WO2002049230A1 - Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band - Google Patents

Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band Download PDF

Info

Publication number
WO2002049230A1
WO2002049230A1 PCT/FR2001/003928 FR0103928W WO0249230A1 WO 2002049230 A1 WO2002049230 A1 WO 2002049230A1 FR 0103928 W FR0103928 W FR 0103928W WO 0249230 A1 WO0249230 A1 WO 0249230A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficients
signal
order
filtering
estimation
Prior art date
Application number
PCT/FR2001/003928
Other languages
French (fr)
Inventor
Franck Florin
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU2002217246A priority Critical patent/AU2002217246A1/en
Publication of WO2002049230A1 publication Critical patent/WO2002049230A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements

Definitions

  • the present invention relates to the deworming, on reception, of a radio signal transmitted in spread band by means of modulation by pseudo-random binary codes, such as the signals transmitted by the satellites of a GNSS radio navigation system. (acronym taken from the Anglo-Saxon "Global Navigation Satellite System”).
  • GNSS radionavigation systems are made up of three segments: a network of traveling satellites whose orbits and positions on their orbits are known at all times with precision and which emit radionavigation signals making it possible to estimate their distances and radial speeds with respect of a receiver evolving on the surface or around the terrestrial globe, of the ground stations ensuring the control of the network of satellites and of the receivers which receive the signals of radionavigation of the satellites and make it possible to deduce therefrom, by triangulation operations, the positions and velocity vectors of their carriers.
  • the signals of radionavigation of the satellites which are emitted by on-board transmitters of low power and which have to travel long distances of the order of 20,000 Kms, are received with very low power levels, in an electromagnetic environment which can be congested with interfering signals, that is to say occupying the same bands, which are much more powerful because they originate from powerful ground transmitters (broadcasting transmitters, television transmitter, DME transmitter) often close to receivers.
  • the problem of deworming consists in eliminating as much as possible the interference affecting reception, the radio navigation signals emitted by the GNSS satellites to avoid masking of the signals of the satellites rendering the processing of the receiver inoperative.
  • the known solutions are essentially of two types: spatial filtering and spectral filtering with variants mixing the two solutions.
  • Spatial filtering consists in playing on the differences between the directions of origin of the useful signals and interference signals, and more especially, in taking advantage of the fact that the useful signals come from sources satellites with a high site angle while the interference signals come from sources on the ground or close to the ground with a low site angle. It consists in modeling the shape of the radiation pattern of the receiving antenna to place the sources of interference in the holes of this diagram and the sources of useful signals in the main lobes.
  • This technique is implemented using a directive reception antenna having a network of radiating elements associated with a more or less sophisticated pointing system.
  • Spectral filtering consists in analyzing the frequency spectrum of the received signal, identifying in this spectrum the frequencies affected by interference and eliminating or reducing them as long as the interference lasts.
  • the identification of the frequencies affected by interference is based on the expected form of the useful signals which are signals transmitted in spread band obtained by modulation of a carrier by means of pseudorandom binary sequences and which have the property of having in the band of frequency they occupy or useful band, the properties of white noise with a flat frequency spectrum and a level of the order or lower than that of thermal noise due to the low emission powers and the distances traveled.
  • Spectral lines exceeding, in the received signal, an arbitrary threshold close to the thermal noise level are considered to be due to interference and therefore to attenuate or even to eliminate.
  • Spectral filtering is effective for narrow band interference, on the order of less than twenty percent of the wanted signal band, or for short-term interference, which is often the case with unintentional interference from 'human activity.
  • the object of the present invention is to weaken and even eliminate a large category of interference affecting the reception of a radionavigation signal by satellites which is constituted by parasitic signals situated in the band of the radionavigation signal but not having like him a spectrum of white noise.
  • It relates to a deworming method, on reception, of a radioelectric signal transmitted in spread band by modulation of a carrier by means of pseudo-random binary codes remarkable in that it consists in subjecting said radio signal received on reception to a spectral whitening filtering rendering it its characteristics of white noise in the occupied band, by means of a spectral filter whose coefficients are deduced from an estimate of the coefficients of its matrix autocorrelation.
  • This deworming process makes it possible to reduce, in large proportions, the interference caused, on a radio signal having the characteristics of white noise in the useful band as is the case with a radio navigation signal by satellites, by all parasitic signals which, not having a white noise spectrum, have a partly predictable shape.
  • the whitening spectral filter used is a transverse filter of order p, with coefficients a pi corresponding to an autoregressive modeling of order p of the captured signal represented by a series of samples ⁇ * busy ⁇ : nf, n, p / J neither nor
  • the coefficients a pi of a transverse spectral filter of order p performing the bleaching are obtained by solving the system of equations:
  • c k _ ⁇ being the coefficient of the ith row and the kth column of the autocorrelation matrix of order p of the picked up signal which depends only on the absolute value of the difference ki, the picked up signal being stationary, and which is estimated iteratively using the relation:
  • N the instant of correlation estimation
  • the initial instant 0 being chosen arbitrarily
  • x n and x ⁇ + k _. being samples of the signal to be suppressed
  • the bleaching filter is a transverse filter of order p with symmetrical coefficients.
  • the whitening filter is a transverse filter of order p with symmetrical coefficients with an odd number of coefficients indicated by indices: a -M ' a -M +1> a -M +'" • ) a - ⁇ X a 0, ⁇ i> - » a Ml ' a M
  • a signal of radionavigation by satellites is received by a reception antenna, brought back in intermediate band or in base band by the stages of entry of a receiver to be able to be sampled and digitized at a reasonable rate without loss of information, sampled and digitized, then subjected to a digital processing having for object to extract information from it on the position and the speed vector of the carrier of the receiver.
  • a digital processing having for object to extract information from it on the position and the speed vector of the carrier of the receiver.
  • After sampling and digitization it generally takes the form of a sequence x ⁇ n ⁇ ⁇ of complex digital samples succeeding one another at a rate sufficient to respect Shannon's theorem, each sample having two components from '' a quadrature demodulation, a component from the phase I demodulation channel and a component from the Q quadrature demodulation channel
  • the signal of radionavigation by satellites has the particularity of being transmitted in spread band by means of a carrier modulated by pseudo-random binary sequences, which gives its frequency spectrum, in the band which is allocated to it, the characteristics pseudo white noise, with a relatively constant spectral density implying that the signal in the useful band is difficult to predict.
  • deworming technique consisting in eliminating from the signal received, any predictable component which can only come from interference since the expected signal must have a uniform spectral density in the useful band.
  • This deworming technique makes it possible to effectively combat any interference by a radio signal having more or less pure spectral lines such as a CW continuous wave signal or a FM frequency modulation signal.
  • An interfering signal s is supposed to be predictable when the value of one s n of its samples can be deduced from a linear combination of the values of its np previous samples, that is to say that the sequence s ⁇ n ⁇ of his samples verify a prediction relation in the direct sense of the form:
  • the prediction coefficients ⁇ a p , j ⁇ make it possible to define a transverse filter with finite impulse response RIF making it possible to eliminate from the signal received, the signal interfere predictable s.
  • the modeling of the predictive interfering signal can be done from the signal received itself since the useful signal is comparable to a noise in the same way as the prediction errors so that we can say that the modeling is also that of the signal picked up, the samples ⁇ s n ⁇ being able to be replaced in the prediction relation by the samples ⁇ x n ⁇ of the signal picked up.
  • the method of least squares is based on a minimization of the sum of the squares of prediction errors in the direct direction ⁇ / ⁇ p for n varying from 0 to Np-1, the samples s n being assumed to be zero outside the interval [1, N].
  • ⁇ p is both the autocorrelation matrix of order p of the predictive interfering signal s that we are trying to suppress and that of the signal picked up ⁇ x n ⁇ since the wanted useful signal is comparable to white noise as well as the prediction error.
  • the application of the method of least squares for the determination of the prediction coefficients and therefore of the transverse filter with finite response allowing to eliminate the predictable interferences of the signal of radionavigation by satellites thus passes by the estimation of the autocorrelation matrix of the received signal and its inversion.
  • the estimation of the coefficients of the autocorrelation matrix of order p of the captured signal can be done in the following iterative manner:
  • nk weighting coefficients chosen to attenuate the edge effect due to truncation
  • N the instant of estimation of the autocorrelation and 0 the initial instant arbitrarily chosen.
  • the figure illustrates a deworming circuit implementing the method which has just been described. It has three modules:
  • a third whitening filtering module 3 consisting of a digital filter which receives its coefficients from the second module 2 and processes the samples x n of the signal to be suppressed before their use by the stages downstream of the satellite radionavigation receiver in order to extract therefrom information on the position and the speed vector of the receiver carrier.
  • the first module 1 for estimating the autocorrelation matrix receives the samples ⁇ x n ⁇ of the signal picked up while it has been placed in the intermediate frequency band or in the base frequency band by the input stages of the receiver of radionavigation by satellites but before demodulation and despreading. It applies to these samples the iterative method of estimating the coefficients of the autocorrelation matrix described relative to relation (6) to generate an estimate of these coefficients intended for the second module 2 for calculating the bleaching filter coefficients.
  • the second module 2 for calculating the bleaching filter coefficients calculates prediction coefficients from the normal Yule-Walker equation by applying the relation (5) to the estimated coefficients of the autocorrelation matrix of the signal received, provided by the first module 1. To do this, it reverses beforehand the estimated autocorrelation matrix provided by the first module 1 for example by means of a Levinson-Durbin type matrix inversion technique.
  • the third whitening filtering module 3 performs, on the samples ⁇ x n ⁇ of the signal received, the operations of a spectral filter of the transverse type with a finite response FIR taking as coefficients the prediction coefficients provided by the second calculation module 2 whitening filter coefficients.
  • the filtered signal it delivers is applied to the downstream stages of the satellite navigation receiver, directly under digital form, either after switching to high frequency including digital-to-analog conversion and up-frequency, followed by down-frequency and a second analog-to-digital conversion.
  • the filter implemented by the third whitening filtering module 3 a condition of symmetry on its coefficients giving it a linear phase law which is particularly appreciated for the exploitation of the radionavigation signal by satellites after the operation filtering since a linear phase law filter behaves as a simple delay from the point of view of the distortion brought to the radio navigation signal.
  • c H and c j + i being coefficients of the autocorrelation matrix of order p of the modeled signal which only depend on the absolute values of the difference ji or of the sum j + i
  • the deworming method which has just been described applies to the treatment of any type of parasite or high level radio interference for the reception of radioelectric signals having a uniform spectrum in their useful band, as soon as the parasites or interference have somewhat predictable forms.
  • the deworming treatment has been represented and described as being executed by three separate modules, a module for estimating the coefficients of the autocorrelation matrix, a module for determining the coefficients of the whitening filter and a module for whitening filtering. It should not be concluded that this is necessarily the case in practice. Indeed, as we are dealing with digital signals, all the processing and functions carried out in these modules are done by means of one or more processors controlled by software, the distribution of tasks between one or more processors coming under the competence of the skilled person.

Abstract

In order to eliminate spurious signals in satellite radio navigation (GPS, GNSS1, GNSS2, GNSS3, GALILEO, GLONASS ) conventional techniques use frequency estimation of the sensed signal, estimation of interfering frequencies and elimination of said frequencies by filtering. The invention provides a different approach based on estimation of the time correlation matrix and on direct filtering of the signal without explicit estimation of interfering lines. Said technique offers the advantage of minimising adaptation time and the amount of calculation required. It proves to be well adapted to suppression of continuous wave (CW) and frequency modulated (FM) spurious signals. The direct filtering is advantageously carried out with a linear-phase adapted filter which minimises distortion products of the radio navigation signal.

Description

PROCEDE DE DEPARASITAGE, EN RECEPTION , D'UN SIGNAL RADIOELECTRIQUE EMIS EN BANDE ETALEE METHOD FOR DEWORING, RECEIVING, A RADIOELECTRIC SIGNAL BROADCAST EMITTED
La présente invention concerne le déparasitage, en réception, d'un signal radioélectrique émis en bande étalée au moyen d'une modulation par des codes binaires pseudo-aléatoires, tel que les signaux émis par les satellites d'un système de radionavigation du genre GNSS (sigle tiré de l'anglo-saxon "Global Navigation Satellite System"). Ces systèmes de radionavigation GNSS se composent de trois segments : un réseau de satellites défilants dont les orbites et positions sur leurs orbites sont connues à chaque instant avec précision et qui émettent des signaux de radionavigation permettant d'estimer leurs distances et vitesses radiales vis à vis d'un récepteur évoluant à la surface ou autour du globe terrestre, des stations au sol assurant le contrôle du réseau de satellites et des récepteurs qui reçoivent les signaux de radionavigation des satellites et permettent d'en déduire, par des opérations de triangulation, les positions et vecteurs vitesse de leurs porteurs. Les signaux de radionavigation des satellites qui sont émis par des émetteurs embarqués de faible puissance et qui ont à parcourir des distances importantes de l'ordre de 20.000 Kms, sont reçus avec des niveaux de puissance très faibles, dans un environnement électromagnétique pouvant être encombré de signaux interférents, c'est-à-dire occupant les mêmes bandes, beaucoup plus puissants car ayant pour origine de puissants émetteurs au sol (émetteurs de radiodiffusion, émetteur de télévision, émetteur DME) souvent proches des récepteurs.The present invention relates to the deworming, on reception, of a radio signal transmitted in spread band by means of modulation by pseudo-random binary codes, such as the signals transmitted by the satellites of a GNSS radio navigation system. (acronym taken from the Anglo-Saxon "Global Navigation Satellite System"). These GNSS radionavigation systems are made up of three segments: a network of traveling satellites whose orbits and positions on their orbits are known at all times with precision and which emit radionavigation signals making it possible to estimate their distances and radial speeds with respect of a receiver evolving on the surface or around the terrestrial globe, of the ground stations ensuring the control of the network of satellites and of the receivers which receive the signals of radionavigation of the satellites and make it possible to deduce therefrom, by triangulation operations, the positions and velocity vectors of their carriers. The signals of radionavigation of the satellites which are emitted by on-board transmitters of low power and which have to travel long distances of the order of 20,000 Kms, are received with very low power levels, in an electromagnetic environment which can be congested with interfering signals, that is to say occupying the same bands, which are much more powerful because they originate from powerful ground transmitters (broadcasting transmitters, television transmitter, DME transmitter) often close to receivers.
Le problème du déparasitage consiste à éliminer le plus possible les interférences affectant en réception, les signaux de radionavigation émis par les satellites GNSS pour éviter un masquage des signaux des satellites rendant inopérant les traitements du récepteur.The problem of deworming consists in eliminating as much as possible the interference affecting reception, the radio navigation signals emitted by the GNSS satellites to avoid masking of the signals of the satellites rendering the processing of the receiver inoperative.
Les solutions connues sont essentiellement de deux types : le filtrage spatial et le filtrage spectral avec des variantes mixant les deux solutions. Le filtrage spatial consiste à jouer sur les différences entre les directions de provenance des signaux utiles et signaux d'interférence, et plus spécialement, à profiter du fait que les signaux utiles proviennent de sources satellitaires ayant un angle de site élevé tandis que les signaux d'interférence proviennent de sources au sol ou proche du sol avec un angle de site faible. Il consiste à modeler la forme du diagramme de rayonnement de l'antenne de réception pour placer les sources d'interférence dans des trous de ce diagramme et les sources de signaux utiles dans des lobes principaux. Cette technique se met en œuvre à l'aide d'une antenne de réception directive présentant un réseau d'éléments rayonnants associé à un système de pointage plus ou moins sophistiqué.The known solutions are essentially of two types: spatial filtering and spectral filtering with variants mixing the two solutions. Spatial filtering consists in playing on the differences between the directions of origin of the useful signals and interference signals, and more especially, in taking advantage of the fact that the useful signals come from sources satellites with a high site angle while the interference signals come from sources on the ground or close to the ground with a low site angle. It consists in modeling the shape of the radiation pattern of the receiving antenna to place the sources of interference in the holes of this diagram and the sources of useful signals in the main lobes. This technique is implemented using a directive reception antenna having a network of radiating elements associated with a more or less sophisticated pointing system.
Le filtrage spectral consiste à analyser le spectre fréquentiel du signal reçu, repérer dans ce spectre, les fréquences affectées par des interférences et les éliminer ou les atténuer tant que durent les interférences. Le repérage des fréquences affectées par des interférences repose sur la forme attendue des signaux utiles qui sont des signaux émis en bande étalée obtenus par modulation d'une porteuse au moyen de suites binaires pseudo- aléatoires et qui ont la propriété d'avoir dans la bande de fréquence qu'ils occupent ou bande utile, les propriétés d'un bruit blanc avec un spectre de fréquence plat et un niveau de l'ordre ou inférieur à celui du bruit thermique en raison des faibles puissances d'émission et des distances parcourues. Les raies spectrales dépassant, dans le signal reçu, un seuil arbitraire voisin du niveau de bruit thermique, sont considérées comme dues à des interférences et donc à atténuer ou même à supprimer.Spectral filtering consists in analyzing the frequency spectrum of the received signal, identifying in this spectrum the frequencies affected by interference and eliminating or reducing them as long as the interference lasts. The identification of the frequencies affected by interference is based on the expected form of the useful signals which are signals transmitted in spread band obtained by modulation of a carrier by means of pseudorandom binary sequences and which have the property of having in the band of frequency they occupy or useful band, the properties of white noise with a flat frequency spectrum and a level of the order or lower than that of thermal noise due to the low emission powers and the distances traveled. Spectral lines exceeding, in the received signal, an arbitrary threshold close to the thermal noise level, are considered to be due to interference and therefore to attenuate or even to eliminate.
Le déparasitage par filtrage spectral est efficace pour des interférences à bande étroite, de l'ordre de moins de vingt pour cent de la bande du signal utile ou pour des interférences de courte durée, ce qui est souvent le cas des brouillages involontaires produits par l'activité humaine.Spectral filtering is effective for narrow band interference, on the order of less than twenty percent of the wanted signal band, or for short-term interference, which is often the case with unintentional interference from 'human activity.
La présente invention a pour but l'affaiblissement et même l'élimination d'une catégorie importante d'interférences affectant en réception un signal de radionavigation par satellites qui est constituée par des signaux parasites situés dans la bande du signal de radionavigation mais ne présentant pas comme lui un spectre de bruit blanc.The object of the present invention is to weaken and even eliminate a large category of interference affecting the reception of a radionavigation signal by satellites which is constituted by parasitic signals situated in the band of the radionavigation signal but not having like him a spectrum of white noise.
Elle a pour objet un procédé de déparasitage, en réception, d'un signal radioélectrique émis en bande étalée par modulation d'une porteuse au moyen de codes binaires pseudo-aléatoires remarquable en ce qu'il consiste à soumettre ledit signal radioélectrique capté en réception à un filtrage spectral de blanchiment lui rendant ses caractéristiques de bruit blanc dans la bande occupée, au moyen d'un filtre spectral dont les coefficients sont déduits d'une estimation des coefficients de sa matrice d'autocorrélation.It relates to a deworming method, on reception, of a radioelectric signal transmitted in spread band by modulation of a carrier by means of pseudo-random binary codes remarkable in that it consists in subjecting said radio signal received on reception to a spectral whitening filtering rendering it its characteristics of white noise in the occupied band, by means of a spectral filter whose coefficients are deduced from an estimate of the coefficients of its matrix autocorrelation.
Ce procédé de déparasitage permet de réduire dans de grandes proportions, les interférences provoquées, sur un signal radioélectrique ayant les caractéristiques d'un bruit blanc dans la bande utile comme c'est le cas d'un signal de radionavigation par satellites, par tous les signaux parasites qui, n'ayant pas un spectre de bruit blanc, ont une forme en partie predictible.This deworming process makes it possible to reduce, in large proportions, the interference caused, on a radio signal having the characteristics of white noise in the useful band as is the case with a radio navigation signal by satellites, by all parasitic signals which, not having a white noise spectrum, have a partly predictable shape.
Avantageusement, le filtre spectral de blanchiment utilisé est un filtre transverse d'ordre p, avec des coefficients ap i correspondant à une modélisation autorégressive d'ordre p du signal capté représenté par une suite d'échantillons {*„} : n f,n,p / J n.i n-iAdvantageously, the whitening spectral filter used is a transverse filter of order p, with coefficients a pi corresponding to an autoregressive modeling of order p of the captured signal represented by a series of samples {* „}: nf, n, p / J neither nor
f n p étant une erreur de modélisation de l'échantillon sn assimilable à un bruit blanc si le modèle est fidèle et le coefficient apfi étant égal à 1 par définition) qui sont déterminés de manière à minimiser l'erreur quadratique moyenne de modélisation.fnp being a modeling error of the sample s n comparable to a white noise if the model is faithful and the coefficient a pfi being equal to 1 by definition) which are determined so as to minimize the mean squared modeling error .
Avantageusement, les coefficients ap i d'un filtre spectral tranverse d'ordre p réalisant le blanchiment sont obtenus par résolution du système d'équations :Advantageously, the coefficients a pi of a transverse spectral filter of order p performing the bleaching are obtained by solving the system of equations:
«, ?« =0 fke [l,p]",? " = 0 fke [l, p]
(=0(= 0
ck_ι étant le coefficient de la ième ligne et de la kième colonne de la matrice d'autocorrélation d'ordre p du signal capté qui ne dépend que de la valeur absolue de la différence k-i, le signal capté étant stationnaire, et qui est estimé de façon itérative au moyen de la relation : Cl = ∑C nlXnXn π=0c k _ ι being the coefficient of the ith row and the kth column of the autocorrelation matrix of order p of the picked up signal which depends only on the absolute value of the difference ki, the picked up signal being stationary, and which is estimated iteratively using the relation: C l = ∑C nl X n X n π = 0
/ étant égal à : k -i , les anl étant des coefficients de pondération,/ being equal to: k -i, the a nl being weighting coefficients,
* désignant le complexe conjugué,* designating the conjugate complex,
N étant l'instant d'estimation de la corrélation, l'instant initial 0 étant choisi arbitrairement, xn et xπ+k_. étant des échantillons du signal à déparasiter, et le système d'équations étant résolu avec la contrainte : apfi = 1N being the instant of correlation estimation, the initial instant 0 being chosen arbitrarily, x n and x π + k _. being samples of the signal to be suppressed, and the system of equations being solved with the constraint: a pfi = 1
Avantageusement, le filtre de blanchiment est un filtre transverse d'ordre p à coefficients symétriques.Advantageously, the bleaching filter is a transverse filter of order p with symmetrical coefficients.
Avantageusement, lorsque le filtre de blanchiment est un filtre transverse d'ordre p à coefficients symétriques avec un nombre impair de coefficients repérés par des indices : a-M ' a-M +1 > a-M + '") a-\ Xa0 , αi >— » aM-l ' aMAdvantageously, when the whitening filter is a transverse filter of order p with symmetrical coefficients with an odd number of coefficients indicated by indices: a -M ' a -M +1> a -M +'" ) a - \ X a 0, α i> - » a Ml ' a M
( étant un nombre entier tel que : p = 2M +1), ses coefficients étant obtenus par résolution du système d'équations :(being an integer such that: p = 2M +1), its coefficients being obtained by solving the system of equations:
MM
ΣapΛ k-i + C k+i ) = 0 V£e [l, ] ι=0Σ a pΛ ki + C k + i) = 0 V £ e [l,] ι = 0
c k-i et c k+i ®tant des coefficients de la matrice d'autocorrélation d'ordre p du signal à déparasiter qui ne dépendent que des valeurs absolues de la différence k-i ou de la somme k + i , le signal considéré étant stationnaire et réel, et qui sont estimés de façon itérative au moyen de la relation : c k -i and c k + i ® both coefficients of the autocorrelation matrix of order p of the signal to be suppressed which depend only on the absolute values of the difference ki or of the sum k + i, the signal considered being stationary and real, and which are estimated iteratively using the relation:
êl = ΣanlXnXn* π=0 ê l = Σ a nl X n X n * π = 0
/ étant égal à : k -i dans un cas et a k + i dans l'autre, les αnl étant des coefficients de pondération,/ being equal to: k -i in one case and ak + i in the other, the α nl being weighting coefficients,
N l'instant d'estimation de la corrélation, l'instant initial 0 étant choisi arbitrairement, xn et xn+k__ étant des échantillons du signal reçu, et le système d'équations étant résolu avec la contrainte : a 0 = iζN the instant of correlation estimation, the initial instant 0 being chosen arbitrarily, x n and x n + k __ being samples of the received signal, and the system of equations being solved with the constraint: a 0 = iζ
D'autres caractéristiques et avantages de l'invention ressortiront de la description ci-après d'un mode de réalisation donné à titre d'exemple.Other characteristics and advantages of the invention will emerge from the description below of an embodiment given by way of example.
Cette description sera faite en regard du dessin dans lequel une figure unique représente schématiquement un circuit de déparasitage selon l'invention.This description will be made with reference to the drawing in which a single figure schematically represents a deworming circuit according to the invention.
En réception, un signal de radionavigation par satellites est capté par une antenne de réception, ramené en bande intermédiaire ou en bande de base par les étages d'entrée d'un récepteur pour pouvoir être échantillonné et numérisé à une cadence raisonnable sans perte d'informations, échantillonné et numérisé, puis soumis à un traitement numérique ayant pour objet d'en extraire des informations sur la position et le vecteur vitesse du porteur du récepteur. Après échantillonnage et numérisation, il se présente, en règle générale, sous la forme d'une suite x{n} ^d'échantillons numériques complexes se succédant à une cadence suffisante pour respecter le théorème de Shannon, chaque échantillon ayant deux composantes provenant d'une démodulation en quadrature, une composante provenant de la voie de démodulation en phase I et une composante provenant de la voie de démodulation en quadrature Q.In reception, a signal of radionavigation by satellites is received by a reception antenna, brought back in intermediate band or in base band by the stages of entry of a receiver to be able to be sampled and digitized at a reasonable rate without loss of information, sampled and digitized, then subjected to a digital processing having for object to extract information from it on the position and the speed vector of the carrier of the receiver. After sampling and digitization, it generally takes the form of a sequence x {n} ^ of complex digital samples succeeding one another at a rate sufficient to respect Shannon's theorem, each sample having two components from '' a quadrature demodulation, a component from the phase I demodulation channel and a component from the Q quadrature demodulation channel
Le signal de radionavigation par satellites a la particularité d'être émis en bande étalée au moyen d'une porteuse modulée par des suites binaires pseudo-aléatoires, ce qui donne à son spectre de fréquence, dans la bande qui lui est allouée, les caractéristiques d'un pseudo bruit blanc, avec une densité spectrale relativement constante impliquant que le signal dans la bande utile est difficilement predictible.The signal of radionavigation by satellites has the particularity of being transmitted in spread band by means of a carrier modulated by pseudo-random binary sequences, which gives its frequency spectrum, in the band which is allocated to it, the characteristics pseudo white noise, with a relatively constant spectral density implying that the signal in the useful band is difficult to predict.
Comme un signal de radionavigation par satellites est émis avec une faible puissance, la puissance électrique disponible à bord d'un satellite étant comptée et la distance parcourue par les ondes importantes, le signal capté en réception est reçu au niveau ou sous le niveau du bruit thermique. Vue sa faible puissance, son exploitation par un récepteur est facilement perturbée par des interférences parasites dans sa bande utile, provoquées par des signaux radioélectriques dues à l'activité humaine et présents dans l'environnement du récepteur à des niveaux de puissance souvent très supérieurs. Une grande partie des interférences parasites que l'on trouve dans la bande utile d'un signal de radiocommunication par satellites provoque une rupture de l'uniformité de la densité spectrale du signal capté, ce qui a conduit à développer différentes techniques de déparasitage consistant à rétablir, par un filtrage spectrale, l'uniformité de densité spectrale du signal dans la bande utile avant de chercher à l'utiliser pour en extraire des informations sur la position et le vecteur vitesse du porteur du récepteur.As a radio navigation signal by satellites is transmitted with low power, the electric power available on board a satellite being counted and the distance traveled by strong waves, the signal received in reception is received at or below the noise level thermal. Due to its low power, its operation by a receiver is easily disturbed by parasitic interference in its useful band, caused by radioelectric signals due to human activity and present in the receiver environment at often much higher power levels. A large part of the parasitic interference which is found in the useful band of a radiocommunication signal by satellites causes a break in the uniformity of the spectral density of the signal received, which has led to the development of different deworming techniques consisting of restore, by spectral filtering, the spectral density uniformity of the signal in the useful band before seeking to use it to extract information therefrom on the position and the speed vector of the carrier of the receiver.
On propose ici une technique de déparasitage consistant à éliminer du signal capté, toute composante predictible qui ne peut provenir que d'une interférence puisque le signal attendu doit avoir une densité spectrale uniforme dans la bande utile. Cette technique de déparasitage permet de lutter efficacement contre toute interférence par un signal radioélectrique présentant des raies spectrales plus ou moins pures tel qu'un signal à onde continue CW ou un signal à modulation de fréquence FM.We propose here a deworming technique consisting in eliminating from the signal received, any predictable component which can only come from interference since the expected signal must have a uniform spectral density in the useful band. This deworming technique makes it possible to effectively combat any interference by a radio signal having more or less pure spectral lines such as a CW continuous wave signal or a FM frequency modulation signal.
Un signal interférant s est supposé predictible lorsque la valeur de l'un sn de ses échantillons peut être déduite d'une combinaison linéaire des valeurs de ses n-p échantillons précédents, c'est-à-dire que la suite s{n} de ses échantillons vérifie une relation de prédiction dans le sens direct de la forme :An interfering signal s is supposed to be predictable when the value of one s n of its samples can be deduced from a linear combination of the values of its np previous samples, that is to say that the sequence s {n} of his samples verify a prediction relation in the direct sense of the form:
s n = ε ff,n,p - / > J a p.i .s n-i .
Figure imgf000008_0001
sn = ε f f , n, p - /> J a pi .s ni.
Figure imgf000008_0001
(=1(= 1
où p est l'ordre du modèle, c'est-à-dire le nombre d'échantillons précédents pris en compte dans la prédiction, {ap,j} une suite de p coefficients complexes définissant le modèle et ε /î p une erreur de prédiction dans le sens direct, par le modèle d'ordre p, de l'échantillon sn qui doit être assimilable à un bruit blanc si le modèle est fidèle, ou encore : 'f.n.p = Σ p,ι n (2)where p is the order of the model, i.e. the number of previous samples taken into account in the prediction, {a p , j} a series of p complex coefficients defining the model and ε / î p a prediction error in the direct direction, by the model of order p, of the sample s n which must be comparable to a white noise if the model is faithful, or again: 'fnp = Σ p, ι n (2)
.=0. = 0
avecwith
UP,O = 1 La relation de prédiction (1) réalise une modélisation dite U P, O = 1 The prediction relation (1) performs a so-called modeling
"autorégressive" car, en l'absence de bruit et d'erreurs de mesure sur les échantillons, elle est d'autant plus fidèle que l'ordre p du modèle est élevé. On remarque que l'on a :"autoregressive" because, in the absence of noise and measurement errors on the samples, it is all the more faithful the higher the order p of the model. We notice that we have:
PP
___?__,a p„,ι,s n_,—i , = —s n„ — ε jt ,n „,p „ ι=l___? __, ap „, ι, s n _, - i, = —sn„ - ε j t , n „, p„ ι = l
de sorte que les coefficients de prédiction {ap,j} permettent de définir un filtre transverse à réponse impulsionnelle finie RIF permettant d'éliminer du signal capté, le signal interfèrent predictible s. On remarque également que la modélisation du signal interférant prédictif peut se faire à partir du signal capté lui-même puisque le signal utile est assimilable à un bruit au même titre que les erreurs de prédiction de sorte que l'on peut dire que la modélisation est aussi celle du signal capté, les échantillons {sn} pouvant être remplacés dans la relation de prédiction par les échantillons {xn}du signal capté.so that the prediction coefficients {a p , j} make it possible to define a transverse filter with finite impulse response RIF making it possible to eliminate from the signal received, the signal interfere predictable s. We also note that the modeling of the predictive interfering signal can be done from the signal received itself since the useful signal is comparable to a noise in the same way as the prediction errors so that we can say that the modeling is also that of the signal picked up, the samples {s n } being able to be replaced in the prediction relation by the samples {x n } of the signal picked up.
Reste à déterminer les coefficients de prédiction {aj}. Une méthode connue pour la détermination de ces coefficients est celle dite des moindres carrés.It remains to determine the prediction coefficients {a j}. A known method for determining these coefficients is the so-called least squares method.
La méthode des moindres carrés se base sur une minimisation de la somme des carrés des erreurs de prédiction dans le sens direct ε/ π p pour n variant de 0 à N-p-1 , les échantillons sn étant supposés nuls en dehors de l'intervalle [1,N]. On a, d'après la relation (2) :The method of least squares is based on a minimization of the sum of the squares of prediction errors in the direct direction ε / π p for n varying from 0 to Np-1, the samples s n being assumed to be zero outside the interval [1, N]. We have, according to equation (2):
Figure imgf000009_0001
Pour minimiser cette somme de carrés d'erreurs, il faut annuler ses dérivées par rapport à la suite {aι} des coefficients de prédiction, ce qui se traduit par le système d'équations linéaires :
Figure imgf000009_0001
To minimize this sum of squares of errors, it is necessary to cancel its derivatives with respect to the sequence {a ι} of the prediction coefficients, which results in the system of linear equations:
Figure imgf000010_0001
Figure imgf000010_0001
Comme le signal utile est considéré comme un bruit, on peut remplacer, dans le système d'équations linéaires (3), les échantillons {sn} du signal interférant predictible par les échantillons {xn} du signal capté :As the useful signal is considered as noise, one can replace, in the system of linear equations (3), the samples {s n } of the predictable interfering signal by the samples {x n } of the picked up signal:
Σa pl∑x n-i j) = 0 Vje [l,...,p] (4) i=0Σ a p l∑ x n -i j ) = 0 Vje [l, ..., p] (4) i = 0
Le système d'équations linéaires (4) peut encore s'écrire, puisque aPι0 est égal à un par définition :The system of linear equations (4) can still be written, since a Pι0 is equal to one by definition:
∑snsn *_j = - a 5 „_,x V/ e [l,..., p] ι=l » étant l'opérateur conjugué.∑s n s n * _ j = - a 5 „_, x V / e [l, ..., p] ι = l » being the conjugate operator.
En posant :By asking :
Figure imgf000010_0002
Figure imgf000010_0002
T étant l'opérateur de transposition, etT being the transposition operator, and
-0 "1 ' p-l-0 "1 'p-l
Ω = -0 - p-2Ω = -0 - p-2
Cp-l Cp-2 on peut réécrire le système d'équations (3) sous une forme matricielle et aboutir à l'équation normale de Yule-Walker : C pl C p-2 we can rewrite the system of equations (3) in a matrix form and arrive at the normal Yule-Walker equation:
ΩΛ : -C„ Ω Λ: -C „
d'où l'on tire la valeur du vecteur Ap des coefficients de prédiction d'ordre pfrom which we derive the value of the vector A p from the prediction coefficients of order p
Ap = -Ω~;Cp (5)A p = -Ω ~ ; C p (5)
-1 étant l'opérateur d'inversion.-1 being the inversion operator.
On remarque que Ωp est à la fois la matrice d'autocorrélation d'ordre p du signal interférant prédictif s que l'on cherche à supprimer et celle du signal capté {xn} puisque le signal utile recherché est assimilable à un bruit blanc au même titre que l'erreur de prédiction. L'application de la ^méthode des moindres carrés pour la détermination des coefficients de prédiction et donc du filtre transversal à réponse finie permettant d'éliminer les interférences prédictibles du signal de radionavigation par satellites passe donc par l'estimation de la matrice d'autocorrélation du signal reçu et son inversion.We note that Ω p is both the autocorrelation matrix of order p of the predictive interfering signal s that we are trying to suppress and that of the signal picked up {x n } since the wanted useful signal is comparable to white noise as well as the prediction error. The application of the method of least squares for the determination of the prediction coefficients and therefore of the transverse filter with finite response allowing to eliminate the predictable interferences of the signal of radionavigation by satellites thus passes by the estimation of the autocorrelation matrix of the received signal and its inversion.
L'estimation des coefficient de la matrice d'autocorrélation d'ordre p du signal capté peut se faire de la façon itérative suivante :The estimation of the coefficients of the autocorrelation matrix of order p of the captured signal can be done in the following iterative manner:
Figure imgf000011_0001
Figure imgf000011_0001
ank étant des coefficients de pondération choisis pour atténuer l'effet de bord du à la troncature,a nk being weighting coefficients chosen to attenuate the edge effect due to truncation,
N l'instant d'estimation de l'autocorrélation et 0 l'instant initial choisi arbitrairement.N the instant of estimation of the autocorrelation and 0 the initial instant arbitrarily chosen.
La figure illustre un circuit de déparasitage mettant en œuvre la méthode qui vient d'être décrite. Il comporte trois modules :The figure illustrates a deworming circuit implementing the method which has just been described. It has three modules:
• un premier module 1 d'estimation de la matrice d'autocorrélation du signal placé en entrée et recevant les échantillons xn du signal à déparasiter, reçu et numérisé par les étages d'entrée d'un récepteur de radionavigation par satellites,A first module 1 for estimating the autocorrelation matrix of the signal placed at the input and receiving the x n samples of the signal to be suppressed, received and digitized by the input stages of a satellite navigation receiver,
• un deuxième module 2 de calcul des coefficients de filtre de blanchiment opérant à partir des coefficients de matrice de corrélation estimés par le premier module 1 , etA second module 2 for calculating the bleaching filter coefficients operating from the correlation matrix coefficients estimated by the first module 1, and
• un troisième module 3 de filtrage de blanchiment constitué d'un filtre numérique qui reçoit ses coefficients du deuxième module 2 et traite les échantillons xn du signal à déparasiter avant leur utilisation par les étages aval du récepteur de radionavigation par satellites pour en extraire des informations sur la position et le vecteur vitesse du porteur du récepteur.A third whitening filtering module 3 consisting of a digital filter which receives its coefficients from the second module 2 and processes the samples x n of the signal to be suppressed before their use by the stages downstream of the satellite radionavigation receiver in order to extract therefrom information on the position and the speed vector of the receiver carrier.
Le premier module 1 d'estimation de la matrice d'autocorrélation reçoit les échantillons {xn} du signal capté alors qu'il a été placé en bande de fréquence intermédiaire ou en bande de fréquence de base par les étages d'entrée du récepteur de radionavigation par satellites mais avant démodulation et désétalement. Il applique à ces échantillons la méthode itérative d'estimation des coefficients de la matrice d'autocorrélation décrite relativement à la relation (6) pour engendrer une estimation de ces coefficients à destination du deuxième module 2 de calcul des coefficients de filtre de blanchiment.The first module 1 for estimating the autocorrelation matrix receives the samples {x n } of the signal picked up while it has been placed in the intermediate frequency band or in the base frequency band by the input stages of the receiver of radionavigation by satellites but before demodulation and despreading. It applies to these samples the iterative method of estimating the coefficients of the autocorrelation matrix described relative to relation (6) to generate an estimate of these coefficients intended for the second module 2 for calculating the bleaching filter coefficients.
Le deuxième module 2 de calcul des coefficients de filtre de blanchiment calcule des coefficients de prédiction à partir de l'équation normale de Yule-Walker par application de la relation (5) aux coefficients estimés de la matrice d'autocorrélation du signal capté, fournis par le premier module 1. Pour ce faire, il inverse au préalable la matrice d'autocorrélation estimée fournie par le premier module 1 par exemple au moyen d'une technique d'inversion matricielle de type Levinson-Durbin. Le troisième module 3 de filtrage de blanchiment réalise, sur les échantillons {xn} du signal capté les opérations d'un filtre spectral de type transverse à réponse finie FIR reprenant pour coefficients, les coefficients de prédiction fournis par le deuxième module 2 de calcul des coefficients de filtre de blanchiment. Le signal filtré qu'il délivre est appliqué aux étages avals du récepteur de radionavigation par satellites, soit directement sous forme numérique, soit après un passage en haute fréquence incluant une conversion numérique-analogique et une remontée en fréquence suivies d'une descente en fréquence et d'une deuxième conversion analogique- numérique.The second module 2 for calculating the bleaching filter coefficients calculates prediction coefficients from the normal Yule-Walker equation by applying the relation (5) to the estimated coefficients of the autocorrelation matrix of the signal received, provided by the first module 1. To do this, it reverses beforehand the estimated autocorrelation matrix provided by the first module 1 for example by means of a Levinson-Durbin type matrix inversion technique. The third whitening filtering module 3 performs, on the samples {x n } of the signal received, the operations of a spectral filter of the transverse type with a finite response FIR taking as coefficients the prediction coefficients provided by the second calculation module 2 whitening filter coefficients. The filtered signal it delivers is applied to the downstream stages of the satellite navigation receiver, directly under digital form, either after switching to high frequency including digital-to-analog conversion and up-frequency, followed by down-frequency and a second analog-to-digital conversion.
En variante, on peut imposer au filtre mis en œuvre par le troisième module 3 de filtrage de blanchiment une condition de symétrie sur ses coefficients lui donnant une loi de phase linéaire particulièrement appréciée pour l'exploitation du signal de radionavigation par satellites après l'opération de filtrage de déparasitage puisqu'un filtre à loi de phase linéaire se comporte comme un simple retard du point de vue de la distorsion apportée au signal de radionavigation.As a variant, it is possible to impose on the filter implemented by the third whitening filtering module 3 a condition of symmetry on its coefficients giving it a linear phase law which is particularly appreciated for the exploitation of the radionavigation signal by satellites after the operation filtering since a linear phase law filter behaves as a simple delay from the point of view of the distortion brought to the radio navigation signal.
Dans le cas d'un filtre de blanchiment à nombre impair de coefficients, la condition de symétrie est mieux mise en évidence avec l'indexation suivante des coefficients :In the case of a bleaching filter with an odd number of coefficients, the condition of symmetry is better highlighted with the following indexing of the coefficients:
a-M ' a-M+l ' a-M +2 »• • •> a-\ '^a0 ' ai '"> aM-\ ' aM a -M ' a -M + l' a -M +2 " • • • > a - \ '^ a 0' a i '" > a M- \' a M
(M étant un nombre entier tel que : p = 2M +1). Elle devient alors :(M being an integer such that: p = 2M +1). It then becomes:
_. = a,_. = a,
Sa prise en compte lors de l'application de la méthode des moindres carrés à la recherche des coefficients de prédiction, conduit à la résolution d'un système d'équations linéaires modifié par rapport à celui mentionné précédemment en (4). Ce nouveau système devient :Its taking into account during the application of the method of least squares to the research of the prediction coefficients, leads to the resolution of a system of linear equations modified compared to that mentioned previously in (4). This new system becomes:
Σ*pl∑Xn-iX:-JXn+iXlj ) = 0 V*6 [Uf] (=0 n n J avec la contrainte : a0 =y2 ou encore :Σ * pl∑ X ni X : - J + Σ X n + i X lj) = 0 V * 6 [Uf] (= 0 nn J with the constraint: a 0 = y 2 or again:
M M . .M M. .
p cH + cJ+i)= 0 Y/e [l,M] i=0 toujours avec la contrainte a0 =p c H + c J + i ) = 0 Y / e [l, M] i = 0 always with the constraint a 0 =
cH et cj+i étant des coefficients de la matrice d'autocorrélation d'ordre p du signal modélisé qui ne dépendent que des valeurs absolues de la différence j-i ou de la somme j + ic H and c j + i being coefficients of the autocorrelation matrix of order p of the modeled signal which only depend on the absolute values of the difference ji or of the sum j + i
La solution de ce système d'équations linéaires s'obtient de la même façon que celle du système d'équations linéaires (4), comme solution d'une équation matricielle de type Yule-Walker combinant des matrices respectivement de type Toepliz et Hankel obtenues à l'aide des estimations des 2M+1 coefficients d'autocorrélation du signal capté.The solution of this system of linear equations is obtained in the same way as that of the system of linear equations (4), as solution of a matrix equation of Yule-Walker type combining matrices respectively of Toepliz and Hankel type obtained using estimates of 2M + 1 autocorrelation coefficients of the signal received.
Le procédé de déparasitage qui vient d'être décrit s'applique au traitement de tout type de parasite ou d'interférence radioélectrique à fort niveau pour la réception de signaux de radioelectriques présentant un spectre uniforme dans leur bande utile, dés que les parasites ou interférences ont des formes un tant soit peu prédictibles.The deworming method which has just been described applies to the treatment of any type of parasite or high level radio interference for the reception of radioelectric signals having a uniform spectrum in their useful band, as soon as the parasites or interference have somewhat predictable forms.
Pour faciliter la compréhension, le traitement de déparasitage a été représenté et décrit comme étant exécuté par trois modules séparés, un module d'estimation des coefficients de la matrice d'autocorrélation, un module de détermination des coefficients du filtre de blanchiment et un module de filtrage de blanchiment. Il ne faut pas en conclure que c'est nécessairement le cas en pratique. En effet, comme l'on a affaire à des signaux numérisés, tous les traitements et fonctions réalisés dans ces modules le sont au moyen d'un ou plusieurs processeurs pilotés par des logiciels, la répartition des tâches entre un ou plusieurs processeurs relevant de la compétence de l'homme du métier. To facilitate understanding, the deworming treatment has been represented and described as being executed by three separate modules, a module for estimating the coefficients of the autocorrelation matrix, a module for determining the coefficients of the whitening filter and a module for whitening filtering. It should not be concluded that this is necessarily the case in practice. Indeed, as we are dealing with digital signals, all the processing and functions carried out in these modules are done by means of one or more processors controlled by software, the distribution of tasks between one or more processors coming under the competence of the skilled person.

Claims

REVENDICATIONS
1. Procédé de déparasitage, en réception, d'un signal radioélectrique émis en bande étalée par modulation d'une porteuse au moyen de codes binaires pseudo-aléatoires caractérisé en ce qu'il consiste à soumettre ledit signal radioélectrique capté en réception à un filtrage spectral de blanchiment lui rendant ses caractéristiques de bruit blanc dans la bande occupée, au moyen d'un filtre spectral dont les coefficients sont déduits d'une estimation des coefficients de sa matrice d'autocorrélation.1. A method of deworming, on reception, of a radio signal transmitted in a spread band by modulation of a carrier by means of pseudo-random binary codes, characterized in that it consists in subjecting said radio signal received on reception to filtering. whitening spectral rendering it its characteristics of white noise in the occupied band, by means of a spectral filter whose coefficients are deduced from an estimation of the coefficients of its autocorrelation matrix.
2. Procédé selon la revendication 1 , caractérisé en ce que le filtrage spectral de blanchiment est réalisé au moyen d'un filtre transverse d'ordre p, avec des coefficients ap k correspondant à une modélisation autorégressive d'ordre p du signal capté représenté par une suite d'échantillons {xn} : χ„ = ε f,n,P / ap,iXn- ι=l2. Method according to claim 1, characterized in that the spectral bleaching filtering is carried out by means of a transverse filter of order p, with coefficients a pk corresponding to an autoregressive modeling of order p of the captured signal represented by a series of samples {x n }: χ „= ε f, n, P / a p, i X n- ι = l
/Λp étant une erreur de modélisation de l'échantillon xn et le coefficient ap ϋ étant égal à 1 par définition) qui sont déterminés de manière à minimiser l'erreur quadratique moyenne de modélisation./ Λp being a modeling error of the sample x n and the coefficient a p ϋ being equal to 1 by definition) which are determined so as to minimize the mean square error of modeling.
3. Procédé selon la revendication 2, caractérisé en ce que les coefficients ap i du filtre transverse d'ordre p réalisant le filtrage de blanchiment sont obtenus par résolution du système d'équations :3. Method according to claim 2, characterized in that the coefficients a pi of the transverse filter of order p carrying out the bleaching filtering are obtained by solving the system of equations:
Figure imgf000015_0001
Figure imgf000015_0001
ck_. étant le coefficient de la ième ligne et de la kième colonne de la matrice d'autocorrélation d'ordre p du signal capté qui ne dépend que de la valeur absolue de la différence k-i, le signal capté étant stationnaire et réel. c k _. being the coefficient of the ith row and the kth column of the autocorrelation matrix of order p of the picked up signal which depends only on the absolute value of the difference ki, the picked up signal being stationary and real.
4. Procédé selon la revendication 3, caractérisé en ce que les coefficients ck__ de la matrice d'autocorrélation du signal capté sont estimés de façon itérative au moyen de la relation :4. Method according to claim 3, characterized in that the coefficients c k __ of the autocorrelation matrix of the sensed signal are estimated iteratively by means of the relation:
Cl = _j anlXnXn* π=0 C l = _j a nl X n X n * π = 0
l étant égal à : k - i, les anl étant des coefficients de pondération,l being equal to: k - i, the a nl being weighting coefficients,
N étant l'instant d'estimation de la corrélation, l'instant initial 0 étant choisi arbitrairement, xn et xn+k_. étant des échantillons du signal à déparasiter, et le système d'équations étant résolu avec la contrainte : ap 0 = 1N being the instant of estimation of the correlation, the initial instant 0 being chosen arbitrarily, x n and x n + k _. being samples of the signal to be suppressed, and the system of equations being solved with the constraint: a p 0 = 1
5. Procédé selon la revendication 2, caractérisé en ce que le filtrage spectral de blanchiment est réalisé au moyen d'un filtre transverse d'ordre p à coefficients symétriques.5. Method according to claim 2, characterized in that the spectral bleaching filtering is carried out by means of a transverse filter of order p with symmetrical coefficients.
6. Procédé selon la revendication 2, caractérisé en ce que le filtrage de blanchiment est réalisé au moyen d'un filtre transverse d'ordre p à coefficients symétriques avec un nombre impair de coefficients repérés par des indices : a-M ' a-M +ι ' a-M +2 '•••> a-ι ,2a0 , ax ,...,aM_l , au 6. Method according to claim 2, characterized in that the bleaching filtering is carried out by means of a transverse filter of order p with symmetrical coefficients with an odd number of coefficients identified by indices: a - M ' a - M + ι ' a - M +2 '•••> a -ι, 2a 0 , a x , ..., a M _ l , a u
(M étant un nombre entier tel que : p = 2M +1), ses coefficients étant obtenus par résolution du système d'équations :(M being an integer such that: p = 2M +1), its coefficients being obtained by solving the system of equations:
MM
∑tfp,.fe-A <A,) = 0 \/k e [l,M]∑tf p ,. fe-A <A,) = 0 \ / ke [l, M]
1=01 = 0
c ket c k+i étant des coefficients de la matrice d'autocorrélation d'ordre p du signal capté qui ne dépendent que des valeurs absolues de la différence k-i ou de la somme k + i , le signal capté étant stationnaire et réel. c kand c k + i being coefficients of the autocorrelation matrix of order p of the sensed signal which only depend on the absolute values of the difference ki or of the sum k + i, the sensed signal being stationary and real .
7. Procédé selon la revendication 6, caractérisé en ce que les coefficients ck_, et ck+i de la matrice d'autocorrélation du signal capté sont estimés de façon itérative au moyen de la relation :7. Method according to claim 6, characterized in that the coefficients c k _, and c k + i of the autocorrelation matrix of the sensed signal are estimated iteratively by means of the relation:
Figure imgf000017_0001
Figure imgf000017_0001
/ étant égal à : k-i dans un cas et à k + i dans l'autre, les αnl étant des coefficients de pondération,/ being equal to: ki in one case and to k + i in the other, the α nl being weighting coefficients,
N étant l'instant d'estimation de la corrélation, l'instant initial 0 étant choisi arbitrairement, χn et xn+lc_. étant des échantillons du signal reçu, et le système d'équations étant résolu avec la contrainte : αp 0 = Vi.N being the instant of estimation of the correlation, the initial instant 0 being chosen arbitrarily, χ n and x n + lc _. being samples of the received signal, and the system of equations being solved with the constraint: α p 0 = Vi.
8. Procédé selon la revendication 1, caractérisé en ce que le signal radioélectrique traité est un signal de radionavigation par satellites. 8. Method according to claim 1, characterized in that the processed radio signal is a radio navigation signal by satellites.
PCT/FR2001/003928 2000-12-15 2001-12-11 Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band WO2002049230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002217246A AU2002217246A1 (en) 2000-12-15 2001-12-11 Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/16415 2000-12-15
FR0016415A FR2818470A1 (en) 2000-12-15 2000-12-15 METHOD FOR DEWORING, RECEIVING, A RADIOELECTRIC SIGNAL BROADCAST EMITTED

Publications (1)

Publication Number Publication Date
WO2002049230A1 true WO2002049230A1 (en) 2002-06-20

Family

ID=8857732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003928 WO2002049230A1 (en) 2000-12-15 2001-12-11 Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band

Country Status (3)

Country Link
AU (1) AU2002217246A1 (en)
FR (1) FR2818470A1 (en)
WO (1) WO2002049230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115420949A (en) * 2022-11-04 2022-12-02 中国电力科学研究院有限公司 VFTO time frequency analysis method, device, medium and equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2967503B1 (en) * 2010-11-12 2012-11-09 Thales Sa METHOD FOR DETECTING THE DEFORMATION OF A GNSS SIGNAL

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410750A (en) * 1992-02-24 1995-04-25 Raytheon Company Interference suppressor for a radio receiver
US6141371A (en) * 1996-12-18 2000-10-31 Raytheon Company Jamming suppression of spread spectrum antenna/receiver systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5410750A (en) * 1992-02-24 1995-04-25 Raytheon Company Interference suppressor for a radio receiver
US6141371A (en) * 1996-12-18 2000-10-31 Raytheon Company Jamming suppression of spread spectrum antenna/receiver systems

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOHERTY J F: "A REGULARIZED LMS ALGORITHM FOR NARROWBAND INTERFERENCE REJECTION IN DIRECT SEQUENCE SPREAD SPECTRUM COMMUNICATIONS", WIRELESS PERSONAL COMMUNICATIONS, KLUWER ACADEMIC PUBLISHERS, NL, vol. 7, no. 1, 1 May 1998 (1998-05-01), pages 53 - 67, XP000750752, ISSN: 0929-6212 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115420949A (en) * 2022-11-04 2022-12-02 中国电力科学研究院有限公司 VFTO time frequency analysis method, device, medium and equipment
CN115420949B (en) * 2022-11-04 2022-12-30 中国电力科学研究院有限公司 VFTO time frequency analysis method, device, medium and equipment

Also Published As

Publication number Publication date
AU2002217246A1 (en) 2002-06-24
FR2818470A1 (en) 2002-06-21

Similar Documents

Publication Publication Date Title
EP0665665B1 (en) Method and device enabling a modem to synchronize on a transmitter of digital data via a radio channel in the presence of interferences
EP2100161B1 (en) Method for the multipath passive radar processing of an fm opportunity signal
Musumeci et al. Use of the Wavelet Transform for Interference Detection and Mitigation in Global Navigation Satellite Systems.
EP2579063B1 (en) Method and system for locating interference by frequency sub-band
FR2975193A1 (en) METHOD AND SYSTEM FOR LOCATING INTERFERENCES AFFECTING A SATELLITE RADIONAVIGATION SIGNAL
JP2003533937A (en) Code phase tracking method and receiver
CN107817506B (en) Cepstral-based multipath mitigation for spread spectrum radio communication signals
US9065686B2 (en) Spur detection, cancellation and tracking in a wireless signal receiver
EP0926510A1 (en) Method of position determination of mobiles in an urban environment
FR2915038A1 (en) HIGH FREQUENCY RECEIVER WITH MULTI-CHANNEL DIGITAL PROCESSING
EP2609447B1 (en) Space-time multi-antenna and multi-correlator device for rejecting multi-paths in navigation systems
EP2095150B1 (en) Method and device for receiving a boc modulation radio-navigation signal
FR2916589A1 (en) AUTOMATIC GAIN CONTROL SERVICED ON THE DENSITY OF PROBABILITY OF RECEIVED POWER
EP3543745B1 (en) Multi-antenna device for rejection of multipaths in a satellite navigation system and associated method
FR2829638A1 (en) Global positioning receiver anti-parasitic system has spatial filter with parallel processing chains with adjustable equalization filters having circuit with different constants one circuit running equalization/other references.
Landry et al. Interference mitigation in spread spectrum systems by wavelet coefficients thresholding
WO2002049230A1 (en) Interference suppression method, in reception, of a radio signal transmitted in spread-spectrum band
FR2984524A1 (en) Receiver for receiving e.g. global positioning system signal, of satellite in e.g. global navigation satellite system, has noise compensation units to remove, from outlet of correlator, linear combination of outputs of other correlators
EP3485626A1 (en) Method and system for detecting useful signals with significant respective frequency drifts in an overall signal
EP1085341A1 (en) Method of treating navigation signals with multipath in a receiver with a plurality of antennas
US10389464B2 (en) System and method for improved data decoding, tracking, and other receiver functions in the presence of interference
EP1246373B1 (en) Method and apparatus for processing interferences in signals received by an antenna array
WO2015144649A1 (en) Method for detection of a target signal in a measurement signal of an instrument installed on a spacecraft engine, and measurement system
FR3067186B1 (en) METHOD FOR REMOVING MULTI-PATH SIGNALS FOR FREQUENCY MODULATED RADIO SIGNAL RECEIVER
CN115735139A (en) Method for processing radio navigation signals generated by satellites

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP