WO2002046724A1 - Method for detecting bacterial infection - Google Patents

Method for detecting bacterial infection Download PDF

Info

Publication number
WO2002046724A1
WO2002046724A1 PCT/CH2001/000699 CH0100699W WO0246724A1 WO 2002046724 A1 WO2002046724 A1 WO 2002046724A1 CH 0100699 W CH0100699 W CH 0100699W WO 0246724 A1 WO0246724 A1 WO 0246724A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
photon emission
measured
nutrient medium
bacterial infection
Prior art date
Application number
PCT/CH2001/000699
Other languages
German (de)
French (fr)
Inventor
Fritz-Albert Popp
Original Assignee
Bühler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bühler AG filed Critical Bühler AG
Priority to EP01999205A priority Critical patent/EP1340066A1/en
Priority to AU2002223364A priority patent/AU2002223364A1/en
Publication of WO2002046724A1 publication Critical patent/WO2002046724A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/76Chemiluminescence; Bioluminescence
    • G01N21/763Bioluminescence
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/04Determining presence or kind of microorganism; Use of selective media for testing antibiotics or bacteriocides; Compositions containing a chemical indicator therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N37/00Details not covered by any other group of this subclass
    • G01N37/005Measurement methods not based on established scientific theories

Definitions

  • bacteria are most reliably detected by colony formation in suitable nutrient media.
  • the samples are placed on nutrient media and observed under favorable growth conditions. If no germ growth can be determined with a sufficiently large number of samples after a sufficiently long incubation period of a few days, it is assumed that no germs are present.
  • This method is used practically wherever the detection of microbial infection is required. The detailed description of this common method can be found in relevant textbooks, for example in A. Koch, Growth Measurements, in: Manual of Methods of General Bacteriology (Gerhardt, Murray, Costilow, Nester, Wool, Krieg, and Phillips, eds.), American Society for Microbiology (1981), pp. 179-206.
  • This method offers a relatively high level of security, but has the major disadvantage that the incubation time until the reliable detection of existing bacteria often takes much longer than the manufacturer can afford to check his products. For technical and economic reasons, sterility cannot be guaranteed for the goods produced.
  • the fluorescence method can detect bacteria immediately without a time delay, it has the disadvantage that it is only suitable for special bacteria that can be biochemically stimulated to fluoresce.
  • the detection limit is 10 4 bacteria / ml even in the most favorable cases. It is therefore not generally applicable, but rather relatively specific and expensive.
  • the object of the invention is to provide a method for the detection of bacterial infection. To determine the presence of bacteria and their concentration, which enables the photon emission of the nutrient medium to be measured quickly and reliably with high sensitivity and precision, in order to be able to draw conclusions for further actions. This object is achieved on the basis of the features of claim 1.
  • the method disclosed in the aforementioned patents is also suitable for indicating at least 100 bacteria / ml with greater certainty, after a much shorter time than the standard methods and without exception for all bacteria.
  • the invention is based on a further discovery made by the inventor with the aid of the aforementioned method for measuring individual photons. It was shown that all bacteria absorb photons from their liquid nutrient medium (which due to the necessary oxidation processes always emits photons in the wavelength range mentioned) with increasing concentration, so that it can be seen from the comparison of the photon emission of the bacteria-free medium and the bacterially contaminated medium. whether there are bacteria in the medium or not. The discovery was published in “Biophotons (JJ Chang, J.
  • the inventive idea resides in that the variable with time photon emission of the nutrient medium indicating the presence, the type and concentration may Present bacteria sufficiently early stage and with sufficient certainty, since the interaction of the bacteria 'is reflected with the nutrient medium in the photon emission of the observed nutrient medium.
  • Fig. 2 Photon emission of the nutrient medium (curve 1) compared to the photon emission of the medium with a bacterial contamination of 1000 bacteria / ml (curve 2) in the course of 20 hours (after incubation).
  • a defined number of bacteria (Lactobacillus brevis DSM No. 6235) are placed in the MRS-Lactobacillus broth and another only the nutrient medium.
  • the cuvette is placed in the dark room in front of the photodetector of the single-photon-counting system described. The temperature in the dark room is set to 30 ° C. Photon emission is measured in units of counts / min over a 20 hour period. The data is saved and evaluated later.
  • the measurement curves in FIGS. 1 and 2 each show the photon count rates for (1) the controls (nutrient media without bacteria) and (2) the nutrient media with 10,000 (FIG. 1) and 1000 (FIG. 2) entered / ml , It can be seen that there are certain signs of the presence of the bacteria after only a few minutes. Proof can be provided after 20 hours at the latest.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Analytical Chemistry (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

The invention relates to a method for detecting bacterial infection or contamination of or in products in order to be able to rapidly determine the product's quality or sterility. To this end, the intensity of photon emission of a nutrient medium is determined and measured with a sample of the object to be examined.

Description

Verfahren zum Nachweis bakterieller Infektion Procedure for the detection of bacterial infection
Bisher werden Bakterien am sichersten durch Koloniebildung in geeigneten Nährmedien nachgewiesen. Dabei werden die Proben auf Nährböden angesetzt und unter günstigen Wachstumsbedingungen beobachtet. Lässt sich bei hinreichend großer Anzahl von Proben nach genügend langer Inkubationszeit von einigen Tagen kein Keimwachstum feststellen, geht man davon aus, dass keine Keime vorhanden sind. Diese Methode wird heute praktisch überall dort eingesetzt, wo der Nachweis mikrobieller Infektion verlangt wird. Die ausführliche Beschreibung dieses gebräuchlichen Verfahrens findet sich in einschlägigen Lehrbüchern, beispielsweise bei A. Koch, Growth Measurements, in: Manual of Methods of General Bacteriology (Gerhardt, Murray, Costilow, Nester, Wool, Krieg, and Phillips, eds.), American Society for Microbiology (1981), pp. 179-206.So far, bacteria are most reliably detected by colony formation in suitable nutrient media. The samples are placed on nutrient media and observed under favorable growth conditions. If no germ growth can be determined with a sufficiently large number of samples after a sufficiently long incubation period of a few days, it is assumed that no germs are present. This method is used practically wherever the detection of microbial infection is required. The detailed description of this common method can be found in relevant textbooks, for example in A. Koch, Growth Measurements, in: Manual of Methods of General Bacteriology (Gerhardt, Murray, Costilow, Nester, Wool, Krieg, and Phillips, eds.), American Society for Microbiology (1981), pp. 179-206.
Dieses Verfahren bietet relativ hohe Sicherheit, hat aber den großen Nachteil, dass die Inkubationszeit bis zum sicheren Nachweis vorhandener Bakterien oft wesentlich länger dauert als es sich der Hersteller zur Überprüfung seiner Produkte erlauben kann. Für die produzierte Ware kann deshalb aus technischen und wirtschaftlichen Gründen die Keimfreiheit nicht garantiert werden.This method offers a relatively high level of security, but has the major disadvantage that the incubation time until the reliable detection of existing bacteria often takes much longer than the manufacturer can afford to check his products. For technical and economic reasons, sterility cannot be guaranteed for the goods produced.
In den letzten Jahren haben sich deshalb Fluoreszenz-Verfahren eingebürgert, die den Umstand nutzen, dass Bakterien durch chemische Stoffe oder durch biochemische Eingriffe zur Fluoreszenz angeregt werden können. Dies erlaubt den direkten Nachweis bestimmter Bakterien ohne zeitliche Verzögerung. Die Methode ist vollständig in der Literatur beschrieben, so zum Beispiel in: L.F. Wolff, L. Anderson, G.P. Sandberg, L. Reither, CA. Binsfeld, G. Corinaldesi, and C.E. Shelburne: Bacteria Concentration Fluorescence Immunoassay (BCFIA) for the Detection of Periodontopathogens in pla- que. J. Periodontol. 63 (1992), 1093-1101. Die Fluoreszenzmethode kann zwar ohne Zeitverzögerung Bakterien unmittelbar nachweisen, hat aber den Nachteil, dass sie nur für spezielle Bakterien, die sich biochemisch zur Fluoreszenz anregen lassen, tauglich ist. Darüber hinaus liegt die Nachweisgrenze selbst in günstigsten Fällen bei 104 Bakterien/ml. Sie ist deshalb nicht generell einsetzbar, sondern relativ spezifisch und kostspielig.For this reason, fluorescence methods have become common in recent years, which take advantage of the fact that bacteria can be excited to fluorescence by chemical substances or by biochemical interventions. This allows the direct detection of certain bacteria without delay. The method is fully described in the literature, for example in: LF Wolff, L. Anderson, GP Sandberg, L. Reither, CA. Binsfeld, G. Corinaldesi, and CE Shelburne: Bacteria Concentration Fluorescence Immunoassay (BCFIA) for the Detection of Periodontopathogens in plaque. J. Periodontol. 63: 1093-1101 (1992). Although the fluorescence method can detect bacteria immediately without a time delay, it has the disadvantage that it is only suitable for special bacteria that can be biochemically stimulated to fluoresce. In addition, the detection limit is 10 4 bacteria / ml even in the most favorable cases. It is therefore not generally applicable, but rather relatively specific and expensive.
Aus den Patenten DE 28 44 217 C, US-PS 4,458,531 EP 0 430 150 B oder DE 199 28 768 C ist ein Verfahren bekannt, das die Photonenemission bis zu einer Empfindlichkeit von 10"17 W (entsprechend einiger weniger Quanten pro Sekunden und pro cm2) im optischen Spektralbereich (von ca. 200 - 800 nm) zu messen erlaubt..From the patents DE 28 44 217 C, US-PS 4,458,531 EP 0 430 150 B or DE 199 28 768 C a method is known which the photon emission up to a sensitivity of 10 "17 W (corresponding to a few quanta per second and per cm 2 ) can be measured in the optical spectral range (from approx. 200 - 800 nm).
Die Aufgabe der Erfindung besteht darin, ein Verfahren zum Nachweis bakterieller Infektion resp. Zum Bestimmen der Anwesenheit von Bakterien und deren Konzentration zu entwickeln, das es ermöglicht, die Photonenemission des Nährmediums mit hoher Empfindlichkeit und Präzision schnell und sicher zu erfassen, um daraus Rückschlüsse für weitere Handlungen ziehen zu können. Die Lösung dieser Aufgabe erfolgt an Hand der Merkmale des Anspruchs 1.The object of the invention is to provide a method for the detection of bacterial infection. To determine the presence of bacteria and their concentration, which enables the photon emission of the nutrient medium to be measured quickly and reliably with high sensitivity and precision, in order to be able to draw conclusions for further actions. This object is achieved on the basis of the features of claim 1.
Überraschend zeigte sich, dass das in den vorgenannten Patenten offenbarte Verfahren auch geeignet ist, mindestens 100 Bakterien/ml mit größerer Sicherheit, nach wesentlich kürzerer Zeit als die Standardverfahren und ausnahmslos für alle Bakterien anzuzeigen. Der Erfindung liegt eine weitere Entdeckung zugrunde, die vom Erfinder mit Hilfe des genannten Verfahrens zur Messung einzelner Photonen gemacht wurde. Dabei zeigte sich, dass alle Bakterien aus ihrem flüssigen Nährmedium (das wegen der notwendigen Oxidationsprozesse auch immer Photonen im genannten Wellenlängenbereich emittiert) mit zunehmender Konzentration Photonen absorbieren, so dass aus dem Vergleich der Photonenemission des bakterienfreien Mediums und des bakteriell kontaminierten Mediums zu erkennen ist, ob sich Bakterien im Medium befinden oder nicht. Die Entdeckung wurde in „Biophotons (J.J. Chang, J. Fisch and F.A. Popp, eds.), Kluwer Academic Publishers, Dordrecht/Boston/London (1998), pp.19-44) veröffentlicht. In weiteren Untersuchungen zeigte sich, dass die Bakterien vorwiegend in ihrer Wachstumsphase die Gesamtemission aus Medium und Bakterien durch eigene Abstrahlung auch erhöhen können. In jedem Fall gibt es aber einen Unterschied zwi- sehen der Photonenemission des bakterienfreien Mediums und des mit Bakterien kontaminierten Mediums.Surprisingly, it was found that the method disclosed in the aforementioned patents is also suitable for indicating at least 100 bacteria / ml with greater certainty, after a much shorter time than the standard methods and without exception for all bacteria. The invention is based on a further discovery made by the inventor with the aid of the aforementioned method for measuring individual photons. It was shown that all bacteria absorb photons from their liquid nutrient medium (which due to the necessary oxidation processes always emits photons in the wavelength range mentioned) with increasing concentration, so that it can be seen from the comparison of the photon emission of the bacteria-free medium and the bacterially contaminated medium. whether there are bacteria in the medium or not. The discovery was published in “Biophotons (JJ Chang, J. Fisch and FA Popp, eds.), Kluwer Academic Publishers, Dordrecht / Boston / London (1998), pp.19-44). Further investigations showed that the bacteria, mainly in their growth phase, can also increase the total emission from the medium and bacteria through their own radiation. In any case, there is a difference between see the photon emission of the bacteria-free medium and the medium contaminated with bacteria.
Der Erfindungsgedanke beruht darauf, dass die mit der Zeit veränderliche Photonenemission des Nährmediums die Anwesenheit, die Art und die Konzentration eventuell anwesender Bakterien hinreichend frühzeitig und hinreichend sicher anzeigt, da sich die Wechselwirkung der Bakterien' mit dem Nährmedium in der Photonenemission des beobachteten Nährmediums niederschlägt.The inventive idea resides in that the variable with time photon emission of the nutrient medium indicating the presence, the type and concentration may Present bacteria sufficiently early stage and with sufficient certainty, since the interaction of the bacteria 'is reflected with the nutrient medium in the photon emission of the observed nutrient medium.
Bei dem erfindungsmässigen Messverfahren wirdIn the measurement method according to the invention
a) die ultraschwache Lichtemission eines geeigneten Nährmediums mit hinreichend empfindlichem Lichtdetektor in Abhängigkeit von der Zeit gemessen, b) das mit einer geeigneten Probe der zu prüfenden Substanz versetzte Nährmedium mit dem gleichen Lichtdetektor in Abhängigkeit von der Zeit gemessen, c) aus der Differenz der Photonenemission der bakterienfreien Kontrolle und des mit der zu prüfenden Probe versetzten Nährmediums oder - nach hinreichender Kenntnis der Photonenemission des bakterienfreien Nährmediums - allein aus der Photonenemission des mit der zu prüfenden Probe versetzten Nährmediums der Schluss auf die Anwesenheit, die Art und die Konzentration eventuell vorhandener Bakterien gezogen.a) measured the ultra-weak light emission of a suitable nutrient medium with a sufficiently sensitive light detector as a function of time, b) measured the nutrient medium mixed with a suitable sample of the substance to be tested with the same light detector as a function of time, c) from the difference in the photon emission the bacteria-free control and the nutrient medium mixed with the sample to be tested or - after sufficient knowledge of the photon emission of the bacterial-free nutrient medium - the conclusion is drawn from the photon emission of the nutrient medium mixed with the sample to be tested that the presence, type and concentration of any bacteria may be present ,
Ein solcher Schluss ist gerechtfertigt, sobald die Differenz zwischen der Photonenemission der geeigneten Kontrolle und des Test-Nährmediums auf einen absoluten Wert ansteigt, der signifikant größer ist als die Wurzel aus der gemessenen Photonenzahl der Kontrolle. Im Prinzip kann damit die Empfindlichkeit des Verfahrens auf beliebig kleine Bakterienkonzentrationen (und damit beliebig kurze Messzeiten) eingestellt werden. In der Praxis wird man Kontrollmedien mit möglichst hoher Photonenemission auswählen, sobald die Frage der Empfindlichkeit Vorrang gegenüber der Sicherheit des Verfahrens hat. Umgekehrt steigt die Sicherheit im Nachweis von Bakterien mit zunehmender Beobachtungszeit der Photonenemission des Test-Nährmediums, das mit der geeigneten Probe versetzt ist. Die Erfindung wird nachfolgend in einem Beispiel an Hand einer Zeichnung näher beschrieben.Such a conclusion is justified as soon as the difference between the photon emission of the suitable control and the test nutrient medium increases to an absolute value that is significantly larger than the root of the measured photon number of the control. In principle, the sensitivity of the method to any small bacterial concentrations (and thus any short measuring times) can be set. In practice, control media with the highest possible photon emission will be selected as soon as the question of sensitivity has priority over the safety of the process. Conversely, the reliability in the detection of bacteria increases with increasing observation time of the photon emission of the test nutrient medium to which the suitable sample has been added. The invention is described in more detail below in an example with reference to a drawing.
In der Zeichnung zeigen die:In the drawing they show:
Fig. 1: Photonenemission des Nährmediums (Kurve 1) im Vergleich zur Photonenemission des Mediums mit einer bakteriellen Kontamination von 10 000 Bakterien/ml (Kurve 2) im Verlauf von 20 Stunden nach Inkubation,1: photon emission of the nutrient medium (curve 1) compared to the photon emission of the medium with a bacterial contamination of 10,000 bacteria / ml (curve 2) in the course of 20 hours after incubation,
Fig. 2: Photonenemission des Nährmediums (Kurve 1) im Vergleich zur Photonenemission des Mediums mit einer bakteriellen Kontamination von 1000 Bakterien/ml (Kurve2) im Verlauf von 20 Stunden (nach Inkubation).Fig. 2: Photon emission of the nutrient medium (curve 1) compared to the photon emission of the medium with a bacterial contamination of 1000 bacteria / ml (curve 2) in the course of 20 hours (after incubation).
In eine 15 ml Quarzküvette bringt man in das Nährmedium MRS-Lactobacillus-Bouillon eine definierte Zahl von Bakterien (Lactobacillus brevis DSM Nr. 6235) und in eine weitere vergleichsweise nur das Nährmedium. Die Küvette wird jeweils in den Dunkelraum vor den Photodetektor der beschriebenen single-photon-counting Anlage gestellt. Die Temperatur im Dunkelraum wird auf 30° C eingestellt. Die Photonenemission wird in Einheiten von counts/min über einen Zeitraum von 20 Stunden gemessen. Die Daten werden gespeichert und später ausgewertet. Die Messkurven in den Fig. 1 und 2 zeigen jeweils die Photonenzählraten für (1) die Kontrollen (Nährmedien ohne Bakterien) und (2) die Nährmedien mit 10 000 (Fig. 1 ) bzw. 1000 (Fig. 2) eingegebenen Bakterien/ml. Es ist zu erkennen, dass bereits nach wenigen Minuten sichere Anzeichen für die Anwesenheit der Bakterien vorliegen. Nach spätestens 20 Stunden kann der sichere Nachweis geführt werden. In a 15 ml quartz cuvette, a defined number of bacteria (Lactobacillus brevis DSM No. 6235) are placed in the MRS-Lactobacillus broth and another only the nutrient medium. The cuvette is placed in the dark room in front of the photodetector of the single-photon-counting system described. The temperature in the dark room is set to 30 ° C. Photon emission is measured in units of counts / min over a 20 hour period. The data is saved and evaluated later. The measurement curves in FIGS. 1 and 2 each show the photon count rates for (1) the controls (nutrient media without bacteria) and (2) the nutrient media with 10,000 (FIG. 1) and 1000 (FIG. 2) entered / ml , It can be seen that there are certain signs of the presence of the bacteria after only a few minutes. Proof can be provided after 20 hours at the latest.

Claims

Patentansprüche claims
1. Verfahren zum Nachweis bakterieller Infektion bzw. Kontamination, dadurch gekennzeichnet, dass die Intensität der Photonenemission eines Nährmediums mit einer Probe des zu untersuchenden Objekts ermittelt und gemessen wird.1. A method for the detection of bacterial infection or contamination, characterized in that the intensity of the photon emission of a nutrient medium is determined and measured with a sample of the object to be examined.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das verwendete Nährmedium vergleichsweise zur Kontrolle gemessen wird.2. The method according to claim 1, characterized in that the nutrient medium used is measured comparatively as a control.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass der zeitliche Verlauf der Photonenemission der Nährmedien gemessen wird.3. The method according to any one of claims 1 or 2, characterized in that the time course of the photon emission of the nutrient media is measured.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass Zusatzstoffe zu den zu untersuchenden Nährmedien hinzugefügt werden.4. The method according to any one of claims 1 to 3, characterized in that additives are added to the nutrient media to be examined.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Nährmedien zusätzlich definierten physikalischen Einflüssen ausgesetzt werden.5. The method according to any one of claims 1 to 4, characterized in that the nutrient media are also exposed to defined physical influences.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die spektrale Photonenemission im Wellenlängenbereich von 200 - 800 nm gemessen wird.6. The method according to any one of claims 1 to 5, characterized in that the spectral photon emission is measured in the wavelength range from 200 to 800 nm.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Photonenzählstatistik der Lichtemission erfasst wird. 7. The method according to any one of claims 1 to 6, characterized in that the photon count statistics of the light emission is recorded.
PCT/CH2001/000699 2000-12-04 2001-12-04 Method for detecting bacterial infection WO2002046724A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01999205A EP1340066A1 (en) 2000-12-04 2001-12-04 Method for detecting bacterial infection
AU2002223364A AU2002223364A1 (en) 2000-12-04 2001-12-04 Method for detecting bacterial infection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10060342.4 2000-12-04
DE2000160342 DE10060342A1 (en) 2000-12-04 2000-12-04 Procedure for the detection of bacterial infection

Publications (1)

Publication Number Publication Date
WO2002046724A1 true WO2002046724A1 (en) 2002-06-13

Family

ID=7665815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000699 WO2002046724A1 (en) 2000-12-04 2001-12-04 Method for detecting bacterial infection

Country Status (4)

Country Link
EP (1) EP1340066A1 (en)
AU (1) AU2002223364A1 (en)
DE (1) DE10060342A1 (en)
WO (1) WO2002046724A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385113A (en) * 1978-03-20 1983-05-24 Nasa Rapid, quantitative determination of bacteria in water

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4385113A (en) * 1978-03-20 1983-05-24 Nasa Rapid, quantitative determination of bacteria in water

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
VOGEL R AND SÜSSMUTH R: "Interaction of bacterial cells with weak light emission from culture media", BIOELECTROCHEMISTRY AND BIOENERGETICS, vol. 45, no. 1, 1998, pages 93 - 101, XP001064921 *
VOGEL R AND SÜSSMUTH R: "WEAK LIGHT EMISSION FROM BACTERIA AND THEIR INTERACTION WITH CULTURE MEDIA", BIOPHOTONS, 1998, pages 19 - 44, XP008000857 *
VOGEL R ET AL: "Chemiluminescence patterns from bacterial cultures undergoing bacteriophage induced mass lysis", BIOELECTROCHEMISTRY AND BIOENERGETICS, vol. 46, no. 1, 1998, pages 59 - 64, XP001064923 *

Also Published As

Publication number Publication date
DE10060342A1 (en) 2002-06-06
AU2002223364A1 (en) 2002-06-18
EP1340066A1 (en) 2003-09-03

Similar Documents

Publication Publication Date Title
DE3852825T2 (en) QUICK PROCEDURE FOR DETECTING COLIFORM MICROORGANISMS.
EP2057459B1 (en) Method and apparatus for the detection of living phytoplankton cells in water
JP3095833B2 (en) Method and kit for detecting microbial metabolism
DE69024631T2 (en) Method and apparatus for the detection of biological activities in a sample
DE102012108989B3 (en) Detection device and method for the automatic detection of particles
CN103733050A (en) Rapid detection of metabolic activity
Walberg et al. Rapid flow cytometric assessment of mecillinam and ampicillin bacterial susceptibility
EP0457789B1 (en) Process for rapid testing of the effect of agents on micro-organisms
Zahavy et al. Rapid antibiotic susceptibility determination for Yersinia pestis using flow cytometry spectral intensity ratio (SIR) fluorescence analysis
EP1340066A1 (en) Method for detecting bacterial infection
DE19617338A1 (en) Device for identification of microorganisms, fungi and minute life forms
DE19608320A1 (en) Rapid, high- sensitivity determination of microbial quality of water
DE19712214C2 (en) Optical measuring method for determining the bio- or chemiluminescence of a sample, in particular as part of the luminous bacteria test, and device for carrying out the method
DE19538768C2 (en) Procedure for the detection of a microbial infection
DE102021005858B4 (en) Method and device for real-time determination of a change in concentration of microorganisms, cells in suspension culture, antigen-antibody complexes and/or particulate chemical reaction products in liquid samples
AT403054B (en) METHOD AND DEVICE FOR DETERMINING COLIFORMER AND FECALCOLIFORM NUCLEES IN WATER
EP0337189B1 (en) Method of quantifying methane gas bacteria
US11906497B2 (en) Rapid bacteria test
EP1972928B1 (en) Device and method for non-destructive testing of biostatic and/or biocidal properties of a photocatalytic surface coating
DE4401169C2 (en) Process for distinguishing the quality of liquids
AU2006253993A1 (en) Method for quantifying living coliform microorganisms in a water sample
JPH04293497A (en) Method and system for measuring number of live bacteria and identifying kind of bacterium
DE102017101853B3 (en) System or test and method for determining the presence of bacteria, especially in bovine mastitis
CN118010989A (en) Marking-free visual test strip for broad-spectrum detection and rapid drug resistance evaluation of pathogenic bacteria
DE4317595A1 (en) Method for determining the toxicity of samples by bioassay

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001999205

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001999205

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP