WO2002050187A1 - Polyamide resin composition - Google Patents

Polyamide resin composition Download PDF

Info

Publication number
WO2002050187A1
WO2002050187A1 PCT/JP2001/011115 JP0111115W WO0250187A1 WO 2002050187 A1 WO2002050187 A1 WO 2002050187A1 JP 0111115 W JP0111115 W JP 0111115W WO 0250187 A1 WO0250187 A1 WO 0250187A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide resin
resin composition
swellable
swellable fluoromica
fluoromica
Prior art date
Application number
PCT/JP2001/011115
Other languages
French (fr)
Japanese (ja)
Inventor
Akinobu Ogami
Koji Fujimoto
Kazuyuki Wakamura
Akira Yamaguchi
Rie Ito
Original Assignee
Unitika Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd. filed Critical Unitika Ltd.
Publication of WO2002050187A1 publication Critical patent/WO2002050187A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds

Definitions

  • the present invention relates to a polyamide resin composition having excellent heat resistance, strength, and rigidity, and improved impact resistance at low temperatures.
  • a polyamide resin composition in which swellable fluorine mica is dispersed in a polyamide resin has been conventionally known, and is disclosed in, for example, JP-A-6-248176.
  • This resin composition was excellent in heat resistance and strength.-Rigidity, but insufficient elongation and impact strength.
  • JP-A-11-172100 discloses that swellable fluorine mica is uniformly dispersed at the molecular level, has high strength, high heat resistance, high toughness, excellent dimensional stability, and high elongation.
  • a reinforced polyamide resin having a high elastic modulus has been proposed. As a result, the impact strength was improved to some extent, but the impact strength in low-temperature areas was insufficient. It could not be used for exterior parts.
  • the present invention solves the above problems, and maintains the performance of a polyamide resin composition comprising a swellable fluoromica and a polyamide resin, such as high strength, high heat resistance, and high rigidity, while maintaining a low temperature range.
  • An object of the present invention is to provide a polyamide resin composition having improved impact resistance and having a property of being hardly broken even under an external force in a wide temperature range.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, using a swellable fluoromica which satisfies specific conditions as a raw material in a resin composition comprising a polyamide resin and swellable fluoromica, Finding that this goal can be achieved, The present invention has been reached.
  • the gist of the present invention is as follows.
  • a polyamide lubricating composition comprising: a polyamide lubricating oil; and a swellable fluoromica having the following structural formula and a cation exchange capacity of 80 meq.
  • the polyamide resin composition of the present invention is composed of a polyamide resin and swellable fluoromica, wherein the silicate layer of the swellable fluoromica is dispersed in a polyamide resin matrix at a molecular level. But this is good.
  • Figure 1 shows the constitutive relationship between the swellable fluorine mica and the silicate layer that composes it.
  • the silicate layer is a basic unit constituting the swellable fluoromica, and is a plate-like inorganic crystal obtained by breaking the layer structure of the swellable fluoromica (hereinafter referred to as “cleavage”).
  • the silicate layer in the present invention means a silicate layer one by one or an average of five or less layers.
  • ⁇ dispersed at the molecular level '' means that when the silicate layer of swellable fluoromica is dispersed in the polyamide resin matrix, each of them maintains an interlayer distance of 2 ntn or more on average and does not form agglomerates with each other. State.
  • the interlayer distance is the distance between the centers of gravity of the silicate layers. Such a state can be confirmed by, for example, observing a specimen of the obtained polyamide resin composition with a transmission electron microscope.
  • the polyamide resin used in the present invention is a polymer having an amide bond in its main chain, which is mainly composed of aminocarboxylic acid, ratatum or diamine and dicarboxylic acid (including a pair of salts thereof).
  • Specific examples of the raw materials include, as aminocarboxylic acids, 6-aminocaproic acid, 1-aminoundecanoic acid, 12-aminododecanoic acid, and paraaminomethylbenzoic acid.
  • lactam E - force caprolactam ⁇ one ⁇ down decanoate lactam, there is a ⁇ - Lau opening Ratatamu like.
  • Jia Examples of the amine include tetramethylenediamine, hexamethylenediamine, pendecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-1, remethylhexamediamine, and metaxylylenediamine.
  • Min para-xylylenediamine, 1,3-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, bis (3-methinole-4-aminocyclohexyl) methane, 2, 2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperazine and the like.
  • dicarboxylic acids examples include adipic acid, spearic acid, azelaic acid, sebacic acid, dodecane diacid, terephthalenoic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5- Examples include sodium sulfoisophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid. These diamines and dicarboxylic acids can be used as a pair of salts.
  • polyamide resin examples include polycaprolamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), and polycaprolamide / polyhexamethylene adipamide.
  • polycaprolamide nylon 6
  • polytetramethylene adipamide nylon 46
  • polyhexamethylene adipamide nylon 66
  • polycaprolamide / polyhexamethylene adipamide Pamide copolymer
  • nylon 6/66 Polydecamide
  • Polyproamide / Polydecamide copolymer Nylon 6/11
  • Polydodecamide Nylon 12
  • Polycaproamide / Poly dodecamide copolymer Nylon 6/12
  • Polyhexamethylene rencebacamide Nylon 610
  • polyhexamethylene dodecamide Nylon 612
  • polyundecamethylene diapamide Nylon 116
  • polyhexamethylene isophthalamide Nylon 61
  • poly Hexamethylene terephthalamide Nylon 6T
  • polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer Nylon 6T / 6I
  • polyforce proamide / polyhexamethylene terephthalamide copolymer Nylon 6 / 6T
  • Polycaprolamide / polyhexene methylene isophtalua Copolymer Nycom 6/61
  • polyhexamethylene dipamide / polyhexamethylene Nylon 6/66
  • nylon 6 nylon 66, or a copolymer thereof, and more preferably Nymouth 6 or a copolymer thereof.
  • the relative viscosity of the above polyamide resin is preferably in the range of 1.5 to 5.0 as a value determined in 96 mass% sulfuric acid at a temperature of 25 ° C. and a concentration of lg / dl, preferably 2.0. Those in the range of ⁇ 4.0 are more preferred. If the relative viscosity is less than 1.5, the mechanical strength of the molded article is inferior. On the other hand, when the relative viscosity exceeds 5.0, the moldability is significantly reduced.
  • the swellable fluoromica in the present invention has a # structure composed of a negatively charged layer mainly composed of silicate and a positive charge (ionic) force interposed between the layers, and is represented by the following formula.
  • Such a production method is a swellable fluorine mica, using talc [M g 3 S i 4 0 1 () (OH) 2] as a starting material, to which was inter boyfriend child Yung alkali metal ions swelling Most preferred is a method of obtaining a fluorinated mica (Japanese Patent Application Laid-Open No. 2-149415).
  • talc is mixed with a mixture of sodium silicate and lithium silicate at a specific ratio and swelled by heat-treating at about 700 to 1200 ° C. for a short time in a magnetic tube. ⁇
  • the amount of the alkali silicate mixed with the talc is preferably in the range of 10 to 35% by mass of the whole mixture. Outside this range, the yield of swellable fluoromica tends to decrease.
  • the mixing ratio of sodium silicate and lithium silicate added during the production is reflected as the // j3 ratio in the above composition formula.
  • the cation exchange capacity (CEC) can be controlled.
  • This is lithium derived from lithium silicofluoride Is essentially a constituent element of the silicate layer, which partially neutralizes and reduces some of the negative charges in the silicate layer, resulting in an interlayer that is ionically paired with the silicate layer. This is due to the reduction of the total positive charge of the exchangeable cations.
  • Most of the sodium ions derived from sodium silicofluoride are exchangeable cations and some are non-exchangeable ions, but the details of their form are unknown.
  • CEC needs to be 80 meq / 100 g or less, and preferably 50-70 meq / 100 g.
  • the improvement rate of toughness is small compared to the large improvement of strength and rigidity, and the effect of improving the impact strength especially at low temperature is poor.
  • the CEC is less than 50 meq / 100 g, the dispersibility is reduced, and the reinforcing effect of the swellable fluoromica on the polyamide resin is reduced, and the effect of improving the heat resistance, strength, and rigidity is not recognized. .
  • the mixing ratio of sodium silicate and silica silicate is preferably 80 to 20/35/65 in molar ratio, and 55/45 to 35/65. More preferably, it is 65.
  • the swellable fluoromica produced from talc and alkali silicate may have a different CEC value between Method A and Method B. For example, it is obtained in ⁇ Swellable fluoromica production example 3 '' described later.
  • (M-3) is 70 meq / 100 g for Method B and 110 meq / 100 g for Method A.
  • the initial particle size of the swellable fluorine mica can be controlled by appropriately selecting the particle size of the raw material talc, or by pulverizing or classifying after production.
  • the impact strength is further improved by setting the average particle size measured by a laser diffraction method in a methanol dispersion medium to 2.5 ⁇ m or less, more preferably 1.5 / m or less. be able to.
  • a treatment for exchanging the exchangeable cation of fl pentafluorofluoric mica with an organic substance such as an onium salt may be performed in advance, but the swellable fluoromica is a polyamide monomer. Since it has excellent dispersibility when added during polymerization in the presence of, a good effect can be obtained without treatment with a salt or the like when added during polymerization. In addition, purification by removing non-swelling trace components can be performed in advance by elutriation.
  • the amount of the swellable fluoromica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the polyamide resin. It is particularly preferred that the amount is from 5 to 5 parts by mass. If the amount of the swellable fluoromica-based mineral is less than 0.01 parts by mass, the heat resistance, strength and rigidity of the molded article tend to be insufficient. When the amount of the swellable fluoromica exceeds 50 parts by mass, not only is the toughness inferior and sufficient impact strength is not obtained, but also the polyamide resin composition of the present invention is produced as described later. In doing so, for example, the polymerization tends to be difficult.
  • the compounding amount of the swellable fluorine mica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the monomer forming the polyamide resin. It is particularly preferred that the amount be 1 to 5 parts by mass. If the amount of the swellable fluoromica is less than 0.01 parts by mass, the heat resistance, strength, and rigidity of the molded article tend to be insufficient in minutes.
  • the amount of the swellable fluoromica exceeds 50 parts by mass, not only is the toughness inferior, sufficient impact strength is not obtained, but also the polymerization of the polyamide resin tends to be difficult.
  • a known polymerization method of a polyamide can be employed. Among them, a melt polycondensation method is preferable regardless of a batch type or a continuous type. Specifically, the necessary raw materials are charged into an autoclave, and the reaction can be performed in the presence of an initiator such as water at a temperature of 240 to 300 ° C and a pressure of 0.2 to 3 MPa for 1 to 15 hours.
  • the polymerization is preferably performed at a temperature of 250 to 280 ° C, a pressure of 0.5 to 2 MPa, and a time of 3 to 5 hours. Further, in order to remove the monomers of the polyamide remaining in the polyamide resin composition after polymerization, it is preferable to go through a scouring step using hot water. In this case, treatment is preferably performed in hot water at 90 to 100 ° C. for 5 hours or more.
  • a step of mixing the swellable fluoromica and the polyamide monomer in a dispersion medium such as water, methanol, ethanol, or ethylene glycol may be provided.
  • a dispersion medium such as water, methanol, ethanol, or ethylene glycol
  • the temperature condition may be room temperature or, if necessary, higher than room temperature and lower than the boiling point of the dispersion medium.
  • a homomixer, an ultrasonic disperser, a high-pressure disperser, or the like may be used as a means for increasing the stirring efficiency.
  • the compounding amount of the swellable fluorine mica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polyamide resin. Is particularly preferred. If the amount of the swellable fluoromica is less than 0.01 parts by mass, the heat resistance and strength of the molded article tend to be insufficient. If the amount of the swellable fluorine mica exceeds 50 parts by mass, the toughness is poor, and sufficient impact strength tends not to be obtained.
  • the swellable phlogopite mica may be mixed with the resin in a solid / powder state, or may be mixed in a state of being dispersed in a polar solvent such as water polyethylene glycol. In the latter case, it is preferable to use a melt kneading apparatus having an appropriately designed exhaust device in order to remove solvent vapor generated during melt kneading. Prior to mixing, exchangeable cations present between the layers are exchanged with organic cations such as onium ions. It is preferable to provide a step for dispersing the swellable fluoromica in the polyamide resin at the molecular level during kneading.
  • the polyamide resin containing swellable fluoromica prepared by each of the above methods may be appropriately selected from the above-mentioned various polyamide resins, irrespective of the same type or different types, and mixed.
  • the polyamide resin selected at this time may or may not contain swellable fluoromica.
  • a heat stabilizer an antioxidant, a reinforcing material, a pigment, a deterioration inhibitor, a weathering agent, a flame retardant, a plasticizer, a release agent, A lubricant or the like may be added, and these are added at the time of production by polymerization or melt kneading, or at the time of melt kneading or melt molding the obtained polyamide resin composition.
  • heat stabilizer examples include hindered phenols, phosphorus compounds, hindered amines, thio compounds, copper compounds, alkali metal halides, and mixtures thereof.
  • Reinforcing materials include, for example, clay, talc, calcium carbonate, zinc carbonate, wallacetonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, glass black, oxide
  • examples include zinc, zeolite, hydrotanolecite, metal fiber, metal whiskers, ceramic whiskers, potassium titanate whiskers, boron nitride, graphite, glass, and carbon.
  • the polyamide resin composition may contain a small amount of another thermoplastic polymer as long as the effect of the present invention is not impaired. These resins may be obtained by melt-kneading or melting the obtained polyamide resin composition. It is added when molding.
  • a thermoplastic polymer include polybutadiene, butadiene / styrene copolymer, acrylic rubber, ethylene / propylene copolymer, ethylene / propylene / gen copolymer, natural rubber, chlorinated butyl rubber, and chlorinated polyethylene.
  • maleic anhydride styrene / maleic anhydride copolymer
  • styrene / maleimide copolymer polyethylene, polypropylene, butadiene // atari mouth ethryl copolymer
  • Poly Shiojiri Bull Polyethylene Terephthalate, Polybutylene terephthalate, polyacetal, polyvinylidene fluoride, polysulfone, polyphenylene sulfide, polyethersnolephone, phenoxy resin, polyphenylene ether, polymethyl metathalylate, polyether ketone, polycarbonate, polytetraborate
  • examples include polyethylene and polyarylate.
  • thermoplastic polymers may contain fl-perfluorofluoromica or other layered silicates such as montmorillonite, vermiculite, smectite and the like.
  • the polyamide resin composition of the present invention can be made into a target molded article by a usual molding method.
  • various molded articles can be formed by a hot melt molding method such as injection molding, extrusion molding, and blow molding.
  • the polyamide resin composition of the present invention is obtained by dispersing a silicate layer of a swellable layered silicate at the molecular level in a polyamide resin.
  • a silicate layer of a swellable layered silicate at the molecular level in a polyamide resin.
  • it has excellent impact resistance especially at low temperatures, and its surface impact strength measured at -30 ° C is 10J or more. Due to this characteristic, it can be suitably used for exterior parts such as automobiles and machines that have been considered difficult to use in cold regions.
  • impact strength is improved even at room temperature, so it can be used in a wide range of fields requiring heat resistance, strength, rigidity, impact strength, etc., including interior and exterior parts of other automobiles, housings of home appliances and electronic devices, etc. Apply to
  • the polyamide resin composition of the present invention can be melt-spun into a filament by an ordinary method.
  • the film or sheet can be formed by a tubular method, a T-die method, a solution casting method, or the like.
  • the obtained film has excellent elongation characteristics and gas barrier properties, and thus can be suitably used as a packaging film.
  • the measuring method of the physical property test used in the example and the comparative example is as follows.
  • CEC ation exchange capacity
  • the swellable fluorine mica in the present invention has a cation exchange capacity of 1 mm since all cations having ion exchange capacity are sodium ions. It is equivalent to one millimol Zioog.
  • the polyamide component was prepared to have a concentration of Slg / dl using 96% by mass of sulfuric acid as a solvent, and measured at 25 ° C. using an Ube-Ede type viscometer.
  • the surface impact strength G is the energy of energy obtained by the following equation.
  • G (J) G 0 + (G-G 0 ) / 2
  • G. (Maximum height at which molded piece does not break) X (Gravity acceleration) X (Plumbing load) (Minimum height at which molded piece breaks down) X (Gravity acceleration) X (Loading weight drop)
  • the production example of the swellable fluorine mica is as follows.
  • a mixture of sodium silicate and lithium silicate having an average particle size of 10 / zm in a molar ratio of 45/55 was mixed so as to be 15% by mass of the total amount. This was placed in a magnetic crucible and reacted at 850 ° C. for 1 hour in an electric furnace to obtain a swellable fluoromica (M-1) having an average particle size of 1.0 m.
  • the composition of this swellable fluoromica is Na. 29 (M g 2 92 L i . 36) S i 4 O 10 F L 57, CEC was filed by 66 meq / 100 g.
  • a mixture of sodium silicate and lithium silicate having an average particle size of 10 ⁇ and a molar ratio of 45 to 55 was mixed to a total mass of 15% by mass. This was placed in a magnetic 1-tuple and allowed to react in an electric furnace at 850 ° C for 1 hour to obtain swellable fluoromica (M-2) with an average particle size of 4.5 m.
  • M-2 swellable fluoromica
  • the composition of this swellable fluoromica is Na. 29 (Mg 2 92 L i. 36 ) S i 4 O 10 FL 57 , CEC was 68 meq ZlOO g. Production example 3 of swellable fluoromica
  • talc To talc with an average particle size of 6.0 ⁇ m, mix sodium silicate with an average particle size of 10 ⁇ m to make up 15% by mass of the total amount, put this in a magnetic crucible, and use an electric furnace. By reacting at 850 ° C for 1 hour, swellable fluoromica (M-3) having an average particle diameter of 6. was obtained.
  • the composition of the swellable fluorinated mica was N a 0. 60 M g 2 . 63 S i 4 0 10 F 77, CEC 110 meq / 100 g.
  • the swellable fluorine mica has the same composition as that used in the examples of JP-A-11-172100 except for the average particle size.
  • Wide angle X-ray diffraction measurement (using RAD-rB type wide angle X-ray diffractometer, manufactured by Rigaku Corporation) was performed on M-1 to M-3 obtained above. The peak corresponding to the thickness of 9.2 A disappeared, and a peak corresponding to 12 to 13 A indicating the formation of swellable fluoromica was observed.
  • Table 1 shows the composition and properties of the obtained swellable fluoromica.
  • pellets were scoured with hot water of 95 ° C. for 8 hours, and this operation was repeated twice, followed by vacuum drying to obtain a dried bellet of the polyamide resin composition.
  • the dried pellets were injection molded using an injection molding machine (made by Toshiba, IS80G type) at a cylinder temperature of 260 ° C and a mold temperature of 70 ° C to produce various test pieces.
  • the polymerization was carried out in the same manner as in Example 1 except that the charged amount of the swellable fluoromica (M-1) was changed to 0.1 kg, followed by scouring, drying, and injection molding to obtain a dried and dried polyamide resin composition. Letts and test pieces were obtained.
  • Drying pellets of the polyamide resin composition were obtained by performing polymerization, scouring, drying and injection molding in the same manner as in Example 1 except that the amount of swellable fluoromica (M-1) was changed to 0.4 kg. And a test piece were obtained.
  • swellable fluorine mica lg (equivalent to 0.1%) of talc was charged as a crystal nucleating agent, polymerization was carried out in the same manner as in Example 1, and scouring, drying and injection molding were carried out to obtain a polyamide resin composition. Dried pellets and test pieces were obtained.
  • PCM-30 twin-screw extruder
  • the resulting mixture was melt-kneaded with C, discharged in a strand shape, cooled, solidified, and then cut to obtain a pellet of a polyamide resin composition. After drying the pellets, injection molding was performed in the same manner as in Example 1, and various tests were performed. Pieces were made.
  • Each of the polyamide resin compositions obtained in Examples 1 to 6 was excellent in heat resistance, strength, and stiffness, and had high surface impact strength at 23 ° C and 130 ° C.
  • the polyamide resin composition obtained in Comparative Example 1 was excellent in heat resistance, strength, rigidity and surface impact strength at 23 ° C, but was inferior in surface impact strength at ⁇ 30 ° C. Was something.
  • the polyamide resin composition obtained in Comparative Example 2 has a standard composition of non-reinforced nylon 6 for injection molding, and has no heat resistance, strength and rigidity because nylon swellable fluoromica is not added.
  • Heat resistance and strength, Oka lj resistance was high, 23 ° C, - in the 3 0 ° C any temperature inferior in surface impact strength Was.
  • Fig. 1 Diagram for explaining the structural relationship between fl Peng-lun fluoromica and the silicate layer that composes it.
  • the polyamide resin composition of the present invention is applicable to a wide range of fields, such as interior and exterior parts of automobiles, housings of home electric appliances and electronic equipment, and exterior parts of machines and the like. Therefore, it is suitable for use in, for example, automotive exterior parts that require high impact resistance in cold regions.

Abstract

A polyamide resin composition which is excellent in heat resistance and strength/rigidity and especially has a high surface impact strength at low temperatures. The polyamide resin composition is characterized by comprising a polyamide resin and a swellable fluoromica represented by the following structural formula and having a cation-exchange capacity of 80 meq/100 g or smaller, and by having a surface impact strength at -30 °C of 10 J or higher: Naa(MgxLiß)Si4OyFz wherein 0 < α ≤ 0.50, 0 < β ≤ 0.50, 2.5 ≤ x ≤ 3, 10 ≤ y ≤ 11, and 1.0 ≤ z ≤ 2.0, provided that 90/10 ≤ α / β ≤ 10/90.

Description

明 細 書 ポリアミド樹脂組成物 技術分野  Description Polyamide resin composition Technical field
本発明は、 耐熱性および強度、 剛性に優れ、 低温での耐衝撃性の改良されたポ リアミド樹脂組成物に関する。  The present invention relates to a polyamide resin composition having excellent heat resistance, strength, and rigidity, and improved impact resistance at low temperatures.
背景技術 Background art
ポリアミド樹脂中に膨潤性フッ素雲母が分散したポリアミド樹脂組成物は、 従 来から知られており、 例えば、 特開平 6- 248176号公報に開示されている。 この樹 脂組成物は、 耐熱性および強度. -剛性に優れる反面、 伸度や衝撃強度が十分でな かった。  A polyamide resin composition in which swellable fluorine mica is dispersed in a polyamide resin has been conventionally known, and is disclosed in, for example, JP-A-6-248176. This resin composition was excellent in heat resistance and strength.-Rigidity, but insufficient elongation and impact strength.
この問題を解決する手段として、 特開平 11- 172100号公報では、 膨潤性フッ素 雲母が分子レベルで均一分散された、 高強度、 高耐熱性、 高靭性で寸法安定性に 優れ、 高伸度でかつ高弾性率である強化ポリアミド樹脂が提案された。 これによ つて、 衝撃強度はある程度改善されたが、 低温域での衝撃強度が不十分だったた め、 例えば寒冷地での使用が前提であり、 高度な耐衝撃性が要求される自動車外 装部品等には使用できなかった。  As means for solving this problem, JP-A-11-172100 discloses that swellable fluorine mica is uniformly dispersed at the molecular level, has high strength, high heat resistance, high toughness, excellent dimensional stability, and high elongation. A reinforced polyamide resin having a high elastic modulus has been proposed. As a result, the impact strength was improved to some extent, but the impact strength in low-temperature areas was insufficient. It could not be used for exterior parts.
発明の開示 Disclosure of the invention
(発明が解決しようとする課題)  (Problems to be solved by the invention)
本発明は、 上記問題点を解消するもので、 高強度、 高耐熱性、 高剛性といった 膨潤性フッ素雲母とポリアミド樹脂とからなるポリアミド樹脂組成物が有する性 能を保持しつつ、 低温域での耐衝撃性が改良され、 広い温度領域で衝撃的な外力 のもとでも破壊しにくい性能をも併せ持つポリアミド樹脂組成物を提供するもの である。  The present invention solves the above problems, and maintains the performance of a polyamide resin composition comprising a swellable fluoromica and a polyamide resin, such as high strength, high heat resistance, and high rigidity, while maintaining a low temperature range. An object of the present invention is to provide a polyamide resin composition having improved impact resistance and having a property of being hardly broken even under an external force in a wide temperature range.
(その解決方法)  (How to solve it)
本発明者らは、 上記課題を解決するために鋭意研究を重ねた結果、 ポリアミド 樹脂と膨潤性フッ素雲母からなる樹脂組成物において、 原料として特定の条件を 満たす膨潤性フッ素雲母を用いることで、 この目的が達成できることを見出し、 本発明に到達した。 The present inventors have conducted intensive studies to solve the above problems, and as a result, using a swellable fluoromica which satisfies specific conditions as a raw material in a resin composition comprising a polyamide resin and swellable fluoromica, Finding that this goal can be achieved, The present invention has been reached.
すなわち、 本発明の要旨は次の通りである。  That is, the gist of the present invention is as follows.
ポリアミ ド樹月旨と、 下記構造式で表され、 陽イオン交換容量が 80ミリ当量 Z 100 g以下である膨潤性フッ素雲母とからなることを特徴とするポリアミド樹月旨 組成物。  A polyamide lubricating composition comprising: a polyamide lubricating oil; and a swellable fluoromica having the following structural formula and a cation exchange capacity of 80 meq.
N a α (M g x Lリ S i 4 O y F z N a α (M g x L li S i 4 O y F z
ここで、 0くひ O. 50、 0< j3≤0. 50, 2. 5≤x≤3, 10≤y≤11, 1. 0≤ z≤2. 0 であり、 ひノ |8 =90ZlO〜10/90である。  Where 0 く O. 50, 0 <j3 ≤ 0.50, 2.5 ≤ x ≤ 3, 10 ≤ y ≤ 11, 1. 0 ≤ z ≤ 2.0 and ノ | 8 = 90ZlO ~ 10/90.
(発明の実施の形態)  (Embodiment of the invention)
以下、 本発明について詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明のポリアミド樹脂組成物は、 ポリアミド樹脂と膨潤性フッ素雲母とから なるものであり、 膨潤性フッ素雲母の珪酸塩層が分子レベルでポリアミ ド榭脂マ トリックス中に分散されたものであることがこのましい。 図 1に膨潤性フッ素雲 母とそれを構成する珪酸塩層との構成的関係をわかりやすく示した。 珪酸塩層と は、 膨潤性フッ素雲母を構成する基本単位であり、 膨潤性フッ素雲母の層構造を 崩すこと (以下、 「劈開」 という) によって得られる板状の無機結晶である。 本 発明における珪酸塩層とは、 珪酸塩層の一枚一枚、 もしくは平均 5層以下の積層 状態を意味する。 ここで分子レベルで分散されるとは、 膨潤性フッ素雲母の珪酸 塩層がポリアミド樹脂マトリックス中に分散する際に、 それぞれが平均 2ntn以上 の層間距離を保ち、 互いに塊を形成することなく存在している状態をいう。 ここ で、 層間距離とは前記珪酸塩層の重心間距離である。 係る状態は、 得られたポリ アミ ド樹脂組成物の試験片について、 例えば透過型電子顕微鏡観察を行うことに より確認することができる。  The polyamide resin composition of the present invention is composed of a polyamide resin and swellable fluoromica, wherein the silicate layer of the swellable fluoromica is dispersed in a polyamide resin matrix at a molecular level. But this is good. Figure 1 shows the constitutive relationship between the swellable fluorine mica and the silicate layer that composes it. The silicate layer is a basic unit constituting the swellable fluoromica, and is a plate-like inorganic crystal obtained by breaking the layer structure of the swellable fluoromica (hereinafter referred to as “cleavage”). The silicate layer in the present invention means a silicate layer one by one or an average of five or less layers. Here, `` dispersed at the molecular level '' means that when the silicate layer of swellable fluoromica is dispersed in the polyamide resin matrix, each of them maintains an interlayer distance of 2 ntn or more on average and does not form agglomerates with each other. State. Here, the interlayer distance is the distance between the centers of gravity of the silicate layers. Such a state can be confirmed by, for example, observing a specimen of the obtained polyamide resin composition with a transmission electron microscope.
本発明において用いるポリアミ ド樹脂とは、 ァミノカルボン酸、 ラタタムある いはジァミンとジカルボン酸 (それらの一対の塩も含まれる) を主たる原料とす るアミド結合を主鎖内に有する重合体である。 その原料の具体例としては、 アミ ノカルボン酸としては、 6 -アミノカプロン酸、 1卜アミノウンデカン酸、 12-アミ ノ ドデカン酸、 パラアミノメチル安息香酸等がある。 またラクタムとしては E — 力プロラクタム、 ω一ゥンデカノラクタム、 ω—ラウ口ラタタム等がある。 ジァ ミンとしては、 テトラメチレンジァミン、 へキサメチレンジァミン、 ゥンデカメ チレンジァミン、 ドデカメチレンジァミン、 2, 2, 4-/2, 4, 4 - 1、リメチルへキサメ ジァミン、 メタキシリレンジァミン、 パラキシリレンジァミン、 1, 3-ビス (アミ ノメチル) シク口へキサン、 ビス (4-ァミノシク口へキシル) メタン、 ビス (3 - メチノレ- 4-アミノシクロへキシル) メタン、 2, 2-ビス (4-アミノシクロへキシ ル) プロパン、 ビス (ァミノプロピル) ピぺラジン、 アミノエチルピペラジン等 がある。 またジカルボン酸としては、 アジピン酸、 スペリン酸、 ァゼライン酸、 セバシン酸、 ドデカン二酸、 テレフタノレ酸、 イソフタル酸、 2 -クロロテレフタノレ 酸、 2 -メチルテレフタル酸、 5-メチルイソフタル酸、 5 -ナトリウムスルホイソフ タル酸、 へキサヒドロテレフタル酸、 へキサヒドロイソフタル酸等がある。 また これらジァミンとジカルボン酸は一対の塩として用いることもできる。 The polyamide resin used in the present invention is a polymer having an amide bond in its main chain, which is mainly composed of aminocarboxylic acid, ratatum or diamine and dicarboxylic acid (including a pair of salts thereof). Specific examples of the raw materials include, as aminocarboxylic acids, 6-aminocaproic acid, 1-aminoundecanoic acid, 12-aminododecanoic acid, and paraaminomethylbenzoic acid. As the lactam E - force caprolactam, ω one © down decanoate lactam, there is a ω- Lau opening Ratatamu like. Jia Examples of the amine include tetramethylenediamine, hexamethylenediamine, pendecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-1, remethylhexamediamine, and metaxylylenediamine. Min, para-xylylenediamine, 1,3-bis (aminomethyl) cyclohexane, bis (4-aminocyclohexyl) methane, bis (3-methinole-4-aminocyclohexyl) methane, 2, 2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethylpiperazine and the like. Examples of dicarboxylic acids include adipic acid, spearic acid, azelaic acid, sebacic acid, dodecane diacid, terephthalenoic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid, and 5- Examples include sodium sulfoisophthalic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid. These diamines and dicarboxylic acids can be used as a pair of salts.
係るポリアミ ド樹脂の好ましい例としては、 ポリ力プロアミド (ナイロン 6) 、 ポリテトラメチレンアジパミ ド (ナイロン 46) 、 ポリへキサメチレンアジパミ ド (ナイロン 66) 、 ポリ力プロアミド /ポリへキサメチレンアジパミドコポリマー Preferred examples of the polyamide resin include polycaprolamide (nylon 6), polytetramethylene adipamide (nylon 46), polyhexamethylene adipamide (nylon 66), and polycaprolamide / polyhexamethylene adipamide. Pamide copolymer
(ナイロン 6/66) 、 ポリゥンデカミド (ナイロン 11) 、 ポリ力プロアミド /ポリ ゥンデカミドコポリマー (ナイロン 6/11) 、 ポリ ドデカミド (ナイロン 12) 、 ポ リカプロアミド /ポリ ドデカミ ドコポリマー (ナイロン 6/12) 、 ポリへキサメチ レンセバカミ ド (ナイロン 610) 、 ポリへキサメチレンドデカミド (ナイ口ン 612) 、 ポリウンデカメチレンァジパミド (ナイロン 116) 、 ポリへキサメチレン イソフタルアミ ド (ナイ口ン 61) 、 ポリへキサメチレンテレフタルアミド (ナイ ロン 6T) 、 ポリへキサメチレンテレフタルアミ ド /ポリへキサメチレンイソフタ ルアミドコポリマー (ナイロン 6T/6I) 、 ポリ力プロアミド /ポリへキサメチレン テレフタルアミ ドコポリマー (ナイロン 6/6T) 、 ポリ力プロアミド /ポリへキサ メチレンィソフタルアミドコポリマー (ナイ口ン 6/61) 、 ポリへキサメチレンァ ジパミド /ポリへキサメチレンテレフタルアミドコポリマー (ナイ口ン 66/6T) 、 ポリへキサメチレンアジパミド /ポリへキサメチレンィソフタルァミドコポリマ 一 (ナイ口ン 66/61) 、 ポリ トリメチルへキサメチレンテレフタルアミド (ナイ 口ン TMDT) 、 ポリビス (4 -アミノシクロへキシル) メタンドデカミド (ナイ口ン PACM12) 、 ポリビス (3 -メチノレ- 4-ァミノシク口へキシノレ) メタンドデカミド(Nylon 6/66), Polydecamide (Nylon 11), Polyproamide / Polydecamide copolymer (Nylon 6/11), Polydodecamide (Nylon 12), Polycaproamide / Poly dodecamide copolymer (Nylon 6/12) , Polyhexamethylene rencebacamide (nylon 610), polyhexamethylene dodecamide (nylon 612), polyundecamethylene diapamide (nylon 116), polyhexamethylene isophthalamide (nylon 61), poly Hexamethylene terephthalamide (Nylon 6T), polyhexamethylene terephthalamide / polyhexamethylene isophthalamide copolymer (nylon 6T / 6I), polyforce proamide / polyhexamethylene terephthalamide copolymer (nylon 6 / 6T), Polycaprolamide / polyhexene methylene isophtalua Copolymer (Nycom 6/61), polyhexamethylene dipamide / polyhexamethylene terephthalamide copolymer (Ny66 66T), polyhexamethylene adipamide / polyhexamethylene isophtalamide copolymer I (Nymouth 66/61), polytrimethylhexamethylene terephthalamide (Nymouth TMDT), polybis (4-aminocyclohexyl) methanedodecamide (Nymouth) PACM12), polybis (3-methinole-4-aminohexyl hexinole) methanedodecamide
(ナイロンジメチル PACM12) 、 ポリメタキシリレンテレフタルアミド (ナイロン MXD6) 、 ポリゥンデカメチレンテレフタルアミド (ナイロン 11T) およびこれら の混合物ないし共重合体等が挙げられる。 中でもナイロン 6、 ナイロン 66、 また はこれらの共重合体、 さらに好ましくはナイ口ン 6またはその共重合体が挙げら れる。 (Nylon dimethyl PACM12), polymethaxylylene terephthalamide (nylon MXD6), polydecamethylene terephthalamide (nylon 11T), and mixtures or copolymers thereof. Among them, nylon 6, nylon 66, or a copolymer thereof, and more preferably Nymouth 6 or a copolymer thereof.
上記のポリアミド樹脂の相対粘度は、 96質量 %硫酸中で、 温度 25°C、 濃度 lg/dl の条件で求めた値で 1. 5〜5. 0の範囲にあるものが好ましく、 2. 0〜4. 0の範囲にあ るものがより好ましレ、。 相対粘度が 1. 5未満のものは、 成形品としたときの機械 強度に劣る。 一方、 相対粘度が 5. 0を超えるものは、 成形性が著しく低下する。 本発明における膨潤性フッ素雲母は、 珪酸塩を主成分とする負に帯電した層と その層間に介在する陽電荷 (イオン) 力 らなる #造を有するものであり、 次式で 示される。  The relative viscosity of the above polyamide resin is preferably in the range of 1.5 to 5.0 as a value determined in 96 mass% sulfuric acid at a temperature of 25 ° C. and a concentration of lg / dl, preferably 2.0. Those in the range of ~ 4.0 are more preferred. If the relative viscosity is less than 1.5, the mechanical strength of the molded article is inferior. On the other hand, when the relative viscosity exceeds 5.0, the moldability is significantly reduced. The swellable fluoromica in the present invention has a # structure composed of a negatively charged layer mainly composed of silicate and a positive charge (ionic) force interposed between the layers, and is represented by the following formula.
N a α (M g X L S i 4 O y F z N a α (M g X LS i 4 O y F z
ここで、 0< o;≤0. 50、 0< β≤0. 50, 2. 5≤ x≤3 10≤y≤11N 1. 0≤ z≤Where 0 <o; ≤ 0.50, 0 <β ≤ 0.50, 2.5 ≤ x ≤ 3 10 ≤ y ≤ 11 N 1. 0 ≤ z ≤
2. 0であり、 α / ]3 =90ZlO〜10/90である。 2.0 and α /] 3 = 90ZlO ~ 10/90.
このような膨潤性フッ素雲母の製造法としては、 タルク 〔M g 3 S i 401() (O H) 2] を出発物質として用い、 これにアルカリ金属イオンをインターカレ一シ ヨンして膨潤性フッ素雲母を得る方法が最も好ましい (特開平 2-149415号公報) 。 本発明では、 この方法においてタルクに、 珪フッ化ナトリウムと珪フッ化リチウ ムとの混合物を特定の割合で混合し、 磁性ルツポ内で約 700〜1200°Cで短時間加 熱処理することによって膨潤†生フッ素雲母を得ることができる。 Such a production method is a swellable fluorine mica, using talc [M g 3 S i 4 0 1 () (OH) 2] as a starting material, to which was inter boyfriend child Yung alkali metal ions swelling Most preferred is a method of obtaining a fluorinated mica (Japanese Patent Application Laid-Open No. 2-149415). According to the present invention, in this method, talc is mixed with a mixture of sodium silicate and lithium silicate at a specific ratio and swelled by heat-treating at about 700 to 1200 ° C. for a short time in a magnetic tube. † We can obtain raw fluorine mica.
この際、 タルクと混合する珪フッ化アルカリの量は、 混合物全体の 10〜35質 量%の範囲とすることが好ましい。 この範囲を外れる場合には膨潤性フッ素雲母 の生成収率が低下する傾向にある。  At this time, the amount of the alkali silicate mixed with the talc is preferably in the range of 10 to 35% by mass of the whole mixture. Outside this range, the yield of swellable fluoromica tends to decrease.
上記膨潤性フッ素雲母は、 製造時に加える珪フッ化ナトリウムと珪フッ化リチ ゥムの混合比率が上記組成式におけるひ / j3比として反映される。 この比を変え ることによって、 陽イオン交換容量 (Cation Exchange Capacity, 以下、 CECと 略す) を制御することができる。 これは、 珪フッ化リチウムに由来するリチウム が実質的にすべて珪酸塩層の構成元素となることで、 珪酸塩層の負電荷の一部を 電気的に中和して低減し、 結果として诖酸塩層とイオン的に対をなす層間の交換 性陽イオンの総陽電荷量を減少させることによるものである。 珪フッ化ナトリウ ムに由来するナトリゥムイオンの大部分は交換性陽イオンとなり、 一部は非交換 性イオンとなるがその存在形態の詳細は不明である。 In the swellable fluoromica, the mixing ratio of sodium silicate and lithium silicate added during the production is reflected as the // j3 ratio in the above composition formula. By changing this ratio, the cation exchange capacity (CEC) can be controlled. This is lithium derived from lithium silicofluoride Is essentially a constituent element of the silicate layer, which partially neutralizes and reduces some of the negative charges in the silicate layer, resulting in an interlayer that is ionically paired with the silicate layer. This is due to the reduction of the total positive charge of the exchangeable cations. Most of the sodium ions derived from sodium silicofluoride are exchangeable cations and some are non-exchangeable ions, but the details of their form are unknown.
本発明では、 C E Cを 80ミリ当量/ 100 g以下とすることが必要であり、 50〜 70ミリ当量/ 100 gであることが好ましい。 従来用いられてきた膨潤性フッ素雲 母に比べて低 C E C化することにより、 分散性を大きく損なうことなく、 ポリア ミド樹脂中に分散後の珪酸塩層とポリアミド樹月旨との相互作用が適度に小さくす ることができる。 この結果として、 ポリアミ ド樹脂と膨潤性フッ素雲母とからな るポリアミド樹脂組成物が示す高強度、 高剛性および高耐熱性などの優れた特性 に加え、 特に低温での高靱性をも発現する。 従って C E Cが 80ミリ当量/ 100gを 越えるものは、 強度や剛性の大幅な向上に比べれば靱性の向上率は小さくなり、 特に低温での衝撃強度の改良効果に乏しくなる。 一方、 C E Cが 50ミリ当量/ 100gより小さいものは、 分散性が低下すると共に、 膨潤性フッ素雲母によるポリ アミ ド樹脂の補強効果が小さくなり、 耐熱性や強度、 剛性の向上効果が認められ なくなる。  In the present invention, CEC needs to be 80 meq / 100 g or less, and preferably 50-70 meq / 100 g. By lowering the CEC compared to the conventionally used swellable fluorine mica, the interaction between the silicate layer dispersed in the polyamide resin and the polyamide resin is moderate without significantly impairing the dispersibility. Can be made smaller. As a result, in addition to the excellent properties such as high strength, high rigidity and high heat resistance exhibited by the polyamide resin composition comprising the polyamide resin and the swellable fluoromica, high toughness especially at a low temperature is exhibited. Therefore, when the CEC exceeds 80 meq / 100 g, the improvement rate of toughness is small compared to the large improvement of strength and rigidity, and the effect of improving the impact strength especially at low temperature is poor. On the other hand, when the CEC is less than 50 meq / 100 g, the dispersibility is reduced, and the reinforcing effect of the swellable fluoromica on the polyamide resin is reduced, and the effect of improving the heat resistance, strength, and rigidity is not recognized. .
本発明のごとく C E Cを最適な値に制御するためには、 珪フッ化ナトリゥムと 珪フツイヒリチゥムの混合比率は、 モル比で 80ノ20〜35/65とすることが好ましく、 55/45〜35/65とすることがより好ましい。  In order to control the CEC to an optimal value as in the present invention, the mixing ratio of sodium silicate and silica silicate is preferably 80 to 20/35/65 in molar ratio, and 55/45 to 35/65. More preferably, it is 65.
膨潤性フッ素雲母のような層状珪酸塩の C E Cを測定する方法はいくつカゝ知ら れているが、 代表的なものとして、 日本ベントナイト工業会標準試験方法による 粉状ベントナイトの C E C測定方法 〔JBAS - 106-77〕 (A法) 、 及び Frank 0. Jones, Jr.の方法 〔粘土ハンドブック (第 2版) 、 587頁、 技報堂、 1987年〕 (B法) などがあり、 本発明では A法を採用した。  There are several known methods for measuring the CEC of layered silicates such as swellable fluoromica.A typical example is the method of measuring the CEC of powdered bentonite according to the standard test method of the Japan Bentonite Industry Association [JBAS- 106-77] (Method A), and the method of Frank 0. Jones, Jr. [Clay Handbook (2nd edition), p. 587, Gihodo, 1987] (Method B). Adopted.
なお、 タルクと珪フッ化アルカリとから製造される膨潤性フッ素雲母は、 A法 と B法とでは C E C値が異なる場合があり、 例えば後述の 「膨潤性フッ素雲母の 製造例 3」 で得られる (M - 3) は B法で 70ミリ当量/ 100 g、 A法では 110ミリ当量 /I00 gとなる。 上記膨潤性フッ素雲母の初期粒径は、 原料のタルクの粒径を適宜選択するか、 または製造後に粉砕や分級などの手段によって制御することができる。 本発明に おいては、 メタノール分散媒中、 レーザー回折法で測定した平均粒径を 2. 5 μ m以 下、 より好ましくは 1. 5 / m以下とすることによって、 衝撃強度をさらに改良する ことができる。 The swellable fluoromica produced from talc and alkali silicate may have a different CEC value between Method A and Method B. For example, it is obtained in `` Swellable fluoromica production example 3 '' described later. (M-3) is 70 meq / 100 g for Method B and 110 meq / 100 g for Method A. The initial particle size of the swellable fluorine mica can be controlled by appropriately selecting the particle size of the raw material talc, or by pulverizing or classifying after production. In the present invention, the impact strength is further improved by setting the average particle size measured by a laser diffraction method in a methanol dispersion medium to 2.5 μm or less, more preferably 1.5 / m or less. be able to.
本発明のポリアミド樹脂組成物の製造にあたって、 fl彭潤性フッ素雲母の交換性 陽イオンを予めォニゥム塩などの有機物と交換する処理を行ってもょレ、が、 膨潤 性フッ素雲母は、 ポリアミドモノマーの存在下で重合時に添加された際の分散性 にすぐれるため、 重合時に添加される場合には、 ォェゥム塩等で処理を施さなく ても良好な効果が得られる。 また、 予め水ひ処理 (elutriation) により、 非膨 潤性の微量成分を除去する精製を施すこともできる。  In the production of the polyamide resin composition of the present invention, a treatment for exchanging the exchangeable cation of fl pentafluorofluoric mica with an organic substance such as an onium salt may be performed in advance, but the swellable fluoromica is a polyamide monomer. Since it has excellent dispersibility when added during polymerization in the presence of, a good effect can be obtained without treatment with a salt or the like when added during polymerization. In addition, purification by removing non-swelling trace components can be performed in advance by elutriation.
本発明において、 膨潤性フッ素雲母の配合量は、 ポリアミ ド樹脂 100質量部に 対して 0. 01〜50質量部であることが好ましく、 0. 1〜10質量部であることがより 好ましく、 1〜5質量部であることが特に好ましい。 膨潤性フッ素雲母系鉱物の配 合量が 0. 01質量部より少ないものは、 成形品としたときの耐熱性および強度 ·剛 性が十分に得られない傾向にある。 また、 膨潤性フッ素雲母の配合量が 50質量部 を超えたものは、 靱性に劣り、 十分な衝撃強度が得られないだけでなく、 後述す るように、 本発明のポリアミド樹脂組成物を製造するに当たって、 例えば、 その 重合が困難になる傾向にある。  In the present invention, the amount of the swellable fluoromica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, and more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the polyamide resin. It is particularly preferred that the amount is from 5 to 5 parts by mass. If the amount of the swellable fluoromica-based mineral is less than 0.01 parts by mass, the heat resistance, strength and rigidity of the molded article tend to be insufficient. When the amount of the swellable fluoromica exceeds 50 parts by mass, not only is the toughness inferior and sufficient impact strength is not obtained, but also the polyamide resin composition of the present invention is produced as described later. In doing so, for example, the polymerization tends to be difficult.
次に、 本発明のポリアミ ド樹脂組成物の製造方法について説明する。  Next, a method for producing the polyamide resin composition of the present invention will be described.
本発明のポリアミド樹脂組成物を製造する方法には、 膨潤性フッ素雲母の存在 下で、 出発モノマーを重合する方法がある。 この際膨潤性フッ素雲母の配合量は、 ポリアミド樹脂を形成するモノマー 100質量部に対して 0. 01〜50質量部であるこ とが好ましく、 0. 1〜10質量部であることがより好ましく、 1〜5質量部であるこ とがとりわけ好ましい。 膨潤性フッ素雲母の配合量が 0. 01質量部より少ないもの は、 成形品としたときの耐熱性および強度 ·剛性が +分に得られない傾向にある。 また、 膨潤性フッ素雲母の配合量が 50質量部を超えたものは、 靭性に劣り、 十分 な衝撃強度が得られないだけでなく、 ポリアミド樹脂の重合が困難になる傾向に ある。 膨潤性フッ素雲母の存在下で、 出発モノマーを重合するには、 公知のポリアミ ドの重合方法を採用することができ、 中でも、 バッチ式、 連続式を問わず、 溶融 重縮合法が好ましい。 具体的には、 必要な原料をオートクレープに仕込み、 水等 の開始剤の存在下で温度 240~300°C、 圧力 0. 2〜3MPaで、 1〜15時間の範囲で行え ばよい。 こうした温度、 圧力、 時間の条件を採ることで、 膨潤性フッ素雲母がポ リアミド樹脂中に分子レベ^/で分散するため好ましい。 ナイロン 6をマトリクス とする場合には、 温度 250〜280°C、 圧力 0. 5〜2MPa、 3〜5時間の範囲で重合する ことが好ましい。 また、 重合後のポリアミド樹脂組成物に残留しているポリアミ ドのモノマーを除去するために、 熱水による精練工程を経ることが好ましい。 こ の場合、 好ましくは 90〜100°Cの熱水中で 5時間以上の処理をすればよい。 As a method for producing the polyamide resin composition of the present invention, there is a method of polymerizing a starting monomer in the presence of swellable fluoromica. At this time, the compounding amount of the swellable fluorine mica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the monomer forming the polyamide resin. It is particularly preferred that the amount be 1 to 5 parts by mass. If the amount of the swellable fluoromica is less than 0.01 parts by mass, the heat resistance, strength, and rigidity of the molded article tend to be insufficient in minutes. When the amount of the swellable fluoromica exceeds 50 parts by mass, not only is the toughness inferior, sufficient impact strength is not obtained, but also the polymerization of the polyamide resin tends to be difficult. In order to polymerize the starting monomer in the presence of the swellable fluorine mica, a known polymerization method of a polyamide can be employed. Among them, a melt polycondensation method is preferable regardless of a batch type or a continuous type. Specifically, the necessary raw materials are charged into an autoclave, and the reaction can be performed in the presence of an initiator such as water at a temperature of 240 to 300 ° C and a pressure of 0.2 to 3 MPa for 1 to 15 hours. These temperature, pressure, and time conditions are preferred because the swellable fluoromica is dispersed at a molecular level / in the polyamide resin. When nylon 6 is used as the matrix, the polymerization is preferably performed at a temperature of 250 to 280 ° C, a pressure of 0.5 to 2 MPa, and a time of 3 to 5 hours. Further, in order to remove the monomers of the polyamide remaining in the polyamide resin composition after polymerization, it is preferable to go through a scouring step using hot water. In this case, treatment is preferably performed in hot water at 90 to 100 ° C. for 5 hours or more.
また、 膨潤性フッ素雲母とポリアミドモノマーとを、 水、 メタノール、 ェタノ ール、 エチレングリコール等の分散媒中で混合させる工程を設けてもよい。 この 工程によって、 膨潤性フッ素雲母のモノマー中への分散を促進することができる。 温度条件は、 室温、 あるいは必要に応じて室温以上、 分散媒の沸点以下としても よい。 混合においては攪拌効率を上げるための手段として、 ホモミキサー、 超音 波式分散機、 高圧分散機等を用いてもよい。  Further, a step of mixing the swellable fluoromica and the polyamide monomer in a dispersion medium such as water, methanol, ethanol, or ethylene glycol may be provided. By this step, dispersion of the swellable fluoromica in the monomer can be promoted. The temperature condition may be room temperature or, if necessary, higher than room temperature and lower than the boiling point of the dispersion medium. In mixing, a homomixer, an ultrasonic disperser, a high-pressure disperser, or the like may be used as a means for increasing the stirring efficiency.
また、 本発明のポリアミ ド樹脂組成物の製造方法には、 ポリアミド樹脂と膨潤 性フッ素雲母とを溶融混練する方法もある。 この際膨潤性フッ素雲母の配合量は、 ポリアミド樹脂 100質量部に対して 0. 01〜50質量部であることが好ましく、 0. 1〜 10質量部であることがより好ましく、 1〜5質量部であることがとりわけ好ましい。 膨潤性フッ素雲母の配合量が 0. 01質量部より少ないものは、 成形品としたときの 耐熱性および強度 '剛性が十分に得られない傾向にある。 また、 膨潤性フッ素雲 母の配合量が 50質量部を超えたものは、 靭性に劣り、 十分な衝撃強度が得られな い傾向にある。  Further, as a method for producing the polyamide resin composition of the present invention, there is also a method in which a polyamide resin and swellable fluoromica are melt-kneaded. At this time, the compounding amount of the swellable fluorine mica is preferably 0.01 to 50 parts by mass, more preferably 0.1 to 10 parts by mass, and more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the polyamide resin. Is particularly preferred. If the amount of the swellable fluoromica is less than 0.01 parts by mass, the heat resistance and strength of the molded article tend to be insufficient. If the amount of the swellable fluorine mica exceeds 50 parts by mass, the toughness is poor, and sufficient impact strength tends not to be obtained.
溶融混練を行う際、 膨潤性フ V素雲母は固体 ·粉末の状態で樹脂と混合しても 良いし、 水ゃェチレングリコール等の極性溶媒中に分散させた状態で混合しても 良いが、 後者の場合、 溶融混練中に発生する溶媒蒸気を除去するために、 排気装 置が適切に設計された溶融混練装置を用いることが好ましい。 また混合に先立つ て、 層間に存在する交換性カチオンをォニゥムイオン等の有機カチオンで交換す る工程を設けると、 混練時に膨潤性フッ素雲母がポリアミド樹脂中に分子レベル で分散しやすくなるため好ましい。 When performing melt-kneading, the swellable phlogopite mica may be mixed with the resin in a solid / powder state, or may be mixed in a state of being dispersed in a polar solvent such as water polyethylene glycol. In the latter case, it is preferable to use a melt kneading apparatus having an appropriately designed exhaust device in order to remove solvent vapor generated during melt kneading. Prior to mixing, exchangeable cations present between the layers are exchanged with organic cations such as onium ions. It is preferable to provide a step for dispersing the swellable fluoromica in the polyamide resin at the molecular level during kneading.
また、 前記の各方法で作成した膨潤性フッ素雲母を含有するポリアミ ド樹脂に は、 前記した各種ポリアミ ド樹脂から同種又は異種を問わず、 適宜選んで混合す ることができる。 この際に選ばれるポリアミ ド樹脂は、 膨潤性フッ素雲母が含有 されていてもいなくてもよレ、。  The polyamide resin containing swellable fluoromica prepared by each of the above methods may be appropriately selected from the above-mentioned various polyamide resins, irrespective of the same type or different types, and mixed. The polyamide resin selected at this time may or may not contain swellable fluoromica.
本発明のポリアミド樹脂組成物には、 その特性を大きく損わない限りにおいて、 熱安定剤、 酸化防止剤、 強化材、 顔料、 劣化防止剤、 耐候剤、 難燃剤、 可塑剤、 離型剤、 滑剤などが添加されていてもよく、 これらは重合または溶融混練による 製造時、 あるいは得られたポリアミド樹脂組成物を溶融混練もしくは溶融成形す る際に加えられる。  In the polyamide resin composition of the present invention, a heat stabilizer, an antioxidant, a reinforcing material, a pigment, a deterioration inhibitor, a weathering agent, a flame retardant, a plasticizer, a release agent, A lubricant or the like may be added, and these are added at the time of production by polymerization or melt kneading, or at the time of melt kneading or melt molding the obtained polyamide resin composition.
熱安定剤、 酸ィ匕防止剤及び劣化防止剤としては、 例えばヒンダードフエノール 類、 リン化合物、 ヒンダードアミン類、 ィォゥ化合物、 銅化合物、 アルカリ金属 のハロゲン化物あるいはこれらの混合物が挙げられる。  Examples of the heat stabilizer, antioxidant and deterioration inhibitor include hindered phenols, phosphorus compounds, hindered amines, thio compounds, copper compounds, alkali metal halides, and mixtures thereof.
強化材としては、 例えばクレー、 タルク、 炭酸カルシウム、 炭酸亜鉛、 ワラス トナイ ト、 シリカ、 アルミナ、 酸化マグネシウム、 珪酸カルシウム、 アルミン酸 ナトリゥム、 アルミノ珪酸ナトリゥム、 珪酸マグネシウム、 ガラスバルーン、 力 一ボンブラック、 酸化亜鉛、 ゼォライト、 ハイドロタノレサイ ト、 金属繊維、 金属 ゥイスカー、 セラミツクウイスカー、 チタン酸カリウムゥイスカー、 窒化ホウ素、 グラフアイト、 ガラス¾锥、 炭素 などが挙げられる。  Reinforcing materials include, for example, clay, talc, calcium carbonate, zinc carbonate, wallacetonite, silica, alumina, magnesium oxide, calcium silicate, sodium aluminate, sodium aluminosilicate, magnesium silicate, glass balloon, glass black, oxide Examples include zinc, zeolite, hydrotanolecite, metal fiber, metal whiskers, ceramic whiskers, potassium titanate whiskers, boron nitride, graphite, glass, and carbon.
さらに、 ポリアミ ド樹脂組成物には、 本発明の効果を損なわない範囲で他の熱 可塑性重合体が少量混合されていてもよく、 これらは得られたポリアミ ド樹脂組 成物を溶融混練または溶融成形する際に加えられる。 このような熱可塑性重合体 としては、 例えば、 ポリブタジエン、 ブタジエン/スチレン共重合体、 アクリル ゴム、 エチレン/プロピレン共重合体、 エチレン/プロピレン/ジェン共重合体、 天然ゴム、 塩素化プチルゴム、 塩素化ポリエチレン等のエラストマ一又はこれら の無水マレイン酸等による酸変性物、 スチレン/無水マレイン酸共重合体、 スチ レン Ζフエ-ルマレイミ ド共重合体、 ポリエチレン、 ポリプロピレン、 ブタジェ ン/ /アタリ口エトリル共重合体、 ポリ塩ィ匕ビュル、 ポリエチレンテレフタレート、 ポリプチレンテレフタレート、 ポリアセタール、 ポリフッ化ビ-リデン、 ポリス ルホン、 ポリフエ二レンサルファイド、 ポリエーテルスノレホン、 フエノキシ樹脂、 ポリフエ二レンエーテノレ、 ポリメチルメタタリレート、 ポリエーテルケトン、 ポ リカーボネート、 ポリテトラブルォロエチレン、 ポリアリレートなどが挙げられ る。 これらの熱可塑性重合体は、 fl彭潤性フッ素雲母や他の層状珪酸塩、 例えばモ ンモリロナイト、 バーミキユライト、 スメクタイト等を含有するものでもよい。 本発明のポリアミド樹脂組成物は、 通常の成形加工方法で目的の成形品とする ことができる。 例えば、 射出成形、 押出成形、 吹き込み成形等の熱溶融成形法に より各種の成形品とすることができる。 Further, the polyamide resin composition may contain a small amount of another thermoplastic polymer as long as the effect of the present invention is not impaired.These resins may be obtained by melt-kneading or melting the obtained polyamide resin composition. It is added when molding. Examples of such a thermoplastic polymer include polybutadiene, butadiene / styrene copolymer, acrylic rubber, ethylene / propylene copolymer, ethylene / propylene / gen copolymer, natural rubber, chlorinated butyl rubber, and chlorinated polyethylene. Or an acid-modified product of these with maleic anhydride, styrene / maleic anhydride copolymer, styrene / maleimide copolymer, polyethylene, polypropylene, butadiene // atari mouth ethryl copolymer , Poly Shiojiri Bull, Polyethylene Terephthalate, Polybutylene terephthalate, polyacetal, polyvinylidene fluoride, polysulfone, polyphenylene sulfide, polyethersnolephone, phenoxy resin, polyphenylene ether, polymethyl metathalylate, polyether ketone, polycarbonate, polytetraborate Examples include polyethylene and polyarylate. These thermoplastic polymers may contain fl-perfluorofluoromica or other layered silicates such as montmorillonite, vermiculite, smectite and the like. The polyamide resin composition of the present invention can be made into a target molded article by a usual molding method. For example, various molded articles can be formed by a hot melt molding method such as injection molding, extrusion molding, and blow molding.
本発明のポリアミド榭脂組成物は、 ポリアミド榭脂に膨潤性層状珪酸塩の珪酸 塩層が分子レベルで分散されてなるものであり、 従来この種の樹脂組成物が有す る優れた耐熱性および強度、 岡リ性に加え、 特に低温域での耐衝撃性に優れており、 - 30°Cの条件で測定した面衝撃強度が 10J以上であることを特徴とする。 この特性 によって、 これまで実現が困難であった、 寒冷地での使用も考慮される自動車、 機械等の外装部品に好適に使用できる。 もちろん、 衝撃強度は室温においても改 良されているため、 他の自動車の内外装部品、 家電機器や電子機器のハウジング 等をはじめ、 耐熱性、 強度 ·剛性、 衝撃強度等の要求される幅広い分野に適用で さる。  The polyamide resin composition of the present invention is obtained by dispersing a silicate layer of a swellable layered silicate at the molecular level in a polyamide resin. In addition to its strength and strength, it has excellent impact resistance especially at low temperatures, and its surface impact strength measured at -30 ° C is 10J or more. Due to this characteristic, it can be suitably used for exterior parts such as automobiles and machines that have been considered difficult to use in cold regions. Of course, impact strength is improved even at room temperature, so it can be used in a wide range of fields requiring heat resistance, strength, rigidity, impact strength, etc., including interior and exterior parts of other automobiles, housings of home appliances and electronic devices, etc. Apply to
本発明のポリアミド樹脂組成物は、 常法により溶融紡糸してフィラメントとす ることができる。 また、 チューブラ一法や T—ダイ法あるいは溶液キャスティン グ法等によりフィルムあるいはシートにすることができる。 得られたフィルムは、 伸度特性、 ガスバリヤ一性に優れるため、 包装用フィルム等に好適に利用できる。  The polyamide resin composition of the present invention can be melt-spun into a filament by an ordinary method. The film or sheet can be formed by a tubular method, a T-die method, a solution casting method, or the like. The obtained film has excellent elongation characteristics and gas barrier properties, and thus can be suitably used as a packaging film.
(実施例)  (Example)
次に、 実施例により本発明をさらに具体的に説明する。  Next, the present invention will be described more specifically with reference to examples.
なお、 実施例並びに比較例で用いた物性試験の測定法は次の通りである。  In addition, the measuring method of the physical property test used in the example and the comparative example is as follows.
(a)膨潤性フッ素雲母の初期平均粒径  (a) Initial average particle size of swellable fluoromica
レーザー回折法による粒度分布測定装置 (島津製作所社製、 SALD- 2000型) を 用い、 メタノールを分散媒とし、 フローセル中で測定することにより求めた。 Using a laser diffraction particle size distribution analyzer (manufactured by Shimadzu Corporation, Model SALD-2000), the measurement was carried out in a flow cell using methanol as a dispersion medium.
(b)膨潤性フッ素雲母の陽イオン交換容量 (C E C) 日本ベントナイト工業会標準試験方法によるベントナイト (粉状) の C E C測 定方法 (JBAS- 106-77) に基づいて求めた。 (b) Cation exchange capacity (CEC) of swellable fluoromica It was determined based on the bentonite (powder) CEC measurement method (JBAS-106-77) by the Japan Bentonite Industry Association standard test method.
すなわち、 浸出液容器、 浸出管及ぴ受器を縦方向に連結した装置を用いて、 ま ず始めに、 pH 7に調整した 1 N酢酸ァンモニゥム水溶液により、 膨潤性フッ素雲 母の層間カチオンの全てを丽4 +に交換する。 その後、 水とエチルアルコールを用 いて +分に洗浄してから、 前言 BNH4 +型の膨潤性フッ素雲母を 10質量。 /0の塩化力リ ゥム水溶液中に浸し、 試料中の丽 4 +を K+に交換する。 引き続いて、 前記イオン交 換反応に伴って侵出した Η4 +を 0. 1N水酸化ナトリゥム水溶液で滴定することに よつて Β彭潤性フッ素雲母の C E C (ミリ当量/ 100g) を求めた。 That is, first, all of the interlayer cations of the swellable fluoromica were treated with a 1 N ammonium acetate aqueous solution adjusted to pH 7 using a device in which a leachate container, a leach tube and a receiver were connected vertically. replace the丽4 +. Then, after washing with water and ethyl alcohol for + minutes, 10 mass of the above-mentioned BNH 4 + type swellable fluoromica is added. / Chloride force of 0 immersed in Li © anhydrous solution, exchanging丽4 + in the sample K +. Subsequently, obtained the ion exchange Yotsute be titrated with 0. 1N hydroxide Natoriumu solution was Eta 4 + a leach with the reactive Β彭潤fluorine mica CEC (meq / 100 g).
なお、 本発明における膨潤性フッ素雲母は、 イオン交換能を有するカチオンは 全てナトリウムイオンであるため、 陽イオン交換容量は 1ミリ
Figure imgf000012_0001
lミ リモル Zioogに相当する。
The swellable fluorine mica in the present invention has a cation exchange capacity of 1 mm since all cations having ion exchange capacity are sodium ions.
Figure imgf000012_0001
It is equivalent to one millimol Zioog.
(C)樹脂組成物の相対粘度  (C) relative viscosity of the resin composition
96質量%硫酸を溶媒としてポリアミド成分の濃度力 Slg/dlになるよう調製し、 ウベ口ーデ型粘度計を用いて 25°Cで測定した。  The polyamide component was prepared to have a concentration of Slg / dl using 96% by mass of sulfuric acid as a solvent, and measured at 25 ° C. using an Ube-Ede type viscometer.
(d)試験片の面衝撃強度  (d) Surface impact strength of test piece
デュポン式落錘衝撃試験機にて厚み 1. 6mm、 直径 100mmの円板成形片に所定の高 さから重錘を落下させて面衝撃強度を測定した。 それぞれの高さ、 重錘の組合せ からなる条件下で n=5、 23°C及び- 30°Cの温度下で測定した。 なお、 面衝撃強度 G は、 以下の式で求められるエネノレギーである。  Using a DuPont type falling weight impact tester, a weight was dropped from a predetermined height onto a disc-shaped piece having a thickness of 1.6 mm and a diameter of 100 mm, and the surface impact strength was measured. The measurement was performed at a temperature of n = 5, 23 ° C. and −30 ° C. under the conditions of the combination of each height and weight. In addition, the surface impact strength G is the energy of energy obtained by the following equation.
G ( J ) = G0+ (G - G0) / 2 G (J) = G 0 + (G-G 0 ) / 2
G。: (成形片が破壊しない最高高さ) X (重力加速度) X (落錘荷重) (成形片が破壌する最低高さ) X (重力加速度) X (落錘荷重) G. : (Maximum height at which molded piece does not break) X (Gravity acceleration) X (Plumbing load) (Minimum height at which molded piece breaks down) X (Gravity acceleration) X (Loading weight drop)
(e)試験片の弓 I張強度および引張破断伸度 (e) Bow of test piece I Tensile strength and tensile elongation at break
ASTM D- 638に基づいて測定した。  It was measured based on ASTM D-638.
(f)試験片の曲げ弾性率  (f) Flexural modulus of test piece
ASTM D-790に基づいて測定した。  Measured based on ASTM D-790.
(g)試験片の荷重たわみ温度  (g) Deflection temperature under load of test piece
ASTM D-648に基づいて、 荷重 1. 86MPaで測定した。 膨潤性フッ素雲母の製造例は以下の通りである。 Measured at a load of 1.86 MPa based on ASTM D-648. The production example of the swellable fluorine mica is as follows.
膨潤性フッ素雲母の製造例 1 Production example 1 of swellable fluoromica
平均粒径 1. 0 i mのタルクに対し、 平均粒径が 10 /z mの珪フッ化ナトリウムと珪 フッ化リチウムのモル比 45/55の混合物を全量の 15質量%になるように混合し、 これを磁性ルツボに入れ、 電気炉にて 850°Cで 1時間反応させることにより、 平 均粒径 1. 0 mの膨潤性フッ素雲母 (M-1) を得た。 この膨潤性フッ素雲母の組成 は、 N a。29 (M g 2 92 L i。36) S i 4O10FL 57, C E Cは 66ミリ当量/ 100 gであつ た。 To a talc with an average particle size of 1.0 im, a mixture of sodium silicate and lithium silicate having an average particle size of 10 / zm in a molar ratio of 45/55 was mixed so as to be 15% by mass of the total amount. This was placed in a magnetic crucible and reacted at 850 ° C. for 1 hour in an electric furnace to obtain a swellable fluoromica (M-1) having an average particle size of 1.0 m. The composition of this swellable fluoromica is Na. 29 (M g 2 92 L i . 36) S i 4 O 10 F L 57, CEC was filed by 66 meq / 100 g.
B彭潤性フッ素雲母の製造例 2  Production example 2
平均粒径 4. 5 mのタルクに対し、 平均粒径が 10 μ πιの珪フッ化ナトリウムと珪 フッ化リチウムのモル比 45ノ55の混合物を全量の 15質量%になるように混合し、 これを磁' 1·生ルツポに入れ、 電気炉にて 850°Cで 1時間反応させることにより平均 粒径 4. 5 mの膨潤性フッ素雲母 (M- 2) を得た。 この膨潤性フッ素雲母の組成は、 N a。29 (M g 2 92 L i。36) S i 4O10 FL 57, C E Cは 68ミリ当量 ZlOO gであった。 膨潤性フッ素雲母の製造例 3 To a talc with an average particle size of 4.5 m, a mixture of sodium silicate and lithium silicate having an average particle size of 10 μπι and a molar ratio of 45 to 55 was mixed to a total mass of 15% by mass. This was placed in a magnetic 1-tuple and allowed to react in an electric furnace at 850 ° C for 1 hour to obtain swellable fluoromica (M-2) with an average particle size of 4.5 m. The composition of this swellable fluoromica is Na. 29 (Mg 2 92 L i. 36 ) S i 4 O 10 FL 57 , CEC was 68 meq ZlOO g. Production example 3 of swellable fluoromica
平均粒径 6. 0 μ mのタルクに対し、 平均粒径が 10 μ mの珪フッ化ナトリウムを全 量の 15質量%になるように混合し、 これを磁性ルツボに入れ、 電気炉にて 850°C で 1時間反応させることにより、 平均粒径 6. の膨潤性フッ素雲母 (M-3) を 得た。 この膨潤性フッ素雲母の組成は、 N a 0.60M g 2.63 S i 4010 F 77、 C E Cは 110ミリ当量/ 100 gであった。 なおこの膨潤性フッ素雲母は特開平 11— 172100号 公報の実施例で使用されているものと平均粒径のみが異なる同一組成のものであ る。 To talc with an average particle size of 6.0 μm, mix sodium silicate with an average particle size of 10 μm to make up 15% by mass of the total amount, put this in a magnetic crucible, and use an electric furnace. By reacting at 850 ° C for 1 hour, swellable fluoromica (M-3) having an average particle diameter of 6. was obtained. The composition of the swellable fluorinated mica was N a 0. 60 M g 2 . 63 S i 4 0 10 F 77, CEC 110 meq / 100 g. The swellable fluorine mica has the same composition as that used in the examples of JP-A-11-172100 except for the average particle size.
上記で得た M- 1〜3について、 広角 X線回折測定 (理学電機社製、 広角 X線回折 装置 RAD- rB型を使用) を行った結果、 いずれについても、 原料タルクの c軸方向 の厚み 9. 2 Aに対するピークは消失し、 膨潤性フッ素雲母の生成を示す 12〜13 A に対応するピークが認められた。  Wide angle X-ray diffraction measurement (using RAD-rB type wide angle X-ray diffractometer, manufactured by Rigaku Corporation) was performed on M-1 to M-3 obtained above. The peak corresponding to the thickness of 9.2 A disappeared, and a peak corresponding to 12 to 13 A indicating the formation of swellable fluoromica was observed.
得られた膨潤性フッ素雲母の組成と特性を表 1に示す。 膨潤性 Table 1 shows the composition and properties of the obtained swellable fluoromica. Swelling
粒径 CEC フッ素 組成  Particle size CEC Fluorine composition
m) (ミリ当量/ lOOg) 雲母  m) (milliequivalent / lOOg) mica
M-1 Na 029 (Mg 292 L i 036) S i 4O10FL57 1.0 66 M-1 Na 029 (Mg 292 L i 036 ) S i 4 O 10 F L57 1.0 66
M-2 Na 029 (Mg 292 L i 036) S i4O10FL57 4.5 68 M-2 Na 029 (Mg 292 L i 036 ) S i 4 O 10 F L57 4.5 68
M - 3 a 060Mg 263 S i4O10FL77 6.0 110 実施例 1 M-3 a 060 Mg 263 S i 4 O 10 F L77 6.0 110 Example 1
£ _力プロラタタム 10kg、 膨潤性フッ素雲母 (M 1) 0.2kg, 水 lkgを内容量 30 リットルの反応缶に入れ、 攪拌しながら、 0.7MPaの圧力まで昇圧した。 そして 徐々に水蒸気を放圧しつつ、 圧力 0. 7MPa、 温度 260°Cに保って 2時間重合した 後、 1時間かけて常圧まで放圧した。 その後、 常圧下、 260°Cに 2時間放置した 後、 ス トランド状に払い出し、 冷 ¾1、 固化後、 切断することにより、 ポリアミド 樹脂組成物のぺレットを得た。 £ _ force Puroratatamu 10 kg, swelling fluorine mica (M 1) 0.2 kg, were placed water lkg to the reaction canister contents volume of 30 liters with stirring, and pressurized to a pressure of 0.7 MPa. Then, while gradually releasing the water vapor, the polymerization was carried out for 2 hours while maintaining the pressure at 0.7 MPa and the temperature at 260 ° C, and then the pressure was released to normal pressure over 1 hour. Thereafter, the mixture was allowed to stand at 260 ° C. under normal pressure for 2 hours, discharged in a strand shape, cooled, solidified, and then cut to obtain a pellet of a polyamide resin composition.
次いで、 このペレットを 95°Cの熱水で 8時間精練を行い、 この操作を 2度繰り 返した後、 真空乾燥することにより、 ポリアミド榭脂組成物の乾燥べレットを得 た。  Next, the pellets were scoured with hot water of 95 ° C. for 8 hours, and this operation was repeated twice, followed by vacuum drying to obtain a dried bellet of the polyamide resin composition.
次に、 この乾燥ペレットを射出成形機 (東芝製、 IS80G型) を用い、 シリンダ 一温度 260°C、 金型温度 70°Cで射出成形を行い、 各種の試験片を作成した。  Next, the dried pellets were injection molded using an injection molding machine (made by Toshiba, IS80G type) at a cylinder temperature of 260 ° C and a mold temperature of 70 ° C to produce various test pieces.
上記の方法で得られたポリアミド樹脂組成物のペレツト及び試験片を用い、 各 種の物性試験を行つた。 得られた結果を表 2に示す。  Various physical property tests were performed using the pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
実施例 2 Example 2
膨潤性フッ素雲母として (M-2) を用いた他は実施例 1と同様に重合を行い、 精練、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥べレット及 び試験片を得た。  Polymerization was carried out in the same manner as in Example 1 except that (M-2) was used as the swellable fluorine mica, and scouring, drying, and injection molding were performed to obtain a dried bellet and a test piece of the polyamide resin composition. .
上記の方法で得られたポリアミド樹脂組成物のペレット及び試験片を用い、 各 種の物性試験を行つた。 得られた結果を表 2に示す。  Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
実施例 3 Example 3
膨潤性フッ素雲母 (M-1) の仕込量を 0.1kgに変えた他は実施例 1と同様に重合 を行い、 精練、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥ぺ レツ ト及び試験片を得た。 The polymerization was carried out in the same manner as in Example 1 except that the charged amount of the swellable fluoromica (M-1) was changed to 0.1 kg, followed by scouring, drying, and injection molding to obtain a dried and dried polyamide resin composition. Letts and test pieces were obtained.
上記の方法で得られたポリアミド樹脂組成物のペレツト及び試験片を用い、 各 種の物性試験を行った。 得られた結果を表 2に示す。  Various physical property tests were performed using the pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
実施例 4 Example 4
膨潤性フッ素雲母 (M- 1) の仕込量を 0. 4kgに変えた他は実施例 1と同様に重合 を行い、 精練、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥べ レツ ト及び試験片を得た。  Drying pellets of the polyamide resin composition were obtained by performing polymerization, scouring, drying and injection molding in the same manner as in Example 1 except that the amount of swellable fluoromica (M-1) was changed to 0.4 kg. And a test piece were obtained.
上記の方法で得られたポリアミド樹脂組成物のペレツト及び試験片を用い、 各 種の物性試験を行った。 得られた結果を表 2に示す。  Various physical property tests were performed using the pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
比較例 1 Comparative Example 1
膨潤性フッ素雲母として (M-3) を用いた他は実施例 1と同様に重合を行い、 精練、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥ぺレット及 び試験片を得た。  Except for using (M-3) as the swellable fluorine mica, polymerization was performed in the same manner as in Example 1, and scouring, drying, and injection molding were performed to obtain a dried pellet and a test piece of the polyamide resin composition. .
上記の方法で得られたポリアミド樹脂組成物のペレット及び試験片を用い、 各 種の物性試験を行った。 得られた結果を表 2に示す。  Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
比較例 2 Comparative Example 2
膨潤性フッ素雲母の代わりに lg (0. 1%相当) のタルクを結晶核剤として仕込み、 実施例 1と同様に重合を行い、 精練、 乾燥、 射出成形を行うことによりポリアミ ド樹脂組成物の乾燥ペレツ ト及び試験片を得た。  Instead of swellable fluorine mica, lg (equivalent to 0.1%) of talc was charged as a crystal nucleating agent, polymerization was carried out in the same manner as in Example 1, and scouring, drying and injection molding were carried out to obtain a polyamide resin composition. Dried pellets and test pieces were obtained.
上記の方法で得られたポリアミド樹脂組成物のペレツト及ぴ試験片を用い、 各 種の物性試験を行った。 得られた結果を表 2に示す。  Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
実施例 5 Example 5
膨潤性フッ素雲母 (M - 1) 0. 2kgと 12-アミノドデカン酸塩酸塩 33. 2g (C E Cに 対して当量) とを混合し、 90°Cの温水中で 3時間撹拌した後、 固形分を濾別 '乾 燥し、 有機処理雲母を得た。 この有機処理雲母の全量とナイ口ン 6樹脂ぺレット (ユエチカ株式会社製、 A1030BRL) 10kgとを混合し、 二軸押出機 (池貝鉄工社製 PCM- 30型) を用い、 シリンダ温度 260。Cで溶融混練し、 次いでストランド状に払 い出し、 冷却、 固化後、 切断することにより、 ポリアミド樹脂組成物のぺレット を得た。 このペレットを乾燥後、 実施例 1と同様に射出成形を行い、 各種の試験 片を作成した。 A mixture of 0.2 kg of swellable fluoromica (M-1) and 33.2 g of 12-aminododecanoic acid hydrochloride (equivalent to CEC) was stirred in warm water at 90 ° C for 3 hours. This was filtered and dried to obtain an organically treated mica. The total amount of this organically treated mica was mixed with 10 kg of Nymouth 6 resin pellet (A1030BRL, manufactured by Yuetika Co., Ltd.), and the cylinder temperature was 260 using a twin-screw extruder (PCM-30, manufactured by Ikegai Iron Works Co., Ltd.). The resulting mixture was melt-kneaded with C, discharged in a strand shape, cooled, solidified, and then cut to obtain a pellet of a polyamide resin composition. After drying the pellets, injection molding was performed in the same manner as in Example 1, and various tests were performed. Pieces were made.
上記の方法で得られたポリアミド樹脂組成物のペレット及び試験片を用い、 各 種の物性試験を行った。 得られた結果を表 2に示す。  Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
実施例 6 Example 6
膨潤性フッ素雲母として (M-1) を用い、 12-アミノドデカン酸塩酸塩の量を 34. 2g ( C E Cに対して当量) に変えた他は実施例 6と同様に有機処理、 溶融混 練を行い、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥ペレツ ト及び試験片を得た。  Organic treatment and melt kneading as in Example 6, except that (M-1) was used as the swellable fluoromica and the amount of 12-aminododecanoic acid hydrochloride was changed to 34.2 g (equivalent to CEC). Then, drying and injection molding were performed to obtain a dried pellet and a test piece of the polyamide resin composition.
上記の方法で得られたポリアミド樹脂組成物のペレット及び試験片を用い、 各 種の物性試験を行つた。 得られた結果を表 2に示す。  Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
比較例 3 Comparative Example 3
膨潤性フッ素雲母として (M-3) を用い、 12-アミノドデカン酸塩酸塩の量を 55. 4g ( C E Cに対して当量) に変えた他は実施例 6と同様に有機処理、 溶融混 練を行!/、、 乾燥、 射出成形を行うことによりポリアミド樹脂組成物の乾燥ぺレッ ト及び試験片を得た。  Organic treatment and melt kneading as in Example 6, except that (M-3) was used as the swellable fluoromica and the amount of 12-aminododecanoic acid hydrochloride was changed to 55.4 g (equivalent to CEC). Drying and injection molding were performed to obtain a dry pellet and a test piece of the polyamide resin composition.
上記の方法で得られたポリアミド樹脂組成物のペレット及び試験片を用い、 各 種の物性試験を行つた。 得られた結果を表 2に示す。 Various physical property tests were performed using pellets and test pieces of the polyamide resin composition obtained by the above method. Table 2 shows the obtained results.
表 2 Table 2
Figure imgf000017_0001
表 2の結果から、 次のことが明らかである。
Figure imgf000017_0001
From the results in Table 2, the following is clear.
実施例 1〜6で得られたポリアミド樹脂組成物は、 いずれも耐熱性および強度、 岡リ性に優れ、 23°C及び一 30°Cにおける面衝撃強度も高いものであった。  Each of the polyamide resin compositions obtained in Examples 1 to 6 was excellent in heat resistance, strength, and stiffness, and had high surface impact strength at 23 ° C and 130 ° C.
これに対し、 比較例 1で得られたポリアミ ド榭脂組成物は、 耐熱性、 強度、 剛 性および 23°Cにおける面衝撃強度に優れていたが、 - 30°Cにおける面衝撃強度に 劣るものであった。 比較例 2で得られたポリアミド樹脂組成物は、 射出成形用非 強化ナイロン 6の標準的な組成を有しており、 膨潤性フッ素雲母が添加されてい ないため耐熱性および強度、 剛性はナイロン 6と同等であつた。 比較例 3で得ら れたポリアミ ド樹脂組成物は、 耐熱性および強度、 岡 lj性は高かったが、 23°C、 - 30°Cいずれの温度においても面衝撃強度に劣るものであった。 In contrast, the polyamide resin composition obtained in Comparative Example 1 was excellent in heat resistance, strength, rigidity and surface impact strength at 23 ° C, but was inferior in surface impact strength at −30 ° C. Was something. The polyamide resin composition obtained in Comparative Example 2 has a standard composition of non-reinforced nylon 6 for injection molding, and has no heat resistance, strength and rigidity because nylon swellable fluoromica is not added. Was equivalent to Made of Polyamide resin composition obtained we were in Comparative Example 3, heat resistance and strength, Oka lj resistance was high, 23 ° C, - in the 3 0 ° C any temperature inferior in surface impact strength Was.
(発明の効果)  (The invention's effect)
本発明によれば、 耐熱性および強度 '岡 ij性に優れ、 特に低温において面衝撃強 度の高いポリアミド樹脂組成物を得ることができる。 図面の簡単な説明 According to the present invention, it is possible to obtain a polyamide resin composition which is excellent in heat resistance and strength 'Oka ij properties', and particularly has high surface impact strength at low temperatures. BRIEF DESCRIPTION OF THE FIGURES
図 1 fl彭潤性フッ素雲母とそれを構成する珪酸塩層との構成的関係を説明する ための図。  Fig. 1 Diagram for explaining the structural relationship between fl Peng-lun fluoromica and the silicate layer that composes it.
産業上の利用可能性 Industrial applicability
本発明のポリアミド樹脂組成物は、 自動車の内外装部品、 家電機器や電子機器 のハウジング等、 また機械等の外装部品等幅広い分野に適用可能であり、 特に低 温域での衝擊強度に優れているため、 例えば寒冷地での高度な耐衝撃性が要求さ れる自動車外装部品等の使用に好適である。  INDUSTRIAL APPLICABILITY The polyamide resin composition of the present invention is applicable to a wide range of fields, such as interior and exterior parts of automobiles, housings of home electric appliances and electronic equipment, and exterior parts of machines and the like. Therefore, it is suitable for use in, for example, automotive exterior parts that require high impact resistance in cold regions.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリアミ ド樹脂と、 下記構造式で表され、 陽ィォン交換容量が 80ミリ当量 /100 g以下である膨潤性フッ素雲母と力 らなることを特徴とするポリアミ ド樹 脂糸且成物。 1. A polyamide resin yarn and composition comprising a polyamide resin, a swelling fluoromica having a positive ion exchange capacity of 80 meq / 100 g or less, represented by the following structural formula, and a force.
Naa (MgxL i e) S i 4OyFz Na a (Mg x L i e ) S i 4 O y F z
ここで、 0く a O.50、 0< ;3≤0.50s 2.5≤ x≤3, 10≤y≤11, 1.0≤ z≤2.0 であり、 ひ Zj3 =90/lO〜10Z90である。 Here, 0 a a.50, 0 <; 3≤0.50 s 2.5≤x≤3, 10≤y≤11, 1.0≤z≤2.0, and Zj3 = 90 / lO ~ 10Z90.
2. 前記膨潤性フッ素雲母が、 タルク、 珪フッ化リチウム及び珪フッ化ナトリ ゥムとを混合し、 加熱することによって得られるものである請求項 1記載のポリ ァミ ド樹脂組成物。  2. The polyamide resin composition according to claim 1, wherein the swellable fluoromica is obtained by mixing talc, lithium silicate fluoride and sodium silicate fluoride and heating.
3. 膨潤性フッ素雲母の初期平均粒径が 2.5 μ m以下であることを特徴とする請 求項 1又は 2記载のポリアミ ド樹脂組成物。  3. The polyamide resin composition according to claim 1 or 2, wherein the swellable fluoromica has an initial average particle size of 2.5 μm or less.
4. - 30°Cにおける面衝撃強度が 10J以上である請求項 1〜3記載のポリアミド樹 脂組成物。  4. The polyamide resin composition according to claim 1, which has a surface impact strength at −30 ° C. of 10 J or more.
PCT/JP2001/011115 2000-12-20 2001-12-19 Polyamide resin composition WO2002050187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000387189 2000-12-20
JP2000-387189 2000-12-20

Publications (1)

Publication Number Publication Date
WO2002050187A1 true WO2002050187A1 (en) 2002-06-27

Family

ID=18854174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011115 WO2002050187A1 (en) 2000-12-20 2001-12-19 Polyamide resin composition

Country Status (1)

Country Link
WO (1) WO2002050187A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149415A (en) * 1988-01-21 1990-06-08 Agency Of Ind Science & Technol Production of fluorine mica
JPH0680820A (en) * 1992-08-31 1994-03-22 Koopu Chem Kk Resin-modifying agent, antistatic resin composition and formed resin article produced by using the composition
US5414042A (en) * 1992-12-29 1995-05-09 Unitika Ltd. Reinforced polyamide resin composition and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02149415A (en) * 1988-01-21 1990-06-08 Agency Of Ind Science & Technol Production of fluorine mica
JPH0680820A (en) * 1992-08-31 1994-03-22 Koopu Chem Kk Resin-modifying agent, antistatic resin composition and formed resin article produced by using the composition
US5414042A (en) * 1992-12-29 1995-05-09 Unitika Ltd. Reinforced polyamide resin composition and process for producing the same

Similar Documents

Publication Publication Date Title
JPH1171517A (en) Polyamide resin composition and molded article made therefrom
US6255378B1 (en) Polyamide resin composition and process for producing the same
US6156838A (en) Polyamide resin composition and process for producing the same
JP5553495B2 (en) Polyamide resin composition and molded product obtained by molding the same
JPH11315204A (en) Polyamide composite material
JP5059750B2 (en) Polyamide resin composition
JPWO2002085984A1 (en) Polyamide resin composition for fuse element and fuse element
JP5191154B2 (en) Polyamide molded article manufacturing method and engine cover
JP4884714B2 (en) Polyamide resin mixture for engine cover and engine cover manufactured using the mixture
WO2002050187A1 (en) Polyamide resin composition
JP2007217714A (en) Polyamide resin composition
JP2002249659A (en) Polyamide resin composition
JPH09241505A (en) Polyamide resin composition
JP4726474B2 (en) Manufacturing method of polyamide composite injection molded article
JP2001002913A (en) Polyamide resin composition
JPH11172100A (en) Reinforced polyamide resin
JP3385096B2 (en) Reinforced polyamide resin connector
JP5319884B2 (en) Polyamide / polyolefin resin composition
JP2006131832A (en) Polyamide resin composition
JP2001098147A (en) Polyamide resin composition having excellent gas battier property, film and container using the same
JP2003020400A (en) Polyamide composite material and its preparation process
JP2006131831A (en) Polyamide resin composition
JPH11228817A (en) Highly gas-barriering polyamide resin composition, its production, and film and container using the same
JPH10265668A (en) Production of reinforced polyamide resin composition
JP4030169B2 (en) Polyamide composite material and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase