WO2002050394A1 - Panneau de vitrage sous vide thermiquement isolant et procede de production - Google Patents

Panneau de vitrage sous vide thermiquement isolant et procede de production

Info

Publication number
WO2002050394A1
WO2002050394A1 PCT/IT2001/000628 IT0100628W WO0250394A1 WO 2002050394 A1 WO2002050394 A1 WO 2002050394A1 IT 0100628 W IT0100628 W IT 0100628W WO 0250394 A1 WO0250394 A1 WO 0250394A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
interspace
thermoinsulating
panes
recess
Prior art date
Application number
PCT/IT2001/000628
Other languages
English (en)
Inventor
Andrea Conte
Original Assignee
Saes Getters S.P.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saes Getters S.P.A. filed Critical Saes Getters S.P.A.
Priority to AU2002217442A priority Critical patent/AU2002217442A1/en
Publication of WO2002050394A1 publication Critical patent/WO2002050394A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66304Discrete spacing elements, e.g. for evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present invention relates to an evacuated thermoinsulating glass panel and to a process for the manufacture thereof.
  • the invention relates to an evacuated thermoinsulating panel suitable for windows.
  • thermoinsulating panel comprising two glass panes reciprocally sealed at their edges, between which an interspace that can be evacuated is defined. Besides the peripheral sealing, the two glass panes are connected through suitable spacers arranged inside said interspace, necessary in order to avoid that the glass panes adhere to each other once vacuum has been obtained inside the panel.
  • the panel is further provided with a thin tube for the connection with the pumping means, which connects the interspace to the external environment and thus allows the evacuation of the interspace itself.
  • a degassing treatment by heating at high temperatures, typically comprised between 200 °C and 300 °C, also known with the definition "bake-out”. Said treatment has the purpose of releasing the gases which are dissolved in the glass, as well as in the low-melting vitreous material used for producing the peripheral sealing between the panes, so that also said gases are removed from the inside of the panel.
  • the interspace of the panel may further contain a chemical getter, suitable for sorbing the gases which can permeate inside the evacuated interspace during the life of the panel.
  • the getter can be both of the evaporable and of the non-evaporable type.
  • the getter activation is carried out by induction heating with a radiofrequency applied from the outside of the panel after it has been assembled.
  • the international application teaches that the thermal activation at high temperatures requested by this second type of sorbers can be provided by said degassing treatment itself.
  • evaporable getters for panels intended to be used in windows of buildings is definitely disadvantageous principally because, as it is known, the evaporation causes the diffusion of the reactive material inside the interspace and the deposition thereof onto the internal walls of the panel. Obviously, this causes a worsening of the functional and aesthetic qualities of the window, which is obscured or at least made opaque.
  • the evaporable getters it is necessary that after evaporation these are distributed on a large surface. Therefore, it is not advisable to limit the deposition of the getter on a portion of the internal surface of the panel which is then hidden, for example inside the window frame, because said deposition would be insufficient.
  • a non-evaporable getter has notable drawbacks.
  • it is inserted into the panel before degassing, it is activated during the sealing treatment of the two glass panes which form the panel; said sealing is normally carried out by placing a low-melting glass paste at the perimetrical area of the two panes, and by melting and then solidifying the paste by a thermal treatment at about 500 °C and subsequent cooling.
  • a thermal treatment at about 500 °C and subsequent cooling.
  • the getter is exposed to air and to the vapors released by the paste, and its sorbing capacity can be spent in this phase.
  • insertion of the getter into the panel after evacuation is practically impossible to carry out.
  • Object of the present invention is thus to provide a glass thermoinsulating panel which is free from the above mentioned drawbacks, and a process for manufacturing it. Said object is achieved with a panel whose main features are specified in the first claim and a process whose main features are specified in claim 8. Other features of the panel and of the process for the production thereof are specified in the following claims.
  • thermoinsulating panel according to the present invention consists in that, thanks to the drying material positioned in the interspace thereof, the increase of thermal conductivity between the two faces of the panel during its life is negligible.
  • thermoinsulating panel according to the present invention consists in that said drying material can be positioned in a suitable recess inside the panel interspace, next to the perimetrical sealing and is therefore invisible once the glass panel is mounted in the window frame.
  • thermoinsulating panel according to the present invention are perfectly compatible with the process for manufacturing the panel itself.
  • thermoinsulating panel shows a frontal view of the thermoinsulating panel according to a first embodiment of the invention
  • FIG. 2 shows a view of the central portion of the thermoinsulating panel according to a cross-section taken along line 11-11 of figure 1;
  • FIG. 3 shows a view of the peripheral portion of the thermoinsulating panel according to a section taken along line H-TJ of figure 1;
  • FIG. 4 shows a view similar to that of figure 3 of a thermoinsulating panel according to another embodiment of the invention.
  • FIG. 5 shows a cut-away view of a device containing drying material which can be used according to a further embodiment of the invention.
  • thermoinsulating panel 1 comprises in a known way two glass panes 2 and 3, sealed to each other along their edges by means of a junction 4 of vitreous material.
  • a multiplicity of spacers 5 is positioned between panes 2 and 3, so that these latter and junction 4 enclose an air-tight interspace 6.
  • a small pipe 7 connecting said interspace 6 and the environment outside the panel, which is incorporated into the vitreous material forming junction 4.
  • junction 4 is impermeable to gases and that the vitreous material perfectly adheres to the external surface of connecting pipe 7 without allowing possible permeation of gases.
  • the surface of pane 2 facing interspace 6 is provided with a recess 8, which can have circular shape and is intended to contain a drying material.
  • Said material has the purpose of sorbing the water vapor which may be present inside interspace 6.
  • Any drying material known in the art can be used for the thermoinsulating panel according to the present invention. Drying materials comprise physical sorbers, such as zeolites, or chemical sorbers, such as alkali metal oxides and alkaline-earth metal oxides. However, the use of chemical sorbers proved to be particularly advantageous.
  • the chemical sorbers sorb water vapor in an irreversible way; these are therefore particularly suitable in the case the thermoinsulating panel is intended for an environment characterized by variations in temperature in a wide range, because zeolites, when brought at relatively high temperatures, can release at least part of the adsorbed water.
  • the use of calcium oxide is particularly preferred.
  • thermoinsulating panel according to the present invention.
  • water is the most abundant gas inside a double glass panel, or that its quantity is comparable to that of other gases, which however have a thermal conductivity lower than that of water, or finally these two hypothesis could both be true.
  • a shutter 10 suitably made of a material permeable to gases and particularly to water vapor. Therefore, particularly suitable for this purpose is a porous septum, for example made of a vitreous material of the same kind of the material used for panes 2 and 3. This measure has the purpose of avoiding that during the production steps of the thermoinsulating panel, because of possible differences in the coefficients of thermal expansion of the materials of panes 2 and 3 and of shutter 10, uneven expansions of these members and consequent breakings of the glass can occur.
  • recess 8 is provided with a widened opening, suitable for forming a seat for shutter 10.
  • a recess 11 having straight walls, inside which a shutter 12 can be inserted, provided at the lower end thereof with a protruding edge suitable for maintaining it raised from the bottom of recess 11.
  • Device 13 is formed of a metal container 14 upperly closed by a member 15 permeable to gases but able to retain powders, such as a metal net or a porous septum, for example of sintered steel; drying material 9 is positioned in the space defined by container 14 and member 15.
  • Device 13 can be used in panel 1 as shown in figure 6, by making a recess (similar to recess 8 of figure 3) in pane 2, by inserting device 13 inside said recess and by keeping the device 13 inside its seat by means of spacers 5. In order to avoid that the heating of the panel can cause the breaking of the glass because of the different expansion coefficient of this material and of the metal which forms container 14, it is convenient that the recess in pane 2 has a larger diameter than device 13.
  • a degassing treatment is carried out at the same time of the evacuation of air, during which panel 1 is subjected to a heating at high temperature so that the gases dissolved into the vitreous material which forms panes 2 and 3 and junction 4 come out and are removed by the evacuation itself.
  • Said sealing between the two panes 2 and 3 can be effected by depositing a strip of vitreous material at the edges of said panes 2 and 3, before having superimposed the panes; subsequently to said superimposition the vitreous material is molten and then allowed to cool, in order to solidify it thus obtaining the sealing.
  • said connecting means can consist of a connecting pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Securing Of Glass Panes Or The Like (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

L'invention concerne un panneau (1) de vitrage thermiquement isolant qui comprend deux pans (2, 3) de vitre espacés au moyen d'une pluralité d'éléments (5) séparateurs et scellés le long de leurs bords de manière à former un espace (6) intérieur sous vide dans lequel on a introduit un matériau (9) desséchant. L'invention concerne également un procédé permettant de produire ce panneau isolant.
PCT/IT2001/000628 2000-12-19 2001-12-12 Panneau de vitrage sous vide thermiquement isolant et procede de production WO2002050394A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002217442A AU2002217442A1 (en) 2000-12-19 2001-12-12 Evacuated thermoinsulating glass panel and process for the manufacture thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI2000A002750 2000-12-19
IT2000MI002750A ITMI20002750A1 (it) 2000-12-19 2000-12-19 Pannello termoisolante in vetro e procedimento per la sua produzione

Publications (1)

Publication Number Publication Date
WO2002050394A1 true WO2002050394A1 (fr) 2002-06-27

Family

ID=11446262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2001/000628 WO2002050394A1 (fr) 2000-12-19 2001-12-12 Panneau de vitrage sous vide thermiquement isolant et procede de production

Country Status (3)

Country Link
AU (1) AU2002217442A1 (fr)
IT (1) ITMI20002750A1 (fr)
WO (1) WO2002050394A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046544B2 (en) 2013-03-04 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Multiple pane and production method of multiple pane

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990201A (en) * 1974-09-03 1976-11-09 Gerald Falbel Evacuated dual glazing system
WO1991002878A1 (fr) 1989-08-23 1991-03-07 The University Of Sydney Vitrage thermo-isolant et procede de fabrication associe
FR2684718A1 (fr) * 1991-12-04 1993-06-11 Dejean Gilbert Boitier pour desembuer les doubles vitrages.
DE4232395A1 (de) * 1992-09-26 1994-03-31 Franz Josef Dr Ing Ziegler Evakuiertes Isolierelement mit einer Zwischenschicht aus wärmeisolierendem, strahlungsundurchlässigem Material
US5863857A (en) * 1996-06-24 1999-01-26 Adco Products, Inc. Adsorbent containing composition for use in insulating glass units
DE19847634C1 (de) * 1998-10-15 2000-02-10 Saskia Solar Und Energietechni Wärmeisolationspaneel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3990201A (en) * 1974-09-03 1976-11-09 Gerald Falbel Evacuated dual glazing system
WO1991002878A1 (fr) 1989-08-23 1991-03-07 The University Of Sydney Vitrage thermo-isolant et procede de fabrication associe
FR2684718A1 (fr) * 1991-12-04 1993-06-11 Dejean Gilbert Boitier pour desembuer les doubles vitrages.
DE4232395A1 (de) * 1992-09-26 1994-03-31 Franz Josef Dr Ing Ziegler Evakuiertes Isolierelement mit einer Zwischenschicht aus wärmeisolierendem, strahlungsundurchlässigem Material
US5863857A (en) * 1996-06-24 1999-01-26 Adco Products, Inc. Adsorbent containing composition for use in insulating glass units
DE19847634C1 (de) * 1998-10-15 2000-02-10 Saskia Solar Und Energietechni Wärmeisolationspaneel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10046544B2 (en) 2013-03-04 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Multiple pane and production method of multiple pane
US10661534B2 (en) 2013-03-04 2020-05-26 Panasonic Intellectual Property Management Co., Ltd. Multiple pane
EP2966047B1 (fr) * 2013-03-04 2020-11-18 Panasonic Intellectual Property Management Co., Ltd. Procédé de fabrication d'un verre feuilleté

Also Published As

Publication number Publication date
AU2002217442A1 (en) 2002-07-01
ITMI20002750A1 (it) 2002-06-19

Similar Documents

Publication Publication Date Title
RU2733258C1 (ru) Вакуумное стекло и способ его изготовления
US10458176B2 (en) Vacuum insulated glass (VIG) window unit with getter structure and method of making same
US6420002B1 (en) Vacuum IG unit with spacer/pillar getter
EP2880237B1 (fr) Unité de fenêtre en verre isolé sous vide (vig) comprenant un getter hybride et procédé de fabrication de cette dernière
US6635321B2 (en) Vacuum IG window unit with edge seal formed via microwave curing, and corresponding method of making the same
JP6269984B2 (ja) 活性ゲッターを含む真空断熱ガラス(vig)窓ユニットの製造方法
WO2001051753A1 (fr) Vitrage isolant pourvu de garnitures d'etancheite peripheriques/pieces d'ecartement en silicate alcalin
JPH0684707B2 (ja) 熱絶縁作用する建築要素および/または採光要素およびそれらの製造方法およびこの方法を行うための装置
WO2001075260A1 (fr) Unite de mise sous vide en verre isolant pour ouverture de pompage
JPWO2017056422A1 (ja) ガラスパネルユニットおよびガラス窓
EP1131529A1 (fr) Procede de fabrication de panneaux de verre sous vide
WO2002050394A1 (fr) Panneau de vitrage sous vide thermiquement isolant et procede de production
CN206607171U (zh) 一种真空玻璃及门或窗及仪器仪表及太阳能集热器
JP6425175B2 (ja) 真空ガラスパネル及びその製造方法
JP2001019497A (ja) 低圧複層ガラスおよびその製造方法
KR20120041438A (ko) 진공 복층 유리 및 그 제조방법
JP2001180986A (ja) 低圧複層ガラス
JP2000220357A (ja) 低圧複層ガラスおよびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP