WO2002046704A1 - Vorrichtung und verfahren zur detektion der position eines targets - Google Patents

Vorrichtung und verfahren zur detektion der position eines targets Download PDF

Info

Publication number
WO2002046704A1
WO2002046704A1 PCT/DE2001/004657 DE0104657W WO0246704A1 WO 2002046704 A1 WO2002046704 A1 WO 2002046704A1 DE 0104657 W DE0104657 W DE 0104657W WO 0246704 A1 WO0246704 A1 WO 0246704A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
target
code
detectors
sensor
Prior art date
Application number
PCT/DE2001/004657
Other languages
English (en)
French (fr)
Inventor
Franz Hrubes
Heinrich Baumann
Original Assignee
Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10154710A external-priority patent/DE10154710A1/de
Priority claimed from DE10158942A external-priority patent/DE10158942B4/de
Application filed by Micro-Epsilon Messtechnik Gmbh & Co. Kg filed Critical Micro-Epsilon Messtechnik Gmbh & Co. Kg
Priority to EP01991645A priority Critical patent/EP1340047A1/de
Publication of WO2002046704A1 publication Critical patent/WO2002046704A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/249Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using pulse code
    • G01D5/2492Pulse stream
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2046Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable ferromagnetic element, e.g. a core
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/20Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature
    • G01D5/204Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils
    • G01D5/2053Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying inductance, e.g. by a movable armature by influencing the mutual induction between two or more coils by a movable non-ferromagnetic conductive element

Definitions

  • the invention relates to a device for detecting the position of a target, with at least one sensor, the sensor having at least one transmitting device for generating a signal, and the target being detectable by means of the signal.
  • the invention further relates to a method for detecting the position of a target, with at least one sensor, the sensor having at least one transmission device for generating a signal and the target being detected by means of the signal.
  • targets are created using optical principles, e.g. the triangulation measurement.
  • Optical principles are particularly problematic in that they can only be used in particularly clean locations, since contamination of the optics results in large measurement errors.
  • Magnetically operating devices and methods are also known which are suitable for detecting a target.
  • magnetoresistive or magnetostrictive devices but also magnetically coded measuring rulers are known, which, however, are particularly problematic in that they become contaminated by attracted iron particles. An error-free measurement is therefore no longer possible.
  • LVDTs linear variable differential transformers
  • differential chokes cannot be used in many cases, particularly because of their large overall length.
  • Eddy current long-range sensors used to detect a target are also problematic because they are sensitive to magnetic fields and are difficult to adapt to different measuring ranges. Different measuring ranges therefore mostly require the use of different devices.
  • the present invention is based on the object of specifying a device and a method for detecting the position of a target of the type mentioned at the outset, which is insensitive to interference.
  • a device for detecting the position of a target is designed in such a way that the transmitting device is designed as a transmitting coil, by means of which an electromagnetic field can be generated as a signal, that the electromagnetic field can be detected by means of a receiving coil, and that for detecting the Targets the target can be arranged between the transmitting and receiving coil. Furthermore, the above object is achieved with regard to a method for detecting the position of a target by a method with the features of patent claim 25.
  • a method for detecting the position of a target of the type mentioned at the outset is such that the transmitting device is designed as a transmitting coil, by means of which an electromagnetic field is generated as a signal, that the electromagnetic field is detected by means of a receiving coil, and that for detecting the Targets the target is arranged between the transmitting and receiving coil.
  • a device for long measuring paths which is said to be insensitive to contamination by liquids, plastics, grease, dust or normal dirt, must have a transmitting device designed as a transmitting coil, by means of which an electromagnetic field can be generated which can be generated by means of a receiving coil is detectable.
  • the target is arranged between the transmitting and receiving coils.
  • the device is particularly insensitive to interference, since coils are particularly insensitive to contamination of any shape.
  • the device can also be produced very inexpensively and can be used as a mass article in the field of position detection. If the target were coupled to a car seat, for example, the device could be used in the automotive industry as a seat position detector for an automatic seat adjustment or position report.
  • the target is configured in its material properties and / or in its dimensions such that when the target is arranged between the transmitting coil and the receiving coil, the voltage induced in the receiving coil is detectably reduced and / or approximately zero.
  • the interference of the electromagnetic field by other fields, for example by the operation of cell phones in the immediate vicinity, would thus be immaterial, which means that the device would be particularly insensitive to such disturbances
  • the “absence” of the induced voltage also makes the device independent of installation tolerances or mechanical influences during operation in that the induced field is not being detected, which is related to the angle of the transmitting and receiving coil to one another and the distance between the transmitting coil.
  • the device is also insensitive to mechanical influences, such as bottles or cans under the car seat, which knock against the device, or blows with a rubber hammer during assembly, since the transmitter and receiver coil are insensitive.
  • the thickness of the target could be somewhat smaller than the distance between the transmitting coil and the receiving coil, so that the target can be carried out with play between the transmitting coil and the receiving coil.
  • the target could additionally or alternatively be made of metal, so that eddy currents could be generated in the target.
  • the coupling between the transmitting and receiving coils would then be significantly reduced. With the appropriate thickness of the target, the coupling factor between the transmitting and receiving coils thus goes to zero. Small tolerances of the distance between the target and the transmitting or receiving coil are therefore not critical, since only the shielding of the target from the receiving coil now plays an essential role. This again allows installation tolerances perpendicular to the measuring direction without influencing the reliability of the detection. Due to the principle, there is a very large measurement signal, which is again insensitive to interference from electromagnetic fields.
  • the sensor could have several transmitter coils. In addition or as an alternative to this, the sensor could also have a plurality of receiving coils. The number of detectable positions could then be determined very easily via the number of transmitting or receiving coils. The number of transmit coils could correspond to the number of receive coils.
  • a sensor configured in this way is particularly insensitive to interference, since each electromagnetic field generated by a transmitter coil would be assigned a receiver coil detecting the field, and the presence of the target would thus be particularly easy to detect.
  • the number of transmitting coils could also be different from the number of receiving coils.
  • the sensor could have, for example, only one transmitter coil and / or only one receiver coil. In a specific embodiment, this could look such that the receiving coil and / or the transmitting coil is combined into a single coil. It would be possible to combine the individual coils in a series or in a parallel connection or to use a single elongated coil. The length of the coil could then correspond to the length of the coils arranged next to one another.
  • the target could be designed as a coded ruler. This would drastically reduce the number of transmit and receive coils.
  • the ruler could in this case comprise individual plates which are arranged at certain distances from one another.
  • the ruler could also include non-conductive areas. are realized, for example, by cutouts in the ruler.
  • One possibility of designing the target in a particularly simple manner would be punching out gaps from a sheet metal strip. This would implement a particularly inexpensive form of the target. The length of the sheet metal strip would then determine the path length, which would be only slightly longer than the measuring path.
  • the code could have at least one line. However, it could also be two or more cells to increase the detectable positions. In order to be able to adapt the device particularly well to the respective place of use, the code could be designed non-linear. This would make it possible to detect more positions in certain areas of the measuring range than in others. In order to increase the detectable positions again, the transmitter coils and / or the receiver coils could also be arranged at different distances from one another. It is also conceivable that the arrangement of the transmitting and / or receiving coils is configured in two or more cells.
  • the transmitter coil An could be supplied with an alternating voltage with a constant amplitude.
  • the amplitude of the voltage induced in the receiving coil would depend on the coupling between the transmitting and receiving coils and thus on the distance between the transmitting and receiving coils, but it would be largely independent of the transmitting frequency as long as it does not approach the natural resonance frequency of the receiving coil (f r ⁇ s ⁇ f / 10).
  • it is temperature-independent - apart from the thermal change in distance between the transmitting and receiving coils, which, however, has only a minor influence - and is independent of magnetic influences or contamination from electrically non-conductive material.
  • the transmitter coil An could be fed, preferably independently of one another, by means of a constant frequency. If a target whose size is selected so that the coupling between a pair of transmit and receive coils approaches zero, is moved along the row arrangement between the individual pairs of transmit and receive coils, the individual receive coils in turn receive less signal. This effect is then used to detect the absolute position of the target.
  • the individual voltages which are preferably successively induced in the receiving coils, then do not show a flat and slight drop when the target is inserted, but rather a steep drop that goes to zero as soon as the target is exactly in the middle position.
  • the transmitter coil (s) could also be fed, preferably essentially simultaneously, by means of different frequencies. Collective coupling of adjacent transmit coils into the receive coil shielded from the target could thus be effectively avoided. The drop in the amplitude of the alternating voltage induced in the receiving coil would thus be particularly pronounced and the position of the target would thus be particularly easy to detect.
  • the signal (s) of the receiving coil could then be evaluated by means of a frequency filter, so that the signal (s) of the receiving coil (s) could be clearly assigned to a signal of the transmitting coil.
  • the individual frequencies with which the transmitting coil (s) are fed could be filtered out again, so that a clear association between the transmitting and receiving coil is possible. Any method known in the prior art could be used to filter the individual frequencies.
  • the drop in the voltage induced in the receiving coil / s could be detectable in the case of a target arranged between transmitting coil and receiving coil An by means of at least one level detector, in particular a comparator, a Schmitt trigger or the like. This would allow a clear detection of the position by a logic signal.
  • a level detector could be assigned to each pair of transmit and receive coils, or only one level detector could be provided in the case of a single receive coil.
  • the threshold value or the threshold values of the level detector (s) could be selected such that at least one level detector delivers an output signal when the target is arranged between at least one transmitting coil and one receiving coil. A clear detection of the position could thus be achieved.
  • several threshold values for example three threshold values, could also be detectable by means of the level detectors. With help of a A / D converter, this could be expanded in a number of stages, and a characteristic curve adaptation by means of a computer would then significantly increase the resolution and / or the accuracy.
  • two level detectors could deliver an output signal in the case of a target arranged between at least two transmitter coils and at least two receiver coils.
  • the resolution and the accuracy of the detection of the position could thus be increased in a simple manner. If the target is between two adjacent pairs of transmit and receive coils that have a tolerance range of half a distance, i. H. Having center to center, between two coils, both receiving coils with the associated comparators deliver the same logic signal. This additional logic decision thus results in a resolution that is twice as large as the number of transmit and receive coil pairs, and the accuracy is also - almost - twice as large. If the transmit and receive coil pairs are now fed in succession, the sensitivity to interference is reduced, since a full change in amplitude can always be evaluated.
  • control of the transmitter coil (s) and / or the evaluation of the voltages induced in the receiver coil (s) An could take place by means of evaluation electronics, in particular by means of a microprocessor. All of the electronics could essentially be implemented using digital components, preferably using CMOS technology and / or without using special analog components. Electronics designed in this way could be implemented very inexpensively. As a result, a complete solution as an ASIC would also be possible without any problems, in which case the device could also be used as a mass product in the price-problematic automotive sector.
  • the transmitter coils and / or receiver coils could be arranged on at least one printed circuit board.
  • the circuit board could be designed as flexible circuit boards and / or the transmitter coil An and / or the receiver coil A-n could be printed and / or etched on the circuit board.
  • the evaluation electronics or the microprocessor with the transmitter coil (s) and / or the receiver coil (s) could be arranged on a printed circuit board. This could provide a direct connection to the evaluation electronics and / or to the microprocessor.
  • the transmitter coils and the receiver coils could be arranged along an arc segment, so that angle measurements would be possible.
  • the target would then also have a curvature that corresponds to the curvature of the arc segment.
  • any angle measurements would be possible, in particular with the same electronics.
  • the electronics unit could thus also be used for the angle measurement of the backrest at the same time if the respective transmitter and receiver coil pairs used for linear and angle measurement were made separately.
  • the method according to the invention for detecting the position of a target could serve, in particular, to operate a device for detecting the position of a target in accordance with the above statements. It is advantageous in the method that the susceptibility to failure of a device for detecting the position of a target is reduced.
  • the absolute resolution / accuracy is 0.5 cm. With a measuring path of 5 m, this corresponds to the absolute resolution / accuracy of 0.1%, with a required overall length of the sensor of approx. 9 cm with nine required transmitting and receiving coil pairs.
  • the same absolute resolution / accuracy can be achieved with a single additional If the transmitter and receiver coils are paired, the overall length of the sensor would then be 10 cm, they can be extended to a measuring path of 10 meters.
  • a device for detecting the position of a measurement object the position preferably being an absolute position, with at least one sensor which has at least two detectors for detecting the measurement object, the position of the measurement object and / or an object being coded by means of a code wherein the measurement object and / or the sensor is coupled to the object, the object being arranged movably with respect to the measurement object and / or the sensor and the code extending essentially in the direction of movement of the object, with the device according to the invention or can be used with the method according to the invention according to claim 25.
  • a method for detecting the position of a measurement object the position preferably being an absolute position, having at least one sensor which has at least two detectors for detecting the measurement object, the position of the measurement object and / or an object being coded by means of a code the measurement object and / or the sensor being coupled to the object, the object being moved with respect to the measurement object and / or the sensor and the code extending substantially in the direction of movement of the object, are used to operate an above-mentioned device.
  • Devices and methods for detecting the position of a measurement object are well known in practice. Often contactless sensors are used, which are adapted to the respective location.
  • sensors that digitize as early as possible are known from practice. These sensors work with detectors attached in parallel.
  • One of the most relevant examples in practice are sensors for optical angle coding. These sensors work, for example, with eight concentric measurement tracks, which are etched in the Gray code, the measurement tracks being optically scanned.
  • Such sensors can of course also be used for linear movements by applying the code on foils, for example wise in the form of coding tapes.
  • These coding tapes are particularly problematic in that they are either not suitable for harsh operating conditions, because they are not very robust, or because they are too expensive if they are designed to be robust enough.
  • the present invention is therefore also based on the object of specifying a device and a method for detecting the position of a measurement object of the type mentioned at the outset, which can be used in a large number of environments, in particular in spatially restricted locations.
  • the above object is achieved by a device and a method for detecting the position of a measurement object with the features of claims 26 and 38, respectively.
  • a device and a method for detecting the position of the type mentioned at the outset are designed in such a way that the detectors extend essentially in the direction of movement of the object.
  • the detectors are not - as is customary in the prior art.
  • lent - must be arranged vertically to the direction of movement, but that the detectors must be aligned essentially in the direction of movement, ie horizontally in the case of linear movements.
  • the device according to the invention can thus have a much lower overall height and is particularly well suited to be used in spatially restricted environments. With suitable coding with only n detectors, 2 bei n positions can therefore be detected.
  • adaptation to different measuring paths is possible without changing the electronics.
  • the code could be applied to a ruler.
  • the ruler could be designed as a sheet metal strip, into which the code could be inserted by punching out spaces from the sheet metal strip. The length of the metal strip would then determine the path length that would be only slightly longer than the measuring path (1 + n * 2 ⁇ (-n)).
  • the code could be designed as a single or multi-track code, preferably as a binary code.
  • the code is designed as a multi-track code, it differs from the known Gray code in that far more positions can be detected with the same number of tracks. With an increasing number of tracks, the number of detectable positions increases considerably.
  • the raster width of the code could be configured essentially linear. This would give a particularly simple type of coding. Alternatively, the raster width of the code could also be configured essentially non-linear. In a particularly advantageous manner, the raster width of the code could be configured depending on the positions of the measurement object. This would have the consequence that the Code could be particularly well matched to the respective location. For example, it is conceivable that the positions of the measurement object must be able to be determined more precisely in some areas of the measurement path than in other areas. Such special features could be taken into account by means of a grid width that depends on the position of the measurement object. For certain areas of application, however, the code could also be partially non-linear and partially linear. This would again make it possible to adapt the code particularly well to any possible application.
  • the distance between the detectors could correspond to the raster width of the code. This means that if a detector is outside its tolerance range in which it delivers an undetermined result, all other detectors are also outside their tolerance range and thus deliver a correct result corresponding to the position in the code.
  • the positions could be rasterized, so that not all detectors have to change the state at the same time. A detection would only take place if the sensor and thus the detectors are in defined positions. As a result, an absolutely simultaneous change of state of the detectors is not necessary.
  • the spacing of the detectors from one another could not correspond to the grid width of the code.
  • the detectors could be at a distance from one another that is smaller than the grid of the code.
  • the detectors could then be arranged such that only one detector is in its tolerance range at a time and can therefore achieve an undefined state. If a detector leaves its tolerance range, then at most another detector enters its tolerance range.
  • the tolerance range could be defined as 1 / (n + 1), where n is the number of detectors.
  • the width of the individual states can be seen as the grid width of the code.
  • the spacing of the detectors from one another partly corresponds to the grid width and partly does not correspond to the grid width of the code. This would be of particular advantage if the various positions of the measurement object were not distributed uniformly on the measurement path.
  • the detectors could be arranged linearly, preferably in the direction of movement of the object, in one or more lines.
  • the detectors could thus be adapted to the code.
  • a two-lane code could then be scanned using detectors arranged in two lines.
  • the detectors it would also be possible for the detectors to additionally detect the code at an angle to the direction of movement, for example perpendicularly. It would thus be possible to use two-line detectors to detect a two-line code or to use a code matrix.
  • the detectors could be able to detect transitions in the code in one or more stages.
  • the detectors could have at least a third state, for example 0, Vz and 1, where Vz is a transition.
  • the detectors could also have two or more additional states, for example 0, 1/3, 2/3 and 1.
  • the detectors could be designed as binary detectors. This would be particularly desirable in view of inexpensive production, since binary detectors are very cheap to manufacture.
  • the detectors could also be designed as non-contact detectors. Almost all known measuring principles, in a particularly advantageous manner contactlessly working measuring principles, which can be handled under the special operating conditions, could be used. In particular with non-contact measuring principles, the sensor would then be almost wear-free and the measurement results would be particularly independent of installation tolerances.
  • the detectors could be designed as a transmitting and receiving coil, it being possible to generate an electromagnetic field by means of the transmitting coil, which can be detected by means of the receiving coil.
  • the measurement object - for example the code inserted in the ruler - could then be arranged between the transmitting and receiving coil, in such a way that at logical 1 the receiving coil against the electromagnetic field of the Transmitter coil is shielded.
  • the device for detecting a measurement object comprises a sensor which has eight detectors for detecting the measurement object.
  • the detectors detect the absolute position of an object, in this case a car seat.
  • the position of the car seat is coded and the sensor is coupled to the car seat.
  • the car seat is arranged to be movable with respect to the measurement object, which in this exemplary embodiment is coupled to the guide rails of the car seat.
  • the measurement object and thus the code essentially extend in the direction of movement of the object.
  • the measurement object is designed as a sheet metal strip, into which the code is inserted by punching out gaps from the sheet metal strip.
  • the code is a single-track binary code whose raster width is linear and therefore uniform. This means that the respective individual states 0 and 1 have the same width across the entire ruler.
  • the distance between the detectors does not correspond to the grid width of the code, but to a fraction of the grid width, namely 8/9 the uniform grid width of the code.
  • the detectors are designed in such a way that they can detect the code transition in an intermediate stage and that only one detector can have a transition between two adjacent bits in its tolerance range. The tolerance range should therefore be maximum. So if the eighth sensor just leaves its tolerance range, then the first sensor enters its tolerance range.
  • a tolerance range of 1/5 can be achieved by means of seven detectors, which can detect three states, the transition range is +/- 1/5 and the 1/0 range is therefore 3/5. The highest number of positions can currently be detected by means of such a device.
  • FIG. 1 is a perspective view, partially and schematically, of a first exemplary embodiment of a device according to the invention for detecting the position of a target
  • FIG. 2 in a perspective view, partially and schematically, a second embodiment of a device according to the invention.
  • FIG. 3 in a perspective view, partially and schematically, a further embodiment of a device according to the invention with a coded target.
  • the device comprises a sensor, the sensor having a transmitting device 1 for generating a signal and the target 2 being detectable by means of the signal.
  • the transmitting device 1 is designed as a Coil 3 designed by means of which an electromagnetic field can be generated.
  • the electromagnetic field in turn can be detected by means of a receiving coil 4 and for the detection of the target 2 the target 2 is arranged between the transmitting 3 and receiving coil 4.
  • the material properties of the target 2 are designed such that when the target 2 is arranged between the transmitting coil 3 and the receiving coil 4, the voltage U e induced in the receiving coil 4 is approximately zero.
  • the target 2 is here, for example, with the movement of an object, not shown here, e.g. B. coupled a car seat, and designed to be movable in the direction of the arrows. If the object moves, the target 2 is moved along the direction of the arrow, so the position of the object correlates with the position of the target, so that the target 2 is arranged in a specific position between the transmitting coil 3 and the receiving coil 4 when the object is stationary , In this exemplary embodiment, a position of the target 2 would thus be detectable.
  • FIG. 2 also shows a perspective view, partially and schematically, of a device for detecting the position of a target 2.
  • the device also has a sensor, the sensor having five transmitter coils 3 and five receiver coils 4.
  • the number of transmitting coils corresponds to the number of receiving coils 4, whereby detection that is particularly insensitive to interference is achieved.
  • FIG. 3 shows a sensor according to the exemplary embodiment in FIG. 2 with a coded ruler.
  • the coded ruler is easily realized by punching out gaps from a sheet metal strip and is therefore very inexpensive.
  • the length of the metal strip determines the length of the measuring path. This solution allows measurement paths of many meters.
  • the ratio of the overall length of the device to the measuring path becomes more and more favorable with the same dimensions of the transmitting and receiving coils as the measuring path increases.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

Eine Vorrichtung zur Detektion des Position eines Targets, mit mindestens einem Sensor, wobei der Sensor mindestens eine Sendeeinrichtung (1) zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target (2) detektierbar ist, ist im Hinblick auf eine Unempfindlichkeit gegenüber Störeinflüssen, derart ausgestaltet, dass die Sendeeinrichtung als eine Sendespule (3) ausgestaltet ist, mittels derer als Signal ein elektromagnetisches Feld erzeugbar ist, dass das elektromagnetische Feld mittels einer Empfangsspule (4) detektierbar ist und dass zur Detektion des Targets (2) das Target (2) zwischen Sende- (3) und Empfangsspule (4) anordenbar ist.

Description

„Vorrichtung und Verfahren zur Detektion der Position eines Targets"
Die Erfindung betrifft eine Vorrichtung zur Detektion der Position eines Targets, mit mindestens einem Sensor, wobei der Sensor mindestens eine Sendeeinrichtung zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target detektierbar ist. Die Erfindung betrifft ferner ein Verfahren zur Detektion der Position eines Targets, mit mindestens einem Sensor, wobei der Sensor mindestens eine Sendeeinrichtung zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target detektiert wird.
Vorrichtungen und Verfahren zur Detektion eines Targets sind aus der Praxis seit langem bekannt. Beispielsweise werden Targets mittels optischer Prinzipien, z.B. der Triangulationsmessung, detektiert. Optische Prinzipien sind insbesondere dahingehend problematisch, dass sie nur in besonders reinen Einsatzorten eingesetzt werden können, da eine Verschmutzung der Optik große Messfehler zur Folge hat.
Es sind ferner magnetisch arbeitende Vorrichtungen und Verfahren bekannt, die dazu geeignet sind, ein Target zu detektieren. In diesem Fall sind beispielsweise magnetoresistiv oder magnetostriktiv arbeitende Vorrichtungen, aber auch magnetisch codierte Messlineale bekannt, die allerdings insbesondere dahingehend problematisch sind, dass sie durch angezogene Eisenteilchen verschmutzen. Eine fehlerfreie Messung ist deshalb dann nicht mehr möglich.
Weiter sind Vorrichtungen und Verfahren, die nach dem Ultraschallprinzip arbeiten, bekannt. Das Ultraschallprinzip ist insbesondere problematisch wegen des begrenzten Messbereichs, dem komplizierten Messaufbau und den vielfältigen Möglichkeiten das Messfeld zu stören. Induktiv arbeitende lineare variable Differenzialtransformatoren, sogenannte LVDTs, oder Differenzialdrosseln sind insbesondere wegen ihrer großen Baulänge vielfach nicht einsetzbar.
Auch zum Detektieren eines Targets verwendete Wirbelstrom-Langwegsensoren sind problematisch, da sie empfindlich auf Magnetfelder reagieren und schlecht an unterschiedliche Messbereiche anpassbar sind. Unterschiedliche Messbereiche erfordern deshalb meistens den Einsatz von verschiedenen Vorrichtungen.
Ferner ist es bekannt, mehrere induktive oder nach dem Wirbelstromverlustprinzip arbeitende Näherungsschalter nebeneinander in Kombination mit einem codierten Messlineal zur Detektion eines Targets zu verwenden. Die Codierung besteht hierbei aus speziell angeordneten metallischen Flächen, die auf einem nicht metallischen Träger aufgebracht sind. Diese Vorrichtung ist besonders gegenüber Einbautoleranzen empfindlich, da wegen der großen Schaltabstandsab- hängigkeit zwischen den Näherungsschaltern und den Metaliflächen der Einbau der Vorrichtung sehr genau erfolgen muss.
Der vorliegenden Erfindung liegt nunmehr die Aufgabe zugrunde, eine Vorrichtung sowie ein Verfahren zur Detektion der Position eines Targets der eingangs genannten Art anzugeben, die bzw. das unempfindlich gegenüber Störeinflüssen ist.
Erfindungsgemäß wird die voranstehende Aufgabe hinsichtlich einer Vorrichtung zur Detektion der Position eines Targets durch eine Vorrichtung mit den Merkmalen des Patentanspruchs 1 gelöst. Danach ist eine Vorrichtung zur Detektion der Position eines Targets der eingangs genannten Art derart ausgestaltet, dass die Sendeeinrichtung als eine Sendespule ausgestaltet ist, mittels derer als Signal ein elektromagnetisches Feld erzeugbar ist, dass das elektromagnetische Feld mittels einer Empfangsspule detektierbar ist und dass zur Detektion des Targets das Target zwischen Sende- und Empfangsspule anordenbar ist. Des Weiteren ist die obige Aufgabe im Hinblick auf ein Verfahren zur Detektion der Position eines Targets durch ein Verfahren mit den Merkmalen des Patentanspruchs 25 gelöst. Danach ist ein Verfahren zur Detektion der Position eines Targets der eingangs genannten Art derart ausgestaltet, dass die Sendeeinrichtung als eine Sendespule ausgestaltet ist, mittels derer als Signal ein elektromagnetisches Feld erzeugt wird, dass das elektromagnetische Feld mittels einer Empfangsspule detektiert wird und dass zur Detektion des Targets das Target zwischen Sende- und Empfangsspule angeordnet wird.
In erfindungsgemäßer Weise ist erkannt worden, dass eine Vorrichtung für lange Messwege, die unempfindlich gegen Verschmutzungen durch Flüssigkeiten, Kunststoffe, Fett, Staub oder normalen Schmutz sein soll, eine als Sendespule ausgestaltete Sendeeinrichtung aufweisen muss, mittels derer ein elektromagnetisches Feld erzeugbar ist, welches mittels einer Empfangsspule detektierbar ist. Zur Detektion des Targets wird das Target zwischen Sende- und Empfangsspule angeordnet. Die Vorrichtung ist besonders unempfindlich gegenüber Störeinflüssen, da Spulen besonders unempfindlich gegen Verschmutzungen jedweder Form sind. Die Vorrichtung lässt sich zudem sehr preisgünstig produzieren und ist als Massenartikel im Bereich der Positionserkennung einsetzbar. Wäre das Target beispielsweise mit einem Autositz gekoppelt, könnte die Vorrichtung in der Automobilindustrie als Sitzpositionsdetektor für eine automatische Sitzeinstellung bzw. -positionsmeldung eingesetzt werden.
In besonders vorteilhafter Weise ist das Target in seinen Materialeigenschaften und/oder in seinen Dimensionen derart ausgestaltet, dass bei Anordnung des Targets zwischen Sendespule und Empfangsspule, die in der Empfangsspule induzierte Spannung detektierbar reduziert und/oder in etwa Null ist. Dies würde die Vorrichtung insbesondere unempfindlich gegenüber elektromagnetischen Störfeldern machen, da nunmehr das „NichtVorhandensein" von in der Empfangsspule induzierter Spannung erfasst wird. Die Störung des elektromagnetischen Felds durch andere Felder, beispielsweise durch den Betrieb von Handys in unmittelbarer Nähe, wäre somit unerheblich, wodurch die Vorrichtung besonders unempfindlich gegenüber derartigen Störungen wäre. Die Auswertung des „NichtVorhandensein" der induzierten Spannung macht die Vorrichtung auch unabhängig von Einbautoleranzen oder mechanischen Einflüssen während des Betriebs und zwar dahingehend, dass gerade nicht das induzierte Feld erfasst wird, was sich mit dem Winkel der Sende- und Empfangsspule zueinander und mit dem Abstand zwischen Sende- und Empfangsspule stark ändert, sondern das „NichtVorhandensein" des Felds. Zudem sind so auch Temperatureinflüsse unbeachtlich, so dass die Vorrichtung in einem großen Temperaturbereich von ca. - 40° bis ca. 85° ohne Störungen arbeitet. Die Vorrichtung ist ferner unempfindlich gegen mechanische Einflüsse, wie beispielsweise Flaschen oder Dosen unter dem Autositz, die gegen die Vorrichtung schlagen, oder Schläge mit einem Gummihammer bei der Montage, da die Sende- und Empfangsspule unempfindlich sind.
Bei einer besonders einfachen Ausgestaltung könnte die Dicke des Targets etwas kleiner als der Abstand zwischen der Sendespule und der Empfangsspule sein, so dass das Target mit Spiel zwischen Sendespule und Empfangsspule durchführbar ist. Das Target könnte zusätzlich oder alternativ metallisch ausgestaltet sein, so dass im Target Wirbelströme erzeugbar wären. Die Kopplung zwischen der Sende- und Empfangsspule wäre dann deutlich reduziert. Mit der entsprechenden Dicke des Targets geht somit der Kopplungsfaktor zwischen Sende- und Empfangsspule gegen Null. Kleine Toleranzen des Abstands zwischen dem Target und der Sende- bzw. der Empfangsspule sind deshalb unkritisch, da nunmehr nur die Abschirmung des Targets gegenüber der Empfangsspule eine wesentliche Rolle spielt. Hierdurch sind abermals Einbautoleranzen senkrecht zur Messrichtung ohne Einfluss auf die Zuverlässigkeit der Detektion ermöglicht. Prinzipbedingt ergibt sich ein sehr großes Messsignal, das abermals entsprechend unempfindlich gegenüber Störeinflüssen durch elektromagnetische Felder ist.
Der Sensor könnte mehrere Sendespulen aufweisen. Zusätzlich oder alternativ hierzu könnte der Sensor auch mehrere Empfangsspulen aufweisen. Über die Anzahl der Sende- bzw. Empfangsspulen ließe sich dann sehr einfach die Anzahl der detektierbaren Positionen bestimmen. Die Anzahl der Sendespulen könnte hierbei der Anzahl der Empfangsspulen entsprechen. Ein derartig ausgestalteter Sensor ist besonders unempfindlich gegenüber Störeinflüssen, da jedem von einer Sendespule erzeugtem elektromagnetischen Feld eine das Feld detektierende Empfangsspule zugeordnet wäre, und somit das Vorhandensein des Targets besonders einfach detektierbar wäre.
Die Anzahl der Sendespulen könnte aber auch ungleich der Anzahl der Empfangsspulen sein. Der Sensor könnte hierbei beispielsweise nur eine Sendespule und/oder nur eine Empfangsspule aufweisen. Dies könnte in einer konkreten Ausgestaltung so aussehen, dass die Empfangsspule und/oder die Sendespule zu einer einzigen Spule zusammengefasst ist. Hierbei wäre es möglich, die Einzelspulen in einer Serien- oder in einer Parallelschaltung zusammenzufassen oder eine einzige langgestreckte Spule zu verwenden. Die Länge der Spule könnte dann der Länge der nebeneinander angeordneten Spulen entsprechen.
Im Rahmen einer abermals sehr einfach Ausgestaltung könnte das Target als codiertes Lineal ausgestaltet sein. Hierdurch ließe sich die Anzahl von Sende- und Empfangsspulen drastisch reduzieren. Das Lineal könnte hierbei einzelne Platten umfassen, die in bestimmten Abständen zueinander angeordnet sind. Das Lineal könnte allerdings auch nichtleitfähige Bereiche umfassen, die. beispielsweise durch Aussparungen in dem Lineal realisiert sind. Eine Möglichkeit das Target auf besonders einfache Weise auszugestalten, wäre das Ausstanzen von Zwischenräumen aus einem Blechstreifen. Dies würde eine besonders preisgünstige Form des Targets realisieren. Die Länge des Blechstreifens würde dann die Weglänge bestimmen, die nur geringfügig länger als der Messweg wäre.
Der Code könnte mindestens einzeilig ausgebildet sein. Er könnte allerdings aber zur Erhöhung der detektierbaren Positionen auch zwei- oder mehrzellig sein. Um die Vorrichtung besonders gut an den jeweiligen Einsatzort anpassen zu können, könnte der Code nichtlinear ausgestaltet sein. Dies würde es ermöglichen, in bestimmten Bereichen des Messbereichs mehr Positionen zu detektieren als in anderen. Um abermals die detektierbaren Positionen zu erhöhen, könnten die Sendespulen und/oder die Empfangsspulen ebenfalls in unterschiedlichen Abständen zueinander angeordnet sein. Es ist auch denkbar, dass die Anordnung der Sende- und/oder Empfangsspulen zwei- oder mehrzellig ausgestaltet ist.
Im Rahmen einer besonders gegenüber Störeinflüssen unempfindlichen Ausgestaltung könnten die SendespuleAn mittels einer Wechselspannung mit konstanter Amplitude gespeist sein. Hierbei wäre die Amplitude der in der Empfangsspule induzierten Spannung von der Kopplung zwischen der Sende- und Empfangsspule abhängig und somit vom Abstand der Sende- und Empfangsspule zueinander, jedoch wäre sie weitgehend unabhängig von der Sendefrequenz, so lang sich diese nicht der Eigenresonanzfrequenz der Empfangsspule nähert (frθs < f/10). Außerdem ist sie temperaturunabhängig - abgesehen von der thermischen Abstandsänderung zwischen Sende- und Empfangsspule, die jedoch nur einen geringen Einfluss hat - und unabhängig von magnetischen Einflüssen oder auch von Verschmutzung durch elektrisch nichtleitendes Material.
Die SendespuleAn könnten, vorzugsweise unabhängig voneinander, mittels einer konstanten Frequenz gespeist sein. Wird dann ein Target dessen Größe so gewählt wird, dass die Kopplung zwischen einem Sende- und Empfangsspulenpaar gegen Null geht, entlang der Reihenanordnung zwischen den einzelnen Sende- und Empfangsspulenpaaren bewegt, so empfangen die einzelnen Empfangsspulen der Reihe nach weniger Signal. Dieser Effekt wird dann zur Detektion der absoluten Position des Targets benutzt. Die einzelnen in den Empfangsspulen vorzugsweise nacheinander induzierten Spannungen zeigen dann keinen flachen und geringen Abfall beim Einführen des Targets, sondern ein steilen Abfall, der bis auf Null geht, sobald das Target sich genau in der Mittelposition befindet. Alternativ oder zusätzlich könnten die Sendespule/-n aber auch, vorzugsweise im Wesentlichen gleichzeitig, mittels unterschiedlicher Frequenzen gespeist sein. Sammeleinkopplungen benachbarter Sendespulen in die vom Target abgeschirmte Empfangsspule könnten somit wirksam vermieden werden. Der Abfall der Amplitude der in die Empfangsspule induzierten Wechselspannung wäre somit besonders ausgeprägt und die Position des Targets somit besonders gut detektierbar.
Das/die Signal/-e der Empfangsspule könnten dann mittels eines Frequenzfilters auswertbar sein, so dass das/die SignalΛe der Empfangsspule/-n eindeutig einem Signal der Sendespule zuordenbar wären. Auf Seiten der Empfangsspulen könnten so die einzelnen Frequenzen, mit den die Sendespule/-n gespeist sind, wieder herausgefiltert werden, so dass eine eindeutige Zuordnung zwischen Sende- und Empfangsspule möglich ist. Zur Filterung der einzelnen Frequenzen könnte dabei jedwedes Verfahren, das im Stand der Technik bekannt ist, verwendet werden.
Hinsichtlich einer wiederum sehr einfachen Ausgestaltung könnte der Abfall der in den Empfangsspule/-n induzierten Spannung bei einem zwischen Sende- spuleΛn und EmpfangsspuleAn angeordneten Target mittels mindestens eines Pegeldetektors, insbesondere eines Komparators, eines Schmitt-Triggers oder dergleichen, detektierbar sein. Damit ließe sich eine eindeutige Detektion der Position durch ein Logiksignal erreichen. Hierbei könnte jedem Sende- und Empfangsspulenpaar je ein Pegeldetektor zugeordnet sein oder es könnte auch im Falle einer einzelnen Empfangsspule nur ein Pegeldetektor vorgesehen sein.
Der Schwellwert oder die Schwellwerte des/der PegeldetektorsAen könnte derart gewählt sein, dass bei zwischen mindestens einer Sendespule und einer Empfangsspule angeordnetem Target mindestens ein Pegeldetektor ein Ausgangssignal liefert. Somit ließe sich eine eindeutige Detektion der Position erreichen. Zur Erhöhung der Auflösung könnten mittels der Pegeldetektoren auch mehrere Schwellwerte, beispielsweise drei Schwellwerte, detektierbar sein. Mit Hilfe eines A/D-Wandlers könnte dies in eine Vielzahl von Stufen erweitert werden und durch eine Kennlinienanpassung mittels eines Rechners ließe sich dann die Auflösung und/oder die Genauigkeit erheblich erhöhen.
Hinsichtlich einer nochmaligen Erhöhung der Auflösung könnten bei einem zwischen mindestens zwei Sendespulen und mindestens zwei Empfangsspulen angeordnetem Target zwei Pegeldetektoren ein Ausgangssignal liefern. Bei geeigneten Abmessungen des Targets in Verbindung mit einem geeigneten Schwellwert könnte somit die Auflösung und die Genauigkeit der Detektion der Position auf einfache Weise vergrößert werden. Wenn sich das Target nämlich zwischen zwei benachbarten Sende- und Empfangsspulenpaaren befindet, die einen Toleranzbereich von einem halben Abstand, d. h. Mitte zu Mitte, zwischen zwei Spulen aufweisen, liefern beide Empfangsspulen mit den zugehörigen Komparatoren das gleiche Logiksignal. Diese zusätzliche Logikentscheidung ergibt somit eine Auflösung, die doppelt so groß wie die Anzahl der Sende- und Empfangsspulenpaare ist, wobei die Genauigkeit ebenfalls - beinahe - doppelt so groß ist Werden die Sende- und Empfangsspulenpaare nunmehr nacheinander gespeist, verringert sich somit die Störempfindlichkeit, da immer eine volle Amplitudenänderung ausgewertet werden kann.
In einer besonders einfachen Ausgestaltung könnte die Ansteuerung der Sende- spule/-n und/oder die Auswertung der in der/den EmpfangsspuleAn induzierten SpannungΛen mittels einer Auswerteelektronik, insbesondere mittels eines Mikroprozessors, erfolgen. Die gesamte Elektronik könnte im Wesentlichen mit digitalen Bauteilen, vorzugsweise in CMOS-Technik und/oder ohne Verwendung spezieller Analogbauteile, realisiert werden. Eine derart ausgestaltete Elektronik ließe sich damit sehr preisgünstig realisieren. Dadurch wäre auch eine Komplettlösung als ASIC problemlos möglich, wobei dann auch ein Einsatz der Vorrichtung als Massenprodukt in dem preisproblematischen Automobilbereich ermöglicht wäre.
Im Rahmen einer sehr preisgünstigen Fertigung könnte/-n die SendespuleΛn und/oder EmpfangsspuleAn auf mindestens einer Leiterplatte angeordnet sein. Die Leiterplatte könnte hierbei als flexible Leiterplatten ausgeführt sein und/oder die SendespuleAn und/oder die EmpfangsspuleA-n könnten auf die LeiterplatteΛn gedruckt und/oder geätzt sein.
Hinsichtlich einer besonders robusten Ausgestaltung könnte die Auswerteelektronik bzw. der Mikroprozessor mit der/den SendespuleAn und/oder der/den Empfangsspule/-n auf einer Leiterplatte angeordnet sein. Dadurch könnte eine direkte Verbindung zur der Auswerteelektronik und/oder zum Mikroprozessor gegeben sein.
Im Hinblick auf besonders vielfältige Einsatzmöglichkeiten könnten die Sendespulen und die Empfangsspulen entlang eines Bogensegments angeordnet sein, so dass Winkelmessungen ermöglicht wären. Das Target würde dann ebenfalls eine Krümmung aufweisen, die der Krümmung des Bogensegments entspricht. Auf diese Weise wären, insbesondere bei gleicher Elektronik beliebige Winkelmessungen ermöglicht. Bei zeitunkritischen Messungen, wie z. B. Sitzpositions- detektion in einem Auto, könnte die Elektronikeinheit somit gleichzeitig auch für die Winkelmessung der Rückenlehne verwendet werden, wenn die jeweiligen zur linearen und zur Winkelmessung verwendeten Sende- und Empfangsspulenpaare separat ausgeführt wären.
Das erfindungsgemäße Verfahren zur Detektion der Position eines Targets könnte insbesondere zum Betreiben einer Vorrichtung zur Detektion der Position eines Targets gemäß den obigen Ausführungen dienen. Bei dem Verfahren ist vorteilhaft, dass die Störanfälligkeit einer Vorrichtung zur Detektion der Position eines Targets vermindert wird.
Beispielsweise gilt bei einem Abstand von Mitte zu Mitte der nebeneinander liegenden Sende- und Empfangsspulenpaare von 1 cm, dass die Absolut-Auflö- sung/Genauigkeit 0,5 cm entspricht. Dies entspricht bei einem Messweg von 5 m der Absolut-Auflösung/Genauigkeit von 0,1 %, bei einer erforderlichen Baulänge des Sensors von ca. 9 cm bei neun benötigten Sende- und Empfangsspulenpaaren. Die gleiche Absolut-Auflösung/Genauigkeit kann mit einem einzigen zusätz- liehen Sende- und Empfangsspulenpaar, die Baulänge des Sensors würde dann 10 cm betragen, auf einen Messweg von 10 Metern erweitert werden.
Weiter erfindungsgemäß kann eine Vorrichtung zur Detektion der Position eines Messobjekts, wobei die Position vorzugsweise eine absolute Position ist, mit mindestens einem Sensor, der mindestens zwei Detektoren zur Detektion des Messobjekts aufweist, wobei die Position des Messobjekts und/oder eines Objekts mittels eines Codes codiert ist, wobei das Messobjekts und/oder der Sensor mit dem Objekt gekoppelt ist, wobei das Objekt bewegbar bezüglich des Messobjekts und/oder des Sensors angeordnet ist und wobei der Code sich im Wesentlichen in Bewegungsrichtung des Objekts erstreckt, mit der erfindungsgemäßen Vorrichtung nach Anspruch 1 bzw. mit dem erfindungsgemäßen Verfahren nach Anspruch 25 verwendet werden. Ferner kann erfindungsgemäß ein Verfahren zur Detektion der Position eines Messobjekts, wobei die Position vorzugsweise eine absolute Position ist, mit mindestens einem Sensor, der mindestens zwei Detektoren zur Detektion des Messobjekts aufweist, wobei die Position des Messobjekts und/oder eines Objekts mittels eines Codes codiert wird, wobei das Messobjekt und/oder der Sensor mit dem Objekt gekoppelt wird, wobei das Objekt bezüglich des Messobjekts und/oder des Sensors bewegt wird und wobei der Code sich im Wesentlichen in Bewegungsrichtung des Objekts erstreckt, zum Betreiben einer obengenannten Vorrichtung eingesetzt werden.
Vorrichtungen und Verfahren zur Detektion der Position eines Messobjekts sind in der Praxis hinlänglich bekannt. Häufig werden dabei berührungslos arbeitende Sensoren eingesetzt, die an den jeweiligen Einsatzort angepasst sind.
Des Weiteren sind aus der Praxis möglichst früh digitalisierende Sensoren bekannt. Diese Sensoren arbeiten mit parallel angebrachten Detektoren. Eines der relevantesten Beispiele in der Praxis sind Sensoren zur optischen Winkelcodierung. Diese Sensoren arbeiten beispielsweise mit acht konzentrischen Messspuren, die im Gray-Code geätzt sind, wobei die Messspuren optisch abgetastet werden. Solche Sensoren können natürlich auch für lineare Bewegungen verwendet werden und zwar indem man den Code auf Folien aufbringt, beispiels- weise in Form von Codierbändern. Diese Codierbänder sind besonders dahingehend problematisch, dass sie entweder für rauhe Einsatzbedingungen nicht geeignet sind, weil sie nicht sehr robust sind, oder weil sie zu teuer sind, wenn sie robust genug ausgestaltet sind.
Um eine Position eines Objekts mittels eines solchen parallelen Gray-Codes ermitteln zu können, benötigt man bei sechzehn zu detektierenden Positionen des Objekts vier Spuren, da sich der Code jeweils nur in einem Bit ändert. Dies bedeutet, dass der Sensor zur Detektion der Position vier parallel angeordnete Detektoren aufweisen muss, die sich vertikal zu der Bewegungsrichtung erstrek- ken. Muss nun eine größere Anzahl von Positionen detektiert werden, ist es nötig, die Spuren um weitere Spuren zu ergänzen. Dies dazu führt, dass sich mehr - nämlich entsprechend der Anzahl der Spuren - Detektoren vertikal zur Bewegungsrichtung erstrecken. Der Sensor muss deshalb entsprechend größer ausgestaltet werden und zwar derart, dass er bezüglich der Bewegungsrichtung in vertikaler Richtung mehr Raum einnimmt. Dies ist insbesondere dahingehend problematisch, dass die gesamte Vorrichtung entsprechend groß ausgestaltet sein muss.
Der vorliegenden Erfindung liegt daher ferner die Aufgabe zugrunde, eine Vorrichtung und ein Verfahren zur Detektion der Position eines Messobjekts der eingangs genannten Art anzugeben, die/das in einer Vielzahl von Umgebungen, insbesondere in räumlich beschränkten Einsatzorten, einsetzbar ist.
Erfindungsgemäß wird die voranstehende Aufgabe durch eine Vorrichtung und ein Verfahren zur Detektion der Position eines Messobjekts mit den Merkmalen des Patentanspruchs 26 bzw. 38 gelöst. Danach ist eine Vorrichtung und ein Verfahren zur Detektion der Position der eingangs genannten Art derart ausgestaltet, dass sich die Detektoren im Wesentlichen in Bewegungsrichtung des Objekts erstrecken.
In weiter erfindungsgemäßer Weise ist erkannt worden, dass zur Detektion der Position eines Messobjekts die Detektoren nicht - wie im Stand der Technik üb- lieh - vertikal zur Bewegungsrichtung angeordnet werden müssen, sondern dass die Detektoren im Wesentlichen in Bewegungsrichtung, d.h. bei linearen Bewegungen horizontal, ausgerichtet sein müssen. Im Konkreten bedeutet dies, dass man beispielsweise zur Detektion von sechzehn Positionen nur eine Spur sowie - bei einer Wortgröße von 4 Bits - nur vier in Bewegungsrichtung und damit horizontale angeordnete Detektoren benötigt. Im Gegensatz zu der aus dem Stand der Technik bekannten Vorrichtung kann die erfindungsgemäße Vorrichtung somit eine sehr viel geringere Bauhöhe aufweisen und ist besonders gut geeignet, in räumlich beschränkten Umgebungen eingesetzt zu werden. Es können daher bei geeigneter Codierung mit nur n Detektoren 2Λn Positionen detektiert werden. Zudem ist eine Adaption an unterschiedliche Messwege ohne Änderung der Elektronik möglich.
Im Hinblick auf eine besonders kostengünstige und robuste Ausgestaltung könnte der Code auf einem Lineal aufgebracht sein. Hierbei könnte das Lineal als Blechstreifen ausgestaltet sein, in den der Code durch Ausstanzen von Zwischenräumen aus dem Blechstreifen eingebracht sein könnte. Die Länge des Blechstreifens würde dann die Weglänge bestimmen, die nur geringfügig länger als der Messweg wäre (1+n* 2Λ(-n)).
Der Code könnte als ein- oder mehrspuriger Code, vorzugsweise als Binärcode ausgestaltet sein. Insbesondere wenn der Code als mehrspuriger Code ausgestaltet ist, unterscheidet er sich von dem bekannten Gray-Code dadurch, dass weitaus mehr Positionen bei gleicher Spurenanzahl detektierbar sind. Mit steigender Anzahl der Spuren steigt nämlich die Anzahl der detektierbaren Positionen erheblich.
Hinsichtlich einer besonders einfachen Ausgestaltung könnte die Rasterbreite des Codes im Wesentlichen linear ausgestaltet sein. Damit wäre eine besonders einfache Art der Codierung gegeben. Alternativ könnte die Rasterbreite des Codes aber auch im Wesentlichen nichtlinear ausgestaltet sein. In besonders vorteilhafter Weise könnte dabei die Rasterbreite des Codes abhängig von den Positionen des Messobjekts ausgestaltet sein. Dies hätte zur Folge, dass der Code besonders gut auf den jeweiligen Einsatzort abgestimmt werden könnte. So ist es beispielsweise denkbar, dass die Positionen des Messobjekts in manchen Bereichen des Messwegs genauer bestimmbar sein müssen als in anderen Bereichen. Durch eine von der Position des Messobjekts abhängige Rasterbreite könnte solchen Besonderheiten Rechnung getragen werden. Für bestimmte Anwendungsbereiche könnte der Code allerdings auch zum Teil nichtlinear und zum Teil linear ausgestaltet sein. Dadurch wäre es abermals möglich, den Code besonders gut an jedwede Einsatzmöglichkeit anzupassen.
Im Hinblick auf eine abermals sehr einfachen Ausgestaltung könnte der Abstand der Detektoren zueinander der Rasterbreite des Codes entsprechen. Dies bedeutet, dass sich, wenn sich ein Detektor ausserhalb seines Toleranzbereichs befindet, in dem er ein unbestimmtes Ergebnis liefert, alle anderen Detektoren ebenfalls ausserhalb ihres Toleranzbereichs befinden und somit ein der Position im Code entsprechendes korrektes Ergebnis liefern. Um Probleme bei den notwendigerweise zeitgleichen Zustandsänderungen der einzelnen Detektoren zu vermeiden, könnten die Positionen gerastert sein, so dass nicht alle Detektoren gleichzeitig den Zustand ändern müssen. Eine Detektion würde dann nur stattfinden, wenn der Sensor und somit die Detektoren sich in definierten Positionen befinden. Dadurch ist eine absolut gleichzeitige Zustandsänderung der Detektoren nicht notwendig.
Hinsichtlich einer besonders variablen Einsatzmöglichkeit könnte der Abstand der Detektoren zueinander allerdings auch nicht der Rasterbreite des Codes entsprechen. Insbesondere zur Verringerung der Gesamtlänge des Sensors könnten die Detektoren einen Abstand zueinander aufweisen, der kleiner ist als das Raster des Codes. In besonders vorteilhafter Weise könnten dann die Detektoren derart angeordnet sein, dass sich jeweils nur ein Detektor in seinem Toleranzbereich befindet und somit einen nicht definierten Zustand erlangen kann. Veriässt also ein Detektor seinen Toleranzbereich, so tritt höchstens ein anderer Detektor in seinen Toleranzbereich ein. Der Toleranzbereich könnte hierbei als 1/(n+1) definiert werden, wobei n der Anzahl der Detektoren ist. Als Rasterbreite des Codes ist die Breite der einzelnen Zustände zu sehen. Es wäre allerdings auch möglich, dass der Abstand der Detektoren zueinander zum Teil der Rasterbreite und zum Teil nicht der Rasterbreite des Codes entspricht. Dies wäre von besonderem Vorteil, wenn die verschiedenen Positionen des Messobjekts nicht gleichförmig auf dem Messweg verteilt wären.
Die Detektoren könnten linear, vorzugsweise in der Bewegungsrichtung des Objekts, in einer oder in mehreren Zeilen angeordnet sein. Die Detektoren könnten somit an den Code angepasst werden. Ein zweispuriger Code könnte dann mittels Detektoren abgetastet werden, die in zwei Zeilen angeordnet sind. Es wäre allerdings auch möglich, dass die Detektoren den Code zusätzlich in einem Winkel zu der Bewegungsrichtung, beispielsweise senkrecht, erfassen. Somit wäre es möglich, mit nur einzeilig angeordneten Detektoren einen zweizeiligen Code zu detektieren oder eine Codematrix zu verwenden.
Hinsichtlich einer Erhöhung der detektierbaren Positionen könnten mittels der Detektoren in einer oder mehreren Stufen Übergänge im Code detektierbar sein. Dazu könnten die Detektoren mindestens einen dritten Zustand aufweisen, beispielsweise 0, Vz und 1 , wobei Vz ein Übergang ist. Die Detektoren könnten allerdings auch zwei oder mehrere zusätzliche Zustände aufweisen, so beispielsweise 0, 1/3, 2/3 und 1.
In einer besonders einfachen Ausgestaltung könnten die Detektoren als binäre Detektoren ausgestaltet sein. Dies wäre im Hinblick auf eine preisgünstige Produktion besonders wünschenswert, da binäre Detektoren sehr günstig in der Herstellung sind. Die Detektoren könnten außerdem als berührungslos messende Detektoren ausgeführt sein. Dabei könnten nahezu alle bekannten Messprinzipien, in besonders vorteilhafter Weise berührungslos arbeitende Messprinzipien, verwendet werden, die unter den speziellen Einsatzbedingungen handhabbar sind. Insbesondere bei berührungslos arbeitenden Messprinzipien wäre der Sensor dann nahezu verschleißfrei und die Messergebnisse wären besonders unabhängig von Einbautoleranzen. In besonders vorteilhafter Weise könnten die Detektoren als Sende- und Empfangsspule ausgestaltet sein, wobei mittels der Sendespule ein elektromagnetisches Feld erzeugbar sein könnte, das mittels der Empfangsspule detektierbar ist. Zur Detektion der Position des Objekts - beispielsweise eines Autositzes - könnte dann das Messobjekt - beispielsweise der in das Lineal eingebrachte Code - zwischen der Sende- und Empfangsspule angeordnet werden, und zwar in der Art, dass bei logisch 1 die Empfangsspule gegen das elektromagnetische Feld der Sendespule abgeschirmt ist.
In einem ersten Ausführungsbeispiel umfasst die Vorrichtung zur Detektion eines Messobjekts einen Sensor, der acht Detektoren zur Detektion des Messobjekts aufweist. Die Detektoren detektieren hierbei die absolute Position eines Objekts, in diesem Fall eines Autositzes. Die Position des Autositzes ist codiert und der Sensor ist mit dem Autositz gekoppelt. Der Autositz ist bewegbar bezüglich des Messobjekts angeordnet, das in diesem Ausführungsbeispiel mit den Führungsschienen des Autositzes gekoppelt ist. Das Messobjekt und damit der Code erstrecken sich im Wesentlichen in Bewegungsrichtung des Objekts. Das Messobjekt ist als Blechstreifen ausgestaltet, in den der Code durch Ausstanzen von Zwischenräumen aus dem Blechstreifen eingebracht ist.
Es handelt sich bei dem Code um einen einspurigen Binärcode, dessen Rasterbreite linear und somit gleichförmig ausgestaltet ist. Das heisst, dass die jeweiligen einzelnen Zustände 0 und 1 über das gesamte Lineal hinweg gleich breit sind. Der Abstand der Detektoren zueinander entspricht dabei nicht der Rasterbreite des Codes, sondern einem Bruchteil der Rasterbreite, nämlich 8/9 der gleichförmigen Rasterbreite des Codes. Die Detektoren sind derart ausgestaltet, dass sie den Codeübergang in einer Zwischenstufe detektieren können und dass nur ein Detektor in seinem Toleranzbereich einen Übergang zwischen zwei nebeneinander liegenden Bits haben kann. Der Toleranzbereich soll somit maximal sein. Verläßt also der achte Sensor gerade seinen Toleranzbereich, so tritt der erste Sensor in seinen Toleranzbereich ein. Die Toleranzbreite der Detektoren entspricht 1/(n+1) = 1/9, wobei n gleich der Anzahl der Detektoren ist. Der Abstand der Detektoren zueinander beträgt demnach 1 - Toleranzbreite = 8/9. Bei einer Wortbreite von 6 Bit können damit mehr als 50 Positionen detektiert werden. In einem weiteren Ausführungsbeispiel kann man mittels sieben Detektoren, die drei Zustände detektieren können, eine Toleranzbreite von 1/5 erreichen, der Übergangsbereich beträgt +/- 1/5 und der 1/0-Bereich damit 3/5. Mittels einer derart gearteten Vorrichtung läßt sich derzeit die höchste Anzahl von Positionen detektieren.
Es gibt nun verschiedene Möglichkeiten, die Lehre der vorliegenden Erfindung in vorteilhafter Weise auszugestalten und weiterzubilden. Dazu ist einerseits auf die den nebengeordneten Ansprüchen nachgeordneten Ansprüche, andererseits auf die nachfolgende Erläuterung zweier bevorzugter Ausführungsbeispiele der erfindungsgemäßen Vorrichtung anhand der Zeichnung zu verweisen. In Verbindung mit der Erläuterung der bevorzugten Ausführungsbeispiele der Erfindung anhand der Zeichnung werden auch im Allgemeinen bevorzugte Ausgestaltungen und Weiterbildungen der Lehre erläutert. In der Zeichnung zeigt
Fig. 1 in einer perspektivischen Ansicht, teilweise und schematisch, ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Detektion der Position eines Targets,
Fig. 2 in einer perspektivischen Ansicht, teilweise und schematisch, ein zweites Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung und
Fig. 3 in einer perspektivischen Ansicht, teilweise und schematisch, ein weiteres Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung mit einem codierten Target.
Fig. 1 zeigt ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur Detektion der Position eines Targets in einer perspektivischen Ansicht schematisch und teilweise. Die Vorrichtung umfasst einen Sensor, wobei der Sensor eine Sendeeinrichtung 1 zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target 2 detektierbar ist. Die Sendeeinrichtung 1 ist als Sende- spule 3 ausgestaltet, mittels derer ein elektromagnetisches Feld erzeugbar ist. Das elektromagnetische Feld wiederum ist mittels einer Empfangsspule 4 detektierbar und zur Detektion des Targets 2 ist das Target 2 zwischen Sende- 3 und Empfangsspule 4 angeordnet.
Das Target 2 ist dabei in seinen Materialeigenschaften derart ausgestaltet, dass bei Anordnung des Targets 2 zwischen Sendespule 3 und Empfangsspule 4, die in der Empfangsspule 4 induzierte Spannung Ue in etwa Null ist.
Das Target 2 ist hierbei beispielsweise mit der Bewegung eines - hier nicht dargestellten - Objekts, z. B. eines Autositzes gekoppelt, und in Richtung der Pfeile beweglich ausgestaltet. Bewegt sich das Objekt, so wird das Target 2 entlang der Pfeilrichtung bewegt, somit korreliert die Position des Objekts mit der Position des Targets, so dass das Target 2 bei Stillstand des Objekts in einer bestimmten Position zwischen der Sendespule 3 und der Empfangsspule 4 angeordnet ist. In diesem Ausführungsbeispiel wäre somit eine Position des Targets 2 detektierbar.
Das Ausführungsbeispiel der Fig. 2 zeigt ebenfalls in einer perspektivischen Ansicht, teilweise und schematisch, eine Vorrichtung zur Detektion der Position eines Targets 2. Die Vorrichtung weist ebenfalls einen Sensor auf, wobei der Sensor fünf Sendespulen 3 sowie fünf Empfangsspulen 4 aufweist. Die Anzahl der Sendespulen entspricht hierbei der Anzahl der Empfangsspulen 4, wodurch eine besonders störunempfindliche Detektion erreicht wird.
In Fig. 3 ist ein Sensor gemäß dem Ausführungsbeispiel der Fig. 2 gezeigt und zwar mit einem codierten Lineal. Das codierte Lineal ist auf einfache Weise durch Ausstanzen von Zwischenräumen aus einem Blechstreifen realisiert und somit sehr preisgünstig. Die Länge des Blechstreifens bestimmt die Länge des Messwegs. Diese Lösung erlaubt Messwege von vielen Metern. Das Verhältnis von Baulänge der Vorrichtung zum Messweg wird bei gleichbleibenden Dimensionen der Sende- und Empfangsspulen mit größer werdenden Messweg immer günstiger. Hinsichtlich weiterer vorteilhafter Ausgestaltungen der erfindungsgemäßen Lehre wird zur Vermeidung von Wiederholungen auf den allgemeinen Teil der Beschreibung sowie auf die beigefügten Patentansprüche verwiesen.
Schließlich sei ausdrücklich darauf hingewiesen, dass die voranstehend beschriebenen Ausführungsbeispiele lediglich zur Erörterung der beanspruchten Lehre dienen, diese jedoch nicht auf die Ausführungsbeispiele einschränken.

Claims

P a t e n t a n s p r ü c e
1. Vorrichtung zur Detektion der Position eines Targets, mit mindestens einem Sensor, wobei der Sensor mindestens eine Sendeeinrichtung (1) zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target (2) detektierbar ist, d a d u r c h g e k e n n z e i c h n e t, dass die Sendeeinrichtung als eine Sendespule (3) ausgestaltet ist, mittels derer als Signal ein elektromagnetisches Feld erzeugbar ist, dass das elektromagnetische Feld mittels einer Empfangsspule (4) detektierbar ist und dass zur Detektion des Targets (2) das Target (2) zwischen Sende- (3) und Empfangsspule (4) anordenbar ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass das Target (2) in seinen Materialeigenschaften und/oder in seinen Dimensionen derart ausgestaltet ist, dass bei Anordnung des Targets zwischen Sendespule (3) und Empfangsspule (4), die in der Empfangsspule (4) induzierte Spannung (Ue) detektierbar reduziert und/oder in etwa Null ist.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Dicke des Targets (2) etwas kleiner als der Abstand (d) zwischen der Sendespule (3) und der Empfangsspule (4) ist, so dass das Target (2) mit Spiel zwischen Sendespule (3) und Empfangsspule (4) durchführbar ist.
4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Target (2) metallisch ausgestaltet ist, so dass im Target Wirbelströme (2) erzeugbar sind.
5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Sensor mehrere Sendespulen (3) aufweist.
6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass der Sensor mehrere Empfangsspulen (4) aufweist.
7. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Anzahl der Sendespulen (3) der Anzahl der Empfangsspulen (4) entspricht.
8. Vorrichtung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Anzahl der Sendespulen (3) ungleich der Anzahl der Empfangsspulen (4) ist.
9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Sensor nur eine Sendespule (3) und/oder nur eine Empfangsspule (4) aufweist.
10. Vorrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Target (2) als codiertes Lineal ausgestaltet ist.
11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass der Code mindestens einzeilig ausgebildet ist.
12. Vorrichtung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, dass der Code nichtlinear ausgestaltet ist.
13. Vorrichtung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass die Sendespule/-n (3) mittels einer Wechselspannung mit konstanter Amplitude gespeist ist/sind.
14. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die SendespuleAn (3), vorzugsweise unabhängig voneinander, mittels einer konstanten Frequenz gespeist ist/sind.
15. Vorrichtung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die SendespuleAn (3), vorzugsweise im Wesentlichen gleichzeitig, mittels unterschiedlicher Frequenzen gespeist ist/sind.
16. Vorrichtung nach Anspruch 15, dadurch gekennzeichnet, dass das/die SignalAe der Empfangsspule (3) mittels eines Frequenzfilters auswertbar ist/sind, so dass das/die SignalAe der Empfangsspule (4) eindeutig einem Signal einer Sendespule (3) zuordnenbar ist/sind.
17. Vorrichtung nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass der Abfall der in den EmpfangsspuleAn induzierten Spannung (4) bei einem zwischen SendespuleAn (3) und Empfangsspule/-n (4) angeordneten Target (2) mittels mindestens eines Pegeldetektors, insbesondere eines Komparators, eines Schmitt-Triggers oder dergleichen, detektierbar ist.
18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, dass der Schwellwert oder die Schwellwerte des/der Pegeldetektors/-en derart gewählt ist, dass bei zwischen mindestens einer Sendespule (3) und einer Empfangsspule (4) angeordnetem Target (2) mindestens ein Pegeldetektor ein Ausgangssignal liefert.
19. Vorrichtung nach Anspruch 17 oder 18, dadurch gekennzeichnet, dass bei einem zwischen mindestens zwei Sendespulen (3) und mindestens zwei Empfangsspulen (3) angeordneten Target (2) zwei Pegeldetektoren ein Ausgangssignal liefern.
20. Vorrichtung nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die Ansteuerung der SendespuleAn (3) und/oder die Auswertung der/des in der/den Empfangsspule/-n (4) induzierten Spannung mittels einer Auswerteelektronik, insbesondere mittels eines Mikroprozessors, erfolgt.
21. Vorrichtung nach einem der Ansprüche 1 bis 20, dadurch gekennzeichnet, dass die SendespuleAn (3) und/oder die EmpfangsspuleAn (4) auf mindestens einer Leiterplatte angeordnet ist/sind.
22. Vorrichtung nach Anspruch 21 , dadurch gekennzeichnet, dass die SendespuleAn und/oder die EmpfangsspuleAn (3) auf die LeiterplatteAn (4) gedruckt und/oder geätzt ist/sind.
23. Vorrichtung nach Anspruch 20 und 21 oder 22, dadurch gekennzeichnet, dass der Mikroprozessor auf mit der/den SendespuleAn (3) und/oder der/den EmpfangsspuleAn (4) auf einer Leiterplatte angeordnet ist.
24. Vorrichtung nach einem der Ansprüche 1 bis 23, dadurch gekennzeichnet, dass die SendespuleAn (3) und die EmpfangsspuleAn (4) auf einem Bogenseg- ment angeordnet sind, so dass Winkel messbar sind.
25. Verfahren zur Detektion der Position eines Targets, mit mindestens einem Sensor, wobei der Sensor mindestens eine Sendeeinrichtung (1) zur Erzeugung eines Signals aufweist und wobei mittels des Signals das Target (2) detektiert wird, d a d u r c h g e k e n n z e i c h n e t, dass die Sendeeinrichtung (1) als eine Sendespule (3) ausgestaltet ist, mittels derer als Signal ein elektromagnetisches Feld erzeugt wird, dass das elektromagnetische Feld mittels einer Empfangsspule (4) detektiert wird und dass zur Detektion des Targets (2) das Target (2) zwischen Sende- (3) und Empfangsspule (4) angeordnet wird.
26. Vorrichtung zur Detektion der Position eines Messobjekts, wobei die Position vorzugsweise eine absolute Position ist, mit mindestens einem Sensor, der mindestens zwei Detektoren zur Detektion des Messobjekts aufweist, wobei die Position des Messobjekts und/oder eines Objekts mittels eines Codes codiert ist, wobei das Messobjekt und/oder der Sensor mit dem Objekt gekoppelt ist, wobei das Objekt bewegbar bezüglich des Messobjekts und/oder des Sensors angeordnet ist und wobei der Code sich im Wesentlichen in Bewegungsrichtung des Objekts erstreckt, d a d u r c h g e k e n n z e i c h n e t, dass sich die Detektoren im Wesentlichen in Bewegungsrichtung des Objekts erstrecken.
27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, dass der Code auf einem Lineal aufgebracht ist.
28. Vorrichtung nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass der Code als ein- oder mehrspuriger Code, vorzugsweise als Binärcode, ausgestaltet ist.
29. Vorrichtung nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass Rasterbreite des Codes im Wesentlichen linear ausgestaltet ist.
30. Vorrichtung nach einem der Ansprüche 26 bis 28, dadurch gekennzeichnet, dass die Rasterbreite des Codes im Wesentlichen nichtlinear ausgestaltet ist.
31. Vorrichtung nach Anspruch 30, dadurch gekennzeichnet, dass die Rasterbreite des Codes abhängig von den Positionen des Messobjekts ausgestaltet ist.
32. Vorrichtung nach einem der Ansprüche 26 bis 31 , dadurch gekennzeichnet, dass der Abstand der Detektoren zueinander der Rasterbreite des Codes entspricht.
33. Vorrichtung nach einem der Ansprüche 26 bis 31 , dadurch gekennzeichnet, dass der Abstand der Detektoren zueinander nicht der Rasterbreite des Codes entspricht.
34. Vorrichtung nach einem der Ansprüche 26 bis 33, dadurch gekennzeichnet, dass die Detektoren linear, vorzugsweise in der Bewegungsrichtung des Objekts, in einer oder in mehreren Zeilen angeordnet sind.
35. Vorrichtung nach einem der Ansprüche 26 bis 34, dadurch gekennzeichnet, dass mittels der Detektoren in einer oder mehreren Stufen Übergänge im Code detektierbar sind.
36. Vorrichtung nach einem der Ansprüche 26 bis 35, dadurch- gekennzeichnet, dass die Detektoren als binäre Detektoren ausgestaltet sind.
37. Vorrichtung nach einem der Ansprüche 26 bis 36, dadurch gekennzeichnet, dass die Detektoren als berührungslos messende Detektoren ausgeführt sind.
38. Verfahren zur Detektion der Position eines Messobjekts, wobei die Position vorzugsweise eine absolute Position ist, mit mindestens einem Sensor, der mindestens zwei Detektoren zur Detektion des Messobjekts aufweist, wobei die Position des Messobjekts und/oder eines Objekts mittels eines Codes codiert wird, wobei das Messobjekt und/oder der Sensor mit dem Objekt gekoppelt wird, wobei das Objekt bezüglich des Messobjekts und/oder des Sensors bewegt wird und wobei der Code sich im Wesentlichen in Bewegungsrichtung des Objekts erstreckt, d a d u r c h g e k e n n z e i c h n e t, dass sich die Detektoren im Wesentlichen in Bewegungsrichtung des Objekts erstrecken.
PCT/DE2001/004657 2000-12-08 2001-12-07 Vorrichtung und verfahren zur detektion der position eines targets WO2002046704A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01991645A EP1340047A1 (de) 2000-12-08 2001-12-07 Vorrichtung und verfahren zur detektion der position eines targets

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
DE10061492.2 2000-12-08
DE10061493.0 2000-12-08
DE10061493 2000-12-08
DE10061492 2000-12-08
DE10154710.2 2001-11-09
DE10154710A DE10154710A1 (de) 2000-12-08 2001-11-09 Vorrichtung und Verfahren zur Detektion der Position eines Targets
DE10158942.5 2001-12-03
DE10158942A DE10158942B4 (de) 2000-12-08 2001-12-03 Vorrichtung und Verfahren zur Detektion der Position eines Messobjekts

Publications (1)

Publication Number Publication Date
WO2002046704A1 true WO2002046704A1 (de) 2002-06-13

Family

ID=27437907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/004657 WO2002046704A1 (de) 2000-12-08 2001-12-07 Vorrichtung und verfahren zur detektion der position eines targets

Country Status (2)

Country Link
EP (1) EP1340047A1 (de)
WO (1) WO2002046704A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121740A2 (de) * 2006-04-26 2007-11-01 Soehnle Professional Gmbh & Co. Kg Kraftmessvorrichtung
FR2916270A1 (fr) * 2007-05-15 2008-11-21 Thales Sa Capteur pouvant detecter la presence d'une piece magnetique et machine electrique comprenant un tel capteur
US7617716B2 (en) 2003-01-21 2009-11-17 Cidra Corporate Services, Inc. Total gas meter using speed of sound and velocity measurements
CN113655531A (zh) * 2021-08-10 2021-11-16 浙江大学 一种基于高频电磁场的周边目标探测定位装置和方法
EP3430713B1 (de) * 2016-03-13 2022-01-26 Servosense (SMC) Ltd. Positionscodierer

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637683A1 (fr) * 1988-10-10 1990-04-13 Alsthom Gec Dispositif pour la mesure de la position angulaire et du deplacement lineaire de deux pieces l'une par rapport a l'autre
EP0452803A1 (de) * 1990-04-11 1991-10-23 FEV Motorentechnik GmbH &amp; Co. KG Positionsaufnehmer
DE9320124U1 (de) * 1993-12-27 1994-02-10 Radovi&cacute;, Zoran, 10715 Berlin Induktiver Weggeber mit großem linearen Bereich
DE19504307A1 (de) * 1995-02-09 1996-08-14 Siemens Ag Einrichtung zur Erfassung von Position und/oder Geschwindigkeit eines beweglichen Geräteteils
EP0825420A1 (de) * 1996-08-21 1998-02-25 General Motors Corporation Absoluter Winkelgeber
US5841274A (en) * 1997-01-29 1998-11-24 Mitutoyo Corporation Induced current absolute position transducer using a code-track-type scale and read head
FR2777649A1 (fr) * 1998-04-16 1999-10-22 Jean Pierre Bazenet Dispositif de mesure incrementale de deplacement et de position de deux objets mobiles en translation l'un par rapport a l'autre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2637683A1 (fr) * 1988-10-10 1990-04-13 Alsthom Gec Dispositif pour la mesure de la position angulaire et du deplacement lineaire de deux pieces l'une par rapport a l'autre
EP0452803A1 (de) * 1990-04-11 1991-10-23 FEV Motorentechnik GmbH &amp; Co. KG Positionsaufnehmer
DE9320124U1 (de) * 1993-12-27 1994-02-10 Radovi&cacute;, Zoran, 10715 Berlin Induktiver Weggeber mit großem linearen Bereich
DE19504307A1 (de) * 1995-02-09 1996-08-14 Siemens Ag Einrichtung zur Erfassung von Position und/oder Geschwindigkeit eines beweglichen Geräteteils
EP0825420A1 (de) * 1996-08-21 1998-02-25 General Motors Corporation Absoluter Winkelgeber
US5841274A (en) * 1997-01-29 1998-11-24 Mitutoyo Corporation Induced current absolute position transducer using a code-track-type scale and read head
FR2777649A1 (fr) * 1998-04-16 1999-10-22 Jean Pierre Bazenet Dispositif de mesure incrementale de deplacement et de position de deux objets mobiles en translation l'un par rapport a l'autre

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617716B2 (en) 2003-01-21 2009-11-17 Cidra Corporate Services, Inc. Total gas meter using speed of sound and velocity measurements
WO2007121740A2 (de) * 2006-04-26 2007-11-01 Soehnle Professional Gmbh & Co. Kg Kraftmessvorrichtung
WO2007121740A3 (de) * 2006-04-26 2007-12-06 Soehnle Professional Gmbh & Co Kraftmessvorrichtung
US7908933B2 (en) 2006-04-26 2011-03-22 Soehnle Professional Gmbh & Co. Kg Load gauge
FR2916270A1 (fr) * 2007-05-15 2008-11-21 Thales Sa Capteur pouvant detecter la presence d'une piece magnetique et machine electrique comprenant un tel capteur
EP3430713B1 (de) * 2016-03-13 2022-01-26 Servosense (SMC) Ltd. Positionscodierer
CN113655531A (zh) * 2021-08-10 2021-11-16 浙江大学 一种基于高频电磁场的周边目标探测定位装置和方法

Also Published As

Publication number Publication date
EP1340047A1 (de) 2003-09-03

Similar Documents

Publication Publication Date Title
AT509101B1 (de) Induktive messeinrichtung für längen- und winkelerfassung
EP2984455B1 (de) Magnetfeldsensorvorrichtung, betätigungsvorrichtung und verfahren zur bestimmung einer relativposition
DE102019209474A1 (de) Skalierungskonfiguration für induktiven Positionscodierer
EP3179214B1 (de) Induktive positionsmesseinrichtung
DE2523163A1 (de) Kapazitiver differentialmesswandler
WO2011054459A1 (de) Vorrichtung und verfahren zur fehlerfreien kapazitiven messwerterfassung
EP2210018B1 (de) Sensor für die schaltstellung einer schaltwelle und entsprechendes ermittlungsverfahren
EP1770373A1 (de) Absolutes Positionsmesssystem
DE102017222063A1 (de) Induktive Positionsmesseinrichtung
DE102015225221A1 (de) Linearwegsensor
EP2236990A2 (de) Positions-/Wegmesssystem
DE102007033745B4 (de) Induktive Drehzahlerkennung
EP3458812B1 (de) Kipptoleranter linearwegsensor
DE102013226203A1 (de) Offsetkompensierte Positionsmessvorrichtung
DE102008063528A1 (de) Sensoranordnung und Verfahren zur Bestimmung der Position und/oder Positionsänderung eines Messobjekts
WO2002046704A1 (de) Vorrichtung und verfahren zur detektion der position eines targets
DE10309679B4 (de) Abtasteinheit zum Abtasten einer Maßverkörperung
DE102011000486A1 (de) Absolutes Positionsmesssystem
DE19612422A1 (de) Potentiometereinrichtung mit einem linear verschiebbaren Stellelement und signalerzeugenden Mitteln
DE102017204871A1 (de) Energiesparendes Positionsbestimmungsverfahren
EP3681777B1 (de) Sensoreinrichtung
DE102020108461A1 (de) Induktiver Linearwegsensor
DE102013222197A1 (de) Positionsmesseinrichtung
DE10154710A1 (de) Vorrichtung und Verfahren zur Detektion der Position eines Targets
EP0172998A1 (de) Induktiver Sensor und Verfahren zur berührungslosen, dreidimensionalen Positionserfassung von Löchern, Bohrungen, Bolzen, Niete u.ä. in Metallteilen mittels eines solchen Sensors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001991645

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001991645

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001991645

Country of ref document: EP