WO2002047217A1 - Wavelength multiplexing light source and wavelength multiplexing device - Google Patents

Wavelength multiplexing light source and wavelength multiplexing device Download PDF

Info

Publication number
WO2002047217A1
WO2002047217A1 PCT/JP2001/010716 JP0110716W WO0247217A1 WO 2002047217 A1 WO2002047217 A1 WO 2002047217A1 JP 0110716 W JP0110716 W JP 0110716W WO 0247217 A1 WO0247217 A1 WO 0247217A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
wavelength
light source
wavelengths
optical fiber
Prior art date
Application number
PCT/JP2001/010716
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Ota
Original Assignee
Photonixnet Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Photonixnet Kabushiki Kaisha filed Critical Photonixnet Kabushiki Kaisha
Priority to AU2002221079A priority Critical patent/AU2002221079A1/en
Priority to JP2002548828A priority patent/JPWO2002047217A1/en
Publication of WO2002047217A1 publication Critical patent/WO2002047217A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06791Fibre ring lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission

Definitions

  • the present invention relates to a wavelength division multiplexer (WDM).
  • WDM wavelength division multiplexer
  • the present invention relates to a light source that generates light of a plurality of wavelengths used as a light source of a wavelength multiplexing device.
  • the present invention relates to a low-density wavelength multiplexing device (DWDM).
  • DWDM low-density wavelength multiplexing device
  • the present invention relates to optical fiber communication.
  • MMC multiple grating cavity laser
  • h Mu 1 tip 1 ex Laser Oscillator JP-A-62-229891
  • Multi-wavelength semiconductor light source JP-A-5-198893
  • Wavelength multiplexed laser-one oscillator "
  • a laser 102 and lasers 103-1 to 103-n are arranged on the semiconductor laser array 101.
  • the first end face 104a of the semiconductor laser array 101 is coated with a coating having a reflectance of about several tens percent.
  • the second end face 104b of the semiconductor laser array 101 is provided with an anti-reflection coating, and its reflectance is almost zero percent.
  • the laser 102 and the laser 103-1 or 103-n are coupled via the concave diffraction grating 106 at respective wavelengths.
  • laser 102 and laser 103-1 are coupled at wavelength 1
  • the 102 and the Laser 103 — n are coupled at wavelength; L n. Therefore, the two lasers are combined to form an external resonator type laser resonator, and laser oscillation occurs.
  • a modulation current is applied to the lasers 103_1 to 103_n from a current modulation circuit (not shown), and the laser light is modulated by a signal.
  • the modulated laser beams having wavelengths of 1 to n are collected by the laser 102 and then coupled to the optical fiber 105.
  • the multiple grating cavity laser described above has the function of simultaneously oscillating a large number of wavelengths, the function of individually modulating a large number of oscillated wavelengths, and the coupling of an optical signal consisting of these many wavelengths into a single optical fiber. Function.
  • the laser optical system has the advantage that the line width of the oscillated laser light is narrow due to the long cavity optical system, and high quality laser light can be generated. Disclosure of the invention
  • the multiple grating cavity laser has a long resonant optical system length
  • the upper limit of the modulatable speed is limited by the round-trip time of light in the resonator, and the modulation is at most about 622 Mb ps.
  • a wavelength multiplexed light source includes at least two components: an optical amplifier, a first loop-shaped optical fiber, a first optical power bra, a passive wavelength multiplexer.
  • a second optical power bra comprising at least two second loop optical fibers, branching only one wavelength of laser light out of the laser light oscillated at a plurality of wavelengths from the second optical power bra; It is characterized by outputting to the outside.
  • FIG. 1 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a first embodiment of the present invention.
  • FIG. 2 is a diagram showing a schematic configuration of a wavelength multiplexing device configured using the wavelength multiplexing light source according to the first embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a partial reflection element used in the wavelength multiplexed light source i_QJ according to the first embodiment of the present invention and an alternative means thereof.
  • FIG. 4 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a schematic configuration of a wavelength multiplexed light source 30 according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of a wavelength multiplexed light source 60 according to a fifth embodiment of the present invention.
  • FIG. 8 is a diagram showing a schematic configuration of a wavelength-division multiplexed light source: L according to a sixth embodiment of the present invention.
  • FIG. 9 is a diagram showing a schematic configuration of a wavelength multiplexed light source A according to a seventh embodiment of the present invention.
  • FIG. 10 is a diagram showing a schematic configuration of a conventionally known multiple grating cavity laser. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 shows the establishment of the wavelength multiplexed light source according to the first embodiment of the present invention.
  • an optical amplifier 1 a looped optical fiber 2, a variable optical attenuator 3, an optical power blur 4, a passive wavelength multiplexer (spectroscope) 5, and an optical power blur 6-1 to 6- n, loop optical fiber 7-1 to 7-n, and automatic power control (APC) 8.
  • the optical amplifier 1 uses an L-band (amplifiable wavelength band: 1535 to 1565 nm) erbium-doped optical fiber amplifier (EDFA).
  • L-band amplifiable wavelength band: 1535 to 1565 nm
  • EDFA erbium-doped optical fiber amplifier
  • Type of fiber optic amplifier or semiconductor laser fiber optic amplifier Or a Raman optical fiber amplifier A normal optical amplifier has an optical isolator inside, and light is amplified only in one direction.
  • a fusion type optical fiber optical plastic was used for the optical power bra 4 or the optical power bras 6-1 to 6_n. This is a waveguide type optical power bra or a free space optical type optical power bra. Is also good.
  • Spectrometer an arrayed waveguide grating (AWG) was used, but other types of passive wavelength multiplexers (AWGs) were used.
  • Spectrometer for example, a free-space optical wavelength multiplexer using a diffraction grating, a free-space optical wavelength multiplexer using a dielectric filter, or an optical waveguide using a diffraction grating or a dielectric filter Type wavelength multiplexer.
  • the wavelength of the laser light oscillated by the passive wavelength multiplexer is determined, so that the passive wavelength multiplexer (spectroscope) 5 is controlled to a predetermined temperature by a temperature control mechanism (not shown). Is controlled. This mechanism can be omitted depending on the accuracy of wavelength multiplexing.
  • Spontaneous emission light with a wide wavelength spectrum emitted from an optical amplifier (EDFA) 1 passes through a loop-shaped optical fiber 2, a variable optical attenuator 3, and a light power bra 4, and a passive wavelength multiplexer (AWG) Reach five.
  • the passive wavelength multiplexer (AWG) 5 splits the spontaneous emission light into discrete wavelengths 1 to n and outputs them to each output terminal.
  • the split light of wavelength ⁇ or ⁇ is transmitted to the passive wavelength multiplexer (AWG) 5 again through the loop optical fiber 7-1 to 7 _ ⁇ and the optical power coupler 6-1 to 6- ⁇ , respectively. And return.
  • the passive wavelength multiplexer (AWG) 5 combines the light of wavelengths 1 to ⁇ into one and sends it to the optical amplifier (EDFA) 1 via the optical power bra 4.
  • is amplified by an optical amplifier (EDFA) 1, and then looped optical fiber 2, variable optical attenuator 3, optical power bra 4, passive wavelength multiplexer (AWG) 5, Power Brass 6-1 to 6_n, Looped Optical Fibers 7-1 to 7-n, Passive Wavelength Multiplexer (AWG) 5, Optical Brassier 4, and then sent back to Optical Amplifier (EDFA) 1 .
  • EDFA optical amplifier
  • ATG Passive Wavelength Multiplexer
  • the optical power 4 splits a part of the laser light of Send to Force Control Unit (AP C) 8.
  • An automatic output control device (APC) 8 controls the variable optical attenuator 3 so that the laser light oscillation output becomes constant.
  • the automatic output control device (APC) 8 can be omitted. This is because the optical amplifier has a saturation output characteristic, and the laser output is stabilized at a predetermined output. However, the stability of the laser output is better when the automatic power controller (APC) 8 is used.
  • the optical power plugs 6-1 to 6-n branch off part of the laser light with discrete wavelengths 1 to ⁇ and send them to the output terminals 11-1 to 11- ⁇ , respectively.
  • an arbitrary number of wavelengths of laser light determined by the passive wavelength multiplexer (AWG) 5 for wavelengths within the amplifying wavelength band of the optical amplifier (EDFA) 1 Can be oscillated.
  • FIG. 2 is a diagram showing a configuration of a wavelength multiplexing device using the wavelength multiplexing light source of FIG.
  • Wavelength multiplexed light source ⁇ _0_ output terminal 1 1 1 1 to 1 1 _n The laser light of different wavelengths passes through the transmitting module 14-1 to 14-1 n and the passive wavelength multiplexer (AWG) 15 a Are combined into one optical fiber.
  • the transmission modules 141-1 to 14-n are composed of electric signal units 12-1 to 12-n and optical modulators 13-1 to 13-n.
  • the optical modulators 13-1 to 13 _n modulate the laser light from the wavelength multiplexed light source 10 by the electric signal added from the electric signal units 12-1 to 12-n.
  • the laser light that has passed through the transmission modules 1411 to 1411n is an optical signal modulated at a speed of, for example, 10 Gbp / s (10 gigabits per second).
  • Known light modulators 13-1 to 13-n include lithium-niobate-based electro-optic modulators and semiconductor-based electro-optic absorption modulators (QCS E modulators: Quantum Confined St ark Effect: Quantum)
  • QCS E modulators Quantum Confined St ark Effect: Quantum
  • a confined Stark effect modulator can be used.
  • the optical signals 18a having a plurality of wavelengths multiplexed by the passive wavelength multiplexer (AWG) 15a are guided to the communication optical fiber 17 through the optical circuit 16.
  • Light One terminal of Kyure Izuya 16 is connected to a passive wavelength division multiplexer (AWG) 15b for reception.
  • AMG active wavelength division multiplexer
  • the wavelength multiplexed optical signal 18b received through the communication optical fiber 17 is transmitted only to the passive passive wavelength multiplexer (AWG) 15b by the optical circulator 16. You.
  • the received wavelength-division multiplexed optical signal is separated into respective wavelengths by a passive wavelength multiplexer (AWG) 15b for reception and transmitted to the reception units 19-1 to 19-n .
  • a passive wave for reception, a long multiplexer and a passive wavelength multiplexer for transmission are provided.However, only one wavelength multiplexer is provided, and the optical It is also possible to construct a wavelength multiplexing apparatus so that the transmission optical signal and the reception optical signal are coupled to one optical fiber and then wavelength-multiplexed by this wavelength multiplexer. In this case, it is necessary to provide the number of optical circuits and the number of optical power bras as many as the wavelengths to be used.
  • FIG. 2 shows a wavelength multiplexing device for bidirectional optical transmission
  • the present invention can be applied to unidirectional optical transmission in which a transmitting optical fiber and a receiving optical fiber are provided separately. In this case, there is no need for an optical filter or optical power coupler for coupling the transmission signal and the reception signal.
  • a passive wavelength multiplexer is provided on the transmitting side, but this can be replaced by an optical coupling means having no wavelength selectivity, such as a linear optical power blur.
  • An optical amplifier can be added to the configuration of FIG.
  • a preamplifier is installed between the passive wavelength multiplexer 15b on the receiving side and the optical circuit 16 or between the passive wavelength multiplexer 15a on the transmitting side and the optical circuit 16
  • An amplifier can be installed in the booth.
  • FIG. 3 (a) shows a partial reflection element composed of an optical power bra 6 and a loop optical fiber 7.
  • a partially reflecting element including a lens 46, a half mirror 47, and a lens 48.
  • the optical signal from the optical fiber 45 is converted into substantially parallel light by a lens 46 and guided to an optical fiber 49 via a half mirror 47 and a lens 48. At this time, part of the light incident from the right side of the figure is reflected by the half mirror and sent to the optical fiber 45 side, and the rest is sent to the optical fiber 49 side. Therefore, according to the configuration of FIG. 3 (b), a function substantially equivalent to the configuration of FIG. 3 (a) can be realized.
  • the wavelength multiplexed light source _ _Q_ shown in FIG. 1 has the above-mentioned partial reflection element (optical power bra 6 and loop optical fiber 7 or half mirror 47) near the output terminal, the wavelength Reflection occurs when an optical signal is externally applied to the output terminal of the multiplexed light source.
  • the wavelength multiplexing device shown in FIG. 2 is provided with the optical circuit 16, no optical signal is externally applied to the output terminal of the wavelength multiplexing light source.
  • FIG. 4 shows the configuration of a wavelength multiplexed light source according to a second embodiment of the present invention.
  • the wavelength multiplexed light source ⁇ is an optical amplifier (EDFA) 22, the first passive wavelength multiplexer (AWG) 23, the optical power blur 28-1 to 28- ⁇ , and the second passive wavelength multiplexer (AWG). ) 24, variable optical attenuator 26, optical power bra 25, and automatic power control (APC) 27.
  • EDFA optical amplifier
  • ABG first passive wavelength multiplexer
  • ABG variable optical attenuator
  • APC automatic power control
  • the spontaneous emission light from the optical amplifier (EDFA) 22 is separated by the first passive wavelength multiplexer (AWG) 23 into discrete wavelengths 1 or ⁇ , and the corresponding light After passing through the power brass 28-1 to 28- ⁇ , they are combined again into one optical fiber by the second passive wavelength multiplexer ( ⁇ WG) 24. Then, the light is sent to the optical amplifier (EDFA) 22 again through the variable optical attenuator 26 and the optical power bra 25.
  • the discrete wavelengths 1 to n are amplified by the optical amplifier (EDFA) 22 and return to the optical amplifier (EDFA) 22 again along the same path as described above. That is, a closed loop is formed, and laser oscillation occurs. Laser light oscillated at discrete wavelengths 1 to n is partially branched by the optical power plugs 28-1 to 28_n and guided to the output terminals 21-1 to 21-n. .
  • a part of the collective light of the laser light having discrete wavelengths 1 to n is branched by the optical power bra 25 and sent to the automatic power control device (APC) 27.
  • An automatic output controller (APC) 27 controls the variable optical attenuator 26 so that the laser oscillation has a constant intensity.
  • the wavelength multiplexed light source of the second embodiment has a ring laser structure and does not use a partial reflection element. Therefore, when an optical signal is input from the outside to the output terminals 21_1 to 21-n. However, there is an advantage that reflected light is not returned. On the other hand, it has the disadvantage of using two more expensive passive wavelength multiplexers (AWGs) than the first embodiment.
  • the light incident on the output terminals 21-1 to 21-1n is attenuated by the optical amplifier provided in the optical amplifier (EDFA) 22.
  • the wavelength multiplexed light source of this embodiment can be used in place of the wavelength multiplexed light source 10 of the wavelength multiplexing apparatus shown in FIG.
  • FIG. 5 shows a configuration of the wavelength multiplexed light source A according to the third embodiment of the present invention.
  • the wavelength multiplexed light source 30 is an erbium-doped optical fiber 39, an excitation light source (semiconductor laser) 33, an optical isolator 32, a WDM type optical power plug 40, an optical power bra 41, a loop optical fiber 42, an optical power bra 34, passive wavelength division multiplexer (AWG) 35, optical power bra 36-1 or
  • the excitation light source (semiconductor laser) 33 generates laser light with a wavelength of 980 nm or 1480 nm.
  • the WDM optical power plug 40 is composed of a fusion type optical fiber cover that also has a wavelength multiplexing mechanism.
  • the WDM-type optical power bra 40 couples pump light having a wavelength of 980 nm (or 1480 nm) and C-band signal light (wavelength: 1535 to 1565 nm) into one optical fiber. Or conversely, a wavelength of 980 nm (or 1
  • the erbium-doped optical fiber 39 pumped by the pumping light source 33 has the function of amplifying light, the reflective element consisting of the optical power bra 41 and the loop optical fiber 42, the passive wavelength multiplexer (AWG) 35
  • a closed loop is formed by the optical power bra 36-1 to 36-n and the partially reflecting element group consisting of the loop-shaped optical fibers 37-1 to 37-n, which is determined by the passive wavelength multiplexer (AWG) 35.
  • Laser oscillation occurs at a plurality of discrete wavelengths 1 to n. Then, a part of the laser light of discrete wavelengths 1 to n is output to the output terminal 31-1 or 31- ⁇ via the optical power blur 36-1 to 36-n.
  • a reflecting element such as a reflecting mirror or a fiber Bragg grating filter may be used instead of the reflecting element including the optical power bra 41 and the loop-shaped optical fiber.
  • a part of the laser beam split by the optical power bra 34 is sent to an automatic power controller (APC) 38.
  • An automatic output control device (APC) 38 controls the drive current of the excitation light source 33 so that the laser oscillation output becomes constant.
  • Excitation light from the excitation light source 33 excites the erbium-doped optical fiber 39 by the WDM type optical bra 40, and is reflected by the optical bra 41 and the loop optical fiber 42 to excite the erbium-doped optical fiber 39 again. After that, the light is sent to the excitation light source 33 through the WDM type optical power bra 40. However, the reflected excitation light is absorbed by the optical isolator 32, which prevents the excitation light from returning to the excitation light source 33.
  • the laser oscillation light output control is performed by controlling the drive current of the pump light source 33, so that the variable optical attenuator can be omitted.
  • FIG. 6 shows the configuration of a wavelength multiplexed light source according to a fourth embodiment of the present invention.
  • This wavelength-multiplexed light source ⁇ is composed of a first optical amplifier (EDFA-C) 59a, a second optical amplifier (EDF ⁇ -L) 59b, a first optical power 54a, and a second optical power 54b, Third optical power bra 54c, Variable optical attenuator 53, Passive wavelength multiplexer (spectroscope) 55, Optical power bra 56-1 or 56-n, Loop optical fiber 57-1 to 57 — N, consisting of an automatic power control (APC) 58.
  • This embodiment is a modification of the first embodiment shown in FIG.
  • the main difference is that the first optical amplifier (EDFA-C) 59a and the second optical amplifier (EDFA-L) 59b are provided, the second optical power bra 54b and the third optical power bra 54c. Are arranged in parallel.
  • the first optical amplifier (EDFA-C) 59a has gain in the wavelength band of the C band (1535-1565 nm), and the second optical amplifier (EDFA-L) 59b has the gain in the L band (1565-1 (595 nm).
  • EDFA-C has gain in the wavelength band of the C band (1535-1565 nm)
  • the second optical amplifier (EDFA-L) 59b has the gain in the L band (1565-1 (595 nm).
  • the passive wavelength multiplexer (division device) 55 is different from those of the other embodiments, and is designed to be capable of wavelength multiplexing over this wide wavelength band. .
  • the oscillated laser light of each wavelength is output from output terminals 51-1 to 51-n.
  • FIG. 7 shows a configuration of a wavelength multiplexed light source according to a fifth embodiment of the present invention.
  • the wavelength multiplexing light source is an optical amplifier (ED FA) 62, a passive wavelength multiplexer (AWG) 63, an optical power 68-1-1 to 68_n, a linear optical power 64, a variable optical attenuator 66. , Optical power 65 and automatic power control (APC) 67.
  • the oscillated laser light of each wavelength is output from the output terminals 61-1 to 61-n.
  • This embodiment is a modification of the second embodiment shown in FIG.
  • two passive wavelength multiplexers (AWGs) 23 to 24 are used.
  • a perimeter optical power bra 64 is used instead of the passive wavelength multiplexers (AWG) 24.
  • the passive wavelength multiplexer (AWG) 63 of this embodiment corresponds to the passive wavelength multiplexer (AWG) 23 of the second embodiment.
  • the linear optical power plastic has the advantage of being less expensive than the arrayed waveguide grating (AWG).
  • AWG arrayed waveguide grating
  • FIG. 8 shows the configuration of the wavelength multiplexed light source L according to the sixth embodiment of the present invention.
  • the wavelength multiplexing light source 70 is a semiconductor laser 79, a lens 72, an optical power blur 74, a passive wavelength multiplexer (AWG) 75, an optical power blur 76-1 to 76-n, and no loop optical fiber 77-1. 77-n, consisting of an automatic output controller (APC) 78.
  • APC automatic output controller
  • the first end face 79a of the semiconductor laser has a ⁇ reflectivity (HR) coat, and the second end face 79b has an antireflection (AR) coat.
  • the semiconductor laser 79 cannot oscillate by itself because the second end face 79b has an anti-reflection (AH) coat, but can oscillate by feedback of light from an external optical system. A so-called external resonance optical system is formed.
  • Spontaneous emission light from the semiconductor laser 79 is coupled to the optical fiber 73 by the lens 72.
  • the light coupled to the optical fiber 73 is a part consisting of an optical power 74, a passive wavelength multiplexer (AWG) 75, an optical power 76-1 to 76-n, and a loop optical fiber 77-1 to 77-n.
  • the light After passing through the reflecting element group, the light enters the semiconductor laser 79 again via the passive wavelength multiplexer (AWG) 75, the optical power bra 74, the optical fiber 73, and the lens 72. That is, a closed loop is formed as a whole, and laser oscillation occurs.
  • the laser light of 1 to n which oscillated the laser is partly branched by the optical power plugs 76-1 to 76-n and output from the output terminals 71-1 to 71_n. Further, a part of the laser light is branched by the optical power bra 74 and sent to the automatic output control device (APC) 78.
  • the automatic output control device (APC) 78 controls the drive current of the semiconductor laser 79 so that the laser oscillation output becomes constant.
  • the semiconductor laser 79 has the advantage that the wavelength selection range is wider than that of rare-earth-doped optical fibers such as erbium-doped optical fibers, and that the optical amplifiable wavelength band as an optical amplifier is wider. It is also generally low cost.
  • FIG. 9 shows a configuration of a wavelength multiplexed light source A according to a seventh embodiment of the present invention.
  • the wavelength multiplexed light source 80 is a semiconductor laser 89, a concave diffraction grating 82, and an optical fiber 83-1 to 8 It consists of 3-n, optical power plugs 86-1 to 86-n, and loop optical fiber 87-1 to 87_n. Laser light of each wavelength is output from output terminals 81_1 through 81-n.
  • the first end face 89a of the semiconductor laser has a high reflectivity (HR) coat
  • the second end face 89b has an anti-reflection (AR) coat.
  • the semiconductor laser 89 cannot oscillate by itself because the second end face 89b has an anti-reflection (AR) coat, but it can oscillate by feedback of light from an external optical system. A so-called external resonance optical system is formed.
  • This embodiment is a modification of the sixth embodiment.
  • the present embodiment is characterized in that a spectroscopic optical system including a concave diffraction grating 82 and a free space optical system is used instead of the arrayed waveguide diffraction grating (AWG).
  • AWG arrayed waveguide diffraction grating
  • the spontaneous emission light from the semiconductor laser 89 is coupled by the concave diffraction grating 82 to the optical fibers 83 1 1 to 83-n at specific wavelengths 1 to n, respectively.
  • the light coupled to the optical fiber 83-1 through 83-n passes through the partial reflection element group consisting of the optical power plugs 76-1 through 76-n and the loop optical fiber 77-1 through 77-n.
  • the light enters the semiconductor laser 89 through 83-1 to 83-n and the concave diffraction grating 82. That is, a closed loop is formed as a whole, and laser oscillation occurs.
  • Concave gratings have the advantage of lower cost compared to arrayed waveguide gratings (AWGs).
  • a combination of a transmission diffraction grating and a lens, or a combination of a dielectric film and a lens, or the like can be used as a known spectral optical system.
  • the partial reflection element group consisting of the optical power bras 76_1 to 76-n and the loop-shaped optical fibers 77-1 to 77-1n the partial reflection consisting of the half mirror and the lens shown in Fig. 3 (b) Elements can also be used.
  • a plurality of wavelengths can be simultaneously laser-oscillated, and laser light signals having individual wavelengths can be separated and extracted.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

Multiple grating cavity laser has the upper limit of a modulable speed been restricted by the shuttling time of light within a resonator due to an elongated resonance optical system. An optical amplifier (1), a looped optical fiber (2), an optical coupler (4), a passive wavelength multiplexer (5), and looped optical fibers (7-1 to 7-n) and optical fibers (6-1 to 6-n) corresponding to respective branching outputs of the passive wavelength multiplexer (5) are provided to form closed loops for laser beams of individual wavelengths, and laser beams of individual wavelengths can be extracted to the outside from output terminals (11-1 to 11-n) and modulated by an optical modulator, thereby providing a high-speed-modulated wavelength multiplexing signal.

Description

明 細 書 波長多重化光源及び波長多重化装置 技術分野  Description Wavelength multiplexed light source and wavelength multiplexing device
本発明は波長多重化装置 (WDM) に関する。 特に、 波長多重化装置の光源とし て用いられる複数の波長の光を発生する光源に関する。 本発明は髙密度波長多重化 装置 (DWDM) に関する。 本発明は光ファイバ一通信に関する。 背景技術  The present invention relates to a wavelength division multiplexer (WDM). In particular, the present invention relates to a light source that generates light of a plurality of wavelengths used as a light source of a wavelength multiplexing device. The present invention relates to a low-density wavelength multiplexing device (DWDM). The present invention relates to optical fiber communication. Background art
従来、 図 10に示す構造を有するマルチプルグレーティングキヤビティレーザ(M GC) が知られている (米国特許第 5 , 570, 226号明細書、 「Op t i c a 1 L i nk Amp l i f i e r and a Wave l e ngt h M u 1 t i p 1 e x L as e r O s c i l l a t o r」 、 特開昭 62— 22989 1 号公報、 「多波長半導体光源」 、 特開平 5— 198893号公報、 「波長多重レ一 ザ一発振器」 、 " Wave l engt h— s e l e c t ab l e l as e r e mi s s i o n f r om a mu l t i s t r i p e ar r ay g r a t i n g i nt e gr at ed c av i t y l a s er, " J. S o o l e, K. P ogunt k e, A. S che r e r, H. LeB l an c, C . C hang— Has na i n, J . Haye s , C . C a n e a u , R . B h a t , and M. Ko z a, A p p 1. P h y s . L e t t . , pp. 2750-2752, D e c emb e r, 1992) 。  Conventionally, a multiple grating cavity laser (MGC) having a structure shown in FIG. 10 is known (US Pat. No. 5,570,226, “Optica 1 Link Amplifier and a Wavelength”). h Mu 1 tip 1 ex Laser Oscillator ", JP-A-62-229891," Multi-wavelength semiconductor light source ", JP-A-5-198893," Wavelength multiplexed laser-one oscillator "," Wave l engt h— select ab lel as ere mi ssionfr om a mu ltistripe ar ray gratingin nt e gr at ed c av itylaser, "J. S oole, K. Pogunt ke, A. S che rer, H. LeB lanc, C. Chang—Has na in, J. Hayes, C. Canaeau, R. Bhat, and M. Koza, A pp 1. Phys. Lett., Pp. 2750- 2752, December, 1992).
半導体レーザアレイ 1 0 1上には、 レーザ 102とレーザ 1 03— 1ないし 10 3一 nが配置されている。 半導体レーザアレイ 101の第一の端面 104 aには数 十パーセント程度の反射率を有するようなコーティングが施されている。 一方、 半 導体レーザアレイ 101の第二の端面 104 bには無反射コートが施されていて、 その反射率はほとんどゼロパーセントである。 レーザ 102とレーザ 103— 1な いし 103— nは凹面状回折格子 106を介して、 それそれ固有の波長で結合して 'いる。 例えば、 レーザ 1 02とレーザ 103— 1は波長え 1で結合しているし、 レ —ザ 1 0 2とレ一ザ 1 0 3— nは波長; L nで結合している。 このため、 二つのレ一 ザ一は結合して外部共振器型のレーザ共振器を形成してレーザ発振が生じる。 On the semiconductor laser array 101, a laser 102 and lasers 103-1 to 103-n are arranged. The first end face 104a of the semiconductor laser array 101 is coated with a coating having a reflectance of about several tens percent. On the other hand, the second end face 104b of the semiconductor laser array 101 is provided with an anti-reflection coating, and its reflectance is almost zero percent. The laser 102 and the laser 103-1 or 103-n are coupled via the concave diffraction grating 106 at respective wavelengths. For example, laser 102 and laser 103-1 are coupled at wavelength 1, —The 102 and the Laser 103 — n are coupled at wavelength; L n. Therefore, the two lasers are combined to form an external resonator type laser resonator, and laser oscillation occurs.
レーザ 1 0 3 _ 1ないし 1 0 3— nには図示しない電流変調回路から変調電流が 加えられており、 レーザ光は信号によって変調される。 変調された波長え 1ないし え nのレーザ光はレーザ 1 0 2に集約されてから、 光ファイバ 1 0 5へと結合する。 すなわち、 上記のマルチプルグレーティングキヤビティレーザは多数の波長を同 時に発振させる機能と、 発振した多数の波長を個別に変調する機能、 さらにこれら 多数の波長からなる光信号を一本の光ファイバに結合させる機能とを併せ持つてい る。  A modulation current is applied to the lasers 103_1 to 103_n from a current modulation circuit (not shown), and the laser light is modulated by a signal. The modulated laser beams having wavelengths of 1 to n are collected by the laser 102 and then coupled to the optical fiber 105. In other words, the multiple grating cavity laser described above has the function of simultaneously oscillating a large number of wavelengths, the function of individually modulating a large number of oscillated wavelengths, and the coupling of an optical signal consisting of these many wavelengths into a single optical fiber. Function.
さらに、 共振器光学系が長いために発振したレーザ光の線幅が狭く、 良質なレ一 ザ光を生成することができるという利点も有している。 発明の開示  Furthermore, the laser optical system has the advantage that the line width of the oscillated laser light is narrow due to the long cavity optical system, and high quality laser light can be generated. Disclosure of the invention
しかしながら、 上記マルチプルグレーティングキヤビティレーザは共振光学系長 が長いがために、共振器内の光の往復時間によって変調可能速度の上限が制限され、 たかだか 6 2 2 Mb p s程度の変調が限界であるという欠点があった。 これでは、 現状の波長多重化装置に要求される 2. 5 G b p s (O C— 4 8) 、 l O Gb p s (O C_ 1 9 2 ) 、 あるいは 40 Gb p s (O C— 7 6 8) という伝送速度には対 応できない。  However, since the multiple grating cavity laser has a long resonant optical system length, the upper limit of the modulatable speed is limited by the round-trip time of light in the resonator, and the modulation is at most about 622 Mb ps. There was a disadvantage. In this case, the transmission of 2.5 G bps (OC-48), lO Gb ps (O C_1 92), or 40 Gb ps (OC-768) required for current wavelength multiplexing equipment It cannot respond to speed.
上記課題を解決するために、 本発明の一側面に従う波長多重化光源は、光増幅器、 第一のループ状光ファイバ、 第一の光力ブラ、 受動型波長多重化器、 少なくともふ たつからなる第二の光力ブラ、 少なくともふたつからなる第二のループ状光フアイ バを備え、 複数波長発振したレーザ光の内からひとつの波長のレーザ光のみを、 第 二の光力ブラから分岐して外部に出力することを特徴とする。  In order to solve the above problems, a wavelength multiplexed light source according to one aspect of the present invention includes at least two components: an optical amplifier, a first loop-shaped optical fiber, a first optical power bra, a passive wavelength multiplexer. A second optical power bra, comprising at least two second loop optical fibers, branching only one wavelength of laser light out of the laser light oscillated at a plurality of wavelengths from the second optical power bra; It is characterized by outputting to the outside.
上記構成によれば、 光増幅器と受動型波長多重化器を含む閉じたループ状の光回 路が形成されるので、 受動型波長多重化器によって選択された各波長の光信号のレ 一ザ発振が生じる。 そして、 複数の第二の光力ブラを経て個別の波長の光信号のみ が外部に分岐されて出力される。 この光信号を光変調器によって変調した後、 波長 多重化器によって一本の光フアイバに波長多重化することができる。 なお、 本発明の上述の一側面および本発明の他の側面は特許請求の範囲に記載さ れ、 以下、 詳細に説明される。 図面の簡単な説明 According to the above configuration, since a closed loop optical circuit including the optical amplifier and the passive wavelength multiplexer is formed, the laser of the optical signal of each wavelength selected by the passive wavelength multiplexer is formed. Oscillation occurs. Then, only the optical signals of the individual wavelengths are branched out to the outside through the plurality of second optical power blurs and output. After this optical signal is modulated by an optical modulator, it can be wavelength-multiplexed into one optical fiber by a wavelength multiplexer. The above-described one aspect of the present invention and other aspects of the present invention are described in the claims and are described in detail below. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第一実施例の波長多重化光源丄 の概略構成を示す図である。 図 2は、 本発明の第一実施例の波長多重化光源丄立を用いて構成した波長多重化 装置の概略構成を示す図である。  FIG. 1 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a first embodiment of the present invention. FIG. 2 is a diagram showing a schematic configuration of a wavelength multiplexing device configured using the wavelength multiplexing light source according to the first embodiment of the present invention.
図 3は、 本発明の第一実施例の波長多重化光源 i_QJこ用いられている部分反射要 素及びその代替手段を示す概略構成図である。  FIG. 3 is a schematic diagram showing a partial reflection element used in the wavelength multiplexed light source i_QJ according to the first embodiment of the present invention and an alternative means thereof.
図 4は、 本発明の第二実施例の波長多重化光源 立の概略構成を示す図である。 図 5は、 本発明の第三実施例の波長多重化光源 3 0の概略構成を示す図である。 図 6は、 本発明の第四実施例の波長多重化光源 の概略構成を示す図である。 図 7は、 本発明の第五実施例の波長多重化光源 6 0の概略構成を示す図である。 図 8は、 本発明の第六実施例の波長多重化光源: L の概略構成を示す図である。 図 9は、 本発明の第七実施例の波長多重化光源 A立の概略構成を示す図である。 図 1 0は、 従来公知のマルチプルグレーティングキヤビティレーザの概略構成を 示す図である。 発明を実施するための最良の形態  FIG. 4 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a second embodiment of the present invention. FIG. 5 is a diagram showing a schematic configuration of a wavelength multiplexed light source 30 according to a third embodiment of the present invention. FIG. 6 is a diagram showing a schematic configuration of a wavelength multiplexed light source according to a fourth embodiment of the present invention. FIG. 7 is a diagram showing a schematic configuration of a wavelength multiplexed light source 60 according to a fifth embodiment of the present invention. FIG. 8 is a diagram showing a schematic configuration of a wavelength-division multiplexed light source: L according to a sixth embodiment of the present invention. FIG. 9 is a diagram showing a schematic configuration of a wavelength multiplexed light source A according to a seventh embodiment of the present invention. FIG. 10 is a diagram showing a schematic configuration of a conventionally known multiple grating cavity laser. BEST MODE FOR CARRYING OUT THE INVENTION
以下実施例を用いて本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to Examples.
[第一実施例] [First embodiment]
図 1に本発明の第一実施例の波長多重化光源丄立を示す。 この波長多重化光源上 は光増幅器 1、 ループ状光ファイバ 2、 可変光減衰器 3、 光力ブラ 4、 受動型波 長多重化器 (分光器) 5、 光力ブラ 6— 1ないし 6— n、 ループ状光ファイバ 7— 1ないし 7— n、 自動出力制御装置 (A P C ) 8から成り立つている。  FIG. 1 shows the establishment of the wavelength multiplexed light source according to the first embodiment of the present invention. On this wavelength multiplexed light source, there are an optical amplifier 1, a looped optical fiber 2, a variable optical attenuator 3, an optical power blur 4, a passive wavelength multiplexer (spectroscope) 5, and an optical power blur 6-1 to 6- n, loop optical fiber 7-1 to 7-n, and automatic power control (APC) 8.
光増幅器 1は具体的には Lバンド (増幅可能波長帯域: 1 5 3 5— 1 5 6 5 n m ) のエルビウムド一プ光ファイバ増幅器 (E D F A ) を用いたが、 これは、 他の希土 類ド一プ光ファイバ増幅器であっても、 あるいは、 半導体レーザー光ファイバ増幅 器やラマン光ファイバ増幅器であっても良い。 なお、 通常の光増幅器は内部に光ァ ィソレータを備えており、 光は単方向にしか増幅されない。 Specifically, the optical amplifier 1 uses an L-band (amplifiable wavelength band: 1535 to 1565 nm) erbium-doped optical fiber amplifier (EDFA). Type of fiber optic amplifier or semiconductor laser fiber optic amplifier Or a Raman optical fiber amplifier. A normal optical amplifier has an optical isolator inside, and light is amplified only in one direction.
光力ブラ 4あるいは光力ブラ 6— 1ないし 6 _nは融着型光ファイバ力プラを用 いたが、 これは、 導波路型の光力ブラ、 あるいは自由空間光学型の光力ブラであつ ても良い。  For the optical power bra 4 or the optical power bras 6-1 to 6_n, a fusion type optical fiber optical plastic was used. This is a waveguide type optical power bra or a free space optical type optical power bra. Is also good.
受動型波長多重化器 (分光器) 5としては、 アレイ状導波路回折格子 (AWG : Arr aye d Wave gu i d e Gr at i ng) を用いたが、 他の種類の 受動型波長多重化器 (分光器) 、 例えば、 回折格子を用いた自由空間光学型波長多 重化器、 誘電体フィル夕を用いた自由空間光学型波長多重化器、 あるいは回折格子 や誘電体フィル夕を用いた光導波路型波長多重化器であっても良い。  As the passive wavelength multiplexer (spectrometer) 5, an arrayed waveguide grating (AWG) was used, but other types of passive wavelength multiplexers (AWGs) were used. Spectrometer), for example, a free-space optical wavelength multiplexer using a diffraction grating, a free-space optical wavelength multiplexer using a dielectric filter, or an optical waveguide using a diffraction grating or a dielectric filter Type wavelength multiplexer.
また、 後述のように本発明においては受動型波長多重化器によって発振するレー ザ光の波長が決定されるので、 受動型波長多重化器 (分光器) 5を図示しない温度 制御機構によって所定温度に制御している。 この機構は波長多重化の精度によって は省略可能である。  Further, as described later, in the present invention, the wavelength of the laser light oscillated by the passive wavelength multiplexer is determined, so that the passive wavelength multiplexer (spectroscope) 5 is controlled to a predetermined temperature by a temperature control mechanism (not shown). Is controlled. This mechanism can be omitted depending on the accuracy of wavelength multiplexing.
光増幅器 (EDFA) 1から発せられた広い波長幅のスペク トラムを有する自然 放出光はループ状光ファイバ 2、 可変光減衰器 3、 光力ブラ 4を経て受動型波長多 重化器 (AWG) 5に達する。 受動型波長多重化器 (AWG) 5は自然放出光をと びとびの波長え 1ないし入 nに分光して各出力端子に出力する。 波長 λΐないしえ ηの分光された光は、 それぞれループ状光ファイバ 7— 1ないし 7 _ η及び光力プ ラ 6— 1ないし 6— ηを経て再び受動型波長多重化器 (AWG) 5へと帰還する。 受動型波長多重化器 (AWG) 5は波長え 1ないしえ ηの光をひとつにまとめた上 で、 光力ブラ 4を経て光増幅器 (EDFA) 1へと送る。 とびとびの波長え 1ない しえ ηは光増幅器 (EDFA) 1によって増幅されてから、 ループ状光ファイバ 2、 可変光減衰器 3、 光力ブラ 4、 受動型波長多重化器 (AWG) 5、 光力ブラ 6— 1 ないし 6_n、 ループ状光ファイバ 7— 1ないし 7— n、 受動型波長多重化器 (A WG) 5、 光力ブラ 4、 そして再び光増幅器 (EDFA) 1へと送られる。 この結 果、 閉ループが形成され、 とびとびの波長え 1ないしえ nがレーザ発振を起こすこ とになる。  Spontaneous emission light with a wide wavelength spectrum emitted from an optical amplifier (EDFA) 1 passes through a loop-shaped optical fiber 2, a variable optical attenuator 3, and a light power bra 4, and a passive wavelength multiplexer (AWG) Reach five. The passive wavelength multiplexer (AWG) 5 splits the spontaneous emission light into discrete wavelengths 1 to n and outputs them to each output terminal. The split light of wavelength λΐ or η is transmitted to the passive wavelength multiplexer (AWG) 5 again through the loop optical fiber 7-1 to 7 _ η and the optical power coupler 6-1 to 6-η, respectively. And return. The passive wavelength multiplexer (AWG) 5 combines the light of wavelengths 1 to η into one and sends it to the optical amplifier (EDFA) 1 via the optical power bra 4. Η is amplified by an optical amplifier (EDFA) 1, and then looped optical fiber 2, variable optical attenuator 3, optical power bra 4, passive wavelength multiplexer (AWG) 5, Power Brass 6-1 to 6_n, Looped Optical Fibers 7-1 to 7-n, Passive Wavelength Multiplexer (AWG) 5, Optical Brassier 4, and then sent back to Optical Amplifier (EDFA) 1 . As a result, a closed loop is formed, and discrete wavelengths 1 to n cause laser oscillation.
光力プラ 4はとびとびの波長え 1ないしえ ηのレ一ザ光の一部を分岐して自動出 力制御装置 (AP C) 8へと送る。 自動出力制御装置 (AP C) 8はレーザ光発振 出力が一定となるように可変光減衰器 3を制御する。 なお、 自動出力制御装置 (A P C) 8は省略することもできる。 光増幅器は飽和出力特性を持っているので、 所 定の出力でレーザ出力は安定するからである。 ただし、 自動出力制御装置 (AP C) 8を用いた方がレーザ出力の安定度は良好である。 The optical power 4 splits a part of the laser light of Send to Force Control Unit (AP C) 8. An automatic output control device (APC) 8 controls the variable optical attenuator 3 so that the laser light oscillation output becomes constant. The automatic output control device (APC) 8 can be omitted. This is because the optical amplifier has a saturation output characteristic, and the laser output is stabilized at a predetermined output. However, the stability of the laser output is better when the automatic power controller (APC) 8 is used.
光力プラ 6— 1ないし 6— nは、 とびとびの波長え 1ないしえ ηのレーザ光の一 部を分岐して、 それそれ出力端子 1 1— 1ないし 1 1— ηへと送る。  The optical power plugs 6-1 to 6-n branch off part of the laser light with discrete wavelengths 1 to η and send them to the output terminals 11-1 to 11-η, respectively.
受動型波長多重化器 (AWG) 5に対して光増幅器 (ED F A) 1側の光フアイ バ中にはとびとびの波長人 1ないし ληが混合して伝送されている。 また、 受動型 波長多重化器 (AWG) 5に対して光力ブラ 6— 1ないし 6— η側では、 それぞれ の光ファイバにはとびとびの波長え 1ないしえ ηが分離して伝送されている。  In the optical fiber on the optical amplifier (EDFA) 1 side with respect to the passive wavelength multiplexer (AWG) 5, discrete wavelengths 1 to λη are mixed and transmitted. On the other hand, on the optical power 6-1 to 6-η side with respect to the passive wavelength multiplexer (AWG) 5, discrete wavelengths 1 to η are separately transmitted to each optical fiber. .
以上のように図 1の構成によれば、 光増幅器 (EDFA) 1の増幅可能波長帯域 内の波長について受動型波長多重化器 (AWG) 5によって決定される任意の数の 波長のレーザ一光を発振することができる。  As described above, according to the configuration of FIG. 1, an arbitrary number of wavelengths of laser light determined by the passive wavelength multiplexer (AWG) 5 for wavelengths within the amplifying wavelength band of the optical amplifier (EDFA) 1 Can be oscillated.
図 2は図 1の波長多重化光源 を用いた波長多重化装置の構成を示す図である。 波長多重化光源丄 _0_め出力端子 1 1一 1ないし 1 1 _ nからの異なる波長のレーザ 光は送信モジュール 14— 1ないし 14一 nを経て受動型波長多重化器 (AWG) 1 5 aによって一本の光ファイバにまとめられる。 送信モジュール 14一 1ないし 14— nは電気信号ュニヅ ト 12— 1ないし 1 2— nと光変調器 1 3— 1ないし 1 3— nから成り立つている。 電気信号ュニヅ ト 12— 1ないし 12— nから加えら れた電気信号によって光変調器 1 3— 1ないし 13 _nは、 波長多重化光源 10か らのレ一ザ光を変調する。 したがって送信モジュール 14一 1ないし 14一 nを通 過したレーザ光は例えば 1 0 Gb p/s (毎秒 10ギガビヅ ト) の速度で変調され た光信号となっている。 光変調器 13— 1ないし 13— nとしては公知のニオブ酸 リチウムベースの電気光学変調器、 半導体ペースの電気光学吸収変調器 (QCS E 変調器: Quant um Conf i ne d St ark E f f e c t :量子閉 じこめシュタルク効果変調器) などを用いることができる。  FIG. 2 is a diagram showing a configuration of a wavelength multiplexing device using the wavelength multiplexing light source of FIG. Wavelength multiplexed light source 出力 _0_ output terminal 1 1 1 1 to 1 1 _n The laser light of different wavelengths passes through the transmitting module 14-1 to 14-1 n and the passive wavelength multiplexer (AWG) 15 a Are combined into one optical fiber. The transmission modules 141-1 to 14-n are composed of electric signal units 12-1 to 12-n and optical modulators 13-1 to 13-n. The optical modulators 13-1 to 13 _n modulate the laser light from the wavelength multiplexed light source 10 by the electric signal added from the electric signal units 12-1 to 12-n. Therefore, the laser light that has passed through the transmission modules 1411 to 1411n is an optical signal modulated at a speed of, for example, 10 Gbp / s (10 gigabits per second). Known light modulators 13-1 to 13-n include lithium-niobate-based electro-optic modulators and semiconductor-based electro-optic absorption modulators (QCS E modulators: Quantum Confined St ark Effect: Quantum) For example, a confined Stark effect modulator can be used.
受動型波長多重化器 (AWG) 15 aによって多重化された複数の波長の光信号 18 aは光サーキユレ一夕 16を経て通信用光ファイバ 17へと導かれる。 光サ一 キユレ一夕 1 6の一方の端子は受信用の受動型波長多重化器 ( AW G ) 1 5 bと接 続されている。 なお、 光サ一キユレ一夕に代えて光力ブラと光アイソレー夕を組み 合わせて用いることもできる。 The optical signals 18a having a plurality of wavelengths multiplexed by the passive wavelength multiplexer (AWG) 15a are guided to the communication optical fiber 17 through the optical circuit 16. Light One terminal of Kyure Izuya 16 is connected to a passive wavelength division multiplexer (AWG) 15b for reception. It should be noted that a light bra and an optical isolator can be used in combination instead of the optical circuit.
通信用光ファイバ 1 7を通って受信された波長多重化光信号 1 8 bは光サ一キュ レ一夕 1 6によって受信用の受動型波長多重化器 (A W G ) 1 5 bへのみ伝送され る。 受信された波長多重化光信号は受信用受動型波長多重化器 (AW G ) 1 5 bに よってそれぞれの波長に分離されて、 受信ュニヅ ト 1 9— 1ないし 1 9— nへと送 られる。  The wavelength multiplexed optical signal 18b received through the communication optical fiber 17 is transmitted only to the passive passive wavelength multiplexer (AWG) 15b by the optical circulator 16. You. The received wavelength-division multiplexed optical signal is separated into respective wavelengths by a passive wavelength multiplexer (AWG) 15b for reception and transmitted to the reception units 19-1 to 19-n .
図 2では、受信用受動型波.長多重化器と送信用受動型波長多重化器とを設けたが、 ひとつのみの波長多重化器を設け、 光サ一キユレ一夕ないしは光力ブラによって送 信光信号と受信光信号を一本の光ファイバに結合した後、 この波長多重化器によつ て波長多重化するように波長多重化装置を構築することもできる。 この場合、 光サ ーキユレ一夕ないし光力ブラは用いる波長の数だけ設ける必要がある。  In Fig. 2, a passive wave for reception, a long multiplexer and a passive wavelength multiplexer for transmission are provided.However, only one wavelength multiplexer is provided, and the optical It is also possible to construct a wavelength multiplexing apparatus so that the transmission optical signal and the reception optical signal are coupled to one optical fiber and then wavelength-multiplexed by this wavelength multiplexer. In this case, it is necessary to provide the number of optical circuits and the number of optical power bras as many as the wavelengths to be used.
また、 図 2は双方向光伝送の波長多重化装置を示したが、 送信用光ファイバと受 信用光ファイバを分離して設ける単方向光伝送にも本発明は応用できる。 この場合 は、 送信信号と受信信号とを結合させる光サ一キュレ 夕ないし光力ブラは不要と なる。  Although FIG. 2 shows a wavelength multiplexing device for bidirectional optical transmission, the present invention can be applied to unidirectional optical transmission in which a transmitting optical fiber and a receiving optical fiber are provided separately. In this case, there is no need for an optical filter or optical power coupler for coupling the transmission signal and the reception signal.
図 2においては、 送信側に受動型波長多重化器を設けたが、 これはヅリ一状光力 ブラのような波長選択性を有しない光結合手段によって代替することもできる。 図 2の構成にさらに光増幅器を追加することもできる。 受信側の受動型波長多重 化器 1 5 bと光サ一キユレ一夕 1 6の間にプリアンプを設けたり、 送信側の受動型 波長多重化器 1 5 aと光サーキユレ一夕 1 6の間にブース夕一アンプを設けること ができる。  In FIG. 2, a passive wavelength multiplexer is provided on the transmitting side, but this can be replaced by an optical coupling means having no wavelength selectivity, such as a linear optical power blur. An optical amplifier can be added to the configuration of FIG. A preamplifier is installed between the passive wavelength multiplexer 15b on the receiving side and the optical circuit 16 or between the passive wavelength multiplexer 15a on the transmitting side and the optical circuit 16 An amplifier can be installed in the booth.
なお、 波長多重化光源 1 0における光力ブラ 6— 1ないし 6— nとループ状光フ アイバ 7— 1ないし 7— nからなる部分反射要素はハーフミラ一に置き換えること もできる。 図 3 ( a ) は光力ブラ 6とループ状光ファイバ 7とからなる部分反射要 素を示す。 同図において左側から入射した光は光力ブラ 6とループ状光ファイバ 7 とによって一部が入射方向 (同図左側) へと反射され、 残りは右側の出力端子 1 1 へと導かれる。 このような機能は図 3 (b) に示すようにレンズ 46、 ハーフミラ一 47、 レン ズ 48からなる部分反射要素によっても実質的に同等の機能を実現することができ る。 光ファイバ 45からの光信号はレンズ 46によて略平行光に変換されてハーフ ミラ一 47、 レンズ 48を経て光ファイバ 49へと導かれる。 この時、 同図右側か ら入射した光の一部はハーフミラーによって反射されて、 光ファイバ 45側へと送 られ、 残りは光ファイバ 49側へと送られる。 したがって、 図 3 (b) の構成によ れば図 3 (a) の構成と実質的に同等の機能を実現することができる。 It should be noted that the partial reflection element including the optical power blur 6-1 to 6-n and the loop optical fiber 7-1 to 7-n in the wavelength multiplexed light source 10 can be replaced with a half mirror. FIG. 3 (a) shows a partial reflection element composed of an optical power bra 6 and a loop optical fiber 7. FIG. In the figure, light incident from the left side is partially reflected in the incident direction (left side in the figure) by the optical power bra 6 and the loop-shaped optical fiber 7, and the rest is guided to the output terminal 11 on the right side. As shown in FIG. 3 (b), such a function can be realized by a partially reflecting element including a lens 46, a half mirror 47, and a lens 48. The optical signal from the optical fiber 45 is converted into substantially parallel light by a lens 46 and guided to an optical fiber 49 via a half mirror 47 and a lens 48. At this time, part of the light incident from the right side of the figure is reflected by the half mirror and sent to the optical fiber 45 side, and the rest is sent to the optical fiber 49 side. Therefore, according to the configuration of FIG. 3 (b), a function substantially equivalent to the configuration of FIG. 3 (a) can be realized.
図 1に示した波長多重化光源丄 _Q_は出力端子近傍に上記のような部分反射要素(光 力ブラ 6とループ状光ファイバ 7、 もしくは、 ハーフミラ一 47) を備えているの で、波長多重化光源 の出力端子に外部から光信号が加えられると反射が生じる。 しかしながら、 図 2の波長多重化装置においては光サ一キユレ一夕 16が備えられ ているので、 波長多重化光源 の出力端子に外部から光信号が加えられることは ない。 [第二実施例]  Since the wavelength multiplexed light source _ _Q_ shown in FIG. 1 has the above-mentioned partial reflection element (optical power bra 6 and loop optical fiber 7 or half mirror 47) near the output terminal, the wavelength Reflection occurs when an optical signal is externally applied to the output terminal of the multiplexed light source. However, since the wavelength multiplexing device shown in FIG. 2 is provided with the optical circuit 16, no optical signal is externally applied to the output terminal of the wavelength multiplexing light source. [Second embodiment]
図 4に本発明の第二実施例の波長多重化光源 ϋの構成を示す。 この波長多重化 光源 ϋは光増幅器 (EDFA) 22、 第一の受動型波長多重化器 (AWG) 23、 光力ブラ 28— 1ないし 28— η、 第二の受動型波長多重化器 (AWG) 24、 可 変光減衰器 26、 光力ブラ 25、 自動出力制御装置 (AP C) 27から成り立って いる。 なお、 第一の受動型波長多重化器 (AWG) 23と第二の受動型波長多重化 器 (AWG) 24は略同等の特性を有している。  FIG. 4 shows the configuration of a wavelength multiplexed light source according to a second embodiment of the present invention. The wavelength multiplexed light source ϋ is an optical amplifier (EDFA) 22, the first passive wavelength multiplexer (AWG) 23, the optical power blur 28-1 to 28-η, and the second passive wavelength multiplexer (AWG). ) 24, variable optical attenuator 26, optical power bra 25, and automatic power control (APC) 27. Note that the first passive wavelength multiplexer (AWG) 23 and the second passive wavelength multiplexer (AWG) 24 have substantially the same characteristics.
光増幅器 (EDFA) 22からの自然放出光は第一の受動型波長多重化器 (AW G) 23によって、 とびとびの波長え 1ないし人 ηの光に分けられてから、 それそ れ対応する光力ブラ 28— 1ないし 28— ηを経て第二の受動型波長多重化器.(Α WG) 24によって再び一本の光ファイバにまとめられる。 そして、 可変光減衰器 26、 光力ブラ 25を経て再び光増幅器 (EDFA) 22へと送られる。 とびとび の波長え 1ないしえ nは光増幅器 (EDFA) 22によって増幅されて上記と同様 の経路をたどって再び光増幅器 (EDFA) 22へと帰還してくる。 すなわち、 閉 ループが形成されており、 レーザ発振が生じる。 とびとびの波長え 1ないしえ nで発振したレーザ光は光力プラ 28— 1ないし 2 8 _ nによって一部の光が分岐されて出力端子 2 1— 1ないし 2 1— nへと導かれ る。 The spontaneous emission light from the optical amplifier (EDFA) 22 is separated by the first passive wavelength multiplexer (AWG) 23 into discrete wavelengths 1 or η, and the corresponding light After passing through the power brass 28-1 to 28-η, they are combined again into one optical fiber by the second passive wavelength multiplexer (ΑWG) 24. Then, the light is sent to the optical amplifier (EDFA) 22 again through the variable optical attenuator 26 and the optical power bra 25. The discrete wavelengths 1 to n are amplified by the optical amplifier (EDFA) 22 and return to the optical amplifier (EDFA) 22 again along the same path as described above. That is, a closed loop is formed, and laser oscillation occurs. Laser light oscillated at discrete wavelengths 1 to n is partially branched by the optical power plugs 28-1 to 28_n and guided to the output terminals 21-1 to 21-n. .
とびとびの波長え 1ないしえ nのレーザ光の集合光は光力ブラ 25によって一部 が分岐されて自動出力制御装置 (AP C) 27へと送られる。 自動出力制御装置 (A PC) 27はレーザ発振が一定強度となるべく、 可変光減衰器 26を制御する。 この第二実施例の波長多重化光源はリングレーザの構造をなしており、 部分反射 要素を用いていないので、 出力端子 2 1 _ 1ないし 2 1— nへ外部から光信号が入 射した場合でも反射光を返すことが無いという利点がある。 反面、 第一実施例に比 ベて高価な受動型波長多重化器 (AWG) を 2個使うという欠点もある。  A part of the collective light of the laser light having discrete wavelengths 1 to n is branched by the optical power bra 25 and sent to the automatic power control device (APC) 27. An automatic output controller (APC) 27 controls the variable optical attenuator 26 so that the laser oscillation has a constant intensity. The wavelength multiplexed light source of the second embodiment has a ring laser structure and does not use a partial reflection element. Therefore, when an optical signal is input from the outside to the output terminals 21_1 to 21-n. However, there is an advantage that reflected light is not returned. On the other hand, it has the disadvantage of using two more expensive passive wavelength multiplexers (AWGs) than the first embodiment.
出力端子 2 1— 1ないし 2 1一 nへ入射した光は光増幅器 (EDFA) 22内に設 けられた光ァイソレ一夕によって減衰してしまう。 The light incident on the output terminals 21-1 to 21-1n is attenuated by the optical amplifier provided in the optical amplifier (EDFA) 22.
本実施例の波長多重化光源 を図 2に示した波長多重化装置の波長多重化光源 10に置き換えて使用することができる。  The wavelength multiplexed light source of this embodiment can be used in place of the wavelength multiplexed light source 10 of the wavelength multiplexing apparatus shown in FIG.
[第三実施例] [Third embodiment]
図 5に本発明の第三実施例の波長多重化光源 A立の構成を示す。 この波長多重化 光源 30はエルビウムド一プ光ファイバ 39、 励起光源 (半導体レーザ) 33、 光 アイソレー夕 32、 WDM型光力プラ 40、 光力ブラ 41、 ループ状光ファイバ 4 2、 光力ブラ 34、 受動型波長多重化器 (AWG) 35、 光力ブラ 36— 1ないし FIG. 5 shows a configuration of the wavelength multiplexed light source A according to the third embodiment of the present invention. The wavelength multiplexed light source 30 is an erbium-doped optical fiber 39, an excitation light source (semiconductor laser) 33, an optical isolator 32, a WDM type optical power plug 40, an optical power bra 41, a loop optical fiber 42, an optical power bra 34, passive wavelength division multiplexer (AWG) 35, optical power bra 36-1 or
36— n、 ループ状光ファイバ 37— 1ないし 37— n、 自動出力制御装置 (AP C) 38から成り立つている。 It consists of 36-n, looped optical fiber 37-1 to 37-n, and automatic power control (APC) 38.
励起光源 (半導体レーザ) 33は波長 980 nmあるいは 1480 nmのレーザ 光を発生する。 WDM型光力プラ 40は波長多重化機構を兼ね備えた融着型光ファ ィバカブラからなりたっている。 WDM型光力ブラ 40は波長 980nm (あるい は 1480 nm) の励起光と Cバンドの信号光 (波長: 1535— 1565 nm) とを一本の光ファイバに結合させる。 または反対に、 波長 980 nm (あるいは 1 The excitation light source (semiconductor laser) 33 generates laser light with a wavelength of 980 nm or 1480 nm. The WDM optical power plug 40 is composed of a fusion type optical fiber cover that also has a wavelength multiplexing mechanism. The WDM-type optical power bra 40 couples pump light having a wavelength of 980 nm (or 1480 nm) and C-band signal light (wavelength: 1535 to 1565 nm) into one optical fiber. Or conversely, a wavelength of 980 nm (or 1
480 nm) の励起光と Cバンドの信号光 (波長: 1535— 1565 nm) とを 2本の光ファイバに分離して結合させる機能を有する。 励起光源 33によって励起されたエルビウムド一プ光ファイバ 39は光を増幅す る機能を有するので、 光力ブラ 41とループ状光ファイバ 42からなる反射要素、 受動型波長多重化器 (AWG) 35、 光力ブラ 36— 1ないし 36— nとループ状 光ファイバ 37— 1ないし 37— nからなる部分反射要素群とで閉ループを形成し、 受動型波長多重化器 (AWG) 35によって決定された複数のとびとびの波長え 1 ないしえ nにおけるレーザ発振を生じる。 そして、 とびとびの波長え 1ないしえ n のレーザ光の一部は光力ブラ 36— 1ないし 36— nを経て、 出力端子 31— 1な いし 3 1— ηへと出力される。 It has a function to separate the 480 nm excitation light and the C-band signal light (wavelength: 1535-1565 nm) into two optical fibers and combine them. Since the erbium-doped optical fiber 39 pumped by the pumping light source 33 has the function of amplifying light, the reflective element consisting of the optical power bra 41 and the loop optical fiber 42, the passive wavelength multiplexer (AWG) 35 A closed loop is formed by the optical power bra 36-1 to 36-n and the partially reflecting element group consisting of the loop-shaped optical fibers 37-1 to 37-n, which is determined by the passive wavelength multiplexer (AWG) 35. Laser oscillation occurs at a plurality of discrete wavelengths 1 to n. Then, a part of the laser light of discrete wavelengths 1 to n is output to the output terminal 31-1 or 31-η via the optical power blur 36-1 to 36-n.
なお、 光力ブラ 41とループ状光ファイバ 42からなる反射要素に代えて反射鏡 やファイバブラヅググレーティングフィル夕のような反射要素を用いても良い。 光力ブラ 34で分岐されたレーザ光の一部は自動出力制御装置 (AP C) 38へ と送られる。 自動出力制御装置 (AP C) 38はレーザ発振出力が一定になるべく、 励起光源 33の駆動電流を制御する。  It should be noted that a reflecting element such as a reflecting mirror or a fiber Bragg grating filter may be used instead of the reflecting element including the optical power bra 41 and the loop-shaped optical fiber. A part of the laser beam split by the optical power bra 34 is sent to an automatic power controller (APC) 38. An automatic output control device (APC) 38 controls the drive current of the excitation light source 33 so that the laser oscillation output becomes constant.
励起光源 33からの励起光は WDM型光力ブラ 40によってエルビウムド一プ光 ファイバ 39を励起し、 光力ブラ 41とループ状光ファイバ 42によって反射され て再びエルビウムド一プ光ファイバ 39を励起したのち、 WDM型光力ブラ 40を 経て励起光源 33側へ送られる。 しかしながら、 反射されて戻ってきた励起光は光 アイソレー夕 32によって吸収され、 励起光が励起光源 33に戻ることは妨げられ ている。  Excitation light from the excitation light source 33 excites the erbium-doped optical fiber 39 by the WDM type optical bra 40, and is reflected by the optical bra 41 and the loop optical fiber 42 to excite the erbium-doped optical fiber 39 again. After that, the light is sent to the excitation light source 33 through the WDM type optical power bra 40. However, the reflected excitation light is absorbed by the optical isolator 32, which prevents the excitation light from returning to the excitation light source 33.
本実施例によれば、 励起光源 33の駆動電流を制御することによってレーザ発振 光出力制御が行われるので、 可変光減衰器を省略することができる。  According to the present embodiment, the laser oscillation light output control is performed by controlling the drive current of the pump light source 33, so that the variable optical attenuator can be omitted.
[第四実施例] [Fourth embodiment]
図 6に本発明の第四実施例の波長多重化光源 ϋの構成を示す。 この波長多重化 光源 ϋは第一の光増幅器 (E D F A— C) 59 a、 第二の光増幅器 (ED F Α— L) 59 b、 第一の光力ブラ 54 a、 第二の光力ブラ 54b、 第三の光力ブラ 54 c、 可変光減衰器 53、 受動型波長多重化器 (分光器) 55、 光力ブラ 56— 1な いし 56— n、 ループ状光ファイバ 57— 1ないし 57— n、 自動出力制御装置 (A P C) 58から成り立つている。 本実施例は図 1に示した第一実施例の変形例である。 主たる違いは第一の光増幅 器 (EDFA— C) 59 aと第二の光増幅器 (EDFA— L) 59 bが設けられ、 第二の光力ブラ 54 bと第三の光力ブラ 54 cによって並列に配置されていること である。 第一の光増幅器 (EDFA— C) 59 aは Cバンド ( 1535— 1565 nm) の波長帯域に利得を有し、 第二の光増幅器 (EDFA— L) 59 bは Lバン ド (1565— 1 595 nm) の波長帯域に利得を有している。 この結果、 Cバン ドおよび Lバンド双方 (波長: 1535— 1595 nm) にわたつてレーザ発振を 生じせしめることが可能となっている。 なお、 この場合、 受動型波長多重化器 (分 光器) 55は他の実施例のものとは異なって、 この広い波長帯域にわたって波長多 重化のできるように設計されたものを用いている。 発振した各波長のレーザ光は出 力端子 51— 1ないし 5 1— nから出力される。 FIG. 6 shows the configuration of a wavelength multiplexed light source according to a fourth embodiment of the present invention. This wavelength-multiplexed light source ϋ is composed of a first optical amplifier (EDFA-C) 59a, a second optical amplifier (EDF Α-L) 59b, a first optical power 54a, and a second optical power 54b, Third optical power bra 54c, Variable optical attenuator 53, Passive wavelength multiplexer (spectroscope) 55, Optical power bra 56-1 or 56-n, Loop optical fiber 57-1 to 57 — N, consisting of an automatic power control (APC) 58. This embodiment is a modification of the first embodiment shown in FIG. The main difference is that the first optical amplifier (EDFA-C) 59a and the second optical amplifier (EDFA-L) 59b are provided, the second optical power bra 54b and the third optical power bra 54c. Are arranged in parallel. The first optical amplifier (EDFA-C) 59a has gain in the wavelength band of the C band (1535-1565 nm), and the second optical amplifier (EDFA-L) 59b has the gain in the L band (1565-1 (595 nm). As a result, it is possible to cause laser oscillation in both the C band and the L band (wavelength: 1535 to 1595 nm). In this case, the passive wavelength multiplexer (division device) 55 is different from those of the other embodiments, and is designed to be capable of wavelength multiplexing over this wide wavelength band. . The oscillated laser light of each wavelength is output from output terminals 51-1 to 51-n.
[第五実施例] [Fifth embodiment]
図 7に本発明の第五実施例の波長多重化光源 の構成を示す。 この波長多重化 光源 は光増幅器 (ED F A) 62、 受動型波長多重化器 (AWG) 63、 光力 ブラ 68— 1ないし 68 _ n、 ヅリ一状光力ブラ 64、 可変光減衰器 66、 光力プ ラ 65、 自動出力制御装置 (AP C) 67から成り立つている。 発振した各波長の レーザ光は出力端子 6 1— 1ないし 6 1— nから出力される。  FIG. 7 shows a configuration of a wavelength multiplexed light source according to a fifth embodiment of the present invention. The wavelength multiplexing light source is an optical amplifier (ED FA) 62, a passive wavelength multiplexer (AWG) 63, an optical power 68-1-1 to 68_n, a linear optical power 64, a variable optical attenuator 66. , Optical power 65 and automatic power control (APC) 67. The oscillated laser light of each wavelength is output from the output terminals 61-1 to 61-n.
本実施例は図 2に示した第二実施例の変形例である。 第二実施例ではふたつの受 動型波長多重化器 (AWG) 23ないし 24とを用いたが、 受動型波長多重化器 (A WG) 24に代えてヅリ一状光力ブラ 64を用いている点が異なる。 本実施例の受 動型波長多重化器 (AWG) 63は第二実施例の受動型波長多重化器 (AWG) 2 3に対応する。  This embodiment is a modification of the second embodiment shown in FIG. In the second embodiment, two passive wavelength multiplexers (AWGs) 23 to 24 are used. However, a perimeter optical power bra 64 is used instead of the passive wavelength multiplexers (AWG) 24. Is different. The passive wavelength multiplexer (AWG) 63 of this embodiment corresponds to the passive wavelength multiplexer (AWG) 23 of the second embodiment.
ヅリ一状光力プラはアレイ状導波路回折格子 (AWG) に比べて低価格であると いう利点を有する。 反面、 レーザ発振する波長数を増やそうとするとツリー状光力 ブラの場合、 損失が急増するという欠点もある。 したがって、 比較的少ない波長数 を低コストで発振させる場合に本実施例は適している。  The linear optical power plastic has the advantage of being less expensive than the arrayed waveguide grating (AWG). On the other hand, if the number of wavelengths at which laser oscillation is to be increased is to be increased, the loss in the case of a tree-shaped optical power sharply increases. Therefore, this embodiment is suitable for oscillating a relatively small number of wavelengths at low cost.
[第六実施例] 図 8に本発明の第六実施例の波長多重化光源 L立の構成を示す。 この波長多重化 光源 70は半導体レーザ 79、 レンズ 72、 光力ブラ 74、 受動型波長多重化器 (A WG) 75、 光力ブラ 76— 1ないし 76— n、 ループ状光ファイバ 77— 1ない し 77— n、 自動出力制御装置 (AP C) 78から成り立つている。 [Sixth embodiment] FIG. 8 shows the configuration of the wavelength multiplexed light source L according to the sixth embodiment of the present invention. The wavelength multiplexing light source 70 is a semiconductor laser 79, a lens 72, an optical power blur 74, a passive wavelength multiplexer (AWG) 75, an optical power blur 76-1 to 76-n, and no loop optical fiber 77-1. 77-n, consisting of an automatic output controller (APC) 78.
半導体レーザの第一の端面 79 aは髙反射率 (HR) コートが施されており、 第 二の端面 79 bは無反射 (AR) コートが施されている。 半導体レーザ 79は第二 の端面 79 bは無反射 (AH) コートのために単体ではレーザ発振することができ ないが、 外部の光学系からの光の帰還によって発振することができうる。 いわゆる 外部共振光学系を形成している。  The first end face 79a of the semiconductor laser has a 髙 reflectivity (HR) coat, and the second end face 79b has an antireflection (AR) coat. The semiconductor laser 79 cannot oscillate by itself because the second end face 79b has an anti-reflection (AH) coat, but can oscillate by feedback of light from an external optical system. A so-called external resonance optical system is formed.
半導体レーザ 79からの自然放出光はレンズ 72によって光ファイバ 73と結合 する。'光ファイバ 73に結合した光は光力ブラ 74、 受動型波長多重化器 (AWG) 75、 光力プラ 76— 1ないし 76— nとループ状光ファイバ 77— 1ないし 77 — nからなる部分反射要素群を経て、 再び、 受動型波長多重化器 (AWG) 75、 光力ブラ 74、 光ファイバ 73、 レンズ 72を経て半導体レーザ 79に入射する。 即ち、 全体として閉ループが形成されており、 レーザ発振が生じる。  Spontaneous emission light from the semiconductor laser 79 is coupled to the optical fiber 73 by the lens 72. 'The light coupled to the optical fiber 73 is a part consisting of an optical power 74, a passive wavelength multiplexer (AWG) 75, an optical power 76-1 to 76-n, and a loop optical fiber 77-1 to 77-n. After passing through the reflecting element group, the light enters the semiconductor laser 79 again via the passive wavelength multiplexer (AWG) 75, the optical power bra 74, the optical fiber 73, and the lens 72. That is, a closed loop is formed as a whole, and laser oscillation occurs.
レーザ発振したえ 1ないしえ nのレーザ光は光力プラ 76— 1ないし 76— nに よって一部が分岐されて出力端子 71— 1ないし 71 _nから出力される。 また、 レーザ光の一部は光力ブラ 74によって分岐されて自動出力制御装置 (AP C) 7 8へと送られる。 自動出力制御装置 (AP C) 78はレーザ発振出力が一定となる ベく半導体レーザ 79の駆動電流を制御する。  The laser light of 1 to n which oscillated the laser is partly branched by the optical power plugs 76-1 to 76-n and output from the output terminals 71-1 to 71_n. Further, a part of the laser light is branched by the optical power bra 74 and sent to the automatic output control device (APC) 78. The automatic output control device (APC) 78 controls the drive current of the semiconductor laser 79 so that the laser oscillation output becomes constant.
半導体レーザ 79はエルビウムド一プ光ファイバを初めとする希土類ドープ光フ アイバに比べて波長選択の幅が広く、 また、 光増幅器としての光増幅可能波長帯域 も広いという利点がある。 また、 一般に低コストでもある。  The semiconductor laser 79 has the advantage that the wavelength selection range is wider than that of rare-earth-doped optical fibers such as erbium-doped optical fibers, and that the optical amplifiable wavelength band as an optical amplifier is wider. It is also generally low cost.
したがって、 本実施例によれば、 波長選択の幅を広げ、 選択可能なチャネル数を 増やすことが、 低コス トに実現できるという利点がある。  Therefore, according to the present embodiment, there is an advantage that the range of wavelength selection and the number of selectable channels can be increased at low cost.
[第七実施例] [Seventh embodiment]
図 9に本発明の第七実施例の波長多重化光源 A立の構成を示す。 この波長多重化 光源 80は半導体レーザ 89、 凹面状回折格子 82、 光ファイバ 83— 1ないし 8 3— n、 光力プラ 86— 1ないし 86— n、 ループ状光ファイバ 87— 1ないし 8 7_nから成り立つている。 各波長のレーザ光は出力端子 81 _ 1ないし 81— n から出力される。 FIG. 9 shows a configuration of a wavelength multiplexed light source A according to a seventh embodiment of the present invention. The wavelength multiplexed light source 80 is a semiconductor laser 89, a concave diffraction grating 82, and an optical fiber 83-1 to 8 It consists of 3-n, optical power plugs 86-1 to 86-n, and loop optical fiber 87-1 to 87_n. Laser light of each wavelength is output from output terminals 81_1 through 81-n.
半導体レーザの第一の端面 89 aは高反射率 (HR) コートが施されており、 第 二の端面 89 bは無反射 (AR) コートが施されている。 半導体レーザ 89は第二 の端面 89 bは無反射 (AR) コートのために単体ではレーザ発振することができ ないが、 外部の光学系からの光の帰還によって発振することができうる。 いわゆる 外部共振光学系を形成している。  The first end face 89a of the semiconductor laser has a high reflectivity (HR) coat, and the second end face 89b has an anti-reflection (AR) coat. The semiconductor laser 89 cannot oscillate by itself because the second end face 89b has an anti-reflection (AR) coat, but it can oscillate by feedback of light from an external optical system. A so-called external resonance optical system is formed.
本実施例は第六実施例の変形例である。 本実施例では、 アレイ状導波路回折格子 (AWG) に代えて凹面状回折格子 82と自由空間光学系からなる分光光学系を用 いたことが特徴である。  This embodiment is a modification of the sixth embodiment. The present embodiment is characterized in that a spectroscopic optical system including a concave diffraction grating 82 and a free space optical system is used instead of the arrayed waveguide diffraction grating (AWG).
半導体レーザ 89からの自然放出光は凹面回折格子 82によって光ファイバ 83 一 1ないし 83— nと特定の波長え 1ないしえ nにおいてそれぞれ結合する。 光フ アイパ 83— 1ないし 83— nに結合した光は光力プラ 76— 1ないし 76— nと ループ状光ファイバ 77— 1ないし 77— nからなる部分反射要素群を経て、再び、 光ファイバ 83— 1ないし 83— n及び凹面回折格子 82を経て半導体レーザ 89 に入射する。 即ち、 全体として閉ループが形成されており、 レーザ発振が生じる。 アレイ状導波路回折格子 (AWG) に比べて凹面状回折格子は低コス トであ'ると いう利点がある。  The spontaneous emission light from the semiconductor laser 89 is coupled by the concave diffraction grating 82 to the optical fibers 83 1 1 to 83-n at specific wavelengths 1 to n, respectively. The light coupled to the optical fiber 83-1 through 83-n passes through the partial reflection element group consisting of the optical power plugs 76-1 through 76-n and the loop optical fiber 77-1 through 77-n. The light enters the semiconductor laser 89 through 83-1 to 83-n and the concave diffraction grating 82. That is, a closed loop is formed as a whole, and laser oscillation occurs. Concave gratings have the advantage of lower cost compared to arrayed waveguide gratings (AWGs).
また、 凹面状回折格子に代えて透過型回折格子とレンズの組合せ、 あるいは誘電 体フィル夕とレンズの組合せなどを公知の分光光学系を用いることも可能である。 また、 光力ブラ 76 _ 1ないし 76— nとループ状光ファイバ 77— 1ないし 77 一 nからなる部分反射要素群に代えて図 3 (b) に示したハーフミラ一とレンズか らなる部分反射要素を用いることも可能である。 産業上の利用可能性  In addition, instead of the concave diffraction grating, a combination of a transmission diffraction grating and a lens, or a combination of a dielectric film and a lens, or the like can be used as a known spectral optical system. Also, instead of the partial reflection element group consisting of the optical power bras 76_1 to 76-n and the loop-shaped optical fibers 77-1 to 77-1n, the partial reflection consisting of the half mirror and the lens shown in Fig. 3 (b) Elements can also be used. Industrial applicability
本発明によれば、 複数の波長を同時にレーザ発振し、 かつ個々の波長のレーザ光 信号を分離して取り出すことができる。  According to the present invention, a plurality of wavelengths can be simultaneously laser-oscillated, and laser light signals having individual wavelengths can be separated and extracted.

Claims

請求の範囲 The scope of the claims
1 . 光増幅器、 第一のループ状光ファイバ、 第一の光力ブラ、 受動型波長多重化 器、 少なくともふたつからなる第二の光力ブラ、 少なくともふたつからなる第二の ループ状光ファイバを備え、 複数波長発振したレーザ光の内からひとつの波長のレ —ザ光のみを、 第二の光力ブラから分岐して外部に出力することを特徴とする波長 多重化光源。 1. Optical amplifier, first loop optical fiber, first optical power bra, passive wavelength multiplexer, at least two second optical bra, at least two second loop optical fiber A wavelength-division multiplexed light source comprising: a laser beam having a single wavelength out of a plurality of wavelengths of laser light;
2 . 請求の範囲 1の波長多重化光源において、 前記光増幅器を通過した光が第一 のループ状光ファイバ、 第一の光力ブラを経て前記受動型波長多重化器に送られて 複数の波長ごとに分離された後、 個々の波長の光ごとに対応する第二の光力ブラお よび第二のループ状光ファイバを経て再び前記受動型波長多重化器に送られて複数 の波長の光がひとつの光ファイバにまとめられてから、 第一の光力プラを経て光増 幅器に再び送られるべく、 閉じたループを形成すべく光学系が設けられていること を特徴とする波長多重化光源。 2. The wavelength multiplexed light source according to claim 1, wherein the light having passed through the optical amplifier is sent to the passive wavelength multiplexer through a first loop-shaped optical fiber and a first optical power bra. After being separated for each wavelength, the light is again sent to the passive wavelength multiplexer via a second optical power blur and a second loop optical fiber corresponding to each light of each wavelength, and is sent to the passive wavelength multiplexer again. The wavelength is characterized in that an optical system is provided to form a closed loop so that the light is collected into one optical fiber and then sent again to the optical amplifier through the first optical power plug. Multiplexed light source.
3 . 請求の範囲 1の波長多重化光源において、 さらに、 発振したレーザ光の強度 を測定しレーザ光強度を一定に保つべく制御する自動出力制御手段および、 前記自 動出力制御手段からの信号によってレーザ光の強度を減衰させる可変減衰手段を備 えたことを特徴とする波長多重化光源。 3. The wavelength multiplexed light source according to claim 1, further comprising: an automatic output control means for measuring the intensity of the oscillated laser light and controlling the laser light intensity to be kept constant; and a signal from the automatic output control means. A wavelength-division multiplexed light source comprising variable attenuation means for attenuating the intensity of laser light.
4 . 請求の範囲 1の波長多重化光源において、 さらに、 発振したレーザ光の強度 を測定しレーザ光強度を一定に保つべく制御する自動出力制御手段および、 前記自 動出力制御手段からの信号によって光増幅器の励起手段を制御する手段を備えたこ とを特徴とする波長多重化光源。 4. The wavelength-division multiplexed light source according to claim 1, further comprising: an automatic output control means for measuring the intensity of the oscillated laser light and controlling the laser light intensity to be kept constant; and a signal from the automatic output control means. A wavelength multiplexed light source comprising means for controlling an excitation means of an optical amplifier.
5 . 請求の範囲 1の波長多重化光源において、 第二の光力ブラ、 および第二のル ープ状光ファイバに代えて部分反射手段を用いたことを特徴とする波長多重化光源 5. The wavelength-division multiplexed light source according to claim 1, wherein a partial reflection means is used instead of the second optical power bra and the second loop-shaped optical fiber.
6 . 請求の範囲 1の波長多重化光源において、 前記光増幅器を増幅可能波長帯域 の異なる複数の光増幅器を並列接続した構成に置き換えたことを特徴とする波長多 重化光源。 6. The wavelength-division multiplexed light source according to claim 1, wherein the optical amplifier is replaced with a configuration in which a plurality of optical amplifiers having different amplifiable wavelength bands are connected in parallel.
7 . 請求の範囲 1の波長多重化光源、 用いる波長の数に対応した複数の光変調器、 送信用光信号結合手段を備え、 前記波長多重化光源からの複数の波長の光信号を前 記光変調器によって変調した後、 前記送信用光信号結合手段によって複数の波長の 変調された光信号を一本の光ファイバに結合させることを特徴とする波長多重化装 置。 7. The wavelength multiplexing light source according to claim 1, a plurality of optical modulators corresponding to the number of wavelengths to be used, and a transmission optical signal coupling unit, wherein the optical signal of a plurality of wavelengths from the wavelength multiplexing light source is described. A wavelength multiplexing device, wherein after being modulated by an optical modulator, optical signals of a plurality of wavelengths are coupled to one optical fiber by the transmission optical signal coupling means.
8 . 光増幅器、 受動型波長多重化器、 光信号結合手段、 少なくともふたつからな る第二の光力ブラを備えた、 第二の光力ブラによって複数波長発振したレーザ光の 内からひとつの波長のレーザ光のみを分岐して外部に出力することを特徴とする波 長多重化光源。 8. An optical amplifier, a passive wavelength multiplexer, an optical signal coupling unit, and at least two second optical power bras. A wavelength multiplexed light source characterized in that only a laser beam having a wavelength is branched and output to the outside.
9 . 請求の範囲 8の波長多重化光源において、 前記光信号結合手段は受動型波長 多重下記であることを特徴とする波長多重化光源。 9. The wavelength-division multiplexed light source according to claim 8, wherein the optical signal coupling means is of a passive wavelength-division multiplex type.
1 0 . 請求の範囲 8の波長多重化光源において、 前記光信号結合手段はツリー状 光力ブラであることを特徴とする波長多重化光源。 10. The wavelength multiplexed light source according to claim 8, wherein said optical signal coupling means is a tree-shaped optical power blur.
1 1 . 請求の範囲 8の波長多重化光源において、 光増幅器を出た光が第一の受動 型波長多重化器、 少なくともふたつからなる第二の光力ブラ、 第二の受動型波長多 重化器を経て再び光増幅器に送られるべく、 閉じたループを形成している光学系を 備えたことを特徴とする波長多重化光源。 11. The wavelength multiplexing light source according to claim 8, wherein the light output from the optical amplifier is a first passive wavelength multiplexer, at least a second optical power blur, and a second passive wavelength multiplexer. A wavelength-division multiplexed light source comprising an optical system forming a closed loop so that it can be sent to the optical amplifier again through the optical amplifier.
1 2 . 請求の範囲 8の波長多重化光源、 用いる波長の数に対応した複数の光変調 器、 送信用光信号結合手段を備え、 前記波長多重化光源からの複数の波長の光信号 を前記光変調器によつて変調した後、 前記送信用光信号結合手段によって複数の波 長の変調された光信号を一本の光ファイバに結合させることを特徴とする波長多重 化装置。 12. The wavelength multiplexed light source according to claim 8, a plurality of optical modulators corresponding to the number of wavelengths to be used, a transmission optical signal coupling unit, and an optical signal having a plurality of wavelengths from the wavelength multiplexed light source. After being modulated by the optical modulator, a plurality of waves are transmitted by the transmitting optical signal coupling means. A wavelength multiplexing device for combining a modulated optical signal with a single optical fiber.
1 3 . 片側端面が高反射率、 もう一方の端面が低反射率となるべく端面コートが 施された半導体レーザ、光ファイバと該半導体レーザの低反射率端面との結合手段、 受動型波長多重化器、 少なくともふたつからなる第二の光力ブラ、 少なくともふた つからなる第二のループ状光ファイバを備え、 複数波長発振したレーザ光の内から ひとつの波長のレーザ光のみを、 第二の光力ブラから分岐して外部に出力すること を特徴とする波長多重化光源。 13 3. A semiconductor laser coated with an end face so that one end face has high reflectivity and the other end face has low reflectivity, coupling means between the optical fiber and the low reflectivity end face of the semiconductor laser, passive wavelength multiplexing A second optical fiber brassier comprising at least two optical fibers, and a second loop optical fiber comprising at least two optical fibers. A wavelength-division multiplexed light source characterized by branching out from a power bra and outputting to the outside.
1 4 . 請求の範囲 1 3の波長多重化光源、 用いる波長の数に対応した複数の光変 調器、 送信用光信号結合手段を備え、 前記波長多重化光源からの複数の波長の光信 号を前記光変調器によって変調した後、 前記送信用光信号結合手段によって複数の 波長の変調された光信号を一本の光ファイバに結合させることを特徴とする波長多 重化装置。 14. The wavelength multiplexed light source according to claim 13, a plurality of optical modulators corresponding to the number of wavelengths to be used, an optical signal coupling means for transmission, and an optical signal of a plurality of wavelengths from the wavelength multiplexed light source. A wavelength multiplexing apparatus for modulating a plurality of wavelengths by the optical modulator, and then coupling optical signals having a plurality of wavelengths modulated by the transmission optical signal coupling means to one optical fiber.
1 5 . 片側端面が高反射率、 もう一方の端面が低反射率となるべく端面コートが 施された半導体レーザ、 該半導体レーザの低反射率端面と複数の光ファイバを波長 を代えて結合する分光光学型結合手段、少なくともふたつからなる第二の光力ブラ、 少なくともふたつからなる第二のループ状光ファイバを備え、 複数波長発振したレ —ザ光の内からひとつの波長のレーザ光のみを、 第二の光力ブラから分岐して外部 に出力することを特徴とする波長多重化光源。 15. A semiconductor laser coated with an end face so that one end face has high reflectivity and the other end face has low reflectivity, and a spectroscopy that couples the low reflectivity end face of the semiconductor laser and a plurality of optical fibers by changing the wavelength. An optical coupling means, at least two second optical power brass, and at least two second loop-shaped optical fibers, wherein only laser light of one wavelength is emitted from laser light oscillated at a plurality of wavelengths. A wavelength-division multiplexed light source characterized by branching off from a second optical power bra and outputting to the outside.
1 6 . 請求の範囲 1 5の波長多重化光源、 用いる波長の数に対応した複数の光変 調器、 送信用光信号結合手段を備え、 前記波長多重化光源からの複数の波長の光信 号を前記光変調器によって変調した後、 前記送信用光信号結合手段によって複数の 波長の変調された光信号を一本の光ファイバに結合させることを特徴とする波長多 重化装置。 16. The wavelength multiplexed light source according to claim 15, a plurality of optical modulators corresponding to the number of wavelengths to be used, an optical signal coupling means for transmission, and an optical signal of a plurality of wavelengths from the wavelength multiplexed light source. A wavelength multiplexing apparatus for modulating a plurality of wavelengths by the optical modulator, and then coupling optical signals having a plurality of wavelengths modulated by the transmission optical signal coupling means to one optical fiber.
1 7 . 複数の波長の光ループに対して多重化された経路を構成する第 1の光ファ ィバおよび第 1の光力ブラと、 前記第 1の光ファイバに配された光増幅器と、 複数 の波長の光ループのそれそれに対して経路を構成する複数の第 2の光ファイバおよ び複数の第 2の光力ブラと、 前記第 1の光ファイバおよび前記第 2の光ファイバを 接続する波長多重器とを有し、 前記第 2の光ファイバを介して対応する波長のレー ザ光を出力することを特徴とする波長多重化光源。 17. A first optical fiber and a first optical power bra that constitute a multiplexed path with respect to optical loops of a plurality of wavelengths, and an optical amplifier disposed in the first optical fiber; A plurality of second optical fibers and a plurality of second optical power brass constituting paths for optical loops of a plurality of wavelengths are connected to the first optical fiber and the second optical fiber. A wavelength multiplexing light source that outputs laser light of a corresponding wavelength via the second optical fiber.
1 8 . 複数の波長の光ループに対して多重化された経路を構成する第 1の光ファ ィバおよび第 1の光力ブラと、 前記第 1の光ファイバに配された光増幅器と、 複数 の波長の光ループのそれぞれに対して経路を構成する複数の第 2の光ファイバおよ び複数の第 2の光力ブラと、 前記第 1の光ファイバおよび前記第 2の光ファイバを 接続する波長多重器と、 前記第 2の光ファイバのそれぞれに対応して設けられ、 当 該第 2の光ファイバを介して案内される、 対応する波長のレーザ光を変調する複数 の光変調器と、 前記光変調器により変調された異なる波長のレーザ光を結合する光 信号結合器とを有することを特徴とする波長'多重化装置。 18. A first optical fiber and a first optical power bra that constitute a multiplexed path with respect to optical loops of a plurality of wavelengths; an optical amplifier disposed in the first optical fiber; A plurality of second optical fibers and a plurality of second optical power brass constituting paths for each of a plurality of wavelength optical loops are connected to the first optical fiber and the second optical fiber. And a plurality of optical modulators provided corresponding to each of the second optical fibers and modulating a laser beam of a corresponding wavelength guided through the second optical fiber. An optical signal combiner for combining laser lights of different wavelengths modulated by the optical modulator.
PCT/JP2001/010716 2000-12-08 2001-12-07 Wavelength multiplexing light source and wavelength multiplexing device WO2002047217A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002221079A AU2002221079A1 (en) 2000-12-08 2001-12-07 Wavelength multiplexing light source and wavelength multiplexing device
JP2002548828A JPWO2002047217A1 (en) 2000-12-08 2001-12-07 Wavelength multiplexing light source and wavelength multiplexing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000374156 2000-12-08
JP2000-374156 2000-12-08

Publications (1)

Publication Number Publication Date
WO2002047217A1 true WO2002047217A1 (en) 2002-06-13

Family

ID=18843403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010716 WO2002047217A1 (en) 2000-12-08 2001-12-07 Wavelength multiplexing light source and wavelength multiplexing device

Country Status (3)

Country Link
JP (1) JPWO2002047217A1 (en)
AU (1) AU2002221079A1 (en)
WO (1) WO2002047217A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353373A (en) * 2011-07-12 2012-02-15 浙江大学 Double-closed loop locking technology-based resonant optical gyro
WO2020105168A1 (en) * 2018-11-22 2020-05-28 三菱電機株式会社 Wavelength multiplexing communication system and adjustment method of wavelength multiplexing communication system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459650A2 (en) * 1990-06-01 1991-12-04 Gec-Marconi Limited Semiconductor laser pump source
JPH05241209A (en) * 1992-03-02 1993-09-21 Fujitsu Ltd Optical amplifier control system
JPH05327125A (en) * 1992-05-15 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Array waveguide type laser
US5524118A (en) * 1994-12-07 1996-06-04 Electronics And Telecommunications Research Institute Wavelength-varying multi-wavelength optical filter laser using a single pump light source
JPH09233052A (en) * 1996-02-28 1997-09-05 Toshiba Corp Optical wavelength multiplexer
JPH1013357A (en) * 1996-06-24 1998-01-16 Nec Corp Optical amplifier
JPH1187815A (en) * 1997-09-08 1999-03-30 Kokusai Denshin Denwa Co Ltd <Kdd> Multi-wavelength light source
JPH11346023A (en) * 1998-06-01 1999-12-14 Nippon Telegr & Teleph Corp <Ntt> Short-pulse light source
EP1020969A2 (en) * 1999-01-14 2000-07-19 Nippon Telegraph and Telephone Corporation Light generation method and light source

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459650A2 (en) * 1990-06-01 1991-12-04 Gec-Marconi Limited Semiconductor laser pump source
JPH05241209A (en) * 1992-03-02 1993-09-21 Fujitsu Ltd Optical amplifier control system
JPH05327125A (en) * 1992-05-15 1993-12-10 Nippon Telegr & Teleph Corp <Ntt> Array waveguide type laser
US5524118A (en) * 1994-12-07 1996-06-04 Electronics And Telecommunications Research Institute Wavelength-varying multi-wavelength optical filter laser using a single pump light source
JPH09233052A (en) * 1996-02-28 1997-09-05 Toshiba Corp Optical wavelength multiplexer
JPH1013357A (en) * 1996-06-24 1998-01-16 Nec Corp Optical amplifier
JPH1187815A (en) * 1997-09-08 1999-03-30 Kokusai Denshin Denwa Co Ltd <Kdd> Multi-wavelength light source
JPH11346023A (en) * 1998-06-01 1999-12-14 Nippon Telegr & Teleph Corp <Ntt> Short-pulse light source
EP1020969A2 (en) * 1999-01-14 2000-07-19 Nippon Telegraph and Telephone Corporation Light generation method and light source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353373A (en) * 2011-07-12 2012-02-15 浙江大学 Double-closed loop locking technology-based resonant optical gyro
WO2020105168A1 (en) * 2018-11-22 2020-05-28 三菱電機株式会社 Wavelength multiplexing communication system and adjustment method of wavelength multiplexing communication system
JPWO2020105168A1 (en) * 2018-11-22 2021-02-15 三菱電機株式会社 Wavelength Multiplexing Communication System and Adjustment Method of Wavelength Multiplexing Communication System

Also Published As

Publication number Publication date
AU2002221079A1 (en) 2002-06-18
JPWO2002047217A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
US6529314B1 (en) Method and apparatus using four wave mixing for optical wavelength conversion
KR101059310B1 (en) Method and apparatus for integrating laser sources and detectors for passive optical networks
US8606107B2 (en) Colorless dense wavelength division multiplexing transmitters
JP2000515688A (en) Automatic feedback gain control of doped fiber amplifiers.
CA2320872A1 (en) Upgradable, gain flattened fiber amplifiers for wdm applications
JP2008158554A (en) Excitation light source unit and raman amplifier
US6693925B2 (en) Modulatable multi-wavelength fiber laser source
CN103931125A (en) Wavelength-selectable laser device and apparatus and system including same
US20020012366A1 (en) Multi-wavelength lasers
US6748176B1 (en) Optical dropping apparatus and optical add/drop multiplexer
KR100283866B1 (en) Gain Control Device and Method of Fiber Optic Amplifier
US6532106B2 (en) All-optical gain controlled bidirectional add/drop optical amplifier
US6901085B2 (en) Multi-wavelength ring laser source
KR20040016000A (en) Light source device for wavelength division multiplexing optical communication system
WO2002047217A1 (en) Wavelength multiplexing light source and wavelength multiplexing device
US20040160994A1 (en) Multiple wavelength laser system
JPH07202299A (en) Optical fiber amplifier for wavelength multiplex transmission
CN114865439A (en) Pump light source, optical amplification system, ROADM, and pump light supply method
US6687043B2 (en) Multi-frequency Raman amplifier pump source
US7145716B2 (en) Multiple stage Raman optical amplifier
US11546063B1 (en) Laser light source and optical network system
Tachikawa et al. Arrayed-waveguide grating lasers and their applications to tuning-free wavelength routing
JP2001068772A (en) Automatically gain controlled multi-wavelength amplifying remote control communication system
KR100298004B1 (en) Variable wavelength generator with non-polarization output
CA2348346C (en) Multi-wavelength lasers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002548828

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase