部 41A, 41B, 41D, 41E, 45A, 45B, 45D, 45Eにおける 距離 D, Fより短く形成されている。  In the second embodiment, the resin in the product cavity 3 filled in the product cavity 3 is cooled by the coolant passing through the temperature control passages 41 and 45. At this time, generally, the heat radiation amount is large on the outer peripheral side of the product cavity 3, and it is necessary to increase the cooling capacity by the coolant. On the other hand, the distances C and E to the product cavity surfaces 3 A and 3 B at the outermost third and sixth temperature control flow passages 41 C, 41 F, 45 C and 45 F are different from other temperature control flow passages. The roads 41A, 41B, 41D, 41E, 45A, 45B, 45D, and 45E are formed shorter than the distances D and F at the roads.
第 2実施例によれば、 製品キヤピティ 3の表面から温度調節流路までの距離が、 製品キヤビティ 3の外周側において短くなる。 その結果、 製品キヤビティ 3の外 周側における冷却液の熱伝導距離が短くなるので、 放熱量の多い製品キヤビティ 3の外周側における冷却能力が相対的に高められ、 製品キヤビティ 3の温度分布 を、 均一に設定することができる。  According to the second embodiment, the distance from the surface of the product capital 3 to the temperature control flow path becomes shorter on the outer peripheral side of the product capital 3. As a result, the heat transfer distance of the coolant on the outer peripheral side of the product cavity 3 is shortened, so that the cooling capacity on the outer peripheral side of the product cavity 3 with a large amount of heat dissipation is relatively increased, and the temperature distribution of the product cavity 3 is reduced. It can be set uniformly.
尚、 本発明は上記実施例に限定されるものではなく、 本発明の要旨の範囲内に おいて、 種々の変形実施が可能である。  Note that the present invention is not limited to the above embodiment, and various modifications can be made within the scope of the present invention.

Claims

請求の範囲 The scope of the claims
1 - 固定型と、 この固定型に対向して設けた可動型とを備えた型体を有し、 こ れら固定型と可動型間に製品キヤビティを形成すると共に、 前記型に冷却液を流 す温度調節流路を設けた光ディスク成形用金型装置において、 前記温度調節流路 による製品キヤビティの単位面積当たりの冷却能力を低くする箇所では前記製品 キヤビティ表面から前記温度調節流路までの距離を長くし、 または前記温度調節 流路による製品キヤビティの単位面積当たりの冷却能力を高くする箇所では前記 製品キヤピティ表面から前記温度調節流路までの距離を短く形成した光ディスク 成形用金型装置。  1-a mold having a fixed mold and a movable mold provided opposite to the fixed mold, forming a product cavity between the fixed mold and the movable mold, and adding a coolant to the mold. In a mold apparatus for molding an optical disk provided with a temperature-adjusting flow path for flowing, a distance from the surface of the product cavity to the temperature-adjusting flow path at a location where the cooling capacity per unit area of the product cavity by the temperature-adjusting flow path is reduced. The mold apparatus for molding an optical disk, wherein the distance from the surface of the product capital to the temperature control channel is shortened at a portion where the cooling capacity per unit area of the product cavity is increased by the temperature control channel.
2 . 前記温度調節流路を溝状に形成し、 前記距離を前記溝状温度調節流路の底 面と前記製品キヤピティの表面との間の距離とする請求項 1に記載の光ディスク 成形用金型装置。 2. The optical disc molding metal according to claim 1, wherein the temperature control flow path is formed in a groove shape, and the distance is a distance between a bottom surface of the groove temperature control flow path and a surface of the product capty. Mold device.
3 . 前記温度調節流路が前記製品キヤビティと同心円状に複数形成されると共 に、 内側に位置する温度調節流路部と外側に位置する温度調節流路部を連通する 連通路部において、 前記距離を長くする請求項 1に記載の光ディスク成形用金型 3. A plurality of the temperature control flow paths are formed concentrically with the product cavity, and a communication path section that connects the temperature control flow path section located inside and the temperature control flow path section positioned outside is provided. 2. The optical disc molding die according to claim 1, wherein the distance is increased.
4 . 前記温度調節流路が前記製品キヤビティと同心円状に複数形成されると共 に、 内側に位置する温度調節流路部と外側に位置する温度調節流路部を連通する 連通路部において、 前記距離を長くする請求項 2に記載の光ディスク成形用金型 4. A plurality of the temperature control flow paths are formed concentrically with the product cavity, and a communication path section that connects the temperature control flow path section located inside and the temperature control flow path section located outside is provided. 3. The optical disc molding die according to claim 2, wherein the distance is increased.
5 . 前記製品キヤビティの外周側における前記距離を短くした請求項 1に記載 の光ディスク成形用金型装置。 5. The optical disk molding die apparatus according to claim 1, wherein the distance on the outer peripheral side of the product cavity is shortened.
6 . 前記製品キヤビティの外周側における前記距離を短くした請求項 2に記載 の光ディスク成形用金型装置。 6. The optical disk molding die apparatus according to claim 2, wherein the distance on the outer peripheral side of the product cavity is shortened.
7 . 前記製品キヤビティの外周側における前記距離を短くした請求項 3に記載 の光ディスク成形用金型装置。 7. The optical disk molding die apparatus according to claim 3, wherein the distance on the outer peripheral side of the product cavity is shortened.
8 前記製品キヤビティの外周側における前記距離を短くした請求項 4に記載の 光ディスク成形用金型装置。 8. The optical disk molding die apparatus according to claim 4, wherein the distance on the outer peripheral side of the product cavity is shortened.
PCT/JP2001/011362 2000-12-25 2001-12-25 Metal mold device for forming optical disk WO2002051608A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2003-7008539A KR20030060117A (en) 2000-12-25 2001-12-25 Metal mold device for forming optical disk

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-393621 2000-12-25
JP2000393621A JP2002192587A (en) 2000-12-25 2000-12-25 Mold unit for molding optical disk

Publications (1)

Publication Number Publication Date
WO2002051608A1 true WO2002051608A1 (en) 2002-07-04

Family

ID=18859379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011362 WO2002051608A1 (en) 2000-12-25 2001-12-25 Metal mold device for forming optical disk

Country Status (5)

Country Link
JP (1) JP2002192587A (en)
KR (1) KR20030060117A (en)
CN (1) CN1491150A (en)
TW (1) TW537959B (en)
WO (1) WO2002051608A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998656B2 (en) 2004-03-30 2007-10-31 太陽誘電株式会社 Injection molding apparatus and injection molding method
CN101800058B (en) * 2010-03-19 2011-11-23 东莞宏威数码机械有限公司 Blue-ray disc compressing equipment
CN103302773B (en) * 2013-06-27 2015-12-02 广州盈光科技股份有限公司 A kind of Optical disk mould structure

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212755A (en) * 1992-02-04 1993-08-24 Mitsubishi Kasei Corp Method for molding disk substrate
JPH08156027A (en) * 1994-12-07 1996-06-18 Ricoh Co Ltd Optical disk molding tool
US5551625A (en) * 1992-07-20 1996-09-03 U.S. Philips Corporation Method of manufacturing a molding member and molding member which can be manufactured by means of the method
JPH10230524A (en) * 1997-02-20 1998-09-02 Hitachi Ltd Mold for optical disc substrate and manufacture
JP2000000826A (en) * 1998-06-15 2000-01-07 Kao Corp Molding metal mold
JP2000071301A (en) * 1998-09-03 2000-03-07 Matsushita Electric Ind Co Ltd Mold for optical disc
JP2000296535A (en) * 1999-04-13 2000-10-24 Sony Disc Technology:Kk Method and apparatus for injection molding
JP2001266416A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Optical disk metallic mold and optical disk substrate forming method
JP2001293759A (en) * 2000-04-12 2001-10-23 Meiki Co Ltd Temperature regulating structure of mold for molding disc

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05212755A (en) * 1992-02-04 1993-08-24 Mitsubishi Kasei Corp Method for molding disk substrate
US5551625A (en) * 1992-07-20 1996-09-03 U.S. Philips Corporation Method of manufacturing a molding member and molding member which can be manufactured by means of the method
JPH08156027A (en) * 1994-12-07 1996-06-18 Ricoh Co Ltd Optical disk molding tool
JPH10230524A (en) * 1997-02-20 1998-09-02 Hitachi Ltd Mold for optical disc substrate and manufacture
JP2000000826A (en) * 1998-06-15 2000-01-07 Kao Corp Molding metal mold
JP2000071301A (en) * 1998-09-03 2000-03-07 Matsushita Electric Ind Co Ltd Mold for optical disc
JP2000296535A (en) * 1999-04-13 2000-10-24 Sony Disc Technology:Kk Method and apparatus for injection molding
JP2001266416A (en) * 2000-03-24 2001-09-28 Matsushita Electric Ind Co Ltd Optical disk metallic mold and optical disk substrate forming method
JP2001293759A (en) * 2000-04-12 2001-10-23 Meiki Co Ltd Temperature regulating structure of mold for molding disc

Also Published As

Publication number Publication date
KR20030060117A (en) 2003-07-12
CN1491150A (en) 2004-04-21
TW537959B (en) 2003-06-21
JP2002192587A (en) 2002-07-10

Similar Documents

Publication Publication Date Title
US4340353A (en) Hot sprue valve assembly for an injection molding machine
JP3264615B2 (en) Plastic lens injection molding method
JPH05141540A (en) Method and device for producing positive displacement flow-control valve
JPS6313807B2 (en)
JP3702463B2 (en) Mold equipment for molding
US7270535B2 (en) Disc-molding mold, molded product, molding machine and disk-shaped member
WO2002051608A1 (en) Metal mold device for forming optical disk
WO1998019846A9 (en) Apparatus for and method of injection molding
WO1998019846A1 (en) Apparatus for and method of injection molding
JP2003165146A (en) Mold device for molding
US4405540A (en) Hot sprue valve assembly for an injection molding machine
WO2005084910A1 (en) Disc molding die, adjusting member and disc board molding method
JPH08294944A (en) Superthin-wall injection molded component part as well as method and device for molding it
US20020185760A1 (en) Disk molding apparatus and disk substrate manufacturing method
TWI386937B (en) Disc forming mold and mirror plate
JP2003291178A (en) Mold device for molding
JPH05261766A (en) Molding machine for optical disc
JP2003220633A (en) Molding mold device
JP3367626B2 (en) Mold device with gate cut mechanism
JP2004174714A (en) Resin molding method, mold for molding resin, resin molded product and resin molding machine
KR850001176Y1 (en) A cooling apparatus for use in injection molding
JPH08229990A (en) Plural molding-producing die device
JPH09314563A (en) Mold device for molding disklike recording medium substrate
JP2003191297A (en) Mold apparatus for molding
JPH05261767A (en) Mold device for molding of optical disc

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR MX SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037008539

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037008539

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018227627

Country of ref document: CN

122 Ep: pct application non-entry in european phase