WO2002045202A1 - Noncontact rotary joint - Google Patents

Noncontact rotary joint

Info

Publication number
WO2002045202A1
WO2002045202A1 PCT/JP2001/010333 JP0110333W WO0245202A1 WO 2002045202 A1 WO2002045202 A1 WO 2002045202A1 JP 0110333 W JP0110333 W JP 0110333W WO 0245202 A1 WO0245202 A1 WO 0245202A1
Authority
WO
WIPO (PCT)
Prior art keywords
coaxial
metal
cavity
metal cavity
line
Prior art date
Application number
PCT/JP2001/010333
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Ohmine
Toru Fukasawa
Masataka Ohtsuka
Eiji Morimoto
Moriyasu Miyazaki
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Publication of WO2002045202A1 publication Critical patent/WO2002045202A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/06Movable joints, e.g. rotating joints
    • H01P1/062Movable joints, e.g. rotating joints the relative movement being a rotation
    • H01P1/066Movable joints, e.g. rotating joints the relative movement being a rotation with an unlimited angle of rotation

Definitions

  • the present invention relates to a non-contact aperture joint for transmitting high-frequency signals between a fixed part and a rotating part rotatably supported by the fixed part.
  • Satellite communications such as BS (Broadcasting Satellite) and CS (Communication Satellite) have become widespread, and digital BS, digital CS, and terrestrial digital broadcasting are also planned. The demand for doing this will increase in the future.
  • BS Broadcasting Satellite
  • CS Common Satellite
  • the azimuth angle requires the beam to be directed in all directions in the horizontal plane, so a method of mechanically rotating the antenna element in the azimuth plane is generally used. Therefore, a rotatable mouth-to-mouth joint is required to receive or transmit a signal with the antenna element.
  • the contact type (1) has excellent transmission characteristics, but the number of rotations is limited due to wear of the contacts. For this reason, there is a limit as a mobile-mounted antenna that changes the direction of the beam at all times as the mobile moves. Therefore, the non-contact antenna of (2) is preferable as the mobile antenna.
  • the non-contact antenna of (2) is preferable as the mobile antenna.
  • FIG. 21 there is a configuration in which coaxial lines are connected in a non-contact manner.
  • the first coaxial line inner conductor 50 is provided with a convex portion
  • the second coaxial line inner conductor 51 is provided with a concave portion, and they are connected in a non-contact manner by fitting them together with an air layer or a dielectric layer interposed therebetween.
  • the wavelength of the transmission signal is ⁇
  • the length of the uneven portion 52 is set to about / 4, so that a choke is formed. Therefore, the leakage to the outside is small while being non-contact.
  • first coaxial line outer conductor 53 and the second coaxial line outer conductor 54 are connected in a non-contact manner by providing an uneven portion 55 (a cutout portion) so as to complement each other.
  • a non-contact rotary joint it can rotate freely and can transmit a high-frequency signal in a non-contact manner.
  • it has features that can be downsized.
  • Fig. 22 shows a conventional example using a waveguide.
  • coaxial probes are inserted into the center of the circular cavity 60 from both sides. Since the circular cavity is excited by the T M01 mode, the magnetic field is distributed symmetrically around the probe, and the probes are coupled in a non-contact manner.
  • 61 is a choke structure that holds the rotating part.
  • the conventional configuration shown in FIG. 21 has a problem in that the processing accuracy and assembling accuracy of the concavo-convex portions are important, and the characteristics are greatly changed due to the misalignment of the center axis of the coaxial line. If the axis deviation increases, contact will occur at the non-contact part, and the characteristics will change significantly. Especially in the low frequency band, the axial deviation becomes a serious problem because the uneven portion becomes long.
  • the present invention has been made in order to solve the above problems, and has been made in consideration of a coaxial probe. It is an object of the present invention to provide a small-sized non-contact port joint having a small increase in transmission loss even when a displacement occurs.
  • Another object of the present invention is to provide a non-contact rotary joint in which the outer conductor and the inner conductor of the coaxial line are provided with uneven portions, in particular, the diameter of the conductor in the line can be reduced and the processing is relatively easy. I do. Disclosure of the invention
  • the first invention is a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength of a transmission signal and having at least a pair of opposing surfaces, and a pair of opposing surfaces of the metal cavity.
  • a first coaxial line provided with an outer coaxial conductor fixed and an inner coaxial conductor inserted into the metal cavity to form a coaxial feed probe having a line length of about / 4,
  • the outer coaxial conductor is rotatable, and the inner coaxial conductor is rotated so that it does not contact the coaxial feed probe of the first coaxial line.
  • a second coaxial line that is inserted into the metal cavity so as to be shifted in center and overlap with an interval in the axial direction, and that is provided so as to form a coaxial feed probe having a line length of about / 4.
  • the second invention is a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength ⁇ of a transmission signal and having at least a pair of opposing surfaces, and a pair of opposing surfaces of the metal cavity.
  • a first coaxial line provided with an outer coaxial conductor fixed and an inner coaxial conductor inserted into the metal cavity to form a coaxial feed probe having a line length of about ⁇ / 4;
  • a metal plate that is rotatably arranged substantially parallel to the outside of the other pair of opposing surfaces of the pair of surfaces and forms a choke structure having a length of about ⁇ 4 at a gap between the metal cavity and the metal plate;
  • An outer coaxial conductor is fixed to the above-mentioned metal plate so as to be rotatable together with the metal plate from the side opposite to the coaxial line of the first coaxial line so that the coaxial inner conductor does not contact the coaxial power supply probe of the first coaxial line.
  • Non-contact mouth one-piece joint characterized by is there.
  • a third invention resides in the non-contact port one-joint of the first or second invention, wherein the coaxial power supply probe of the second coaxial line is arranged in the center of the metal cavity.
  • a fourth invention resides in a non-contact opening overnight joint of the third invention, characterized in that a dielectric spacer is entirely inserted into a gap between the surface of the metal cavity and the metal plate.
  • the metal cavity has a columnar shape
  • the metal plate has a disk shape
  • the metal plate is bent so as to extend a tip and provide a gap between the metal plates along the metal cavity shape.
  • a non-contact opening and free joint according to any one of the second to fourth inventions, characterized in that a dielectric spacer is provided between the bent portion and the metal cavity.
  • the metal cavity has a cylindrical shape and the metal plate has a disk shape, and the metal plate is bent so that a tip thereof is extended and a gap is provided along the metal cavity shape.
  • a seventh invention resides in the non-contact wire joint according to any one of the first to sixth inventions, wherein a tip of the coaxial power supply probe is thickened.
  • An eighth invention is the non-contact low-joint joint according to any one of the first to sixth inventions, characterized in that a small metal plate is loaded at the tip of the coaxial power supply probe and the capacitance is loaded.
  • the ninth invention is characterized in that the tip of the coaxial power supply probe of the first coaxial line is short-circuited inside the metal cavity, and the non-contact port of any one of the first to sixth inventions is provided. At the joint.
  • a tenth aspect of the present invention is the non-contact rotatable device according to any one of the first to ninth aspects, further comprising an impedance matching mechanism for changing a space shape in the cavity. At the joint.
  • the eleventh aspect of the present invention is that the first invention is formed so as to face each other and to form a space having an inner diameter shorter than 1 Z 4 of the wavelength of a transmission signal inside, each having a circular bottom surface and side surfaces extending along the periphery thereof.
  • a coaxial outer conductor is fixed to the bottom surface of two metallic cup-shaped members with different diameters and one metallic cup-shaped member, and a coaxial inner conductor is inserted into the above metal cavity, and a coaxial cable with a line length of about / 4
  • a first coaxial line provided to form a power feeding probe, and a coaxial outer conductor rotatable on the bottom surface of the other metallic force-shaped member from the side opposite to the first coaxial line, A line length of about / 4 inserted in the metal cavity so that the coaxial inner conductor is shifted so that the coaxial inner conductor does not contact the coaxial power supply probe of the first coaxial line and overlaps at an interval in the axial direction.
  • a second coaxial line, and a dielectric spacer provided in a gap between the side surfaces of the two metal-shaped members. At the joint.
  • a twelfth invention is a non-contact port for connecting two coaxial lines rotatably about an axis, which is a non-contact port, and is complementary to and between the coaxial outer conductor tips of both coaxial lines.
  • a notch is provided so that it can be rotated, and the tip of the coaxial inner conductor of the non-rotating coaxial line is bent close to the tip of the coaxial inner conductor of the rotating coaxial line so as to be electromagnetically coupled.
  • Non-contact mouth is one of the special features.
  • FIGS. 1 to 3 are diagrams for explaining a non-contact opening and closing joint according to Embodiment 1 of the present invention.
  • FIGS. 4 to 7 are diagrams for explaining a non-contact opening joint according to a second embodiment of the present invention.
  • FIG. 8 is a diagram showing a schematic configuration of another example of the non-contact opening and closing joint according to the second embodiment of the present invention.
  • FIG. 9 is a diagram showing a schematic configuration of a non-contact opening joint according to Embodiment 3 of the present invention.
  • FIG. 10 is a diagram showing a schematic configuration of a non-contact opening one joint according to a fourth embodiment of the present invention.
  • FIG. 11 is a diagram showing a schematic configuration of a non-contact wire joint according to Embodiment 5 of the present invention.
  • FIG. 12 is a diagram showing a schematic configuration of a non-contact port overnight joint according to Embodiment 6 of the present invention.
  • FIG. 13 is a diagram showing a schematic configuration of a non-contact opening and closing joint according to Embodiment 7 of the present invention.
  • FIGS. 14 to 16 are diagrams for explaining a non-contact port overnight joint according to Embodiment 8 of the present invention.
  • FIG. 17 is a diagram showing a schematic configuration of a non-contact opening one joint according to a ninth embodiment of the present invention.
  • FIG. 18 is a diagram showing a schematic configuration of a non-contact opening joint according to Embodiment 10 of the present invention.
  • FIG. 19 is a diagram showing a schematic configuration of a non-contact roller joint according to Embodiment 11 of the present invention.
  • FIG. 20 is a diagram showing a schematic configuration of a non-contact rotary joint according to Embodiment 12 of the present invention.
  • FIG. 21 is a diagram showing a schematic configuration of a conventional non-contact rotary joint having a configuration in which coaxial lines are connected in a non-contact manner.
  • FIG. 22 is a diagram showing a schematic configuration of a conventional non-contact aperture joint using a waveguide.
  • Example 1 a non-contact type rope joint according to the present invention will be described with reference to the drawings according to each embodiment.
  • Example 1
  • FIG. 1 to 3 are schematic configuration diagrams showing a first embodiment of the present invention.
  • FIG. 1 is a perspective view
  • FIG. I a top view
  • FIG. 3 is a sectional view taken along the line AA ′.
  • reference numeral 1 denotes a first outer coaxial conductor
  • 2 denotes a first inner coaxial conductor
  • 4 is a first coaxial power supply probe
  • 5 is a metal cavity
  • 6 is a fixed connection part for connecting the metal cavity 5 and the first coaxial outer conductor 1.
  • Reference numeral 7 denotes a second outer coaxial conductor
  • 8 denotes a second inner coaxial conductor
  • Reference numeral 10 denotes a second coaxial power supply probe
  • 11 denotes a rotating unit.
  • the outer conductor 1 of the first coaxial line 3 is connected and fixed to the metal cavity 5, and the tip of the inner conductor 2 is inserted into the cavity 5 as the first coaxial power supply probe 4.
  • the tip of the probe is open. If the probe length is about / 4, where ⁇ is the wavelength of the transmission signal, the probe 5 is strongly radiated into the cavity 5.
  • the inner conductor 8 of the second coaxial line 9 is inserted as the second coaxial power supply probe 10 from the opposed position.
  • the first and second coaxial power supply probes 4, 10 are arranged such that their axes are shifted so that they do not come into contact with each other and overlap with an interval in the axial direction. By making the tips of the probes overlap each other in the axial direction, the arrangement is such that electromagnetic coupling is achieved, and the coupling between the probes is characterized by being strong.
  • this cavity size can be reduced and the inner diameter can be reduced to about / 4 to about / 6 or less. Bringing it closer than the two power-supply pro- Fallss will increase the coupling and reduce the cavity accordingly.
  • the cavity is smaller than the cut-off, and the cavity has such a size that no resonance mode exists. The operation is different from that using the resonance of the tee.
  • the present invention is a method in which the power supply probes are closely coupled by bringing them close to each other, and the cavity is to assist this coupling. Therefore, there is a feature that does not largely depend on the cavity size.
  • FIG. 4 to 7 show the configuration of the second embodiment of the present invention.
  • FIG. 4 is a perspective view
  • FIG. 5 is a cross-sectional view taken along line AA ′
  • FIG. 6 shows transmission characteristics
  • FIG. 7 shows a bandwidth.
  • Reference numeral 12 denotes a metal plate
  • reference numeral 14 denotes an upper surface of the cavity
  • a spacer 13 is provided between the two to support a gap.
  • Reference numeral 15 denotes a choke structure.
  • the second coaxial outer conductor 7 is fixed to the metal plate 12, and these serve as rotating parts.
  • the metal plate 12 is provided with a hole having substantially the same size as the outer coaxial conductor 7, and the inner coaxial conductor 8 is inserted through the inside of the cavity 5, and the second coaxial feeder 10 10 Works as
  • the choke structure 1 of ⁇ / 4 Becomes 5. That is, radiation from the gap can be suppressed.
  • the length of the chuck structure is approximately; / 4, and the size may be optimized by reducing the radiation from the choke portion by using a derivative spacer or the like.
  • FIG. 6 shows calculated values and measured values of the transmission characteristics of the non-contact rotary joint of the present embodiment shown in the figure.
  • the inside diameter of the cavity is as small as about / 4, it can be seen that good transmission characteristics are obtained. Also, the calculated and measured values agree well .
  • Fig. 6 shows an example, but it has been confirmed by calculation that broadband characteristics can be obtained even if the inner diameter of the cavity is increased to about / 6.
  • Figure 7 shows the calculated bandwidth when the cavity dimensions are changed.
  • the bandwidth indicates a band where the transmission loss is 0.5 dB or less.
  • the bandwidth is widest when the cavity size is about 0.25 wavelength. In this case, an extremely wide band characteristic of about 60% is obtained. Broadband characteristics can be obtained even if the cavity size is set to about 0.3 wavelength, but 0.25 wavelength or less is desirable for further miniaturization.
  • FIG. 8 shows an embodiment in which a square cavity 17 is used.
  • the cutoff can be achieved by making the rectangular waveguide width W (the width inside the cavity in the direction perpendicular to the line connecting the two feeding probes) shorter than / 4, but the distance between the probes can be reduced. By arranging them in this way, it is possible to achieve miniaturization by using electromagnetic coupling. Also, the rectangular waveguide length L can be made shorter than Pen 2 by bringing two feeding probes close to each other.
  • the choke structure has an effect that radiation from the gap can be significantly reduced.
  • FIG. 9 shows the configuration of Embodiment 3 of the present invention.
  • a second coaxial line 9 including a second outer coaxial conductor 7, an inner conductor 8, and a power supply probe 10 is arranged at the center of the metal cavity 5.
  • a choke structure constituted by setting the distance from the center of the second coaxial inner conductor 8 to the end of the gap formed by the metal plate 12 and the cavity upper surface 1 to be approximately ⁇ / 4 is obtained. Become symmetric.
  • FIG. 10 shows the configuration of Embodiment 4 of the present invention.
  • the diameter of the choke structure is larger than the inner diameter of the cavity because of the choke structure. .
  • the diameter is about ⁇ / 2, so the size is limited by this choke structure. Therefore, a choke structure 19 is provided in which a dielectric spacer 18 is entirely inserted from the center of the second coaxial inner conductor 8 into a gap formed by the metal plate 12 and the cavity upper surface 14.
  • FIG. 11 shows a configuration of a fifth embodiment of the present invention.
  • reference numeral 25 denotes a bent portion at the tip of the metal plate 12.
  • the miniaturization was achieved by inserting the dielectric spacer 18 into the entire body.
  • the gap with the dielectric spacer 18 caused the gas gap to decrease.
  • the resulting performance may change. Therefore, the tip of the metal plate 12 is extended to provide a bent portion 25, and the distance from the center of the second inner coaxial conductor 8 to the tip of the metal plate of the bent portion 25 is set to about ⁇ 4, thereby reducing the size. Can be achieved.
  • a gap is also provided between the bent portion 25 and the metal cavity 5, and the dielectric spacer 72 is inserted here. Further, the metal cavity 5 needs to have a cylindrical shape and the metal plate 12 needs to have a disk shape. '
  • FIG. 12 shows the configuration of Embodiment 6 of the present invention.
  • 26 is a bearing.
  • the distance from the center of the second coaxial inner conductor 8 to the tip of the choke structure was set to / 4, and the open choke was opened at the tip.
  • the tip is further extended to form a short-circuited short choke / 2.
  • the shape of the metal cavity 5 is cylindrical and the metal plate 1 2 must be disk-shaped .
  • the metal plate 12 has a bent part 25 that is bent so that a tip is extended and a gap is provided along the shape of the metal cavity 5.
  • the metal cavity 5 has a flange portion 81 that is bent outward from the bent portion 25 of the metal plate 12 and extends outward.
  • a bearing is inserted into the side, that is, the short-circuited portion, and has a function to facilitate rotation.
  • the distance from the center of the coaxial inner conductor 8 of the second coaxial line 9 to the bearing 26 was about ⁇ / 2.
  • Embodiment 7 Therefore, radiation can be completely suppressed by using a person / 2-length short choke, and a shield structure is obtained, which is effective. Embodiment 7.
  • FIG. 13 shows the configuration of Embodiment 7 of the present invention.
  • reference numeral 27 denotes a coaxial power supply probe whose first tip is thickened
  • reference numeral 28 denotes a coaxial power supply probe whose second tip is thickened.
  • FIGS. 14 to 16 show the configuration of the eighth embodiment of the present invention.
  • reference numeral 30 denotes a first capacitively loaded power supply probe
  • 31 denotes a second capacitively loaded power supply probe.
  • FIGS. 15 and 16 show enlarged and cross-sectional views of the capacitance-loaded power supply probes 30 and 31.
  • FIG. In the figure, 34 is a coaxial inner conductor of each of the coaxial lines 3 and 9
  • 35 is a small metal plate for loading a capacitance
  • 36 and 37 are short pins for matching.
  • the length of the power supply probe in the metal cavity 5 needs to be ⁇ / 4 of the transmission signal, but by loading a small metal plate 35 at the tip, the capacity is increased and the overall length is shortened. can do. If the total length is shortened, the impedance also decreases. Therefore, in order to match the coaxial lines 3 and 9, short pins 36 and 37 for matching are provided. Therefore, the use of the capacitance-loaded power supply probe can reduce the probe height, and thus has the effect of greatly reducing the metal cavity height.
  • FIG. 17 shows the configuration of the ninth embodiment of the present invention.
  • 38 is a short-circuit type power supply probe.
  • power is supplied by short-circuiting the tip inside the metal cavity 5. Since a magnetic field is generated by this power supply, the second coaxial power supply probe 10 is excited. Since the coaxial feed probe of the first coaxial line 3 is configured close to the inner side surface of the metal cavity 5, it is easy to reduce the size.
  • FIG. 18 shows the configuration of embodiment 10 of the present invention.
  • reference numerals 40a, 40b, 40c, and 40d are matching blocks provided in the metal cavity 5. Reducing the cavity changes the impedance of the coaxial feed probe, making matching difficult. Therefore, matching blocks 40a, 40b, 40c, and 4Od for impedance matching are provided in the cavity, or the metal cavity 5 has a step structure inside (these are used for impedance matching). Mechanism) to facilitate alignment.
  • FIG. 19 shows the configuration of Embodiment 11 of the present invention. Although the device in which the choke structure is reduced by using the dielectric spacer in the fourth embodiment of FIG. 10 is shown, the same configuration as shown in FIG. 19 is possible.
  • 91 and 92 are fitted opposite each other and have an inside diameter inside. Are formed into two spaces with different diameters, each of which has a circular bottom surface and a side surface extending along the circumference.
  • a dielectric spacer 70 is inserted in the gap between the side surfaces of the members 91 and 92.
  • the first coaxial line 3 is fixed to the metallic cup-shaped member 91, and the metallic cup-shaped member 92 is formed on the second coaxial line 9 and is configured to rotate together with the coaxial line 9. I have.
  • the choke structure can be reduced by increasing the dielectric constant using the dielectric spacer.
  • Example 1 2.
  • FIG. 20 shows the configuration of Embodiment 12 of the present invention.
  • This embodiment relates to a non-contact port joint having irregularities on the outer conductor and inner conductor of the coaxial line.
  • 41 is the first coaxial power supply probe
  • 42 is the second coaxial power supply probe.
  • Coaxial power supply probe 4 3 is a non-contact portion
  • 4 4 is the first outer coaxial conductor with unevenness (notch)
  • 4 5 is the second outer coaxial conductor with unevenness
  • 4 6 is a choke Department.
  • the first outer coaxial conductor 44 is fixed, and the second outer coaxial conductor 45 is rotated. Therefore, the second coaxial power supply probe 42 is located at the center of the outer conductor. On the other hand, in order to make the first coaxial power supply probe 41 non-contact, the tip is bent and electromagnetically coupled so as not to contact the second power supply probe.
  • a gap can be provided between the two coaxial lines at the ends of the coaxial outer conductors that are complementary to each other.
  • the notch K that forms the choke structure is provided as described above, and the axis is shifted so that the coaxial inner conductor of the rotating coaxial line does not contact the tip of the coaxial inner conductor of the non-rotating coaxial line, and the gap in the axial direction is shifted.
  • a bent end portion L bent in a crank shape so as to overlap with the opening is provided. It is also conceivable that the above-mentioned cavity is made smaller and the same dimensions as the outer coaxial conductor.
  • the power supply probe is bent in a crank shape.
  • the power supply probe may be bent smoothly, and the two power supply probes may be electromagnetically coupled close to each other so as not to be in contact with each other. Therefore, since the tip of the power supply probe is bent to supply power in a non-contact manner, the diameter of the coaxial conductor and, consequently, the coaxial line can be reduced, and the production is facilitated.
  • a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength of a transmission signal and having at least a pair of opposing surfaces;
  • a first coaxial outer conductor is fixed to one of the pair of opposing surfaces, and an inner coaxial conductor is inserted into the metal cavity to form a coaxial feeder having a line length of about / 4.
  • a coaxial power supply probe of the first coaxial line, the outer coaxial conductor being rotatable on the other of the pair of opposing surfaces of the metal cavity from the side opposite to the first coaxial line.
  • the second coaxial cable is inserted into the metal cavity so as to be shifted so that it does not come into contact with the metal core and overlap with an interval in the axial direction, and provided to form a coaxial power supply probe having a line length of about / 4.
  • Tracks and The non-contact opening and joint is a characteristic of the high-frequency signal transmission by electromagnetic coupling without using resonance of the cavity, so transmission is possible even when the coaxial probe is displaced. There is an effect that the increase in loss is small and the size can be significantly reduced as compared with the conventional case.
  • the inner diameter or the waveguide width is shorter than 1/4 of the wavelength of the transmission signal, and the metal cavity has at least a pair of opposing surfaces.
  • a first coaxial line provided on one of the surfaces so that an outer coaxial conductor is fixed and an inner coaxial conductor is inserted into the metal cavity to form a coaxial feed probe having a line length of about / 4;
  • a metal plate that is rotatably arranged substantially parallel to the outside of the other pair of opposing surfaces of the metal cavity and forms a choke structure having a length of about man / 4 in a gap between the surfaces of the metal cavity;
  • An outer coaxial conductor is fixed to the metal plate from the side opposite to the first coaxial line so as to be rotatable together with the metal plate, and the inner coaxial conductor does not contact the coaxial power supply probe of the first coaxial line.
  • the coaxial power supply probe of the second coaxial line is disposed at the center of the metal cavity, the symmetry is improved, and there is an effect that characteristics independent of rotation can be obtained.
  • the dielectric spacer is entirely inserted into the gap between the surface of the metal cavity and the metal plate, it is possible to reduce the size by increasing the dielectric constant.
  • the metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a tip extended so that a gap is provided along the metal cavity shape.
  • a dielectric spacer is provided between the bent portion and the metal cavity, so that the size can be reduced, especially when the gap between the metal plate and the metal cavity changes.
  • the metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a tip extended to provide a gap therebetween along the metal cavity shape.
  • the metal cavity has a flange portion that is bent outward from the bent portion of the metal plate and extends outward.
  • the distance from the center of the coaxial inner conductor of the second coaxial line to the bearing is approximately 1/2, so by using a short choke of person / 2 length, radiation can be completely eliminated. It is possible to obtain a shield structure, which is effective.
  • the tip of the coaxial power supply probe is thickened, so that there is an effect that the operating frequency band can be broadened.
  • the eighth invention since a small metal plate is loaded at the tip of the coaxial power supply probe and the volume is loaded, the height of the probe can be reduced, and the height of the metal cavities can be greatly reduced.
  • the tip of the coaxial power supply probe of the first coaxial line is short-circuited inside the metal cavity, the probe size can be reduced, and the metal cavity can be reduced. Further, according to the tenth aspect, since the impedance matching mechanism for changing the space shape in the cavity is provided, there is an effect that impedance matching can be achieved even when the cavity is reduced.
  • the inner surface is formed so as to face each other to form a space whose inner diameter is shorter than 1/4 of the wavelength of the transmission signal, and each has a circular bottom surface and side surfaces extending along the periphery thereof.
  • a coaxial outer conductor is fixed to the bottom surface of two metallic cap-shaped members having different diameters, and a coaxial inner conductor is inserted into the above-mentioned metal cavity.
  • An outer coaxial conductor rotates on a first coaxial line provided to form a coaxial feed probe having a line length, and on the bottom surface of the other metallic force-up shaped member from the side opposite to the first coaxial line.
  • the coaxial inner conductor is inserted into the metal cavity so that it does not contact the coaxial power supply probe of the first coaxial line, and is inserted into the metal cavity so as to overlap at an interval in the axial direction.
  • a coaxial feed probe with a line length A non-contacting linear joint comprising: a second coaxial line provided so as to provide a gap between the side surfaces of the two metallic cup-shaped members; Therefore, the choke structure can be reduced by increasing the dielectric constant using a dielectric spacer.
  • a non-contact one-to-one joint for rotatably connecting two coaxial lines about an axis, wherein the two coaxial lines are connected to tips of coaxial outer conductors of both coaxial lines. Notches are provided so that they are complementary to each other and a gap is provided between them so that they can rotate, and the end of the coaxial inner conductor of the non-rotating coaxial line is brought close to the tip of the coaxial inner conductor of the rotating coaxial line. Since it is a non-contact low joint, which is characterized by being bent so as to be connected, it is possible to reduce the diameter of the coaxial inner conductor and, consequently, the coaxial line, and also has the effect of facilitating manufacturing.

Abstract

A noncontact rotary joint comprising a metallic cavity (5) having an inside diameter or the width of a waveguide shorter than a quarter of the wavelength μ of a transmission signal, a first coaxial line (3) provided on one of a pair of opposite faces of the metallic cavity such that the coaxial outer conductor is fixed and the coaxial inner conductor is inserted into the metallic cavity to form a coaxial feeder probe having a line length of about μ/4, and a second coaxial line (9) provided from the opposite side of the first coaxial line to the other face of the pair of opposite faces of the metallic cavity such that the coaxial outer conductor is rotatable and the coaxial inner conductor overlaps the coaxial feeder probe of the first coaxial line through an interval in the axial direction to form a coaxial feeder probe having a line length of about μ/4.

Description

明 細 書  Specification
非接触口一タリ一ジョイント 技術分野  Non-contact port joints Technical field
本発明は、 固定部と、 固定部に回転自在に支持された回転部との間で高周波信 号を伝送する非接触口一夕リージョイントに関する。 背景技術  The present invention relates to a non-contact aperture joint for transmitting high-frequency signals between a fixed part and a rotating part rotatably supported by the fixed part. Background art
近年、 B S (Broadcasting Satellite)、 C S (Communication Satellite)等の衛 星通信が普及し、 またデジタル B S、 デジタル C S、 さらに地上波デジタル放送 も計画されており、 自動車などの移動体でも放送受信あるいは通信を行う要望は 今後益々高くなる。  In recent years, satellite communications such as BS (Broadcasting Satellite) and CS (Communication Satellite) have become widespread, and digital BS, digital CS, and terrestrial digital broadcasting are also planned. The demand for doing this will increase in the future.
ここで、 これらの放送、 通信を十分な強度で受信するためには、 ビーム幅の狭 い高利得のアンテナを用いなければならない。 一方、 自動車などの移動体では、 衛星の方向が車両の走行に伴い変化する。 そこで、 移動体において、 放送を受信 するためには、 移動体の動きに応じてビームの方位角および仰角を制御して、 常 にビームを衛星方向に保つ必要がある。  Here, in order to receive these broadcasts and communications with sufficient strength, a high-gain antenna with a narrow beam width must be used. On the other hand, in mobiles such as automobiles, the direction of the satellite changes as the vehicle travels. Therefore, in order to receive a broadcast in a mobile object, it is necessary to control the azimuth and elevation of the beam according to the movement of the mobile object, and always keep the beam in the satellite direction.
このうち、 方位角については水平面内の全ての方向にビームを向ける必要があ るため、 アンテナ素子を方位角面において機械的に回転させる方法が一般に使用 されている。 従って、 アンテナ素子で信号を受信あるいは送信するために、 回転 自在の口一夕リ一ジョイントが必要になる。  Of these, the azimuth angle requires the beam to be directed in all directions in the horizontal plane, so a method of mechanically rotating the antenna element in the azimuth plane is generally used. Therefore, a rotatable mouth-to-mouth joint is required to receive or transmit a signal with the antenna element.
高周波信号を伝送する口一夕リージョイントには、 大別して、  Mouth and night joints that transmit high-frequency signals are roughly divided into
( 1 )機械的な接点によって信号を伝送するもの (接触型)  (1) Signals transmitted by mechanical contacts (contact type)
( 2 )電磁結合によって非接触で信号を伝送するもの (非接触型)  (2) Non-contact signal transmission by electromagnetic coupling (non-contact type)
の 2種類がある。 - このうち( 1 )の接触型は、 伝送特性は優れているが接点の摩耗により使用回転 数が制限される。 このため、 移動体の走行に伴い始終ビームの方向を変更する移 動体搭載用アンテナとしては限界がある。 従って、 移動体用アンテナとしては、 ( 2 )の非接触型が好ましい。 一方、 移動体用アンテナの非接触型の口一夕リ一ジョイントに要求されること として、 There are two types. -Of these, the contact type (1) has excellent transmission characteristics, but the number of rotations is limited due to wear of the contacts. For this reason, there is a limit as a mobile-mounted antenna that changes the direction of the beam at all times as the mobile moves. Therefore, the non-contact antenna of (2) is preferable as the mobile antenna. On the other hand, as a requirement for a non-contact mouth-to-mouth joint of a mobile antenna,
( 1 )伝送損失が少ない  (1) Low transmission loss
( 2 )回転によるレベル変動等の方向依存性が少ない  (2) Direction dependence such as level fluctuation due to rotation is small
( 3 )所望帯域内での伝送特性の周波数特性の変化が少ない  (3) Little change in frequency characteristics of transmission characteristics within desired band
ことが重要である。 This is very important.
従来例として、 図 2 1に示すように、 同軸線路を非接触にて接続する構成があ る。 第 1の同軸線路内導体 5 0に凸部、 第 2の同軸線路内導体 5 1に凹部を設け 、 両者を空気層、 あるいは誘電体層を挟んで勘合させることで非接触にて接続さ れる。 この凹凸部分 5 2の長さは伝送信号の波長を λとすると約え /4とするこ とでチョークが構成されるため、 非接触でありながら外部への漏洩が少ない。 又、 第 1の同軸線路外導体 5 3と第 2の同軸線路外導体 5 4も同様に相補うよ うに凹凸部分 5 5 (切り欠き部)を設けることで非接触にて接続される。 このよう な非接触ロータリージョイントによれば、 自由に回転でき、 高周波信号を非接触 で伝送できる。 特に、 小形化できる特徴を持っている。  As a conventional example, as shown in FIG. 21, there is a configuration in which coaxial lines are connected in a non-contact manner. The first coaxial line inner conductor 50 is provided with a convex portion, and the second coaxial line inner conductor 51 is provided with a concave portion, and they are connected in a non-contact manner by fitting them together with an air layer or a dielectric layer interposed therebetween. . When the wavelength of the transmission signal is λ, the length of the uneven portion 52 is set to about / 4, so that a choke is formed. Therefore, the leakage to the outside is small while being non-contact. Similarly, the first coaxial line outer conductor 53 and the second coaxial line outer conductor 54 are connected in a non-contact manner by providing an uneven portion 55 (a cutout portion) so as to complement each other. According to such a non-contact rotary joint, it can rotate freely and can transmit a high-frequency signal in a non-contact manner. In particular, it has features that can be downsized.
又、 導波管を用いた従来例を図 2 2に示す。 円形キヤビティ 6 0の中央部に両 側から同軸プローブを挿入した構成である。 円形キヤビティは T M 0 1モードに より励振されるため、 磁界はプローブの回りに対称に周回するように分布するた め、 プローブは非接触により結合される。 6 1は回転部を保持するチョーク構造 である。  Fig. 22 shows a conventional example using a waveguide. In this configuration, coaxial probes are inserted into the center of the circular cavity 60 from both sides. Since the circular cavity is excited by the T M01 mode, the magnetic field is distributed symmetrically around the probe, and the probes are coupled in a non-contact manner. 61 is a choke structure that holds the rotating part.
しかしながら、 図 2 1に示すの従来の構成では、 凹凸部分の加工精度、 組立て 精度が重要であり、 同軸線路の中心軸ずれにより特性が大きく変化する問題があ る。 軸ずれが大きくなると非接触部に接触が生じ、 特性が大きく変化する。 特に 低周波数帯では、 凹凸部分が長くなるため、 軸ずれが大きな問題となる。  However, the conventional configuration shown in FIG. 21 has a problem in that the processing accuracy and assembling accuracy of the concavo-convex portions are important, and the characteristics are greatly changed due to the misalignment of the center axis of the coaxial line. If the axis deviation increases, contact will occur at the non-contact part, and the characteristics will change significantly. Especially in the low frequency band, the axial deviation becomes a serious problem because the uneven portion becomes long.
又、 図 2 2に示した従来の構成では、 Τ Μ 0 1モードを利用するため、 キヤビ ティ直径が約入( 1波長)程度になり(モ一ド kc= 2 · 4 0 )、 更に回転部にはチョ ーク構造が必要であるため、 特に周波数が低くなるに従い、 装置全体の寸法が大 幅に大きくなる問題があった。  In addition, in the conventional configuration shown in FIG. 22, since the Μ Μ 01 mode is used, the cavity diameter becomes approximately on (one wavelength) (mode kc = 2 · 40), and further rotation Since the part requires a choke structure, there has been a problem that the dimensions of the entire device become significantly larger, especially as the frequency becomes lower.
本発明は、 上記問題点を解消するためになされたものであり、 同軸プローブの 位置ずれが発生した場合でも伝送損失の増加が少なくかつ小形の非接触口一夕リ 一ジョイントを提供することを目的とする。 The present invention has been made in order to solve the above problems, and has been made in consideration of a coaxial probe. It is an object of the present invention to provide a small-sized non-contact port joint having a small increase in transmission loss even when a displacement occurs.
また、 同軸線路外導体および内導体に凹凸部を設ける非接触ロータリージョイ ントにおいて、 特に線路内導体を細径化できかつ加工が比較的容易な非接触ロー 夕リージョイントを提供することを目的とする。 発明の開示  Another object of the present invention is to provide a non-contact rotary joint in which the outer conductor and the inner conductor of the coaxial line are provided with uneven portions, in particular, the diameter of the conductor in the line can be reduced and the processing is relatively easy. I do. Disclosure of the invention
第 1の発明は、 内径または導波管幅が伝送信号の波長人の 1 /4より短く、 少 なくとも対向する一対の面を有する金属キヤビティと、 この金属キヤビティの対 向する一対の面の一方に、 同軸外導体が固定され同軸内導体が上記金属キヤビテ ィ内に挿入され約え / 4の線路長の同軸給電プローブを形成するように設けられ た第 1の同軸線路と、 この第 1の同軸線路と反対側から上記金属キヤビティの対 向する一対の面の他方に、 同軸外導体が回転可能に、 同軸内導体が上記第 1の同 軸線路の同軸給電プローブと接触しないように軸芯をずらしかつ軸方向に関して 間隔をあけて重なるように上記金属キヤビティ内に挿入され約え /4の線路長の 同軸給電プローブを形成するように設けられた第 2の同軸線路と、 を備えたこと を特徴とする非接触口一夕リージョイントにある。  The first invention is a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength of a transmission signal and having at least a pair of opposing surfaces, and a pair of opposing surfaces of the metal cavity. On the other hand, a first coaxial line provided with an outer coaxial conductor fixed and an inner coaxial conductor inserted into the metal cavity to form a coaxial feed probe having a line length of about / 4, On the other of the pair of opposite surfaces of the metal cavity from the opposite side of the coaxial line, the outer coaxial conductor is rotatable, and the inner coaxial conductor is rotated so that it does not contact the coaxial feed probe of the first coaxial line. A second coaxial line that is inserted into the metal cavity so as to be shifted in center and overlap with an interval in the axial direction, and that is provided so as to form a coaxial feed probe having a line length of about / 4. Non-contact Isseki in the Lee joint.
第 2の発明は、 内径または導波管幅が伝送信号の波長 λの 1 / 4より短く、 少 なくとも対向する一対の面を有する金属キヤビティと、 この金属キヤビティの対 向する一対の面の一方に、 同軸外導体が固定され同軸内導体が上記金属キヤビテ ィ内に挿入され約 λ/4の線路長の同軸給電プローブを形成するように設けられ た第 1の同軸線路と、 この金属キヤビティの対向する一対の面の他方の外側にこ れにほぼ平行に回転可能に配置され金属キヤビティの面との間の隙間で約え Ζ4 の長さのチョーク構造を形成する金属板と、 上記第 1の同軸線路と反対側から上 記金属板に、 同軸外導体がこの金属板と共に回転可能なように固定され、 同軸内 導体が上記第 1の同軸線路の同軸給電プローブと接触しないように軸芯をずらし かつ軸方向に関して間隔をあけて重なるように金属板を貫通し上記金属キヤビテ ィ内に挿入され約人 / 4の線路長の同軸給電プローブを形成するように設けられ た第 2の同軸線路と、 を備えたことを特徴とする非接触口一タリ一ジョイントに ある。 The second invention is a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength λ of a transmission signal and having at least a pair of opposing surfaces, and a pair of opposing surfaces of the metal cavity. On the other hand, a first coaxial line provided with an outer coaxial conductor fixed and an inner coaxial conductor inserted into the metal cavity to form a coaxial feed probe having a line length of about λ / 4; A metal plate that is rotatably arranged substantially parallel to the outside of the other pair of opposing surfaces of the pair of surfaces and forms a choke structure having a length of about で 4 at a gap between the metal cavity and the metal plate; An outer coaxial conductor is fixed to the above-mentioned metal plate so as to be rotatable together with the metal plate from the side opposite to the coaxial line of the first coaxial line so that the coaxial inner conductor does not contact the coaxial power supply probe of the first coaxial line. Off-center and axially A second coaxial line that penetrates the metal plate so as to overlap with an interval and is inserted into the metal cavity to form a coaxial feed probe having a line length of about /. Non-contact mouth one-piece joint characterized by is there.
第 3の発明は、 上記第 2の同軸線路の同軸給電プローブを金属キヤビティの中 心に配置したことを特徴とする第 1または第 2の発明の非接触口一タリ一ジョイ ントにある。  A third invention resides in the non-contact port one-joint of the first or second invention, wherein the coaxial power supply probe of the second coaxial line is arranged in the center of the metal cavity.
第 4の発明は、 上記金属キヤビティの面と金属板の隙間に誘電体スぺ一サを全 体に挿入したことを特徴とする第 3の発明の非接触口一夕リージョイントにある ο  A fourth invention resides in a non-contact opening overnight joint of the third invention, characterized in that a dielectric spacer is entirely inserted into a gap between the surface of the metal cavity and the metal plate.
第 5の発明は、 上記金属キヤビティ形状が円柱形で前記金属板が円盤形であり 、 上記金属板が、 先端を延長して金属キヤビティ形状に沿って間に隙間を設ける ようにして折り曲げた折り曲げ部を有し、 この折り曲げ部と金属キヤビティの間 に誘電体スぺ一サを設けたことを特徴とする第 2ないし第 4のいずれかの発明の 非接触口一夕リ一ジョイントにある。  According to a fifth aspect of the present invention, the metal cavity has a columnar shape, the metal plate has a disk shape, and the metal plate is bent so as to extend a tip and provide a gap between the metal plates along the metal cavity shape. A non-contact opening and free joint according to any one of the second to fourth inventions, characterized in that a dielectric spacer is provided between the bent portion and the metal cavity.
第 6の発明は、 上記金属キヤビティ形状が円柱形で前記金属板が円盤形であり 、 上記金属板が、 先端を延長して金属キヤビティ形状に沿って間に隙間を設ける ようにして折り曲げた折り曲げ部を有し、 上記金属キヤビティが外側に上記金属 板の折り曲げ部の外側に折り曲げられて延びる鍔部を有し、 上記折り曲げ部と鍔 部の隙間の折り曲げ部の付け根側にベアリングが挿入され、 上記第 2の同軸線路 の同軸内導体の中心から上記ベアリングまでの距離を約え Z 2としたことを特徴 とする第 2ないし第 4のいずれかの発明の非接触口一夕リージョイントにある。 第 7の発明は、 上記同軸給電プローブの先端を太くしたことを特徴とする第 1 ないし第 6のいずれかの発明の非接触ロー夕リ一ジョイントにある。  In a sixth aspect of the present invention, the metal cavity has a cylindrical shape and the metal plate has a disk shape, and the metal plate is bent so that a tip thereof is extended and a gap is provided along the metal cavity shape. A metal part having a flange portion that is bent outward from the bent portion of the metal plate and extends outward, and a bearing is inserted into the gap between the bent portion and the root of the bent portion, The distance from the center of the coaxial inner conductor of the second coaxial line to the bearing is approximately Z2. . A seventh invention resides in the non-contact wire joint according to any one of the first to sixth inventions, wherein a tip of the coaxial power supply probe is thickened.
第 8の発明は、 上記同軸給電プローブの先端に小金属板を装荷し容量装荷した ことを特徴とする第 1ないし第 6のいずれかの発明の非接触ロー夕リ一ジョイン トにある。  An eighth invention is the non-contact low-joint joint according to any one of the first to sixth inventions, characterized in that a small metal plate is loaded at the tip of the coaxial power supply probe and the capacitance is loaded.
第 9の発明は、 上記第 1の同軸線路の同軸給電プローブの先端を上記金属キヤ ビティ内部で短絡したことを特徴とする第 1ないし第 6のいずれかの発明の非接 触口—夕リージョイントにある。  The ninth invention is characterized in that the tip of the coaxial power supply probe of the first coaxial line is short-circuited inside the metal cavity, and the non-contact port of any one of the first to sixth inventions is provided. At the joint.
第 1 0の発明は、 上記キヤビティ内の空間形状を変えるインピーダンス整合用 機構を備えたことを特徴とする第 1ないし第 9のいずれかの発明の非接触ロー夕 リ一ジョイントにある。 A tenth aspect of the present invention is the non-contact rotatable device according to any one of the first to ninth aspects, further comprising an impedance matching mechanism for changing a space shape in the cavity. At the joint.
第 1 1の発明は、 互いに対向して填め合わされて内部に内径が伝送信号の波長 入の 1 Z 4より短い空間を形成する、 それそれ円形の底面とその周囲に沿って延 びる側面からなる径の異なる 2つの金属性カップ形状部材と、 一方の金属性カツ プ形状部材の底面に、 同軸外導体が固定され同軸内導体が上記金属キヤビティ内 に挿入され約え / 4の線路長の同軸給電プロ一ブを形成するように設けられた第 1の同軸線路と、 この第 1の同軸線路と反対側から他方の金属性力ヅプ形状部材 の底面に、 同軸外導体が回転可能に、 同軸内導体が上記第 1の同軸線路の同軸給 電プローブと接触しないように軸芯をずらしかつ軸方向に関して間隔をあけて重 なるように上記金属キヤビティ内に挿入され約え /4の線路長の同軸給電プロ一 ブを形成するように設けられた第 2の同軸線路と、 上記 2つの金属性力ップ形状 部材の側面同士の隙間に設けられた誘電体スぺーザと、 を備えたことを特徴とす る非接触ロー夕リージョイントにある。  The eleventh aspect of the present invention is that the first invention is formed so as to face each other and to form a space having an inner diameter shorter than 1 Z 4 of the wavelength of a transmission signal inside, each having a circular bottom surface and side surfaces extending along the periphery thereof. A coaxial outer conductor is fixed to the bottom surface of two metallic cup-shaped members with different diameters and one metallic cup-shaped member, and a coaxial inner conductor is inserted into the above metal cavity, and a coaxial cable with a line length of about / 4 A first coaxial line provided to form a power feeding probe, and a coaxial outer conductor rotatable on the bottom surface of the other metallic force-shaped member from the side opposite to the first coaxial line, A line length of about / 4 inserted in the metal cavity so that the coaxial inner conductor is shifted so that the coaxial inner conductor does not contact the coaxial power supply probe of the first coaxial line and overlaps at an interval in the axial direction. To form a coaxial power supply probe A second coaxial line, and a dielectric spacer provided in a gap between the side surfaces of the two metal-shaped members. At the joint.
第 1 2の発明は、 2本の同軸線路を軸芯を中心に回転可能に接続する非接触口 —夕リージョイン卜であって、 双方の同軸線路の同軸外導体先端に互いに相補い かつ間に隙間を設け回転可能なように切り欠き部が設けられ、 かつ回転しない同 軸線路の同軸内導体の先端を、 回転する同軸線路の同軸内導体の先端と近接させ て電磁結合させるように折り曲げたことを特徴とする非接触口一夕リージョイン トにある。 図面の簡単な説明  A twelfth invention is a non-contact port for connecting two coaxial lines rotatably about an axis, which is a non-contact port, and is complementary to and between the coaxial outer conductor tips of both coaxial lines. A notch is provided so that it can be rotated, and the tip of the coaxial inner conductor of the non-rotating coaxial line is bent close to the tip of the coaxial inner conductor of the rotating coaxial line so as to be electromagnetically coupled. Non-contact mouth is one of the special features. BRIEF DESCRIPTION OF THE FIGURES
図 1〜3はこの発明の実施例 1による非接触口一夕リ一ジョイントを説明する ための図、  FIGS. 1 to 3 are diagrams for explaining a non-contact opening and closing joint according to Embodiment 1 of the present invention.
図 4〜7はこの発明の実施例 2による非接触口一夕リージョイントを説明する ための図、  FIGS. 4 to 7 are diagrams for explaining a non-contact opening joint according to a second embodiment of the present invention.
図 8はこの発明の実施例 2による非接触口一夕リ一ジョイントの別の例の概略 構成を示す図、  FIG. 8 is a diagram showing a schematic configuration of another example of the non-contact opening and closing joint according to the second embodiment of the present invention.
図 9はこの発明の実施例 3による非接触口一夕リージョイントの概略構成を示 す図、 図 1 0はこの発明の実施例 4による非接触口一タリ一ジョイントの概略構成を 示す図、 FIG. 9 is a diagram showing a schematic configuration of a non-contact opening joint according to Embodiment 3 of the present invention. FIG. 10 is a diagram showing a schematic configuration of a non-contact opening one joint according to a fourth embodiment of the present invention.
図 1 1はこの発明の実施例 5による非接触ロー夕リージョイントの概略構成を 示す図、  FIG. 11 is a diagram showing a schematic configuration of a non-contact wire joint according to Embodiment 5 of the present invention.
図 1 2はこの発明の実施例 6による非接触口一夕リージョイントの概略構成を 示す図である。  FIG. 12 is a diagram showing a schematic configuration of a non-contact port overnight joint according to Embodiment 6 of the present invention.
図 1 3はこの発明の実施例 7による非接触口一夕リージョイントの概略構成を 示す図、  FIG. 13 is a diagram showing a schematic configuration of a non-contact opening and closing joint according to Embodiment 7 of the present invention.
図 1 4〜1 6はこの発明の実施例 8による非接触口一夕リージョイントを説明 するための図、  FIGS. 14 to 16 are diagrams for explaining a non-contact port overnight joint according to Embodiment 8 of the present invention.
図 1 7はこの発明の実施例 9による非接触口一タリ一ジョイントの概略構成を 示す図、  FIG. 17 is a diagram showing a schematic configuration of a non-contact opening one joint according to a ninth embodiment of the present invention.
図 1 8はこの発明の実施例 1 0による非接触口一夕リージョイントの概略構成 を示す図、  FIG. 18 is a diagram showing a schematic configuration of a non-contact opening joint according to Embodiment 10 of the present invention.
図 1 9はこの発明の実施例 1 1による非接触ロー夕リージョイントの概略構成 を示す図、  FIG. 19 is a diagram showing a schematic configuration of a non-contact roller joint according to Embodiment 11 of the present invention.
図 2 0はこの発明の実施例 1 2による非接触ロータリージョイントの概略構成 を示す図、  FIG. 20 is a diagram showing a schematic configuration of a non-contact rotary joint according to Embodiment 12 of the present invention,
図 2 1は同軸線路を非接触にて接続する構成からなる従来の非接触ロータリ一 ジョイントの概略構成を示す図、  FIG. 21 is a diagram showing a schematic configuration of a conventional non-contact rotary joint having a configuration in which coaxial lines are connected in a non-contact manner.
図 2 2は導波管を用いた従来の非接触口一夕リージョイントの概略構成を示す 図である。 発明を実施するための最良の形態  FIG. 22 is a diagram showing a schematic configuration of a conventional non-contact aperture joint using a waveguide. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明に係る非接触型ロー夕リージョイントを各実施例に従って図面 に基づいて説明する。 実施例 1 .  Hereinafter, a non-contact type rope joint according to the present invention will be described with reference to the drawings according to each embodiment. Example 1
図 1〜 3はこの発明の実施例 1を示す概略構成図であり、 図 1は斜視図、 図 2 は上面図、 図 3は A— A' 断面図である。 図において、 1は第 1の同軸外導体、 2は第 1の同軸内導体であり、 両者で 3の第 1の同軸線路を構成している。 4は 第 1の同軸給電プローブ、 5は金属キヤビティ、 6は金属キヤビティ 5と第 1の 同軸外導体 1を接続する固定接続部である。 1 to 3 are schematic configuration diagrams showing a first embodiment of the present invention. FIG. 1 is a perspective view, FIG. Is a top view, and FIG. 3 is a sectional view taken along the line AA ′. In the figure, reference numeral 1 denotes a first outer coaxial conductor, 2 denotes a first inner coaxial conductor, and both constitute a first coaxial line 3. 4 is a first coaxial power supply probe, 5 is a metal cavity, and 6 is a fixed connection part for connecting the metal cavity 5 and the first coaxial outer conductor 1.
7は第 2の同軸外導体、 8は第 2の同軸内導体であり、 両者から 9の第 2の同 軸線路を構成する。 1 0は第 2の同軸給電プロ一ブ、 1 1は回転部である。 次に動作について説明する。 この例は、 移動体搭載用のアンテナに用いる口一 タリ一ジョイントであり、 第 1の同軸線路 3は移動体に固定された固定部側に接 続されるものであり、 第 2の同軸線路 9は回転可能に支持された回転部であり、 回転するアンテナに接続される。  Reference numeral 7 denotes a second outer coaxial conductor, 8 denotes a second inner coaxial conductor, and both constitute a second coaxial line 9. Reference numeral 10 denotes a second coaxial power supply probe, and 11 denotes a rotating unit. Next, the operation will be described. In this example, a single joint used for an antenna mounted on a moving body is used. The first coaxial line 3 is connected to a fixed part side fixed to the moving body, and the second coaxial line Reference numeral 9 denotes a rotating unit rotatably supported, which is connected to a rotating antenna.
第 1の同軸線路 3の外導体 1は金属キヤビティ 5に接続固定され、 内導体 2の 先端はキヤビティ 5内部に第 1の同軸給電プローブ 4として挿入される。 プロ一 プの先端は開放されており、 このプロ一ブ長を伝送信号の波長を λとすると約入 /4程度とすると、 キヤビティ 5内部に強く放射される。  The outer conductor 1 of the first coaxial line 3 is connected and fixed to the metal cavity 5, and the tip of the inner conductor 2 is inserted into the cavity 5 as the first coaxial power supply probe 4. The tip of the probe is open. If the probe length is about / 4, where λ is the wavelength of the transmission signal, the probe 5 is strongly radiated into the cavity 5.
一方、 対向した位置から同様に第 2の同軸線路 9の内導体 8が第 2の同軸給電 プローブ 1 0として挿入される。 第 1と第 2の同軸給電プローブ 4 , 1 0は接触 しないように軸芯をずらしかつ軸方向に関して間隔をあけて重なるように配置す る。 軸方向に関してプローブの先端同士が互いに重なるようにすることで、 電磁 結合する配置となり、 プローブ間の結合が強くなる特徴がある。  On the other hand, similarly, the inner conductor 8 of the second coaxial line 9 is inserted as the second coaxial power supply probe 10 from the opposed position. The first and second coaxial power supply probes 4, 10 are arranged such that their axes are shifted so that they do not come into contact with each other and overlap with an interval in the axial direction. By making the tips of the probes overlap each other in the axial direction, the arrangement is such that electromagnetic coupling is achieved, and the coupling between the probes is characterized by being strong.
ここで、 着目すべき点はキヤビティ 5の内径 (内側の直径)を λΖ4より短くす ることである。 従来のような導波管キヤビティを用いたロー夕リージョイントは 基本的にキヤビティ内の電磁界モードに対応した寸法で構成したため、 カツトォ フを避けるためには最低でも内径が入 / 2以上 (kc= 1 . 8 4)であり、 従来使わ れている T M 0 1モードでは、 内径が約えすなわち約 1波長程度になる。  Here, it should be noted that the inner diameter (inner diameter) of the cavity 5 is shorter than λΖ4. Since the conventional low-joint joint using waveguide cavities was basically configured with dimensions corresponding to the electromagnetic field mode in the cavities, in order to avoid cutoff, the inner diameter must be at least 1/2 or more (kc = 1.84), and in the TM01 mode conventionally used, the inner diameter is reduced to about one wavelength.
この実施例では、 給電プローブの中心位置を互いにずらすことで、 このキヤビ ティ寸法を小さくし内径を約人 /4〜約え / 6以下にすることができる。 2つの 給電プロ一プ間より近づけることで結合が大きくなり、 キヤビティも対応して小 さくすることができる。 この場合、 キヤビティとしてはカットオフ以下になり、 キヤビティとしても共振モードが存在しない大きさであり、 従来のようにキヤビ ティの共振を利用したものとは動作が異なる。 すなわち本発明は、 給電プローブ を近接させたことで密結合させる方式であり、 キヤビティはこの結合を補助する ためのものである。 よってキヤビティ寸法には大きく依存しない特徴がある。 In this embodiment, by shifting the center positions of the power supply probes to each other, this cavity size can be reduced and the inner diameter can be reduced to about / 4 to about / 6 or less. Bringing it closer than the two power-supply pro- cesses will increase the coupling and reduce the cavity accordingly. In this case, the cavity is smaller than the cut-off, and the cavity has such a size that no resonance mode exists. The operation is different from that using the resonance of the tee. In other words, the present invention is a method in which the power supply probes are closely coupled by bringing them close to each other, and the cavity is to assist this coupling. Therefore, there is a feature that does not largely depend on the cavity size.
2つの給電プローブ 4、 1 0を近づけて配置し、 両プローブ間の重なり部分を 入/ 4に近づけることで、 キヤビティの共振を利用せずに、 結合させることがで き、 電磁結合により高周波信号の伝送が行われる。 なお、 第 2の同軸線路 9は外 導体 7だけを回転させるようにしてもよい。  By arranging the two power supply probes 4 and 10 close to each other and by bringing the overlap between the two probes close to the input / 4, coupling can be achieved without using resonance of the cavity. Is transmitted. Note that the second coaxial line 9 may rotate only the outer conductor 7.
よって、 キヤビティの共振を利用せずに、 電磁結合により高周波信号の伝送が 行われるため、 従来に比べて同軸プローブの位置ずれが発生した場合でも伝送損 失の増加が少なく、 また大幅に小形化できる効果がある。 実施例 2 .  As a result, high-frequency signals are transmitted by electromagnetic coupling without using resonance of the cavity.Thus, even if the coaxial probe is displaced, the increase in transmission loss is small and the size is significantly reduced. There is an effect that can be done. Example 2.
図 4〜 7にこの発明の実施例 2の構成を示す。 図 4は斜視図、 図 5は A— A ' 断面図、 図 6は伝送特性、 図 7は帯域幅を示しており、 上記実施例と同一もしく は相当部分は同一符号で示す。 1 2は金属板、 1 4はキヤビティ上面であり、 両 者間に隙間部分を支えるスぺ一サ 1 3を設けている。 1 5はチョーク構造である 第 2の同軸外導体 7は金属板 1 2に固定され、 これらは回転部となる。 この金 属板 1 2には同軸外導体 7とほぼ同等の寸法の穴が設けられており、 同軸内導体 8は貫通してキヤビティ 5内部に挿入され、 第 2の同軸給電プロ一プ 1 0として 動作する。  4 to 7 show the configuration of the second embodiment of the present invention. FIG. 4 is a perspective view, FIG. 5 is a cross-sectional view taken along line AA ′, FIG. 6 shows transmission characteristics, and FIG. 7 shows a bandwidth. Reference numeral 12 denotes a metal plate, reference numeral 14 denotes an upper surface of the cavity, and a spacer 13 is provided between the two to support a gap. Reference numeral 15 denotes a choke structure. The second coaxial outer conductor 7 is fixed to the metal plate 12, and these serve as rotating parts. The metal plate 12 is provided with a hole having substantially the same size as the outer coaxial conductor 7, and the inner coaxial conductor 8 is inserted through the inside of the cavity 5, and the second coaxial feeder 10 10 Works as
ここで、 第 2の同軸内導体 8の中心から金属板 1 2とキヤビティ上面 1 4とで 構成される隙間の端部までの距離を約人 /4とすると、 λ/ 4からなるチョーク 構造 1 5になる。 すなわち、 この隙間からの放射を抑制することができる。 チヨ —ク構造の長さは約; / 4であり、 誘導体スぺ一サ等の構成によりチョーク部か らの放射を低減するように最適な寸法にすればよい。  Here, assuming that the distance from the center of the second coaxial inner conductor 8 to the end of the gap formed by the metal plate 12 and the upper surface 14 of the cavity is approximately / 4, the choke structure 1 of λ / 4 Becomes 5. That is, radiation from the gap can be suppressed. The length of the chuck structure is approximately; / 4, and the size may be optimized by reducing the radiation from the choke portion by using a derivative spacer or the like.
一例として、 図に示した本実施例の非接触ロータリ一ジョイントの伝送特性の 計算値と測定値を図 6に示す。 キヤビティの内径は約え /4と小さいが、 良好な 伝送特性が得られていることがわかる。 又、 計算値と測定値はよく一致している 。 図 6では一例を示したが、 キヤビティ内径をえ / 6程度にしても広帯域な特性 が得られることを計算により確認している。 As an example, FIG. 6 shows calculated values and measured values of the transmission characteristics of the non-contact rotary joint of the present embodiment shown in the figure. Although the inside diameter of the cavity is as small as about / 4, it can be seen that good transmission characteristics are obtained. Also, the calculated and measured values agree well . Fig. 6 shows an example, but it has been confirmed by calculation that broadband characteristics can be obtained even if the inner diameter of the cavity is increased to about / 6.
図 7は、 キヤビティ寸法を変えた場合の帯域幅の計算値を示している。 ここで 帯域幅は、 通過損が 0 . 5 dB以下となる帯域を示している。 図より、 キヤビテ ィ寸法を 0 . 2 5波長程度したときが最も広帯域となっている。 ここ場合、 約 6 0 %と極めて広帯域な特性が得られる。 キヤビティ寸法を 0 . 3波長程度にして も広帯域特性が得られるが、 より小形化するためには、 0 . 2 5波長以下が望ま しい。  Figure 7 shows the calculated bandwidth when the cavity dimensions are changed. Here, the bandwidth indicates a band where the transmission loss is 0.5 dB or less. As shown in the figure, the bandwidth is widest when the cavity size is about 0.25 wavelength. In this case, an extremely wide band characteristic of about 60% is obtained. Broadband characteristics can be obtained even if the cavity size is set to about 0.3 wavelength, but 0.25 wavelength or less is desirable for further miniaturization.
図 8は、 方形キヤビティ 1 7を用いた場合の実施例を示している。 この場合も 方形導波管幅 W( 2本の給電プローブを結ぶ線方向と直交する方向のキヤビティ 内側の幅)をえ / 4より短くすることでカットオフになるが、 プロ一ブ間を近づ けて配置することで電磁界的な結合とすることで小形化を図ることができる。 又 、 方形導波管長 Lも 2つの給電プローブを近接させることでぇノ 2より短くする ことができる。  FIG. 8 shows an embodiment in which a square cavity 17 is used. In this case as well, the cutoff can be achieved by making the rectangular waveguide width W (the width inside the cavity in the direction perpendicular to the line connecting the two feeding probes) shorter than / 4, but the distance between the probes can be reduced. By arranging them in this way, it is possible to achieve miniaturization by using electromagnetic coupling. Also, the rectangular waveguide length L can be made shorter than Pen 2 by bringing two feeding probes close to each other.
よって、 このチョーク構造により、 隙間部分からの放射を大幅に低減すること ができる効果がある。 実施例 3 .  Therefore, the choke structure has an effect that radiation from the gap can be significantly reduced. Example 3.
図 9にこの発明の実施例 3の構成を示す。 第 2の同軸外導体 7、 内導体 8、 給 電プロ一ブ 1 0からなる第 2の同軸線路 9を金属キヤビティ 5の中心部に配置す る。 これにより、 第 2の同軸内導体 8の中心から金属板 1 2とキヤビティ上面 1 とで構成される隙間の端部までの距離を約 λ/ 4とすることで構成されたチヨ —ク構造が対称になる。  FIG. 9 shows the configuration of Embodiment 3 of the present invention. A second coaxial line 9 including a second outer coaxial conductor 7, an inner conductor 8, and a power supply probe 10 is arranged at the center of the metal cavity 5. As a result, a choke structure constituted by setting the distance from the center of the second coaxial inner conductor 8 to the end of the gap formed by the metal plate 12 and the cavity upper surface 1 to be approximately λ / 4 is obtained. Become symmetric.
よって、 第 2の同軸線路をキヤビティの中心部にすることで、 対称性が良くな り、 回転に依存しない特性が得られる効果がある。 実施例 4 .  Therefore, by setting the second coaxial line at the center of the cavity, the symmetry is improved and there is an effect that characteristics independent of rotation can be obtained. Example 4.
図 1 0にこの発明の実施例 4の構成を示す。 実施例 2及び 3では、 チョーク構 造とするために、 キヤビティ内径よりも、 チョーク構造の直径の方が大きくなる 。 チョーク構造を得るためには、 直径で約 λ/ 2程度になるため、 このチョーク 構造で大きさが制限される。 そこで、 第 2の同軸内導体 8の中心から金属板 1 2 とキヤビティ上面 1 4とで構成される隙間に誘電体スぺ一サ 1 8を全体に挿入し たチョーク構造 1 9とした。 この誘電率を大きくすることでチョーク寸法を小さ くすることができる。 空気中等の自由空間での伝送信号の波長を人とすると誘電 体スぺ一サを揷入した場合の波長は で入 gは入より小さい。 すなわち A g = λ/ ε τ ( ε r :誘電体の非導電率)となる。 FIG. 10 shows the configuration of Embodiment 4 of the present invention. In Examples 2 and 3, the diameter of the choke structure is larger than the inner diameter of the cavity because of the choke structure. . In order to obtain a choke structure, the diameter is about λ / 2, so the size is limited by this choke structure. Therefore, a choke structure 19 is provided in which a dielectric spacer 18 is entirely inserted from the center of the second coaxial inner conductor 8 into a gap formed by the metal plate 12 and the cavity upper surface 14. By increasing the dielectric constant, the size of the choke can be reduced. Assuming that the wavelength of a transmission signal in a free space such as in the air is human, the wavelength when a dielectric sensor is inserted is, and g is smaller than the input. That is, A g = λ / ετ (εr: non-conductivity of the dielectric).
よって、 チョーク構造に誘電体スぺーサを挿入することで小形化を図ることが できる。 実施例 5 .  Therefore, miniaturization can be achieved by inserting a dielectric spacer into the choke structure. Embodiment 5.
図 1 1にこの発明の実施例 5の構成を示す。 図において、 2 5は金属板 1 2先 端の折り曲げ部である。 実施例 4では、 誘電体スぺ一サ 1 8を全体に挿入するこ とで小形化を図ったが、 長期間使用すると誘電体スぺ一サ 1 8との隙間のため、 ガ夕ヅキが生じ性能が変化することがある。 そこで、 金属板 1 2の先端を延長し て折り曲げ部 2 5を設け、 第 2の同軸内導体 8の中心から折り曲げ部 2 5の金属 板の先端までの距離を λΖ4程度とすることで小形化を図ることができる。 なお、 折り曲げ部 2 5と金属キヤビティ 5の間にも隙間を設け、 ここに誘電体 スぺーサ 7 2を挿入している。 また、 金属キヤビティ 5の形状が円柱形で金属板 1 2が円盤形である必要がある。 '  FIG. 11 shows a configuration of a fifth embodiment of the present invention. In the figure, reference numeral 25 denotes a bent portion at the tip of the metal plate 12. In the fourth embodiment, the miniaturization was achieved by inserting the dielectric spacer 18 into the entire body. However, when used for a long period of time, the gap with the dielectric spacer 18 caused the gas gap to decrease. The resulting performance may change. Therefore, the tip of the metal plate 12 is extended to provide a bent portion 25, and the distance from the center of the second inner coaxial conductor 8 to the tip of the metal plate of the bent portion 25 is set to about λΖ4, thereby reducing the size. Can be achieved. A gap is also provided between the bent portion 25 and the metal cavity 5, and the dielectric spacer 72 is inserted here. Further, the metal cavity 5 needs to have a cylindrical shape and the metal plate 12 needs to have a disk shape. '
よって、 金属板 1 2の先端を折り曲げたチョーク構造にすることで小形化する ことができ、 隙間の変化に対して性能が変化しない効果がある。 実施例 6 .  Therefore, it is possible to reduce the size by forming a choke structure in which the tip of the metal plate 12 is bent, and there is an effect that the performance does not change with a change in the gap. Embodiment 6.
図 1 2にこの発明の実施例 6の構成を示す。 図において、 2 6はベアリングで ある。 実施例 2から 5では、 第 2の同軸内導体 8の中心からチョーク構造先端ま での距離を入 /4とし、 先端を開放としたオープンチョークとした。 この実施例 では、 さらに先端を延ばして短絡したえ / 2のショートチョークとした。  FIG. 12 shows the configuration of Embodiment 6 of the present invention. In the figure, 26 is a bearing. In Examples 2 to 5, the distance from the center of the second coaxial inner conductor 8 to the tip of the choke structure was set to / 4, and the open choke was opened at the tip. In this embodiment, the tip is further extended to form a short-circuited short choke / 2.
金属キヤビティ 5の形状は円柱形であり金属板 1 2が円盤形である必要がある 。 金属板 1 2は先端を延長して金属キヤビティ 5形状に沿って間に隙間を設ける ようにして折り曲げた折り曲げ部 2 5を有している。 また、 金属キヤビティ 5が 外側に金属板 1 2の折り曲げ部 2 5の外側に折り曲げられて延びる鍔部 8 1を有 し、 折り曲げ部 2 5と鍔部 8 1の隙間の折り曲げ部 2 5の付け根側、 すなわち短 絡部分にはベアリングを挿入し、 回転を容易にする機能を兼ね備えている。 第 2 の同軸線路 9の同軸内導体 8の中心からベアリング 2 6までの距離は約 λ/ 2と した。 The shape of the metal cavity 5 is cylindrical and the metal plate 1 2 must be disk-shaped . The metal plate 12 has a bent part 25 that is bent so that a tip is extended and a gap is provided along the shape of the metal cavity 5. In addition, the metal cavity 5 has a flange portion 81 that is bent outward from the bent portion 25 of the metal plate 12 and extends outward. A bearing is inserted into the side, that is, the short-circuited portion, and has a function to facilitate rotation. The distance from the center of the coaxial inner conductor 8 of the second coaxial line 9 to the bearing 26 was about λ / 2.
よって、 人 / 2長のショートチョークとすることで、 完全に放射を抑制するこ とができ、 シールド構造が得られ効果がある。 実施例 7 .  Therefore, radiation can be completely suppressed by using a person / 2-length short choke, and a shield structure is obtained, which is effective. Embodiment 7.
図 1 3にこの発明の実施例 7の構成を示す。 図において、 2 7は第 1の先端を 太くした同軸給電プローブ、 2 8は第 2の先端を太くした同軸給電プローブであ る。 プローブ先端を太くすることで、 伝送信号の周波数帯域幅を広くすることが でき、 広帯域化を図ることができる。  FIG. 13 shows the configuration of Embodiment 7 of the present invention. In the figure, reference numeral 27 denotes a coaxial power supply probe whose first tip is thickened, and reference numeral 28 denotes a coaxial power supply probe whose second tip is thickened. By making the tip of the probe thicker, the frequency bandwidth of the transmission signal can be widened and the bandwidth can be widened.
よって、 先端を太くしたプローブとすることで動作周波数帯域の広帯域化を図 ることができる効果がある。 実施例 8 .  Therefore, there is an effect that the operating frequency band can be broadened by using a probe having a thick tip. Example 8
図 1 4〜1 6にこの発明の実施例 8の構成を示す。 図 1 4において、 3 0は第 1の容量装荷給電プローブ、 3 1は第 2の容量装荷給電プローブである。 図 1 5 , 図 1 6にこの容量装荷給電プローブ 3 0、 3 1の拡大図と断面図を示す。 図に おいて、 3 4は各同軸線路 3 , 9の同軸内導体、 3 5は容量を装荷するための小 金属板、 3 6、 3 7は整合用のショートピンである。  14 to 16 show the configuration of the eighth embodiment of the present invention. In FIG. 14, reference numeral 30 denotes a first capacitively loaded power supply probe, and 31 denotes a second capacitively loaded power supply probe. FIGS. 15 and 16 show enlarged and cross-sectional views of the capacitance-loaded power supply probes 30 and 31. FIG. In the figure, 34 is a coaxial inner conductor of each of the coaxial lines 3 and 9, 35 is a small metal plate for loading a capacitance, and 36 and 37 are short pins for matching.
一般的に金属キヤビティ 5内の給電プローブ長としては伝送信号の λ/ 4の高 さが必要であるが、 先端に小金属板 3 5等を装荷することで容量を増加させ、 全 長を短くすることができる。 全長を短くするとインピーダンスも小さくなるため 、 同軸線路 3 , 9との整合を取るためには、 整合用のショートピン 3 6, 3 7を 設ける。 よって、 容量装荷給電プローブを用いることで、 プローブ高を低くすることが でき、 従って金属キャンビティ高も大幅に小さくできる効果がある。 実施例 9 . In general, the length of the power supply probe in the metal cavity 5 needs to be λ / 4 of the transmission signal, but by loading a small metal plate 35 at the tip, the capacity is increased and the overall length is shortened. can do. If the total length is shortened, the impedance also decreases. Therefore, in order to match the coaxial lines 3 and 9, short pins 36 and 37 for matching are provided. Therefore, the use of the capacitance-loaded power supply probe can reduce the probe height, and thus has the effect of greatly reducing the metal cavity height. Embodiment 9.
図 1 7にこの発明の実施例 9の構成を示す。 図において、 3 8は先端短絡型給 電プローブである。 第 1の同軸線路 3の同軸給電プロ一ブは固定するため、 先端 を金属キヤビティ 5の内側に短絡させて給電する。 この給電により磁界が発生す るため、 第 2の同軸給電プローブ 1 0が励振される。 この第 1の同軸線路 3の同 軸給電プローブは金属キヤビティ 5の内側側面に接近して構成でいるため、 小形 化しやすい。  FIG. 17 shows the configuration of the ninth embodiment of the present invention. In the figure, 38 is a short-circuit type power supply probe. In order to fix the coaxial power supply probe of the first coaxial line 3, power is supplied by short-circuiting the tip inside the metal cavity 5. Since a magnetic field is generated by this power supply, the second coaxial power supply probe 10 is excited. Since the coaxial feed probe of the first coaxial line 3 is configured close to the inner side surface of the metal cavity 5, it is easy to reduce the size.
よって、 先端短絡型給電プローブを用いることで、 プローブ寸法を小さくする ことができ、 金属キヤビティを小さくできる効果がある。 実施例 1 0 .  Therefore, by using a short-circuited power feeding probe, the probe size can be reduced, and the metal cavity can be reduced. Example 10
図 1 8にこの発明の実施例 1 0の構成を示す。 図において、 4 0 a、 4 0 b、 4 0 c、 4 0 dは金属キヤビティ 5内に設けた整合用ブロックである。 キヤビテ ィを小さくすることで、 同軸給電プローブのインピーダンスが変化し、 整合が取 りにくくなる。 そこで、 キヤビティ内にインピーダンス整合用の整合用ブロック 4 0 a、 4 0 b、 4 0 c、 4 O dを設けたり、 あるいは金属キヤビティ 5内側を 段差構造とすることで (これらをィンピーダンス整合用機構とする)、 整合を取り 易くする。  FIG. 18 shows the configuration of embodiment 10 of the present invention. In the figure, reference numerals 40a, 40b, 40c, and 40d are matching blocks provided in the metal cavity 5. Reducing the cavity changes the impedance of the coaxial feed probe, making matching difficult. Therefore, matching blocks 40a, 40b, 40c, and 4Od for impedance matching are provided in the cavity, or the metal cavity 5 has a step structure inside (these are used for impedance matching). Mechanism) to facilitate alignment.
よって、 整合用プロック等のインピーダンス整合用機構をキヤビティ内に設け ることでキヤビティを小さくしてもインピーダンス整合が取れる効果がある。 実施例 1 1 .  Therefore, by providing an impedance matching mechanism such as a matching block in the cavity, there is an effect that impedance matching can be achieved even if the cavity is reduced. Example 11 1.
図 1 9にこの発明の実施例 1 1の構成を示す。 図 1 0の実施例 4において誘電 体スぺ一サを用いてチョーク構造を小さくした装置を示したが、 図 1 9に示すよ うな構成にしても同様に可能である。  FIG. 19 shows the configuration of Embodiment 11 of the present invention. Although the device in which the choke structure is reduced by using the dielectric spacer in the fourth embodiment of FIG. 10 is shown, the same configuration as shown in FIG. 19 is possible.
図 1 9において、 9 1および 9 2は互いに対向して填め合わされて内部に内径 が入 /4より短い空間を形成する、 それそれ円形の底面とその周囲に沿って延び る側面からなる径の異なる 2つの金属性力ップ形状部材であり、 2つの金属性力 ップ形状部材 9 1 , 9 2の側面同士の隙間には誘電体スぺ一サ 7 0が挿入されて いる。 そして金属性カップ形状部材 9 1には第 1の同軸線路 3が固定され、 金属 性力ップ形状部材 9 2は第 2の同軸線路 9に工程され同軸線路 9と共に回転する ように構成されている。 In FIG. 19, 91 and 92 are fitted opposite each other and have an inside diameter inside. Are formed into two spaces with different diameters, each of which has a circular bottom surface and a side surface extending along the circumference. A dielectric spacer 70 is inserted in the gap between the side surfaces of the members 91 and 92. The first coaxial line 3 is fixed to the metallic cup-shaped member 91, and the metallic cup-shaped member 92 is formed on the second coaxial line 9 and is configured to rotate together with the coaxial line 9. I have.
このように構成しても、 誘電体スぺ一サを用いて誘電率を大きくすることによ りチョーク構造を小さくすることができる。 実施例 1 2 .  Even with such a configuration, the choke structure can be reduced by increasing the dielectric constant using the dielectric spacer. Example 1 2.
図 2 0にこの発明の実施例 1 2の構成を示す。 この実施例は同軸線路外導体お よび内導体に凹凸部を設ける非接触口一夕リ一ジョイントに関するもので、 図に おいて、 4 1は第 1の同軸給電プローブ、 4 2は第 2の同軸給電プロ一ブ、 4 3 は非接触部、 4 4は凹凸 (切り欠き部)を設けた第 1の同軸外導体、 4 5は凹凸を 設けた第 2の同軸外導体、 4 6はチョーク部である。  FIG. 20 shows the configuration of Embodiment 12 of the present invention. This embodiment relates to a non-contact port joint having irregularities on the outer conductor and inner conductor of the coaxial line. In the figure, 41 is the first coaxial power supply probe, and 42 is the second coaxial power supply probe. Coaxial power supply probe, 4 3 is a non-contact portion, 4 4 is the first outer coaxial conductor with unevenness (notch), 4 5 is the second outer coaxial conductor with unevenness, 4 6 is a choke Department.
第 1の同軸外導体 4 4を固定し、 第 2の同軸外導体 4 5を回転させる。 よって 、 第 2の同軸給電プローブ 4 2は外導体の中心に位置している。 一方、 第 1の同 軸給電プローブ 4 1は非接触とするために、 先端を折り曲げて、 第 2の給電プロ —ブと接触しないように電磁結合させている。  The first outer coaxial conductor 44 is fixed, and the second outer coaxial conductor 45 is rotated. Therefore, the second coaxial power supply probe 42 is located at the center of the outer conductor. On the other hand, in order to make the first coaxial power supply probe 41 non-contact, the tip is bent and electromagnetically coupled so as not to contact the second power supply probe.
言い換えると、 2本の同軸線路を軸芯を中心に回転可能に接続する非接触ロー 夕リ一ジョイントにおいて、 双方の同軸線路の同軸外導体先端に互いに相補いか つ間に隙間を設け回転可能なようにチョーク構造を構成する切り欠き部 Kが設け られ、 かつ回転しない同軸線路の同軸内導体先端に、 回転する同軸線路の同軸内 導体が接触しないように軸芯をずらしかつ軸方向に関して間隔をあけて重なるよ うにクランク状に折り曲げられた先端折り曲げ部 Lを設けた。 又、 上述のキヤビ ティを小さくし、 同軸外導体と同じ寸法にしたものとも考えられる。 又ここでは 、 クランク状に折り曲げた例を示したが、 滑らかに折り曲げたものでもよく、 よ うするに 2つの給電プローブを接触しないように、 近接させて電磁結合させるよ うにすればよい。 よって、 給電プローブ先端を折り曲げて非接触で給電する構成であるため、 同 軸内導体ひいては同軸線路の細径化が図れ、 また製造が容易になる効果がある。 産業上の利用の可能性 In other words, in a non-contact low-frequency joint that connects two coaxial lines rotatably about the axis, a gap can be provided between the two coaxial lines at the ends of the coaxial outer conductors that are complementary to each other. The notch K that forms the choke structure is provided as described above, and the axis is shifted so that the coaxial inner conductor of the rotating coaxial line does not contact the tip of the coaxial inner conductor of the non-rotating coaxial line, and the gap in the axial direction is shifted. A bent end portion L bent in a crank shape so as to overlap with the opening is provided. It is also conceivable that the above-mentioned cavity is made smaller and the same dimensions as the outer coaxial conductor. Also, here, an example in which the power supply probe is bent in a crank shape is shown. However, the power supply probe may be bent smoothly, and the two power supply probes may be electromagnetically coupled close to each other so as not to be in contact with each other. Therefore, since the tip of the power supply probe is bent to supply power in a non-contact manner, the diameter of the coaxial conductor and, consequently, the coaxial line can be reduced, and the production is facilitated. Industrial applicability
以上のようにこの発明の第 1の発明によれば、 内径または導波管幅が伝送信号 の波長えの 1 /4より短く、 少なくとも対向する一対の面を有する金属キヤビテ ィと、 この金属キヤビティの対向する一対の面の一方に、 同軸外導体が固定され 同軸内導体が上記金属キヤビティ内に挿入され約え /4の線路長の同軸給電プロ 一プを形成するように設けられた第 1の同軸線路と、 この第 1の同軸線路と反対 側から上記金属キヤビティの対向する一対の面の他方に、 同軸外導体が回転可能 に、 同軸内導体が上記第 1の同軸線路の同軸給電プローブと接触しないように軸 芯をずらしかつ軸方向に関して間隔をあけて重なるように上記金属キヤビティ内 に挿入され約え /4の線路長の同軸給電プローブを形成するように設けられた第 2の同軸線路と、 を備えたことを特徴とする非接触口一夕リ一ジョイントとした ので、 キヤビティの共振を利用せずに、 電磁結合により高周波信号の伝送が行わ れるため、 同軸プローブの位置ずれが発生した場合でも伝送損失の増加が少なく 、 また従来に比べて大幅に小形化できる効果がある。  As described above, according to the first aspect of the present invention, a metal cavity having an inner diameter or a waveguide width shorter than 1/4 of the wavelength of a transmission signal and having at least a pair of opposing surfaces; A first coaxial outer conductor is fixed to one of the pair of opposing surfaces, and an inner coaxial conductor is inserted into the metal cavity to form a coaxial feeder having a line length of about / 4. And a coaxial power supply probe of the first coaxial line, the outer coaxial conductor being rotatable on the other of the pair of opposing surfaces of the metal cavity from the side opposite to the first coaxial line. The second coaxial cable is inserted into the metal cavity so as to be shifted so that it does not come into contact with the metal core and overlap with an interval in the axial direction, and provided to form a coaxial power supply probe having a line length of about / 4. Tracks and The non-contact opening and joint is a characteristic of the high-frequency signal transmission by electromagnetic coupling without using resonance of the cavity, so transmission is possible even when the coaxial probe is displaced. There is an effect that the increase in loss is small and the size can be significantly reduced as compared with the conventional case.
また第 2の発明によれば、 内径または導波管幅が伝送信号の波長人の 1 / 4よ り短く、 少なくとも対向する一対の面を有する金属キヤビティと、 この金属キヤ ビティの対向する一対の面の一方に、 同軸外導体が固定され同軸内導体が上記金 属キヤビティ内に挿入され約え /4の線路長の同軸給電プローブを形成するよう に設けられた第 1の同軸線路と、 この金属キヤビティの対向する一対の面の他方 の外側にこれにほぼ平行に回転可能に配置され金属キヤビティの面との間の隙間 で約人 / 4の長さのチョーク構造を形成する金属板と、 上記第 1の同軸線路と反 対側から上記金属板に、 同軸外導体がこの金属板と共に回転可能なように固定さ れ、 同軸内導体が上記第 1の同軸線路の同軸給電プローブと接触しないように軸 芯をずらしかつ軸方向に関して間隔をあけて重なるように金属板を貫通し上記金 属キヤビティ内に揷入され約え /4の線路長の同軸給電プローブを形成するよう に設けられた第 2の同軸線路と、 を備えたことを特徴とする非接触口一夕リージ ョイン卜としたので、 このチョーク構造により、 隙間部分からの放射を大幅に低 減することができる効果がある。 According to the second invention, the inner diameter or the waveguide width is shorter than 1/4 of the wavelength of the transmission signal, and the metal cavity has at least a pair of opposing surfaces. A first coaxial line provided on one of the surfaces so that an outer coaxial conductor is fixed and an inner coaxial conductor is inserted into the metal cavity to form a coaxial feed probe having a line length of about / 4; A metal plate that is rotatably arranged substantially parallel to the outside of the other pair of opposing surfaces of the metal cavity and forms a choke structure having a length of about man / 4 in a gap between the surfaces of the metal cavity; An outer coaxial conductor is fixed to the metal plate from the side opposite to the first coaxial line so as to be rotatable together with the metal plate, and the inner coaxial conductor does not contact the coaxial power supply probe of the first coaxial line. So that the axis is shifted and the axis A second coaxial line penetrating through the metal plate so as to overlap with an interval in the direction and inserted into the metal cavity and provided to form a coaxial feed probe having a line length of about / 4. Non-contact mouth overnight Since the choke structure is used, radiation from the gap can be greatly reduced.
また第 3の発明によれば、 上記第 2の同軸線路の同軸給電プローブを金属キヤ ビティの中心に配置したので、 対称性が良くなり、 回転に依存しない特性が得ら れる効果がある。  According to the third aspect of the present invention, since the coaxial power supply probe of the second coaxial line is disposed at the center of the metal cavity, the symmetry is improved, and there is an effect that characteristics independent of rotation can be obtained.
また第 4の発明によれば、 上記金属キヤビティの面と金属板の隙間に誘電体ス ぺ一サを全体に挿入したので、 誘電率を大きくすることで小形ィ匕を図ることがで ぎる。  According to the fourth aspect of the present invention, since the dielectric spacer is entirely inserted into the gap between the surface of the metal cavity and the metal plate, it is possible to reduce the size by increasing the dielectric constant.
また第 5の発明によれば、 上記金属キヤビティ形状が円柱形で前記金属板が円 盤形であり、 上記金属板が、 先端を延長して金属キヤビティ形状に沿って間に隙 間を設けるようにして折り曲げた折り曲げ部を有し、 この折り曲げ部と金属キヤ ビティの間に誘電体スぺーサを設けたので、 小形化することができ、 特に金属板 と金属キヤビティの間の隙間の変化に対して性能が変化しない効果がある。 また第 6の発明によれば、 上記金属キヤビティ形状が円柱形で前記金属板が円 盤形であり、 上記金属板が、 先端を延長して金属キヤビティ形状に沿って間に隙 間を設けるようにして折り曲げた折り曲げ部を有し、 上記金属キヤビティが外側 に上記金属板の折り曲げ部の外側に折り曲げられて延びる鍔部を有し、 上記折り 曲げ部と鍔部の隙間の折り曲げ部の付け根側にベアリングが挿入され、 上記第 2 の同軸線路の同軸内導体の中心から上記べァリングまでの距離を約え / 2とした ので、 人 / 2長のショートチョークとすることで、 完全に放射を抑制することが でき、 シールド構造が得られ効果がある。  According to the fifth invention, the metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a tip extended so that a gap is provided along the metal cavity shape. And a dielectric spacer is provided between the bent portion and the metal cavity, so that the size can be reduced, especially when the gap between the metal plate and the metal cavity changes. On the other hand, there is an effect that the performance does not change. According to the sixth aspect of the present invention, the metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a tip extended to provide a gap therebetween along the metal cavity shape. The metal cavity has a flange portion that is bent outward from the bent portion of the metal plate and extends outward. The distance from the center of the coaxial inner conductor of the second coaxial line to the bearing is approximately 1/2, so by using a short choke of person / 2 length, radiation can be completely eliminated. It is possible to obtain a shield structure, which is effective.
また第 7の発明によれば、 上記同軸給電プローブの先端を太くしたので、 動作 周波数帯域の広帯域化を図ることができる効果がある。  Further, according to the seventh aspect, the tip of the coaxial power supply probe is thickened, so that there is an effect that the operating frequency band can be broadened.
また第 8の発明によれば、 上記同軸給電プローブの先端に小金属板を装荷し容 量装荷したので、 プローブ高を低くすることができ、 従って金属キャンビティ高 も大幅に小さくできる効果がある。  Further, according to the eighth invention, since a small metal plate is loaded at the tip of the coaxial power supply probe and the volume is loaded, the height of the probe can be reduced, and the height of the metal cavities can be greatly reduced.
また第 9の発明によれば、 上記第 1の同軸線路の同軸給電プローブの先端を上 記金属キヤビティ内部で短絡したので、 プローブ寸法を小さくすることができ、 金属キヤビティを小さくできる効果がある。 また第 1 0の発明によれば、 上記キヤビティ内の空間形状を変えるインピーダ ンス整合用機構を備えたので、 キヤビティを小さくしてもィンピーダンス整合が 取れる効果がある。 Further, according to the ninth aspect, since the tip of the coaxial power supply probe of the first coaxial line is short-circuited inside the metal cavity, the probe size can be reduced, and the metal cavity can be reduced. Further, according to the tenth aspect, since the impedance matching mechanism for changing the space shape in the cavity is provided, there is an effect that impedance matching can be achieved even when the cavity is reduced.
また第 1 1の発明によれば、 互いに対向して填め合わされて内部に内径が伝送 信号の波長人の 1 /4より短い空間を形成する、 それそれ円形の底面とその周囲 に沿って延びる側面からなる径の異なる 2つの金属性カヅプ形状部材と、 一方の 金属性力ップ形状部材の底面に、 同軸外導体が固定され同軸内導体が上記金属キ ャビティ内に挿入され約え /4の線路長の同軸給電プローブを形成するように設 けられた第 1の同軸線路と、 この第 1の同軸線路と反対側から他方の金属性力ッ プ形状部材の底面に、 同軸外導体が回転可能に、 同軸内導体が上記第 1の同軸線 路の同軸給電プローブと接触しないように軸芯をずらしかつ軸方向に関して間隔 をあけて重なるように上記金属キヤビティ内に挿入され約えノ4の線路長の同軸 給電プローブを形成するように設けられた第 2の同軸線路と、 上記 2つの金属性 カップ形状部材の側面同士の隙間に設けられた誘電体スぺ一サと、 を備えた非接 触ロー夕リ一ジョイントとしたので、 誘電体スぺーサを用いて誘電率を大きくす ることによりチョーク構造を小さくすることができる。  Further, according to the eleventh aspect of the present invention, the inner surface is formed so as to face each other to form a space whose inner diameter is shorter than 1/4 of the wavelength of the transmission signal, and each has a circular bottom surface and side surfaces extending along the periphery thereof. A coaxial outer conductor is fixed to the bottom surface of two metallic cap-shaped members having different diameters, and a coaxial inner conductor is inserted into the above-mentioned metal cavity. An outer coaxial conductor rotates on a first coaxial line provided to form a coaxial feed probe having a line length, and on the bottom surface of the other metallic force-up shaped member from the side opposite to the first coaxial line. If possible, the coaxial inner conductor is inserted into the metal cavity so that it does not contact the coaxial power supply probe of the first coaxial line, and is inserted into the metal cavity so as to overlap at an interval in the axial direction. Form a coaxial feed probe with a line length A non-contacting linear joint comprising: a second coaxial line provided so as to provide a gap between the side surfaces of the two metallic cup-shaped members; Therefore, the choke structure can be reduced by increasing the dielectric constant using a dielectric spacer.
また第 1 2の発明によれば、 2本の同軸線路を軸芯を中心に回転可能に接続す る非接触口一タリ一ジョイントであって、 双方の同軸線路の同軸外導体先端に互 いに相補いかつ間に隙間を設け回転可能なように切り欠き部が設けられ、 かつ回 転しない同軸線路の同軸内導体の先端を、 回転する同軸線路の同軸内導体の先端 と近接させて電磁結合させるように折り曲げたことを特徴とする非接触ロー夕リ —ジョイントとしたので、 同軸内導体ひいては同軸線路の細径化が図れ、 また製 造が容易になる効果がある。  According to the first and second aspects of the present invention, there is provided a non-contact one-to-one joint for rotatably connecting two coaxial lines about an axis, wherein the two coaxial lines are connected to tips of coaxial outer conductors of both coaxial lines. Notches are provided so that they are complementary to each other and a gap is provided between them so that they can rotate, and the end of the coaxial inner conductor of the non-rotating coaxial line is brought close to the tip of the coaxial inner conductor of the rotating coaxial line. Since it is a non-contact low joint, which is characterized by being bent so as to be connected, it is possible to reduce the diameter of the coaxial inner conductor and, consequently, the coaxial line, and also has the effect of facilitating manufacturing.

Claims

請 求 の 範 囲 The scope of the claims
1 . 内径または導波管幅が伝送信号の波長人の 1 /4より短く、 少なくとも対 向する一対の面を有する金属キヤビティと、 1. a metal cavity having an inner diameter or waveguide width shorter than 1/4 of the wavelength of the transmitted signal and having at least a pair of opposing surfaces;
この金属キヤビティの対向する一対の面の一方に、 同軸外導体が固定され同軸 内導体が上記金属キヤビティ内に挿入され約人 /4の線路長の同軸給電プローブ を形成するように設けられた第 1の同軸線路と、  A coaxial outer conductor is fixed to one of a pair of opposing surfaces of the metal cavity, and a coaxial inner conductor is inserted into the metal cavity to form a coaxial power supply probe having a line length of about. 1 coaxial line,
この第 1の同軸線路と反対側から上記金属キヤビティの対向する一対の面の他 方に、 同軸外導体が回転可能に、 同軸内導体が上記第 1の同軸線路の同軸給電プ 口一ブと接触しないように軸芯をずらしかつ軸方向に関して間隔をあけて重なる ように上記金属キヤビティ内に挿入され約え / 4の線路長の同軸給電プローブを 形成するように設けられた第 2の同軸線路と、  The coaxial outer conductor is rotatable, and the coaxial inner conductor is connected to the coaxial feed port of the first coaxial line on the other side of the metal cavity from the opposite side to the first coaxial line. A second coaxial line that is inserted into the above-mentioned metal cavity so as to be shifted from the center of the axis so that it does not come into contact and overlap with an interval in the axial direction to form a coaxial feed probe with a line length of about / 4 When,
を備えたことを特徴とする非接触口一夕リージョイント。  Non-contact mouth overnight joint characterized by having.
2 . 内径または導波管幅が伝送信号の波長人の 1 / 4より短く、 少なくとも対 向する一対の面を有する金属キヤビティと、  2. a metal cavity having an inner diameter or waveguide width shorter than 1/4 of the wavelength of the transmitted signal and having at least a pair of opposing surfaces;
この金属キヤビティの対向する一対の面の一方に、 同軸外導体が固定され同軸 内導体が上記金属キヤビティ内に挿入され約 λ/4の線路長の同軸給電プローブ を形成するように設けられた第 1の同軸線路と、  A coaxial outer conductor was fixed to one of a pair of opposing surfaces of the metal cavity, and a coaxial inner conductor was inserted into the metal cavity to form a coaxial power supply probe having a line length of about λ / 4. 1 coaxial line,
この金属キヤビティの対向する一対の面の他方の外側にこれにほぼ平行に回転 可能に配置され金属キヤビティの面との間の隙間で約人/4の長さのチョーク構 造を形成する金属板と、  A metal plate that is rotatably arranged substantially parallel to the other outside of the pair of opposing surfaces of the metal cavity and that has a gap between the metal cavity surface and a choke structure having a length of about 4 people. When,
上記第 1の同軸線路と反対側から上記金属板に、 同軸外導体がこの金属板と共 に回転可能なように固定され、 同軸内導体が上記第 1の同軸線路の同軸給電プロ ーブと接触しないように軸芯をずらしかつ軸方向に関して間隔をあけて重なるよ うに金属板を貫通し上記金属キヤビティ内に挿入され約え /4の線路長の同軸給 電プローブを形成するように設けられた第 2の同軸線路と、  An outer coaxial conductor is fixed to the metal plate from the side opposite to the first coaxial line so as to be rotatable together with the metal plate, and an inner coaxial conductor is connected to the coaxial power supply probe of the first coaxial line. It is provided so that the shaft center is shifted so that it does not contact and penetrates the metal plate so as to overlap with an interval in the axial direction, and is inserted into the metal cavity to form a coaxial power supply probe with a line length of about / 4. A second coaxial line,
を備えたことを特徴とする非接触口一夕リージョイント。  Non-contact mouth overnight joint characterized by having.
3 . 上記第 2の同軸線路の同軸給電プローブを金属キヤビティの中心に配置し たことを特徴とする請求の範囲 1項又は 2項に記載の非接触口一夕リージョイン h o 3. The non-contact port overnight join according to claim 1 or 2, wherein the coaxial power supply probe of the second coaxial line is disposed at the center of the metal cavity. ho
4 . 上記金属キヤビティの面と金属板の隙間に誘電体スぺ一サを全体に挿入し たことを特徴とする請求の範囲 3項に記載の非接触口一夕リージョイント。 4. The non-contact aperture joint according to claim 3, wherein a dielectric spacer is entirely inserted into a gap between the surface of the metal cavity and the metal plate.
5 . 上記金属キヤビティ形状が円柱形で前記金属板が円盤形であり、 上記金属 板が、 先端を延長して金属キヤビティ形状に沿って間に隙間を設けるようにして 折り曲げた折り曲げ部を有し、 この折り曲げ部と金属キヤビティの間に誘電体ス ぺーサを設けたことを特徴とする請求の範囲 2項ないし 4項のいずれかに記載の 非接触ロー夕リ一ジョイント。 5. The metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a bent portion which is bent so as to extend a tip and provide a gap between the metal plates along the metal cavity shape. The non-contact solder joint according to any one of claims 2 to 4, wherein a dielectric spacer is provided between the bent portion and the metal cavity.
6 . 上記金属キヤビティ形状が円柱形で前記金属板が円盤形であり、 上記金属 板が、 先端を延長して金属キヤビティ形状に沿って間に隙間を設けるようにして 折り曲げた折り曲げ部を有し、 上記金属キヤビティが外側に上記金属板の折り曲 げ部の外側に折り曲げられて延びる鍔部を有し、 上記折り曲げ部と鍔部の隙間の 折り曲げ部の付け根側にベアリングが挿入され、 上記第 2の同軸線路の同軸内導 体の中心から上記べァリングまでの距離を約え / 2としたことを特徴とする請求 の範囲 2項ないし 4項のいずれかに記載の非接触口一夕リ一ジョイント。  6. The metal cavity shape is a columnar shape and the metal plate is a disk shape, and the metal plate has a bent portion which is bent so as to extend a tip and provide a gap therebetween along the metal cavity shape. The metal cavity has a flange portion that is bent outward and extends outside the bent portion of the metal plate, and a bearing is inserted into the gap between the bent portion and the root of the bent portion, The non-contact port according to any one of claims 2 to 4, wherein a distance from the center of the coaxial inner conductor of the coaxial line of (2) to the bearing is set to about 1/2. One joint.
7 . 上記同軸給電プローブの先端を太くしたことを特徴とする請求の範囲 1項 ないし 6項のいずれかに記載の非接触口一夕リ一ジョイント。  7. The joint according to claim 1, wherein a tip of the coaxial power supply probe is thickened.
8 . 上記同軸給電プローブの先端に小金属板を装荷し容量装荷したことを特徴 とする請求の範囲 1項ないし 6項のいずれかに記載の非接触口一夕リージョイン  8. The non-contact port overnight join according to any one of claims 1 to 6, wherein a small metal plate is loaded at the end of the coaxial power supply probe and the capacity is loaded.
9 . 上記第 1の同軸線路の同軸給電プローブの先端を上記金属キヤビティ内部 で短絡したことを特徴とする請求の範囲 1項ないし 6項のいずれかに記載の非接 触口一夕リージョイント。 9. The non-contact port joint according to claim 1, wherein a tip of the coaxial power supply probe of the first coaxial line is short-circuited inside the metal cavity.
1 0 . 上記キヤビティ内の空間形状を変えるインピーダンス整合用機構を備え たことを特徴とする請求の範囲 1項ないし 9項のいずれかに記載の非接触口一夕 リ一ジョイント。  10. The non-contact opening / joint according to any one of claims 1 to 9, further comprising an impedance matching mechanism for changing a space shape in the cavity.
1 1 . 互いに対向して填め合わされて内部に内径が伝送信号の波長人の 1 / 2 より短い空間を形成する、 それそれ円形の底面とその周囲に沿って延びる側面か らなる径の異なる 2つの金属性力ップ形状部材と、 一方の金属性力ップ形状部材の底面に、 同軸外導体が固定され同軸内導体が上 記金属キヤビティ内に挿入され約 λ/4の線路長の同軸給電プローブを形成する ように設けられた第 1の同軸線路と、 1 1. Opposed to each other to form a space whose inner diameter is shorter than 1/2 of the wavelength of the transmission signal inside, each having a different diameter consisting of a circular bottom surface and side surfaces extending along the circumference. Two metallic lip-shaped members; A coaxial outer conductor was fixed on the bottom surface of one of the metal-shaped members, and a coaxial inner conductor was inserted into the metal cavity to form a coaxial feed probe with a line length of about λ / 4. A first coaxial line,
この第 1の同軸線路と反対側から他方の金属性力ップ形状部材の底面に、 同軸 外導体が回転可能に、 同軸内導体が上記第 1の同軸線路の同軸給電プローブと接 触しないように軸芯をずらしかつ軸方向に関して間隔をあけて重なるように上記 金属キヤビティ内に挿入され約え / 4の線路長の同軸給電プローブを形成するよ うに設けられた第 2の同軸線路と、  The coaxial outer conductor is rotatable on the bottom surface of the other metal forceps-shaped member from the side opposite to the first coaxial line so that the coaxial inner conductor does not contact the coaxial power supply probe of the first coaxial line. A second coaxial line inserted in the metal cavity so as to be offset from the axis and overlap with an interval in the axial direction and provided to form a coaxial feed probe having a line length of about / 4,
上記 2つの金属性力ップ形状部材の側面同士の隙間に設けられた誘電体スぺー サと、  A dielectric spacer provided in a gap between the side surfaces of the two metallic lip-shaped members,
を備えたことを特徴とする非接触口一夕リージョイント。  Non-contact mouth overnight joint characterized by having.
PCT/JP2001/010333 2000-11-29 2001-11-27 Noncontact rotary joint WO2002045202A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000363015 2000-11-29
JP2000-363015 2000-11-29
JP2001-147905 2001-05-17
JP2001147905A JP2002232201A (en) 2000-11-29 2001-05-17 Non-contact rotary joint

Publications (1)

Publication Number Publication Date
WO2002045202A1 true WO2002045202A1 (en) 2002-06-06

Family

ID=26604827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010333 WO2002045202A1 (en) 2000-11-29 2001-11-27 Noncontact rotary joint

Country Status (2)

Country Link
JP (1) JP2002232201A (en)
WO (1) WO2002045202A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874229A1 (en) * 2013-11-13 2015-05-20 ThinKom Solutions, Inc. Ultra-compact low-cost microwave rotary joint
CN106324369A (en) * 2016-11-10 2017-01-11 成都雷电微晶科技有限公司 Non-contact type rotating device suitable for microwave antenna testing

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4509956B2 (en) * 2006-03-20 2010-07-21 三菱電機株式会社 Rotary joint
US7623081B2 (en) * 2008-01-25 2009-11-24 Mitsubishi Electric Research Laboratories, Inc. Wireless UWB connection for rotating RF antenna array

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685505A (en) * 1992-09-02 1994-03-25 Nec Corp Antenna branching filter
JPH10163701A (en) * 1996-12-03 1998-06-19 Nec Corp Rotary joint
JP2001136001A (en) * 1999-11-09 2001-05-18 Dx Antenna Co Ltd Rotary joint

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6349801U (en) * 1986-09-19 1988-04-04
JPH05299907A (en) * 1992-04-21 1993-11-12 Fujitsu General Ltd Waveguide/coaxial mode converter
JP2675963B2 (en) * 1993-05-18 1997-11-12 八木アンテナ株式会社 Rotary coupler
JPH10224101A (en) * 1997-02-12 1998-08-21 Nippon Koshuha Kk Waveguide choke flange
JP3370260B2 (en) * 1997-08-29 2003-01-27 八洲電研株式会社 High frequency signal line
JP3392367B2 (en) * 1999-03-12 2003-03-31 株式会社デンソー Non-contact type high frequency transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685505A (en) * 1992-09-02 1994-03-25 Nec Corp Antenna branching filter
JPH10163701A (en) * 1996-12-03 1998-06-19 Nec Corp Rotary joint
JP2001136001A (en) * 1999-11-09 2001-05-18 Dx Antenna Co Ltd Rotary joint

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2874229A1 (en) * 2013-11-13 2015-05-20 ThinKom Solutions, Inc. Ultra-compact low-cost microwave rotary joint
US9276302B2 (en) 2013-11-13 2016-03-01 Thinkom Solutions, Inc. Waveguide rotary joint including half-height waveguide portions
CN106324369A (en) * 2016-11-10 2017-01-11 成都雷电微晶科技有限公司 Non-contact type rotating device suitable for microwave antenna testing
CN106324369B (en) * 2016-11-10 2023-06-27 成都雷电微晶科技有限公司 Non-contact rotary device suitable for microwave antenna test

Also Published As

Publication number Publication date
JP2002232201A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
JP4450822B2 (en) Microwave transmission equipment
CN111934063B (en) Non-contact ultra-wideband waveguide rotary joint, control system, method and application
TWI382589B (en) A dielectrically-loaded antenna
JPS63161705A (en) Feeder horn for remote communication antenna
US9276302B2 (en) Waveguide rotary joint including half-height waveguide portions
JP2010514240A (en) Antenna configuration
JPH04230106A (en) Biconical antenna of hemispherical beam
CN111934066B (en) Broadband non-contact circular waveguide rotary joint and design method
WO2002045202A1 (en) Noncontact rotary joint
CN112803127B (en) Broadband non-contact coaxial rotary joint and radar antenna
CN102969557B (en) Vivaldi antenna array
KR101298617B1 (en) Apparatus of High Power Variable Phase Shifter and Diagnostic, and Phase Array Antenna having the same
CN101278434A (en) Variable phase shifter
CN102780083A (en) Broadband communication antenna
CN111934065B (en) Broadband abrasion-resistant circular waveguide rotary joint and design method
CN111954452B (en) Wear-resistant rotatable broadband electromagnetic shielding structure, design method and application
CN111934064A (en) L-shaped ultra-wideband waveguide rotary joint, control system, control method and application
CN115799777A (en) Double-channel coaxial antenna rotary joint
CN111934062A (en) U-shaped ultra-wideband non-contact waveguide rotary joint, control system, method and application
CN111934061B (en) Ultra-wideband waveguide rotary joint, control system, method and application
US2572970A (en) Coaxial line coupler
JP2513989Y2 (en) Multi-cavity klystron with coaxial impedance matcher
CN111954453B (en) Non-contact rotatable broadband electromagnetic shielding structure, design method and application
JP3147014B2 (en) Rotary joint
JP4047504B2 (en) Rotary joint

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase