WO2002042714A1 - Shape measuring method and apparatus - Google Patents

Shape measuring method and apparatus Download PDF

Info

Publication number
WO2002042714A1
WO2002042714A1 PCT/JP2000/008282 JP0008282W WO0242714A1 WO 2002042714 A1 WO2002042714 A1 WO 2002042714A1 JP 0008282 W JP0008282 W JP 0008282W WO 0242714 A1 WO0242714 A1 WO 0242714A1
Authority
WO
WIPO (PCT)
Prior art keywords
virtual plane
video camera
frame
calibration board
shape measuring
Prior art date
Application number
PCT/JP2000/008282
Other languages
French (fr)
Japanese (ja)
Inventor
Yukou Tsuchiyama
Kozo Kimura
Tsuneaki Utsumi
Naoki Atarashi
Original Assignee
I-Ware Laboratory Co., Ltd.
Tachibana Eletech Co., Ltd.
Tanaka Electric Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by I-Ware Laboratory Co., Ltd., Tachibana Eletech Co., Ltd., Tanaka Electric Industry Co., Ltd. filed Critical I-Ware Laboratory Co., Ltd.
Priority to JP2002544606A priority Critical patent/JPWO2002042714A1/en
Priority to PCT/JP2000/008282 priority patent/WO2002042714A1/en
Priority to AU2001215504A priority patent/AU2001215504A1/en
Publication of WO2002042714A1 publication Critical patent/WO2002042714A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Definitions

  • the present invention relates to a method (shape measuring method) and an apparatus for acquiring three-dimensional information from image data captured by an image input device such as a CCD camera and measuring the shape of an object to be measured.
  • a method and an apparatus for measuring an object to be measured by image processing have already been proposed.
  • the amount of data per field is the horizontal resolution x the vertical resolution, and the image data is very large.
  • arithmetic processing by the stereo method or the like was necessary.
  • the present invention provides a shape measuring method and apparatus which are inexpensive and compact, capable of high-speed processing, have excellent measuring accuracy, and are capable of measuring shapes from various angles.
  • the task is to Disclosure of the invention
  • the present invention relates to a relative positional relationship between a virtual plane in which a calibration board surface provided with absolute coordinates is captured by a video camera and absolute coordinate values are arranged for each pixel of the video camera, and the bidet talent mera. With the virtual plane facing the object to be measured
  • the video is moved in the X-axis direction, and the luminescent spot ring on the measured object formed when the virtual plane passes through the measured object is synchronized with the X-axis at every frame or on a specific frame.
  • a shape measurement method in which a relative point group data of a bright spot ring in a video signal of the video camera is taken as point group data having absolute coordinate values;
  • the virtual plane on which is located was obtained by imaging with a video camera while lighting a number of small lamps, which are absolute coordinates of the calibration board, one by one in synchronization with the frame. is there.
  • the shape measuring method according to the present invention is directed to the invention according to claim 1, wherein small lamps serving as absolute coordinate values are regularly arranged on the calibration board in the vertical and horizontal directions.
  • the shape measuring method according to the present invention relates to the invention described in claim 1 or 2, wherein a moving speed of the virtual plane in the X-axis direction is variable.
  • a shape measuring method relates to the invention according to any one of the first to third aspects, wherein the object to be measured is a footprint.
  • a large number of small lamps serving as absolute coordinates are regularly arranged in the vertical and horizontal directions, and the small lamps are turned on one by one in synchronization with a frame.
  • a video camera that captures an image of the bright spot ring on the object to be measured for each frame or every specific frame in synchronization with the X axis, and relative point group data of the bright spot ring in the video signal of the video camera.
  • Conversion means for converting the data into point cloud data having absolute coordinate values.
  • the shape measuring method according to the present invention relates to the invention according to claim 5, wherein the small lamps serving as absolute coordinate values are regularly arranged in the vertical and horizontal directions on the calibration board.
  • the shape measuring apparatus relates to the invention according to claim 5 or 6, wherein the calibration board is upright.
  • the shape measuring device is directed to the invention according to any one of claims 5 to 7, wherein the moving speed of the moving body in the X-axis direction is variable.
  • the shape measuring apparatus according to the present invention is directed to the invention according to any one of claims 5 to 8, wherein the object to be measured is a footprint.
  • FIG. 1 is an external perspective view of a foot shape measuring apparatus using a shape measuring method according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a measuring device main body of the footprint measuring device.
  • FIG. 3 is a plan view of the measuring device main body.
  • FIG. 4 is a front view of the measuring device main body.
  • FIG. 5 is a sectional view of the measuring device main body.
  • FIG. 6 is a bottom view of the moving means of the measuring device main body.
  • FIG. 7 is a side view of a moving unit of the measuring device main body.
  • FIG. 8 is a front view of a calibration board of the measuring device main body.
  • FIG. 9 is an explanatory diagram of an image processing board of the measuring device main body.
  • FIG. 10 is a flowchart showing the operation of the measuring device main body.
  • FIG. 11 is an explanatory diagram showing a method of creating a calibration table.
  • Fig. 12 is a perspective view of an X-Y-Z (three-dimensional) displacement mechanism for changing the imaging angle of the CCD camera.
  • FIG. 13 is a conceptual diagram of a shape measuring device according to another embodiment of the present invention.
  • FIG. 14 is a conceptual diagram of a shape measuring device according to another embodiment of the present invention.
  • Embodiment of the Invention is a conceptual diagram of a shape measuring device according to another embodiment of the present invention.
  • FIG. 1 is a footprint shape measuring apparatus (hereinafter referred to as a footprint measuring apparatus) according to an embodiment of the present invention.
  • FIG. 2 shows the internal structure of the measuring device main body of the footprint measuring device.
  • This footprint measuring device basically comprises a measuring device main body 1 and a personal computer 9 as shown in FIG. 1, and a CPU 91 constituting the personal computer 9 is connected to a measuring device.
  • a display 90 touch panel type input section which constitutes a personal computer is provided in the main body 1 at the upper part of a pole provided at the rear of the measuring apparatus main body 1.
  • the measuring device main body 1 includes a base 2, a support 3, a moving means 4, a frame 5, a glass plate 6, and a calibration board 7, And an image processing board 8.
  • the board 2 has left and right footrests 21 provided on a seat plate 20 and a case 22 provided between the left and right footrests 21, 21. .
  • the seat plate 20 is formed in a polygonal shape in a plan view as shown in FIG. 3, and is set to about 640 mm X 730 mm while minimizing the area occupying the store floor. is there.
  • the footrest 21 has a rectangular shape in plan view that is set to a size that allows one foot to be placed with a margin.
  • the case 22 surrounds the support 3, the moving means 4, the frame 5, the glass 6, the calibration board 7 and the like so as not to be exposed.
  • an opening 22a is provided from the front wall to the upper wall so that the foot can be easily placed on the glass plate 6.
  • the support base 3 supports a rectangular frame 30 in plan view with four legs 31, and all the legs 31 are screwed to the seat plate 20. ing.
  • the upper surface of the frame portion 30 is set to a height substantially coincident with the upper surface of the footrest 21.
  • the moving means 4 is attached to the long substrate 40, a guide rod 41 fixedly arranged on the lower surface of the substrate 40, and a paired state with the guide rod 41.
  • Moving body 42 a toothed pulley 43 attached to the lower surface of the substrate 40, a toothed burry 44 attached to the rotating shaft of the stepping motor M, and the toothed pulley 43. 44, a toothed belt 45 stretched between them, a mounting member 46 for attaching the toothed belt 45 to the moving body 42, and a limit switch 4 for restricting a moving range of the moving body 42 in the front-rear direction.
  • the moving body 42 moves in the front-rear direction within the range limited by the limit switches 47 and 48.
  • the moving means 4 is disposed between the frame portion 30 and the seat plate 20 in a manner in which the board 40 is attached to the leg portion 31 via the bracket 32 as shown in FIG.
  • the moving range of the moving body 42 in the X-axis direction by the moving means 4 is set to 300 mm, and this moving range is the measurement range in the X-axis direction (foot length direction).
  • the moving means 4 employs a stepping motor M that rotates by the amount of the pulse signal instead of the servo, but each device installed in the actuator is also used. Since it is small and lightweight, there is almost no position control error due to inertia.
  • the pulse signal for controlling the stepping mode M is provided with a synchronization signal generation circuit 83 on the image processing board 8 to unify a control mechanism for synchronizing measurement and driving.
  • the vertical scanning frequency of the CCD camera is 30 Hz
  • an image of one field is captured every 30 seconds.
  • the measurement range in the X-axis direction is 300 mm and the moving distance per field is 1 mm as described above
  • the measurement time is 10 seconds and the measurement data amount is 300 fields.
  • the frame body 5 has a horizontal U-shape in a front view composed of vertical plates 5a, 5a and a horizontal plate 5b connecting these lower ends to each other. Mounted on the bottom.
  • the frame 5 is provided with four small CCD cameras 50 on the front side (front side) at the top, bottom, left and right, and at the top, bottom, left and right on the rear side (back side).
  • Four semiconductor line lasers 51 are provided at positions separated from the CCD camera 50 by a certain distance.
  • the CCD camera 50 has a vertical scanning frequency of 30 Hz and a horizontal resolution of 380 TV lines, and is affected by external light other than visible light from the visible light semiconductor line laser 51 as much as possible. In order to avoid this, a band bass filter 52 that passes only the wavelength band is attached.
  • the mounting position of the CCD camera 50 is set at 45 ° inward in the top view and 45 ° in the front view from the state in which the CCD camera 50 is perpendicular to the calibration board 7 as shown in FIGS. The lower two are tilted 45 ° inward when viewed from above and 45 ° upward when viewed from the front.
  • the semiconductor line laser 51 uses a red light laser having a wavelength band of 700 nm, which is visible light, because of its versatility and good visibility. is there.
  • the mounting posture of the semiconductor line laser 51 are arranged in parallel with the calibration board 7 as shown in FIG. 3 and FIG. 4, the upper two are tilted by 45 ° at the lower side, and the lower two are tilted by 45 at the upper side. It is inclined. In other words, four semiconductor line lasers 51 form a virtual imaginary plane in front view in the footprint measurement area.
  • the measurement range on the virtual plane is 150 mm in the horizontal axis, Y-axis direction (foot width direction), and the vertical axis, Z axis direction (foot height), as shown in Fig. 4.
  • Direction is set to 150 mm.
  • the glass plate 6 is positioned at a portion where the foot to be measured is placed, and is fitted into the above-described frame portion 30 in such a manner that its upper surface is at the same height as the footrest 21 as shown in FIG. Have been
  • the calibration board 7 consists of a flat plate 70 with 16 small LEDs 71 (corresponding to small lamps of the present invention). As shown in Fig. 5, the virtual plane created by the semiconductor line laser 51 moved to the innermost part by the moving means 4 and the front surface of the board almost coincide with each other as shown in Fig. 5. It is fixedly arranged in a manner.
  • the absolute coordinate values are applied to the CCD pixels, and a calibration table is created and stored. By using the table, it is possible to replace even a single buji with unknown dimensions with absolute coordinates.
  • FIG. 9 shows a relation between the pulse motor M, the semiconductor line laser 51 and the CCD camera 50 and the image processing board 8.
  • This image processing board 8 is provided for each CCD camera 50 so that four CCD cameras 50 can capture images in parallel in order to avoid a reduction in measurement speed.
  • the CCD camera 50 scans the bright spot of the LED 71 placed on the calibration board 7 when creating the calibration table via the band-pass filter 52, and the horizontal spot on the bright spot ring formed on the virtual plane when measuring. Capture bright spots on scan lines Image.
  • a video signal that is, a television signal is output from the CCD camera 50, and the video signal is supplied to the synchronization detection circuit 80.
  • this synchronization detection circuit 80 for example, an IC for synchronization separation such as M1881 can be used.
  • the synchronization detection circuit 80 extracts the horizontal synchronization signal Hsync and the vertical synchronization signal Vsync from the video signal (television signal) output from the CCD camera 50, and outputs them to the input port 830 of the microcomputer 8M. give.
  • the video signal separated in synchronization by the synchronization detection circuit 80 is supplied to the waveform shaping circuit 81.
  • the waveform shaping circuit 81 detects the peak value of the video signal, and the detected peak value is given to the binarizing circuit 82.
  • an appropriate reference level ( ⁇ value) is set according to the peak value, and the video signal separated in synchronization is binarized at the reference level (threshold value) to reduce the ambient brightness. Only bright spots with a large level are separated. Therefore, only the bright spot of the LED 71 arranged on the calibration board 7 and the bright spot on the horizontal scanning line in the bright spot ring formed on the virtual plane are at high level, and the other parts are at low level. Then, a binary signal is output and supplied to the input port 830.
  • the microcomputer 8M has a function such as V10 or V20 and has a memory capture function. In addition to the CPU 8C and necessary memory, the microcomputer 8M has a Y / Z / X counter 800, 810, 820 included.
  • the Z counter 810 is reset by a vertical synchronization signal Vsync provided through the input port 830, and is similarly incremented in response to a horizontal synchronization signal Hsync provided from the input port 830.
  • the count value of the Z counter 810 indicates the number of scanning lines in one screen (one frame), and becomes the vertical axis, that is, the position information of the Z axis.
  • the Y counter 800 is reset by the horizontal synchronization signal Hsync, and is incremented according to the clock from the synchronization signal generating circuit 83 which is sufficiently faster (for example, 10 MHz) than the video signal.
  • the count value of Y count 800 is the position information on the horizontal axis that is the scanning line, that is, the Y axis.
  • X count 820 is incremented for each vertical scanning wavenumber.
  • the count value of X count 820 is the X axis position information.
  • the f register 805, 806 is for loading the force value of Y count 800
  • ⁇ 1 ⁇ ⁇ 2 ⁇ ⁇ 3 register 81 1, 812, 813 is ⁇ 811 ⁇ ⁇ 2 ⁇ ⁇ 3
  • Registers 821, 822, and 823 are for loading the count values of the X counter 820.
  • the microcomputer 810 is used to load the count value of the counter 810. Supplies a drive signal to the LED 1 of the calibration board 7, the pulse motor position control circuit 84, and the laser power supply circuit 85 via the input / output port 831. Therefore, the image signal when the microcomputer 8 turns on the LED 71 and the image signal of the bright spot on the horizontal scanning line in the bright spot ring formed on the virtual plane are captured by the CCD camera 50.
  • this device significantly reduces the amount of re-measured image data by extracting only the data necessary for bright spot recognition, and performs image data calculation processing as wired logic on hardware (board). ). Therefore, since the initial image processing required for three-dimensional image measurement is processed on the board without performing calculations on the CPU, high-speed image processing can be performed without depending on the CPU processing speed. In addition, compared to normal image processing, the amount of data transferred between the image processing board 8 and the personal computer 9 is reduced, and very high-speed processing can be performed.
  • the display 90 of the personal computer 9 has a touch panel type input unit.
  • the panel includes “initialization of a calibration table” “measurement of footprint” “formation of front image of footprint”. “Side image of footprint” Molding)
  • this footprint measuring device will be described based on the flowchart shown in FIG.
  • calibration is first initialized, and then footprint measurement is started.
  • the virtual plane created by the semiconductor line laser 51 coincides with the bright spot of the LE D71 of the calibration board 7 when viewed from above (the end point of the moving range of the frame 5).
  • the LE D71 placed on the calibration board 7 is moved from the left side to the right side.
  • the LED D71 is turned on one by one in frame synchronization, and the image is captured by the CCD camera 50 in frame synchronization.
  • the CCD camera 50 uses the vertical scanning frequency of 30 Hz.
  • the operation is completed in 7.8 seconds.However, to create the calibration table, the absolute coordinates of the recognized 71 points of the LEDs 71 at 10 mm intervals are required. Based on the above, it is necessary to fill the table of all the pixels of the portion imaged by the CCD camera 50 with the calculation by the CPU with the absolute coordinates, so that the time required to create the calibration table depends on the performance of the CPU. However, the first 3 It is about 5 seconds.
  • step ST1 when it is determined as YES in step ST1, initialization of the calibration table is started. Then, the CPU 8C detects whether or not the horizontal synchronization signal Hsync has been input from the input port 830. That is, it starts when the CPU 8C detects the horizontal synchronization signal Hsync. Then, when detecting the horizontal synchronization signal Hsync in step ST2, the CPU 8C resets the Y count 800 and triggers the Y count 800. Therefore, Y counter 800 is incremented according to the clock from synchronization signal generating circuit 83.
  • step ST4 the CPU 8C again determines whether or not the horizontal synchronization signal Hsync has been input.
  • the fact that the horizontal synchronization signal Hsync is detected in step ST2 and that the horizontal synchronization signal Hsync is detected in step ST4 means that the horizontal synchronization signal Hsync line (horizontal scanning line) detected in step ST2 Means that there was no image of the bright spot at this point.
  • the process returns to the reset step ST3 again, and the Y power terminal 800 is reset / started.
  • step ST4 it is determined whether or not the rise of the binarized video signal from the binarization circuit 82 has detected a signal. If the video signal does not rise, go back to step ST4.
  • the CPU 8C loads the count value of the Y-counter 800 at that time into the re-registration evening, that is, the Y1on-registration evening 801. Load the count value at $ 1 Reg 811.
  • step ST6 at the rising edge of the bright spot video signal, the count value of the # 1 counter 811, that is, the number of scanning lines (vertical position) from the vertical synchronization signal Vsync is loaded into the Z1 register 811, and the Y count and the 800 count are set.
  • the default value that is, the horizontal position from the water synchronization signal Hsync, is loaded into the Y1on register 801.
  • the CPU 8C again determines whether or not the horizontal synchronization signal Hsync has been input. If YES is determined in this step ST7, the process returns to the previous step ST2. Then, in the next step ST8, the CPU 8C determines whether or not the falling edge of the binarized video signal has been detected.
  • step ST8 the CPU 8C loads the count value of the Y counter 800 into the falling register, that is, the Y1off register 802 at the next step ST9.
  • step ST6 the rising position is loaded at Y1on Regis evening 801 and the falling position is loaded at ST1 off Regis evening 802 in step ST9, so the bright spot image is stored in the two registers 801 and 802. The data showing the width of the signal is obtained.
  • step ST10 the CPU 8C fetches the data of the Z1 register 811, the Y1on register 801, and the Y1off register 802.
  • the CP U8C uses the Z2 register 812, Y2on
  • the data of the register 803 and the Y1off register 804 are fetched. Re-insert.
  • the center of the luminescent spot is calculated from the data of each resist evening captured in step ST10.
  • the relative positional relationship between the calibration board 7 and the CCD camera 50 in the X-axis direction does not change.
  • the value of 821, 823, 824 is 0.
  • step ST11 the CPU 8C determines whether or not the vertical synchronization signal V syno has been input from the input port 830. If N 0 is determined in step 1, the process returns to step 3. If YES is determined, in the next step ST 12, the CPU 810 resets the Z counter 810.
  • step ST13 if YES is determined in step ST13 and NO is determined in step ST14, the LED 71 of No. 1 in the first vertical line and the first column, which has been lit, is turned off and the next vertical line is turned off. LE D71 of No. 2 in the second row and the first column lights up.
  • steps ST2 to ST12 are performed for No. 3 LE D71 to No. 2 40. Is repeated.
  • step ST14 the creation of the absolute coordinates of the LED 71, which is the reference of the calibration table on the calibration board 7, is completed.
  • the bright spot ring of the cross section of the footprint formed on the virtual plane is frame-synchronized with the CCD camera 50. To capture an image.
  • the bright spot ring of the cross section of the foot shape formed on the virtual plane is set in the same manner as the contents described in the column of the above-mentioned calibration table creation (step ST2 to step ST12), and the CPU 8C Captures only the positions of the bright spots on the horizontal scanning line forming the bright spot ring.
  • the X counter 820 is incremented for each vertical scanning frequency, and the count value of the X counter 820 becomes the X-axis position information.
  • the display is facing the 90 side Then, put one foot on the non-measurement side on the footrest 21 and put one foot on the measurement side on the glass plate 6.
  • the four semiconductor line lasers 51 are constantly lit to form a virtual plane orthogonal to the foot length direction (X-axis direction) due to the belt-like light, and the virtual plane is moved to the rear side together with the moving means 4 by a predetermined distance. Move at speed.
  • the foot is cut by the virtual plane and a bright spot ring is formed.
  • the bright spot ring is imaged by a CCD camera frame by frame in synchronization with the X axis.
  • the scanning method for one field is the same, but the output signal is such that only the address numbers of the start and end points of the optical signal (bright point) recognized on one horizontal scan line are output.
  • the amount of data per imaged field is about 1 kB (varies depending on the number of bright spot recognition pixels) over a binary reed. In other words, the amount of data is about 100, which is very small compared to the data amount used in the conventional technology. Therefore, this footprint measuring device has the following effects as compared with the conventional technology.
  • the image data is very small, and the image data arithmetic processing is configured as hardware (boarding) as a wired jig and processed on the board, so high-speed processing is possible.
  • the EDs 71 are sequentially lit one by one in frame synchronization, and imaged by the CCD camera 50 in frame synchronization. It forms a virtual plane on which the I-straights are arranged.
  • the CCD camera 50 is moved through the X-Y-Z (three-dimensional) displacement mechanism 50a. It should be attached to 5.
  • the shape measuring apparatus of the above embodiment has one calibration board 7 for each CCD camera 50, and also moves the calibration board 7 and the semiconductor line laser 51 by the same angle. Tilted.
  • the CCD camera 50 can image the object to be measured from directly in front
  • the first embodiment also uses a large number of screens. Therefore, the measurement accuracy is improved.
  • the shape measuring device of the above embodiment is for a foot shape
  • the shape measuring device is not limited to this, and can also measure the whole body and the external shape of parts and objects.
  • the entire body as shown in FIG. 14, two frames 5, 5 having four CCD cameras 50 are provided, and a semiconductor line laser 51 is interposed between the frames 5, 5.
  • the frames 5 and 5 are moved up and down so that the camera of the upper frame 5 is moved.
  • the camera 70 of the lower frame 5 may image the LED 70 on the lower surface while imaging the 70.
  • the semiconductor line laser 150 When measuring the entire body, the semiconductor line laser 150 is turned on, a virtual plane is created by band light, and the virtual plane is moved at least from the top of the head to the ground contacting the pedestal.
  • the image may be captured by the CCD camera 50 for each frame or for each specific frame.
  • the semiconductor laser 51 is always turned on during measurement.
  • the present invention is not limited to this.
  • the timing of imaging by the CCD camera 50, that is, the semiconductor laser 51 is changed every frame or every specific frame.
  • the laser 51 may be turned on.
  • the stepping mode is used.
  • the present invention is not limited to this, and the servo mode may be used, or other moving steps may be performed manually.
  • the measurement was performed with the foot placed on the glass plate 6, but the measurement is not limited to this, and the measurement may be performed with the glass plate 6 removed and the foot fixed so as not to move. .
  • the present invention has the following effects because it has the above configuration.
  • a compact shape measuring method and apparatus which is inexpensive, capable of high-speed processing, has excellent measurement accuracy, and is compact 1 can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

An inexpensive measuring method for measuring the shape of an object from various angles at high speed with excellent accuracy by means of a compact arrangement, in which the image of a calibration board to which an absolute coordinate system is given is picked up by means of a video camera, a virtual plane where an absolute coordinate value is given for each pixel of the video camera is moved toward the object along the X-axis while maintaining the relative positional relation between the virtual plane and the video camera, the image of a bright point ring appearing on the object when the virtual plane passes through the object is picked up in synchronizm with the X-axis by means of the video camera for every frame or every specific frames, and the relative point group data on the bright point ring in the video signal from the video camera is made point group data including the absolute coordinate values. The virtual plane where the absolute coordinate values are given is formed by picking up the image of the calibration board while operating a large number of small lamps, serving as the absolute coordinates of the calibration board sequentially one by one in synchronizm with the frame.

Description

明細書 形状計測方法及び装置 技術分野  Description Shape measurement method and device
この発明は、 C C Dカメラ等の画像入力装置で撮像された画像データから三次 元情報を取得して被計測物の形状を計測する方法 (形状計測方法) 及び装置に関 するものである。 技術背聂  The present invention relates to a method (shape measuring method) and an apparatus for acquiring three-dimensional information from image data captured by an image input device such as a CCD camera and measuring the shape of an object to be measured. Technology
画像処理によって被計測物を計測する方法及び装置は既に提案されている。 しかしながら、 従来の技術に用いられている画像計測では、 1フィールドのデ 一夕量は水平解像度 X垂直解像度となり、 画像データが非常に膨大なものとなつ ていた。 また、 被計測物の形状寸法を認識するためには、 スレテオ法等による演 算処理が必要であった。  A method and an apparatus for measuring an object to be measured by image processing have already been proposed. However, in the image measurement used in the conventional technology, the amount of data per field is the horizontal resolution x the vertical resolution, and the image data is very large. In addition, in order to recognize the shape and dimensions of the object to be measured, arithmetic processing by the stereo method or the like was necessary.
このため、 現在提案されている形状計測方法及び装置では、 以下の①〜④に示 すような問題があった。  For this reason, the currently proposed shape measuring method and apparatus have the following problems (1) to (4).
①巨大なメモリを画像処理ボード上に実装しなければならないことから、 回路規 摸が非常に大きくなつてしまい、 装置自体が非常に大型になる。  (1) Since a huge memory must be mounted on the image processing board, the circuit simulation becomes very large, and the device itself becomes very large.
②画像データが非常に膨大であるから、 画像処理ボードとパーソナルコンビユー 夕との間のデー夕転送量が非常に多くなリ、 高速処理が困難である。  (2) Since the amount of image data is very large, the amount of data transfer between the image processing board and the personal computer is very large, and high-speed processing is difficult.
③膨大なデータ転送量を高速処理しょうとすると、 巨大なメモリの画像処理ボ一 ド上への実装と合わせて、 装置が非常に高価なものとなってしまう。  (3) If a large amount of data transfer is to be processed at high speed, the equipment becomes extremely expensive, along with mounting a huge memory on the image processing board.
④膨大なデータを用いて、 形状寸法を演算処理により求めるため、 高速処理が非 常に難しかった。  た め High-speed processing was extremely difficult because the shape and dimensions were determined by computation using a vast amount of data.
その他、 被計測物をガラス等の透明体を通してビデオカメラで撮影した場合、 透明体の屈折率等の影響で画像に歪みが生じて計測精度が非常に悪くなるという 問題もある。 そこで、 この発明では、 安価で且つコンパクトであ ύ、 高速処理が可能であり 、 優れた計測精度を有しており、 様々なアングルからの形状計測が可能である形 状計測方法及び装置を提供することを課題とする。 発明の開示 In addition, when an object to be measured is photographed with a video camera through a transparent body such as glass, there is a problem that the image is distorted due to the influence of the refractive index of the transparent body and the measurement accuracy is extremely deteriorated. Therefore, the present invention provides a shape measuring method and apparatus which are inexpensive and compact, capable of high-speed processing, have excellent measuring accuracy, and are capable of measuring shapes from various angles. The task is to Disclosure of the invention
(請求項 1記載の発明)  (Invention described in claim 1)
この発明は、 絶対座標が設けられたキヤリブレーションボード面をビデオカメ ラにより撮像してビデオカメラの各画素毎に絶対座標値を配置した仮想平面と、 当該ビデ才力メラとの相対位置関係を維持しつつ仮想平面を被計測物に向かって The present invention relates to a relative positional relationship between a virtual plane in which a calibration board surface provided with absolute coordinates is captured by a video camera and absolute coordinate values are arranged for each pixel of the video camera, and the bidet talent mera. With the virtual plane facing the object to be measured
X軸方向に移動させ、 前記仮想平面が被計測物を通過するときにできる当該被計 測物上の輝点リングを X軸に同期させて 1フレーム毎又は特定のフレー厶每に前 記ビデオカメラで撮像し、 前記ビデオカメラの映像信号における輝点リングの相 対的な点群データを、 絶対座標値を持つ点群データとするようにしてある形状計 測方法あつて、 前記絶対座標値が配置された仮想平面は、 キヤリブレーションボ 一ドの絶対座標となる多数の小ランプをフレームと同期させて 1個づっ順番に点 灯させながらビデオカメラで撮像することにより得られたものである。 The video is moved in the X-axis direction, and the luminescent spot ring on the measured object formed when the virtual plane passes through the measured object is synchronized with the X-axis at every frame or on a specific frame. A shape measurement method in which a relative point group data of a bright spot ring in a video signal of the video camera is taken as point group data having absolute coordinate values; The virtual plane on which is located was obtained by imaging with a video camera while lighting a number of small lamps, which are absolute coordinates of the calibration board, one by one in synchronization with the frame. is there.
(請求項 2記載の発明)  (Invention described in claim 2)
この発明の形状計測方法は、 上記請求項 1記載の発明に関し、 絶対座標値とな る小ランプはキヤリプレーションボードに縦横方向に規則正しく配列されている  The shape measuring method according to the present invention is directed to the invention according to claim 1, wherein small lamps serving as absolute coordinate values are regularly arranged on the calibration board in the vertical and horizontal directions.
(請求項 3記載の発明) (Invention described in claim 3)
この発明の形状計測方法は、 上記請求項 1又は 2記載の発明に関し、 仮想平面 の X軸方向の移動速度が可変である。  The shape measuring method according to the present invention relates to the invention described in claim 1 or 2, wherein a moving speed of the virtual plane in the X-axis direction is variable.
(請求項 4記載の発明)  (Invention described in claim 4)
この発明の形状計測方法は、 上記請求項 1乃至 3のいずれかに記載の発明に関 し、 被計測物が足形である。  A shape measuring method according to the present invention relates to the invention according to any one of the first to third aspects, wherein the object to be measured is a footprint.
(請求項 5記載の発明)  (Invention described in claim 5)
この発明の形状計測装置は、 絶対座標となる小ランプが縦横方向に規則正しく 多数配置され且つ前記小ランプはフレームと同期して 1個づっ順番に点灯するよ うにしてあるキヤリブレ一ションボードと、 前記キヤリブレーシヨンボードに対 して X軸方向に移動する移動体と、 前記移動体に複数個取り付けられ且つ仮想平 面を形成する帯状光発生手段と、 前記移動体に帯状光発生手段から離れて複数個 取リ付けられていると共に仮想平面となるべき位置と一致させたキヤリブレーシ ョンボードを撮像した後、 前記仮想平面が被計測物を通過するときにできる当該 被計測物上の輝点リングを X軸に同期させて 1フレーム毎又は特定のフレーム毎 に撮像するビデオカメラと、 前記ビデオカメラの映像信号における輝点リングの 相対的な点群データを、 絶対座標値を持つ点群データに変換する変換手段とを具 備する。 According to the shape measuring apparatus of the present invention, a large number of small lamps serving as absolute coordinates are regularly arranged in the vertical and horizontal directions, and the small lamps are turned on one by one in synchronization with a frame. A calibration board, a movable body that moves in the X-axis direction with respect to the calibration board, and a plurality of band-shaped light generating means attached to the movable body and forming a virtual plane. After imaging the calibration board which is attached to the moving body away from the belt-shaped light generating means and is aligned with the position to be a virtual plane, the image can be formed when the virtual plane passes through the object to be measured. A video camera that captures an image of the bright spot ring on the object to be measured for each frame or every specific frame in synchronization with the X axis, and relative point group data of the bright spot ring in the video signal of the video camera. Conversion means for converting the data into point cloud data having absolute coordinate values.
(請求項 6記載の発明)  (Invention described in claim 6)
この発明の形状計測方法は、 上記請求項 5記載の発明に関し、 絶対座標値とな る小ランプはキャリブレーションボードに縦横方向に規則正しく配列されている o  The shape measuring method according to the present invention relates to the invention according to claim 5, wherein the small lamps serving as absolute coordinate values are regularly arranged in the vertical and horizontal directions on the calibration board.
(請求項 7記載の発明)  (Invention described in claim 7)
この発明の形状計測装置は、 上記請求項 5又は 6記載の発明に関し、 キヤリブ レーションボードは直立させてある。  The shape measuring apparatus according to the present invention relates to the invention according to claim 5 or 6, wherein the calibration board is upright.
(請求項 8記載の発明)  (Invention described in claim 8)
この発明の形状計測装置は、 上記請求項 5乃至 7のいずれかに記載の発明に関 し、 移動体の X軸方向の移動速度が可変である。  The shape measuring device according to the present invention is directed to the invention according to any one of claims 5 to 7, wherein the moving speed of the moving body in the X-axis direction is variable.
(請求項 9記載の発明)  (Invention described in claim 9)
この発明の形状計測装置は、 上記請求項 5乃至 8のいずれかに記載の発明に関 し、 被計測物が足形である。  The shape measuring apparatus according to the present invention is directed to the invention according to any one of claims 5 to 8, wherein the object to be measured is a footprint.
なお、 上記した発明の形状計測方法及び装置の機能については以下の発明の実 施の形態の欄で説明する。 図面の簡単な説明 ' 図 1 は、 この発明の実施形態の形状計測方法を利用した足形計測装置の外観斜 視図である。  The functions of the above-described shape measuring method and apparatus according to the present invention will be described in the following embodiments of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an external perspective view of a foot shape measuring apparatus using a shape measuring method according to an embodiment of the present invention.
図 2は、 前記足形計測装置の計測装置本体の斜視図である。 図 3は、 前記計測装置本体の平面図である。 FIG. 2 is a perspective view of a measuring device main body of the footprint measuring device. FIG. 3 is a plan view of the measuring device main body.
図 4は前記計測装置本体の正面図である。  FIG. 4 is a front view of the measuring device main body.
図 5は、 前記計測装置本体の断面図である。  FIG. 5 is a sectional view of the measuring device main body.
図 6は、 前記計測装置本体の移動手段の底面図である。  FIG. 6 is a bottom view of the moving means of the measuring device main body.
図 7は、 前記計測装置本体の移動手段の側面図である。  FIG. 7 is a side view of a moving unit of the measuring device main body.
図 8は、 前記計測装置本体のキヤリブレーションボードの正面図である。 図 9は、 前記計測装置本体の画像処理ボードの説明図である。  FIG. 8 is a front view of a calibration board of the measuring device main body. FIG. 9 is an explanatory diagram of an image processing board of the measuring device main body.
図 1 0は、 前記計測装置本体の動作を示すフロー図である。  FIG. 10 is a flowchart showing the operation of the measuring device main body.
図 1 1は、 キヤリブレーシヨンテーブルを作成する方法を示す説明図。  FIG. 11 is an explanatory diagram showing a method of creating a calibration table.
図 12は、 C C Dカメラの撮像アングルを変えるための X— Y— Z (三次元) 変 位機構の斜視図。  Fig. 12 is a perspective view of an X-Y-Z (three-dimensional) displacement mechanism for changing the imaging angle of the CCD camera.
図 13は、 この発明の他の実施形態の形状計測装置の概念図である。  FIG. 13 is a conceptual diagram of a shape measuring device according to another embodiment of the present invention.
図 14は、 この発明の他の実施形態の形状計測装置の概念図である。 発明の実施の形態  FIG. 14 is a conceptual diagram of a shape measuring device according to another embodiment of the present invention. Embodiment of the Invention
以下、 この発明を実施形態として示した図面に従って説明する。  Hereinafter, the present invention will be described with reference to the drawings shown as embodiments.
図 1はこの発明の実施形態の足形の形状計測装置 (以下、 足形計測装置という FIG. 1 is a footprint shape measuring apparatus (hereinafter referred to as a footprint measuring apparatus) according to an embodiment of the present invention.
) の全体を示しており、 図 2は前記足形計測装置の計測装置本体の内部構造を示 している。 ), And FIG. 2 shows the internal structure of the measuring device main body of the footprint measuring device.
〔足形計測装置の基本的構成について〕  [Basic configuration of footprint measuring device]
この足形計測装置は、 基本的には図 1に示すように、 計測装置本体 1と、 パー ソナルコンピュー夕 9とから構成されており、 前記パーソナルコンピュー夕 9を 構成する C P U 91を計測装置本体 1内に、 パーソナルコンピュータを構成するデ イスプレイ 90 (入力部はタツチパネル式) を計測装置本体 1の後部に立設したポ —ル上部に、 それぞれ設けてある。  This footprint measuring device basically comprises a measuring device main body 1 and a personal computer 9 as shown in FIG. 1, and a CPU 91 constituting the personal computer 9 is connected to a measuring device. A display 90 (touch panel type input section) which constitutes a personal computer is provided in the main body 1 at the upper part of a pole provided at the rear of the measuring apparatus main body 1.
ここで、 計測装置本体 1.は、 図 2や図 9に示すように、 基体 2と、 支持台 3と 、 移動手段 4と、 枠体 5と、 ガラス板 6と、 キ リブレーションボード 7と、 画 像処理ボード 8とを有するものとしてある。  Here, as shown in FIG. 2 and FIG. 9, the measuring device main body 1 includes a base 2, a support 3, a moving means 4, a frame 5, a glass plate 6, and a calibration board 7, And an image processing board 8.
〔基板 2について〕 基板 2は、 図 1〜図 3に示すように、 座板 20上に左右の足載せ台 21を設けると 共に、 左右の足載せ台 21, 21相互間にケース 22を設けて構成してある。 [About board 2] As shown in FIGS. 1 to 3, the board 2 has left and right footrests 21 provided on a seat plate 20 and a case 22 provided between the left and right footrests 21, 21. .
座板 20は、 図 3に示すように平面視で多角形状に形成されておリ、 店舗の床を 専有する面積を最小限に抑えて 6 4 0 m m X 7 3 0 m m程度に設定してある。 足載せ台 21は、 図 2や図 3に示すように、 余裕を持って片足を載せることがで きる程度の大きさに設定した平面視長方形状のものとしてある。  The seat plate 20 is formed in a polygonal shape in a plan view as shown in FIG. 3, and is set to about 640 mm X 730 mm while minimizing the area occupying the store floor. is there. As shown in FIG. 2 and FIG. 3, the footrest 21 has a rectangular shape in plan view that is set to a size that allows one foot to be placed with a margin.
ケース 22は、 図 2に示すように、 上記した支持台 3と、 移動手段 4と、 枠体 5 と、 ガラス扳 6と、 キャリブレーションボード 7等が剝き出しにならないように 包囲するものであるが、 前記ガラス板 6に足を容易に載せることができるように 、 前面壁から上面壁にかけて開口部 22 aを設けてある。  As shown in FIG. 2, the case 22 surrounds the support 3, the moving means 4, the frame 5, the glass 6, the calibration board 7 and the like so as not to be exposed. However, an opening 22a is provided from the front wall to the upper wall so that the foot can be easily placed on the glass plate 6.
[支持台 3について〕  [Support 3]
支持台 3は、 図 2や図 4に示すように、 平面視長方形状の枠部 30を四本の脚部 31で支えて成るもので、 全ての脚部 31は座板 20にネジ止めされている。 ここで、 上記枠部 30の上面は、 図 4に示すように、 上記足載せ台 21の上面とほぼ一致する 高さに設定してある。  As shown in FIGS. 2 and 4, the support base 3 supports a rectangular frame 30 in plan view with four legs 31, and all the legs 31 are screwed to the seat plate 20. ing. Here, as shown in FIG. 4, the upper surface of the frame portion 30 is set to a height substantially coincident with the upper surface of the footrest 21.
[移動手段 4について〕  [About transportation 4]
移動手段 4は、 図 6や図 7に示すように、 長尺の基板 40と、 前記基板 40の下面 に固定配置されたガイ ド棒 41と、 前記ガイド棒 41にすすみ対偶状態に取り付けら れている移動体 42と、 前記基板 40の下面に取リ付けられた歯付きプーリ 43と、 ス テッビングモー夕 Mの回転軸に取リ付けられた歯付きブーリ 44と、 前記歯付きプ ーリ 43, 44相互間に張設された歯付きベルト 45と、 前記歯付きベルト 45を移動体 42に取り付ける取付け部材 46と、 前記移動体 42の前後方向の移動域を制限するリ ミッ トスィッチ 4了, 48とを有するものとしてあり、 前記ステッピングモータ Mを 正逆回転させると、 移動体 42がリミッ トスィッチ 47, 48によリ制限された範囲で 前後方向に移動するようにしてある。 なお、 この移動手段 4は、 図 5に示すよう にブラケッ ト 32を介して基板 40を脚部 31に取リ付ける態様で、 枠部 30と座板 20と の間に配置されている。  As shown in FIGS. 6 and 7, the moving means 4 is attached to the long substrate 40, a guide rod 41 fixedly arranged on the lower surface of the substrate 40, and a paired state with the guide rod 41. Moving body 42, a toothed pulley 43 attached to the lower surface of the substrate 40, a toothed burry 44 attached to the rotating shaft of the stepping motor M, and the toothed pulley 43. 44, a toothed belt 45 stretched between them, a mounting member 46 for attaching the toothed belt 45 to the moving body 42, and a limit switch 4 for restricting a moving range of the moving body 42 in the front-rear direction. When the stepping motor M is rotated forward and backward, the moving body 42 moves in the front-rear direction within the range limited by the limit switches 47 and 48. The moving means 4 is disposed between the frame portion 30 and the seat plate 20 in a manner in which the board 40 is attached to the leg portion 31 via the bracket 32 as shown in FIG.
ここで、 移動手段 4による移動体 42の X軸方向の移動範囲は 3 0 0 m mに設定 してあり、 この移動範囲が X軸方向 (足長方向) の計測範囲になる。 また、 この移動手段 4では、 装置全体を安価にするためにサ一ボ乇一夕ではな くパルス信号分だけ回転するステツビングモー夕 Mを採用しているが、 ァクチュ エー夕に設置する各機器も小型軽量であるから、 慣性による位置制御誤差はほと んどない。 そして、 ステッピングモー夕 Mを制御するパルス信号は、 画像処理ボ ード 8上に同期信号発生回路 83を载せることにより、 計測と駆動の同期をとるた めの制御機構を一元化してある。 つまリ、 後述の如く C C Dカメラの垂直走査周 波数は 3 0 H zであるから、 1ノ 3 0秒で 1 フィールドの画像を撮像する。 X軸 方向の計測範囲は 3 0 0 m m , 1 フィールドあたりの 動距離を上述のように 1 m mとすると計測時間は 1 0秒でぁリ、 計測データ量は 3 0 0フィールドになる 。 なお、 1 フィールドあたリの移動距離を変える、 つまり移動体 42の移動速度 を変えることにより、 X軸方向におけるデータの疎密化を図ることができる。 例 えば踵側のような重要な部分のデータを多くとることができる。 Here, the moving range of the moving body 42 in the X-axis direction by the moving means 4 is set to 300 mm, and this moving range is the measurement range in the X-axis direction (foot length direction). In addition, in order to make the entire device inexpensive, the moving means 4 employs a stepping motor M that rotates by the amount of the pulse signal instead of the servo, but each device installed in the actuator is also used. Since it is small and lightweight, there is almost no position control error due to inertia. The pulse signal for controlling the stepping mode M is provided with a synchronization signal generation circuit 83 on the image processing board 8 to unify a control mechanism for synchronizing measurement and driving. That is, as described later, since the vertical scanning frequency of the CCD camera is 30 Hz, an image of one field is captured every 30 seconds. Assuming that the measurement range in the X-axis direction is 300 mm and the moving distance per field is 1 mm as described above, the measurement time is 10 seconds and the measurement data amount is 300 fields. By changing the moving distance of one field, that is, by changing the moving speed of the moving body 42, the density of data in the X-axis direction can be reduced. For example, data of important parts such as the heel side can be collected.
〔枠体 5について〕  [About frame 5]
枠体 5は、 図 4に示すように、 縦板 5a, 5aとこれらの下端相互を繋ぐ横板 5bと から成る正面視横コ字状のもので、 前記横板 5bが上記移動体 42の下面に取り付け られている。 この枠体 5には、 図 3や図 4に示すように、 前部側 (手前側) の上 下左右に四個の小型の C C Dカメラ 50を設けると共に後部側 (奥側) の上下左右 に C C Dカメラ 50から一定距離だけ離れた位置に四個の半導体ラインレーザー 51 を設けてある。  As shown in FIG. 4, the frame body 5 has a horizontal U-shape in a front view composed of vertical plates 5a, 5a and a horizontal plate 5b connecting these lower ends to each other. Mounted on the bottom. As shown in FIG. 3 and FIG. 4, the frame 5 is provided with four small CCD cameras 50 on the front side (front side) at the top, bottom, left and right, and at the top, bottom, left and right on the rear side (back side). Four semiconductor line lasers 51 are provided at positions separated from the CCD camera 50 by a certain distance.
上記 C C Dカメラ 50は、 垂直走査周波数 3 0 H z、 水平解像度が 3 8 0 T V本 のものを採用しておリ、 可視光半導体ラインレーザー 51からの可視光以外の外光 の影響を極力受けないように、 その波長帯のみを通過するバンドバスフィル夕 52 を装着させてある。 また、 C C Dカメラ 50の取り付け姿勢は、 図 4や図 5に示す ようにキヤリブレーションボード 7に対して直角に向けた状態から、 上側の二個 は上面視で内側に 4 5 ° 及び正面視で下側に 4 5 ° 傾けてあり、 下側の二個は上 面視で内側に 4 5 ° 及び正面視で上側に 4 5 ° 傾けてある。  The CCD camera 50 has a vertical scanning frequency of 30 Hz and a horizontal resolution of 380 TV lines, and is affected by external light other than visible light from the visible light semiconductor line laser 51 as much as possible. In order to avoid this, a band bass filter 52 that passes only the wavelength band is attached. In addition, as shown in FIGS. 4 and 5, the mounting position of the CCD camera 50 is set at 45 ° inward in the top view and 45 ° in the front view from the state in which the CCD camera 50 is perpendicular to the calibration board 7 as shown in FIGS. The lower two are tilted 45 ° inward when viewed from above and 45 ° upward when viewed from the front.
他方、 半導体ラインレーザー 51は、 汎用性と視認性の良さから可視光である 6 7 0 n mの波長帯の赤色光レーザーを使用してあると共に、 レーザー光を 9 0 ° 方向に広がる帯状光としてある。 また、 半導体ラインレーザー 51の取り付け姿勢 は、 図 3や図 4に示すように、 キャリブレーションボード 7と平行に配置してあ ると共に、 上側の二個は下側 4 5 ° 傾け、, 下側の二個は上側 4 5。 傾けてある。 つまリ、 四個の半導体ラインレーザー 51によリ足形計測域に正面視で長方形状の 仮想平面ができるようになつている。 On the other hand, the semiconductor line laser 51 uses a red light laser having a wavelength band of 700 nm, which is visible light, because of its versatility and good visibility. is there. The mounting posture of the semiconductor line laser 51 Are arranged in parallel with the calibration board 7 as shown in FIG. 3 and FIG. 4, the upper two are tilted by 45 ° at the lower side, and the lower two are tilted by 45 at the upper side. It is inclined. In other words, four semiconductor line lasers 51 form a virtual imaginary plane in front view in the footprint measurement area.
なお、 この装置では、 仮想平面上の計測範囲は、 図 4に示すよ に、 横軸つま リ Y軸方向 (足幅方向) を 1 5 0 m mとし、 縦軸つまリ Z軸方向 (足高方向) を 1 5 0 m mとしてある。  In this system, the measurement range on the virtual plane is 150 mm in the horizontal axis, Y-axis direction (foot width direction), and the vertical axis, Z axis direction (foot height), as shown in Fig. 4. Direction) is set to 150 mm.
〔ガラス板 6について〕  [About glass plate 6]
ガラス板 6は被計測物である足を載置する部分でぁリ、 図 4に示すように、 そ の上面が足载せ台 21と同じ高さになる態様で上記した枠部 30に嵌め込まれている  The glass plate 6 is positioned at a portion where the foot to be measured is placed, and is fitted into the above-described frame portion 30 in such a manner that its upper surface is at the same height as the footrest 21 as shown in FIG. Have been
〔キャリブレーションボード 7について〕 , キャリブレーションボード了は、 図 8に示すように、 平板体 70に縦 1 6個 X横 1 5個で小さな L E D 71 (この発明の小ランプに相当する) を 1 0 m m間隔で配 置させて成るもので、 図 5に示すように、 移動手段 4によリ最奥部に移動せしめ られた半導体ラインレーザー 51によってつくられる仮想平面とボード前面が略一 致する態様で固定配置してある。 [Calibration board 7] As shown in FIG. 8, the calibration board 7 consists of a flat plate 70 with 16 small LEDs 71 (corresponding to small lamps of the present invention). As shown in Fig. 5, the virtual plane created by the semiconductor line laser 51 moved to the innermost part by the moving means 4 and the front surface of the board almost coincide with each other as shown in Fig. 5. It is fixedly arranged in a manner.
ここで、 キヤリブレーシヨンボード 7を後述する態様で一度撮像することによ リ、 C C D画素上に絶対座標値を当てはめ、 キャリブレーションテーブルを作成 し保存する。 そのテーブルを用いることにより寸法のわからない才ブジ 1ク 卜で あっても絶対座標に置き換えることが可能になる。  Here, by taking an image of the calibration board 7 once in a manner to be described later, the absolute coordinate values are applied to the CCD pixels, and a calibration table is created and stored. By using the table, it is possible to replace even a single buji with unknown dimensions with absolute coordinates.
[画像処理ポード 8について〕  [About Image Processing Port 8]
図 9は、 パルスモータ M、 半導体ラインレーザー 51及び C C Dカメラ 50と画像 処理ボード 8とのかかわりを示している。  FIG. 9 shows a relation between the pulse motor M, the semiconductor line laser 51 and the CCD camera 50 and the image processing board 8.
この画像処理ボード 8は、 計測の低速化を回避すべく 4台の C C Dカメラ 50が パラレルに撮像できるように各 C C Dカメラ 50にそれぞれ用意してある。  This image processing board 8 is provided for each CCD camera 50 so that four CCD cameras 50 can capture images in parallel in order to avoid a reduction in measurement speed.
C C Dカメラ 50はバンドパスフィル夕 52を介して、 キヤリブレーションテーブ ル作成時にはキャリブレーションボード 7に配置させた L E D 71の輝点を、 計測 のときには仮想平面上に形成された輝点リングにおける水平走査線上の輝点を撮 像する。 C C Dカメラ 50からは、 映像信号すなわちテレビジョン信号が出力され 、 その映像信号は同期検出回路 80に与えられる。 この同期検出回路 80としては例 えばし M 1 8 8 1のような同期分離用 I Cを用いることができる。 そして、 同期 検出回路 80は、 C C Dカメラ 50から出力される映像信号 (テレビジョン信号) か ら水平同期信号 H sync及び垂直同期信号 V syncを取り出し、 それをマイクロコン ピュー夕 8Mの入力ポート 830 に与える。 The CCD camera 50 scans the bright spot of the LED 71 placed on the calibration board 7 when creating the calibration table via the band-pass filter 52, and the horizontal spot on the bright spot ring formed on the virtual plane when measuring. Capture bright spots on scan lines Image. A video signal, that is, a television signal is output from the CCD camera 50, and the video signal is supplied to the synchronization detection circuit 80. As this synchronization detection circuit 80, for example, an IC for synchronization separation such as M1881 can be used. Then, the synchronization detection circuit 80 extracts the horizontal synchronization signal Hsync and the vertical synchronization signal Vsync from the video signal (television signal) output from the CCD camera 50, and outputs them to the input port 830 of the microcomputer 8M. give.
—方、 同期検出回路 80によって同期分離された映像信号は、 波形成形回路 81に 与えられる。 波形成形回路 81は、 映像信号のピーク値を検出するものでぁリ、 そ の検出されたピーク値は二値化回路 82に与えられる。 二値化回路 82では、 ピーク 値に応じて適当な基準レベル (闞値) を設定し、 同期分離された映像信号をその 基準レベル (閾値) で 2値化することによって、 周囲の明るさよリも大きいレべ ルの輝点のみを分離する。 したがって、 キャリブレーションボード 7に配置させ た L E D 71の輝点と、 仮想平面上に形成された輝点リングにおける水平走査線上 の輝点だけが、 ハイレベルとなリ、 他の部分はローレベルとなる 2値化信号が出 力され、 それが入力ポート 830 に与えられる。  On the other hand, the video signal separated in synchronization by the synchronization detection circuit 80 is supplied to the waveform shaping circuit 81. The waveform shaping circuit 81 detects the peak value of the video signal, and the detected peak value is given to the binarizing circuit 82. In the binarization circuit 82, an appropriate reference level (闞 value) is set according to the peak value, and the video signal separated in synchronization is binarized at the reference level (threshold value) to reduce the ambient brightness. Only bright spots with a large level are separated. Therefore, only the bright spot of the LED 71 arranged on the calibration board 7 and the bright spot on the horizontal scanning line in the bright spot ring formed on the virtual plane are at high level, and the other parts are at low level. Then, a binary signal is output and supplied to the input port 830.
マイクロコンピュータ 8Mは、 たとえば V 1 0または V 2 0のような夕ィ厶キヤ プチヤ機能を有するものであり、 C P U 8Cや必要なメモリのほかに、 Y / Z / X カウン夕 800 , 81 0 , 820 を含む。  The microcomputer 8M has a function such as V10 or V20 and has a memory capture function. In addition to the CPU 8C and necessary memory, the microcomputer 8M has a Y / Z / X counter 800, 810, 820 included.
Zカウン夕 810 は、 入力ポート 830 を通して与えられる垂直同期信号 V syncで リセットされ且つ同じように入力ポート 830 から与えられる水平同期信号 H sync に応じてインクリメン卜される。 つまり、 Zカウンタ 810 のカウント値は、 一画 面 (1 フレーム) 中の走査線の数を示し、 縦軸すなわち、 Z軸の位置情報となる  The Z counter 810 is reset by a vertical synchronization signal Vsync provided through the input port 830, and is similarly incremented in response to a horizontal synchronization signal Hsync provided from the input port 830. In other words, the count value of the Z counter 810 indicates the number of scanning lines in one screen (one frame), and becomes the vertical axis, that is, the position information of the Z axis.
Yカウン夕 800 は、 水平同期信号 H syncでリセッ 卜され、 映 信号に比べて十 分高速 (例えば 1 0 M H Z ) の同期信号発生回路 83からのクロックに従ってイン クリメン卜される。 Yカウン夕 800 のカウント値は、 走査線である横軸すなわち 、 Y軸の位置情報となる。 Xカウン夕 820 は、 垂直走査阖波数ごとにインクリ メントされる。 Xカウン夕 820 のカウント値は、 X軸の位置情報となる。 The Y counter 800 is reset by the horizontal synchronization signal Hsync, and is incremented according to the clock from the synchronization signal generating circuit 83 which is sufficiently faster (for example, 10 MHz) than the video signal. The count value of Y count 800 is the position information on the horizontal axis that is the scanning line, that is, the Y axis. X count 820 is incremented for each vertical scanning wavenumber. The count value of X count 820 is the X axis position information.
マイクロコンピュータ 8Mに含まれる Y1 on■ Y1 of f レジス夕 801, 802、 Y2on - Υ2 of f レジス夕 803, 804、 Y3on - Y3of f レジスタ 805, 806 は Yカウン夕 800 の力 ゥント値をロードするためのものであり、 Ζ1 ■ Ζ2■ Ζ3レジス夕 81 1, 812, 81 3 は Ζカウンタ 81 0 のカウント値を口一ドするためのものであり、 Χ1 ■ Χ2■ Χ3レジス 夕 821, 822, 823 は Xカウン夕 820 のカウント値をロードするためのものである マイクロコンピュー夕 8Μは、 入出力ポー卜 831 を介してキャリブレーションボ ード 7の L E D了 1、 パルスモータ位置制御回路 84及びレーザ一電源回路 85に対し て駆動信号を与える。 したがって、 マイクロコンピュータ 8Μが L E D 71を点灯さ せたときの映像信号、 及び仮想平面上に形成された輝点リングにおける水平走査 線上の輝点の映像信号が C C Dカメラ 50によって撮像される。 Microcomputer 8M included in Y1 on ■ Y1 of f Regis E 801、802 、 Y2on-Υ2 of f register 803, 804, Y3on-Y3of The f register 805, 806 is for loading the force value of Y count 800, and Ζ1 ■ Ζ2 ■ Ζ3 register 81 1, 812, 813 is Ζ 811 ■ Χ2 ■ Χ3 Registers 821, 822, and 823 are for loading the count values of the X counter 820. The microcomputer 810 is used to load the count value of the counter 810. Supplies a drive signal to the LED 1 of the calibration board 7, the pulse motor position control circuit 84, and the laser power supply circuit 85 via the input / output port 831. Therefore, the image signal when the microcomputer 8 turns on the LED 71 and the image signal of the bright spot on the horizontal scanning line in the bright spot ring formed on the virtual plane are captured by the CCD camera 50.
この装置は上記したように、 輝点認識に必要なデータだけを抽出することによ リ計測画像データ量を大幅に削減するようにしてあると共に画像データ演算処理 をワイヤード ' ロジックとしてハードウェア (ボード化) とした構成させてある 。 したがって、 三次元画像計測に必要な初期画像処理を C P Uで演算を行わずに ボード上で処理するため、 C P U処理速度に依存することなく高速に画像処理す ることが可能になる。 また、 通常の画像処理に比べて、 画像処理ボード 8とパー ソナルコンピュータ 9との間のデータ転送量が少なくなリ、 非常に高速に処理す ることが可能である。  As described above, this device significantly reduces the amount of re-measured image data by extracting only the data necessary for bright spot recognition, and performs image data calculation processing as wired logic on hardware (board). ). Therefore, since the initial image processing required for three-dimensional image measurement is processed on the board without performing calculations on the CPU, high-speed image processing can be performed without depending on the CPU processing speed. In addition, compared to normal image processing, the amount of data transferred between the image processing board 8 and the personal computer 9 is reduced, and very high-speed processing can be performed.
〔パーソナルコンピュー夕 9のディスプレイ 90について〕  [About display 90 of personal computer 9]
このパーソナルコンピュータ 9のディスプレイ 90は、 タツチパネル式の入力部 を有しており、 パネルには 「キャリブレーションテーブルの初期化」 「足形の計 測」 「足形の正面画像成形」. 「足形の側面画像成形」 「足形の前後面画像成形」 The display 90 of the personal computer 9 has a touch panel type input unit. The panel includes “initialization of a calibration table” “measurement of footprint” “formation of front image of footprint”. “Side image of footprint” Molding)
「足形の三次元画像成形」 の夕ツチキーや、 自分の好みに合った靴等の履物を探 し出すための 「インターネッ ト」 等のタツチキーを具備している。 It is equipped with a touch key such as "Touch key for three-dimensional image formation of footprints" and a touch key such as "Internet" for finding footwear such as shoes that suits his / her taste.
〔この足形計測装置の動作について〕  [Operation of this footprint measuring device]
この足形計測装置の動作について図 1 0に示すフロー図に基づいて説明する。 なお、 この足形計測装置では先ずキャリブレーションの初期化を行い、 その後足 形の計測を開始する。  The operation of this footprint measuring device will be described based on the flowchart shown in FIG. In this footprint measurement device, calibration is first initialized, and then footprint measurement is started.
(精度向上のためのキヤリブレー.ションのテーブル作成) 先ず、 ステツビングモータ Mを回転させて半導体ラインレーザー 51によってつ くられる仮想平面がキャリブレーションボード 7の L E D71の輝点と上面視で一 致するところ (枠体 5の移動範囲の終点) まで枠体 5を移動させる。 この状態に おいて、 図 11に示すように、 キャリブレーションボード 7に配置した L E D71を 左側からか右側に向かって (縦 1行目の横 1 6列目までいくと次は縦 2行目の横 1行目になる) フレ^ "厶同期で L E D71を 1個づっ順次点灯させ、 フレーム同期 で C C Dカメラ 50により撮像する。 この作業は、 C C Dカメラ 50は垂直走査周波 数 3 0 H zであるから 2 4 0個の L E D 71を切り替えた場合で 7. 8秒で作業は 完了するが、 キャリブレーションテーブルを作成するには認識された 1 0 mm間 隔の L E D 71点である絶対座標を基にし、 C P Uで演算して C C Dカメラ 50で撮 像される部分の全画素のテーブル内を絶対座標で満たす必要がある。 したがって 、 キヤリプレーションテーブルの作成に要する時間は C P Uの性能に左おされる が、 第 1番目の L E D了 1の点灯開始から全体で 3 5秒程度である。 (Creating a calibration table to improve accuracy) First, by rotating the stepping motor M, the virtual plane created by the semiconductor line laser 51 coincides with the bright spot of the LE D71 of the calibration board 7 when viewed from above (the end point of the moving range of the frame 5). Move the frame 5. In this state, as shown in Fig. 11, the LE D71 placed on the calibration board 7 is moved from the left side to the right side. (The first line is next to the frame.) The LED D71 is turned on one by one in frame synchronization, and the image is captured by the CCD camera 50 in frame synchronization. The CCD camera 50 uses the vertical scanning frequency of 30 Hz. Therefore, when switching 240 LEDs 71, the operation is completed in 7.8 seconds.However, to create the calibration table, the absolute coordinates of the recognized 71 points of the LEDs 71 at 10 mm intervals are required. Based on the above, it is necessary to fill the table of all the pixels of the portion imaged by the CCD camera 50 with the calculation by the CPU with the absolute coordinates, so that the time required to create the calibration table depends on the performance of the CPU. However, the first 3 It is about 5 seconds.
ここで、 キヤリブレーションテーブルの基準となる L E D71の絶対座標は図 10 のフロー図に示すようにして作成される。  Here, the absolute coordinates of the LED 71 as a reference of the calibration table are created as shown in the flowchart of FIG.
先ず、 ステップ ST1で Y E Sと判断されると、 キャリブレーションテーブルの 初期化が開始される。 すると、 C P U8Cは、 入力ポート 830 から水平同期信号 H syncが入力されたかどうかを検出する。 つまり、 C P U8Cが水平同期信号 Hsync を検出したときにスター卜する。 そして、 ステップ ST 2で水平同期信号 Hsyncを 検出すると、 C P U8Cは Yカウン夕 800 をリセッ トするとともに、 その Yカウン 卜 800 をトリガ (ス夕一卜) する。 したがって、 Yカウンタ 800 は、 同期信号発 生回路 83からのクロックに従ってインクリメン卜される。  First, when it is determined as YES in step ST1, initialization of the calibration table is started. Then, the CPU 8C detects whether or not the horizontal synchronization signal Hsync has been input from the input port 830. That is, it starts when the CPU 8C detects the horizontal synchronization signal Hsync. Then, when detecting the horizontal synchronization signal Hsync in step ST2, the CPU 8C resets the Y count 800 and triggers the Y count 800. Therefore, Y counter 800 is incremented according to the clock from synchronization signal generating circuit 83.
次のステップ ST4では、 C P U8Cは、 再び、 水平同期信号 Hsyncが入力された かどうかを判断する。 ステツプ ST 2で水平同期信号 Hsyncが検出されさらにステ ップ ST 4で水平同期信号 H syncが検出されるということは、 ステップ ST 2におい て検出された水平同期信号 Hsyncのライン (水平走査線) に輝点の映像が存在し なかったことを意味し、 この場合には、 再び②ょリステップ ST 3に戻って、 Y力 ゥン夕 800 がリセッ ト/スター卜される。  In the next step ST4, the CPU 8C again determines whether or not the horizontal synchronization signal Hsync has been input. The fact that the horizontal synchronization signal Hsync is detected in step ST2 and that the horizontal synchronization signal Hsync is detected in step ST4 means that the horizontal synchronization signal Hsync line (horizontal scanning line) detected in step ST2 Means that there was no image of the bright spot at this point. In this case, the process returns to the reset step ST3 again, and the Y power terminal 800 is reset / started.
ステップ ST 4で水平同期信号 Hsyncが検出されない場合には、 C P U8Cは、 次 のステップ ST4 において、 二値化回路 82からの二値化された映像信号の立ち上が リを検出したかどうかを判断する。 映像信号の立ち上がりがなげれば、 先の③ょ リステツプ ST4に戻る。 映像信号の立ち上がりが検出されると、 続くステップ ST 6において C P U8Cは、 そのときの Yカウン夕 800 のカウント値を立ち上がリレ ジス夕すなわち Y1onレジス夕 801 にロードするとともに、 Ζカウンタ 810 のカウ ント値を Ζ1レジス夕 811 にロードする。 つまり、 ステップ ST6では、 輝点映像信 号の立ち上がりで Ζ1カウンタ 811 のカウント値すなわち垂直同期信号 Vsyncから 走査線数 (垂直方向位置) が Z1レジスタ 811 にロードされるとともに、 Yカウン 夕 800 のカウン卜値、 すなわち、 水丰同期信号 Hsyncからの水平方向位置が Y1on レジス夕 801 にロードされる。 If the horizontal synchronization signal Hsync is not detected in step ST4, the CPU 8C In step ST4, it is determined whether or not the rise of the binarized video signal from the binarization circuit 82 has detected a signal. If the video signal does not rise, go back to step ST4. When the rising edge of the video signal is detected, in the following step ST6, the CPU 8C loads the count value of the Y-counter 800 at that time into the re-registration evening, that is, the Y1on-registration evening 801. Load the count value at $ 1 Reg 811. That is, in step ST6, at the rising edge of the bright spot video signal, the count value of the # 1 counter 811, that is, the number of scanning lines (vertical position) from the vertical synchronization signal Vsync is loaded into the Z1 register 811, and the Y count and the 800 count are set. The default value, that is, the horizontal position from the water synchronization signal Hsync, is loaded into the Y1on register 801.
次のステップ ST了では、 C P U8Cは、 再び、 水平同期信号 H syncが入力された かどうかを判断する。 そして、 このステップ ST7で Y E Sが判断されると、 先の ②ょリステップ ST2 に戻る。 そして、 次のステップ ST8において、 C P U8Cは、 二値化映像信号の立ち下がりが検出されたかどうかを判断する。  At the end of the next step ST, the CPU 8C again determines whether or not the horizontal synchronization signal Hsync has been input. If YES is determined in this step ST7, the process returns to the previous step ST2. Then, in the next step ST8, the CPU 8C determines whether or not the falling edge of the binarized video signal has been detected.
このステツプ ST8において Y E Sが判断されると、 C P U8Cは次のステップ ST 9において、 そのときめ Yカウンタ 800 のカウント値を立ち下がりレジスタすな わち Y1off レジスタ 802 にロードする。 ステップ ST6で Y1onレジス夕 801 に立ち 上がリ位置がロードされ且つステツプ ST 9で Υ1 off レジス夕 802 に立ち下がリ位 置がロードされるので、 二つのレジスタ 801, 802には輝点映像信号の幅を示すデ 一夕が得られる。 そして、 ステップ ST10において、 C P U8Cは Z1レジス夕 811 、 Y1onレジス夕 801 及び Y1off レジスタ 802 のそれぞれのデータを取り込む。  If YES is determined in this step ST8, the CPU 8C loads the count value of the Y counter 800 into the falling register, that is, the Y1off register 802 at the next step ST9. In step ST6, the rising position is loaded at Y1on Regis evening 801 and the falling position is loaded at ST1 off Regis evening 802 in step ST9, so the bright spot image is stored in the two registers 801 and 802. The data showing the width of the signal is obtained. Then, in step ST10, the CPU 8C fetches the data of the Z1 register 811, the Y1on register 801, and the Y1off register 802.
なお、 この装置では、 1水平走査線に対して 3点の輝点を認識できるようにな つており、 2回目の辉点については C P U8Cは上記と同様にして得た Z2レジス夕 812 、 Y2onレジス夕 803 及び Y1off レジスタ 804 のそれぞれのデータを取り込み 、 3回目の輝点については C P U8Cは上記と同様にして得た Z3レジスタ 813 、 Y2 onレジスタ 805 及び Y1off レジス夕 806 のそれぞれのデータを取リ込む。 ステツ プ ST10で取り込んだ各レジス夕のデータから輝点の中心を算出する。 また、 この キヤリブレーションのテ一ブル作成においては、 キヤリブレ一ションボ一ド 7と C C Dカメラ 50との X軸方向の相対位置関係は変化しないので、 X1ZX2ノ X3レジ ス夕 821, 823, 824 の値ば 0である。 In this system, three bright points can be recognized for one horizontal scanning line. For the second 辉 point, the CP U8C uses the Z2 register 812, Y2on The data of the register 803 and the Y1off register 804 are fetched. Re-insert. The center of the luminescent spot is calculated from the data of each resist evening captured in step ST10. In addition, in the creation of the calibration table, the relative positional relationship between the calibration board 7 and the CCD camera 50 in the X-axis direction does not change. The value of 821, 823, 824 is 0.
その後、 ステップ ST11において、 C P U8Cは、 入力ポート 830 から垂直同期信 号 V synoが入力されたかどうか判断する。 このステップ^ Ί 1において N 0が判断 されると、 ③ょリステップ ST1 に戻るが、 Y E Sが判断されると、 次のステップ ST12において、 C P U8Cは Zカウン夕 810 をリセッ トする。  Then, in step ST11, the CPU 8C determines whether or not the vertical synchronization signal V syno has been input from the input port 830. If N 0 is determined in step 1, the process returns to step 3. If YES is determined, in the next step ST 12, the CPU 810 resets the Z counter 810.
続いて、 ステップ ST13で Y E Sと判断され且つステップ ST14で N Oと判断され ると、 それまで点灯していた縦 1行目横 1列目の N o. 1の L E D71が消灯する と共に次の縦 2行目横 1列目の N o. 2の L E D71が点灯し、 ①にもどって上記 したステップ ST2〜ステップ ST12が N o. 3の L E D71〜N o. 2 4 0のし E D 了 1について繰り返される。 そして、 ステップ ST14で Y E Sと判断されると、 キヤ リブレ一ションボード 7上のキヤリブレーションテーブルの基準となる L E D71 の絶対座標の作成は完了する。  Subsequently, if YES is determined in step ST13 and NO is determined in step ST14, the LED 71 of No. 1 in the first vertical line and the first column, which has been lit, is turned off and the next vertical line is turned off. LE D71 of No. 2 in the second row and the first column lights up. Returning to ①, the above-mentioned steps ST2 to ST12 are performed for No. 3 LE D71 to No. 2 40. Is repeated. If YES is determined in step ST14, the creation of the absolute coordinates of the LED 71, which is the reference of the calibration table on the calibration board 7, is completed.
(足形の計測)  (Footprint measurement)
ステツビングモー夕 Mを回転させて半導体ラインレーザー 51によってつくられ た仮想平面を X軸線上に移動させながら、 前記仮想平面上に形成された足形の断 面形状の輝点リングをフレーム同期で C C Dカメラ 50により撮像する。  While moving the virtual plane created by the semiconductor line laser 51 on the X-axis by rotating the stepping motor M, the bright spot ring of the cross section of the footprint formed on the virtual plane is frame-synchronized with the CCD camera 50. To capture an image.
ここで、 仮想平面上に形成された足形の断面形状の輝点リングは、 上記したキ ャリブレーションのテーブル作成の欄に記載した内容と同様 (ステップ ST2〜ス テップ ST12) にして、 C P U 8Cは、 輝点リングを形成する水平走査線上の輝点位 置のデ一夕のみを取り込む。 但し、 足形の計測の場合、 Xカウンタ 820 は、 垂直 走査周波数ごとにインクリメン卜され、 前記 Xカウン夕 820 のカウント値は X軸 の位置情報となる。  Here, the bright spot ring of the cross section of the foot shape formed on the virtual plane is set in the same manner as the contents described in the column of the above-mentioned calibration table creation (step ST2 to step ST12), and the CPU 8C Captures only the positions of the bright spots on the horizontal scanning line forming the bright spot ring. However, in the case of measuring a footprint, the X counter 820 is incremented for each vertical scanning frequency, and the count value of the X counter 820 becomes the X-axis position information.
なお、 ST15において Y E Sと判断されると足形計測は終了し、 NOと判断され ると①ょリステップ ST 2〜ステツプ ST12が繰替えされる。  Note that the footprint measurement is completed when it is determined to be YES in ST15, and the steps ST2 to ST12 are repeated when it is determined to be NO.
〔実際の足形の計測について〕  [About actual footprint measurement]
①ディスプレイ 90上の 「キャリブレーションテーブルの初期化」 の夕ツチキ一に 触れる。 移動手段 4が駆動状態になって、 キャリブレーションテーブルを上述し たよう (こして初期化する。  (1) Touch the touch panel of “Initialize the calibration table” on the display 90. The moving means 4 enters the driving state, and the calibration table is initialized as described above.
②キャリブレーションテーブルを初期化した後、 ディスプレイ 90側を向いた状態 で、 計測しない側の片足を足載せ台 21に载せると共に、 計測する側の片足をガラ ス板 6の上に載せる。 ② After initializing the calibration table, the display is facing the 90 side Then, put one foot on the non-measurement side on the footrest 21 and put one foot on the measurement side on the glass plate 6.
③ 「足形の計測」 の夕ツチキーに触れる。 すると四個の半導体ラインレーザ一 51 が常灯して帯状光によリ足長方向 (X軸方向) に直交する仮想平面ができると共 に前記仮想平面が移動手段 4と共に奥側に所定の速度で移動する。 足が仮想平面 により切断されると共に輝点リングが形成される。 前記輝点リングは X軸に同期 させて 1フレーム毎に C C Dカメラで撮像される。  ③ Touch the evening key of “Footprint measurement”. Then, the four semiconductor line lasers 51 are constantly lit to form a virtual plane orthogonal to the foot length direction (X-axis direction) due to the belt-like light, and the virtual plane is moved to the rear side together with the moving means 4 by a predetermined distance. Move at speed. The foot is cut by the virtual plane and a bright spot ring is formed. The bright spot ring is imaged by a CCD camera frame by frame in synchronization with the X axis.
④前記 C C Dカメラの映像信号における輝点リングの相対的な点群の座標データ は、 パーソナルコンピュータ 9上にあるキヤリブレーションソフトウエアにより 読み込まれ、 キャリブレーションテーブル 7のし E D 70の位置である絶対座穰等 座標 The coordinate data of the relative point group of the bright spot ring in the video signal of the CCD camera is read by the calibration software on the personal computer 9, and the absolute position corresponding to the position of the ED 70 in the calibration table 7 is read. Ferocious
(キャリブレーションテーブル) と比較、 座標置換されることによリ、 絶対座檁 値を持つ点群の座標データへと変換される。 (Calibration table), and by performing coordinate replacement, it is converted into coordinate data of a point group having an absolute coordinate value.
〔この足形計測装置の優れた効果について〕  [About the excellent effect of this footprint measuring device]
この欄に記載されている内容は全て述べたことと重複する部分もあるが、 この 足形計測装置の優れた効果を従来の技術と比較したものをまとめておく。  Although the contents described in this section may overlap with the above, some of the excellent effects of this footprint measuring device are compared with those of the conventional technology.
1 フィールドに対して行う走査方法は同じであるが、 出力する信号が 1水平走 査線上に認識された光信号 (輝点) の始点 ·終点のアドレス番号のみを出力する ようにしてある。 このため、 撮像された 1フィールドあたりのデータ量はバイナ リーデ一夕で約 1 kB程度 (輝点認識画素数により変動) になる。 つまり従来の技 術に使用されていたデータ量に比べて 1ノ 1 0 0程度とになリ非常に少なくなる 。 したがって、 この足形計測装置では従来の技術と比較して以下の効果をする。 The scanning method for one field is the same, but the output signal is such that only the address numbers of the start and end points of the optical signal (bright point) recognized on one horizontal scan line are output. For this reason, the amount of data per imaged field is about 1 kB (varies depending on the number of bright spot recognition pixels) over a binary reed. In other words, the amount of data is about 100, which is very small compared to the data amount used in the conventional technology. Therefore, this footprint measuring device has the following effects as compared with the conventional technology.
①画像処理ボード上に巨大なメモリを実装する必要はなくなるから、 回路規模が 非常に小さくできる。 したがって、 装置自体はコンパクトになる。 (1) There is no need to mount a huge memory on the image processing board, so the circuit scale can be made very small. Therefore, the device itself becomes compact.
②画像データは非常に少なく、 また、 画像データ演算処理をワイヤード■ □ジッ クとしてハードウェア (ボード化) として構成させてボード上で処理するため、 高速処理が可能である。  (2) The image data is very small, and the image data arithmetic processing is configured as hardware (boarding) as a wired jig and processed on the board, so high-speed processing is possible.
③上記①②から装置が非常に安価になった。  (3) The equipment became very inexpensive from (1) above.
④足の裏面側はガラス板 6を通して下側の C C Dカメラ 50により屈折した状態で 撮影されることになるが、 キヤリブレーションボード 7についても同様にガラス W 裏面 The back side of the foot will be photographed in a state where it is refracted by the lower CCD camera 50 through the glass plate 6, but the calibration board 7 W
板 6を通して屈折した状態で撮影されることから、 ガラス板 6の存在が計測精度 の悪化を招くようなことはない。 Since the image is taken while being refracted through the plate 6, the presence of the glass plate 6 does not cause deterioration of the measurement accuracy.
⑤キヤリブレーションボード 7に配置したし E D 71をフレーム同期で 1個づっ順 次点灯させながら、 フレーム同期で C C Dカメラ 50によリ撮像し、 これによリ C C Dカメラ 50の各画素毎に絶対 I直を配置した仮想平面を形成している。  配置 Placed on the calibration board 7, the EDs 71 are sequentially lit one by one in frame synchronization, and imaged by the CCD camera 50 in frame synchronization. It forms a virtual plane on which the I-straights are arranged.
したがって、 キヤリブレーションボード 7上のどの位置で L E Dが点灯しても フレーム N oとランプ N oの対応が 1 : 1 となっているため、 カメラのアングル で見えている全ての L E Dの位置が確定できる。 これによリ、 画面上に見える全 ての撮像部のドッ卜にスケールを貼り付けることができるようになり、 カメラァ ングル决定時の作業性が優れたもの (例 ば、 C C Dカメラ 50のカメラアングル を変えることにより被計測物の一部をズームアップして計測することもできる) となる。  Therefore, no matter where the LED lights up on the calibration board 7, the correspondence between the frame No and the lamp No is 1: 1, so that all the positions of the LEDs that can be seen from the camera angle are Can be determined. This makes it possible to attach the scale to the dots of all the imaging units that can be seen on the screen, thus improving the workability when deciding the camera angle (for example, the camera angle of the CCD camera 50). By changing the value, a part of the object to be measured can be zoomed up and measured.)
なお、 C C Dカメラ 50による撮像を様々なアングルで行い得るようにするには 、 図 12に示すように、 C C Dカメラ 50を X— Y— Z (三次元) 変位機構 50 aを介 して枠体 5に取り付けるようにすればよい。  In order to enable the imaging by the CCD camera 50 to be performed at various angles, as shown in FIG. 12, the CCD camera 50 is moved through the X-Y-Z (three-dimensional) displacement mechanism 50a. It should be attached to 5.
〔他の実施形態〕  [Other embodiments]
①上記実施形態の形状計測装置は、 図 13に示すように、 各 C C Dカメラ 50に対し て一つのキヤリプレーシ 3ンボード 7を具備していると共に、 キヤリプレ ショ ンボード 7及び半導体ラインレーザー 51を同じ角度だけ傾斜させている。 この装 置では、 C C Dカメラ 50による被計測物の撮像は真正面からにすることが可能に なるから上記実施形態 1ょリも画面を多く使用することになる。 したがって、 計 測精度が向上することになる。  (1) As shown in FIG. 13, the shape measuring apparatus of the above embodiment has one calibration board 7 for each CCD camera 50, and also moves the calibration board 7 and the semiconductor line laser 51 by the same angle. Tilted. In this device, since the CCD camera 50 can image the object to be measured from directly in front, the first embodiment also uses a large number of screens. Therefore, the measurement accuracy is improved.
②上記実施形態の形状計測装置は足形についてものであるが、 これに限定される ものではなく、 身体の全体及び部位や物の外形等も計測することができる。 例え ば、 身体の全体を計測しょうとすると、 図 14に示すように、 四つの C C Dカメラ 50を有する枠体 5 , 5を二個設けると共に前記枠体 5, 5相互間に半導体ライン レーザー 51を配置させ、 他方キヤリブレーションボード 7の上下面に絶対座標と なる L E D 70を配置させ、 キャリブレーションテーブルを作成するときには、 枠 体 5, 5を上下動させるようにして上側の枠体 5のカメラ 50により上側の L E D 70を撮像すると共に下側の枠体 5のカメラ 50により下面側の L E D 70を撮像する ようにすればよい。 (2) Although the shape measuring device of the above embodiment is for a foot shape, the shape measuring device is not limited to this, and can also measure the whole body and the external shape of parts and objects. For example, to measure the entire body, as shown in FIG. 14, two frames 5, 5 having four CCD cameras 50 are provided, and a semiconductor line laser 51 is interposed between the frames 5, 5. On the other hand, when the calibration table is created, the frames 5 and 5 are moved up and down so that the camera of the upper frame 5 is moved. 50 upper LED The camera 70 of the lower frame 5 may image the LED 70 on the lower surface while imaging the 70.
身体の全体を計測する場合には、 半導体ラインレーザ一 50を O N状態にして帯 状光により仮想平面を作りだし、 前記仮想平面を少なくとも頭頂から台座との接 地面まで移動させ、 この移動状態において 1フレーム毎叉は特定のフレーム毎に C C Dカメラ 50によリ撮像すればよい。  When measuring the entire body, the semiconductor line laser 150 is turned on, a virtual plane is created by band light, and the virtual plane is moved at least from the top of the head to the ground contacting the pedestal. The image may be captured by the CCD camera 50 for each frame or for each specific frame.
③上記実施形態では、 半導体レーザー 51は計測中において常時点灯させてあるが 、 これに限定されることなく、 C C Dカメラ 50により撮像するタイミング、 すな わち 1フレーム毎又は特定のフレーム毎で半導体レーザー 51は点灯させるように してもよい。  (3) In the above embodiment, the semiconductor laser 51 is always turned on during measurement. However, the present invention is not limited to this. The timing of imaging by the CCD camera 50, that is, the semiconductor laser 51 is changed every frame or every specific frame. The laser 51 may be turned on.
④上記実施形態では、 ステッピングモー夕を使用しているが、 これに限定される ことなくサーボモー夕でもよいし、 その他の移動竽段ゃ手動でもよい。  ④In the above embodiment, the stepping mode is used. However, the present invention is not limited to this, and the servo mode may be used, or other moving steps may be performed manually.
⑤上記実施形態では、 ガラス板 6上に足を載せて計測したが、 これに限定される ことなくガラス板 6を外して足を動かないように固定した状態で計測するように してもよい。 産業上の利用可能性  で は In the above embodiment, the measurement was performed with the foot placed on the glass plate 6, but the measurement is not limited to this, and the measurement may be performed with the glass plate 6 removed and the foot fixed so as not to move. . Industrial applicability
この発明は上記のような構成であるから次の効果を有する。  The present invention has the following effects because it has the above configuration.
発明の実施の形態の欄から明らかなように、 安価で、 高速処理が可能であり、 優れた計測精度を有してお y、 コンパク トである形状計測方法及び装置を提供で さ 1 。  As is clear from the description of the embodiments of the present invention, a compact shape measuring method and apparatus which is inexpensive, capable of high-speed processing, has excellent measurement accuracy, and is compact 1 can be provided.

Claims

請求の範囲 The scope of the claims
1 . 絶対座標が設けられたキヤリブレ一ションボード面をビデオカメラにより撮 像してビデ才力メラの各画素毎に絶対座標値を配置した仮想平面と、 当該ビデオ カメラとの相対位置関係を維持しつつ仮想平面を被計測物に向かって X軸方向に 移動させ、 前記仮想平 が被計測物を通過するときにできる当^被計測物上の輝 点リングを X軸に同期させて 1 フレー厶每又は特定のフレー厶每に前記ビデ才力 メラで撮像し、 前記ビデオカメラの映像信号における輝点リングの相対的な点群 デ一夕を、 絶対座標値を持つ点群データとするようにしてある形状計測方法あつ て、 前記絶対座標値が配置された仮想平面は、 キヤリブレーションボードの絶対 座標となる多数の小ランプをフレームと同期させて 1個づっ順番に点灯させなが らビデオカメラで撮像することにより得られたものであることを特徴とする請求 項 1記載の形状計測方法。 1. The relative position relationship between the virtual plane on which the calibration board surface with the absolute coordinates is captured by the video camera and the absolute coordinate values are arranged for each pixel of the video camera and the video camera is maintained. While moving the virtual plane toward the object to be measured in the X-axis direction, and synchronize the bright spot ring on the object to be measured when the virtual plane passes through the object to be measured with one frame. In the video signal of the video camera, the relative point cloud of the bright spot ring in the video signal of the video camera is taken as point cloud data having absolute coordinate values. In the shape measurement method described above, the virtual plane on which the absolute coordinate values are arranged is formed by lighting a number of small lamps, which are absolute coordinates of the calibration board, one by one in synchronization with the frame. Video camera Shape measuring method according to claim 1, wherein a is obtained by imaging.
2 . 絶対座標値となる ランプはキヤリブレーションボードに縦横方向に規則正 しく配列されていることを特徴とする請求項 1記載の形状計測方法。  2. The shape measuring method according to claim 1, wherein the lamps having the absolute coordinate values are regularly arranged in the vertical and horizontal directions on the calibration board.
3 . 仮想平面の X軸方向の移動速度が可変であることを特徴とする請求項 1又は 2記載の形状計測方法。  3. The shape measuring method according to claim 1, wherein the moving speed of the virtual plane in the X-axis direction is variable.
4 . 被計測物が足形であることを特徴とする請求項 1乃至 3のいずれかに記載の 形状計測方法。  4. The shape measuring method according to any one of claims 1 to 3, wherein the object to be measured is a foot shape.
5 . 絶対座標となる小ランプが縦横方向に規則正しく多数配置され且つ前記小ラ ンプはフレームと同期して 1個づっ順番に点灯するようにしてあるキヤリブレー ションボードと、 前記キャリブレーションボ一ドに対して X軸方向に移動する移 動体と、 前記移動体に複数個取り付けられ且つ仮想平面を形成する帯状光発生手 段と、 前記移動体に帯状光発生手段から離れて複数個取り付けられていると共に 仮想平面となるべき位置と一致させたキヤリブレーションボードを撮像した後、 前記仮想平面が被計測物を通過するときにできる当該被計測物上の輝点リングを X軸に同期させて 1フレーム毎又は特定のフレー厶每に撮像するビデオカメラと 、 前記ビデオカメラの映像信号における輝点リングの相対的な点群データを、 絶 対座標値を持つ点群データに変換する変換手段とを具備することを特徴とする形 状計測装置。 5. A small number of small lamps, which are absolute coordinates, are regularly arranged in the vertical and horizontal directions, and the small lamps are turned on one by one in synchronization with a frame. A moving body that moves in the X-axis direction, a plurality of band-like light generating means attached to the moving body to form a virtual plane, and a plurality of moving bodies attached to the moving body apart from the band-like light generating means. After imaging the calibration board matched with the position to be the virtual plane, the bright spot ring on the object to be measured when the virtual plane passes through the object is synchronized with the X-axis. A video camera that captures an image for each frame or a specific frame, and relative point group data of a bright spot ring in an image signal of the video camera, having absolute coordinate values. Conversion means for converting to point cloud data Condition measuring device.
6 . 絶対座標値となる小ランプはキャリブレーションボードに縦横方向に規則正 しく配列されていることを特徴とする請求項 5記載の形状計測方法。  6. The shape measuring method according to claim 5, wherein the small lamps serving as the absolute coordinate values are regularly arranged in the vertical and horizontal directions on the calibration board.
7 . キヤリブレーションボードは直立させてあることを特徴とする請求項 5又は 6記載の形状計測装置。  7. The shape measuring apparatus according to claim 5, wherein the calibration board is upright.
8 . 移動体の X軸方向の移動速度が可変であることを特徴とする請求項 5乃至 7 のいずれかに記載の形状計測装置。  8. The shape measuring apparatus according to claim 5, wherein the moving speed of the moving body in the X-axis direction is variable.
9 . 被計測物が足形であることを特徴とする請求項 5乃至 8のいずれかに記載の 形状計測装置。  9. The shape measuring device according to any one of claims 5 to 8, wherein the object to be measured is a foot shape.
PCT/JP2000/008282 2000-11-24 2000-11-24 Shape measuring method and apparatus WO2002042714A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002544606A JPWO2002042714A1 (en) 2000-11-24 2000-11-24 Shape measurement method and device
PCT/JP2000/008282 WO2002042714A1 (en) 2000-11-24 2000-11-24 Shape measuring method and apparatus
AU2001215504A AU2001215504A1 (en) 2000-11-24 2000-11-24 Shape measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/008282 WO2002042714A1 (en) 2000-11-24 2000-11-24 Shape measuring method and apparatus

Publications (1)

Publication Number Publication Date
WO2002042714A1 true WO2002042714A1 (en) 2002-05-30

Family

ID=11736708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008282 WO2002042714A1 (en) 2000-11-24 2000-11-24 Shape measuring method and apparatus

Country Status (3)

Country Link
JP (1) JPWO2002042714A1 (en)
AU (1) AU2001215504A1 (en)
WO (1) WO2002042714A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002378A (en) * 2009-06-19 2011-01-06 Wakayama Univ Memory board for measuring device employing whole-space tabulation method, photographing device for measuring device, measuring device and minute displacement measuring device
CN103156613A (en) * 2011-12-19 2013-06-19 天津九安医疗电子股份有限公司 Baby height measuring equipment
CN105100495A (en) * 2015-08-25 2015-11-25 李万鸿 Method for measuring a plan view size of an object by utilizing a mobile phone photographing function
WO2017159626A1 (en) * 2016-03-15 2017-09-21 新日鐵住金株式会社 Device, system, and method for inspecting crankshaft shape

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425003A (en) * 1987-07-21 1989-01-27 Kurashiki Boseki Kk Measuring instrument of shape in three-dimensional object
JPH0843026A (en) * 1994-07-29 1996-02-16 Mazda Motor Corp Calibration device and hologram
JPH11101623A (en) * 1997-09-29 1999-04-13 Ckd Corp Shape measuring device and foot shape measuring device
JP2922503B1 (en) * 1998-07-13 1999-07-26 株式会社エイ・ティ・アール知能映像通信研究所 3D coordinate detection method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425003A (en) * 1987-07-21 1989-01-27 Kurashiki Boseki Kk Measuring instrument of shape in three-dimensional object
JPH0843026A (en) * 1994-07-29 1996-02-16 Mazda Motor Corp Calibration device and hologram
JPH11101623A (en) * 1997-09-29 1999-04-13 Ckd Corp Shape measuring device and foot shape measuring device
JP2922503B1 (en) * 1998-07-13 1999-07-26 株式会社エイ・ティ・アール知能映像通信研究所 3D coordinate detection method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002378A (en) * 2009-06-19 2011-01-06 Wakayama Univ Memory board for measuring device employing whole-space tabulation method, photographing device for measuring device, measuring device and minute displacement measuring device
CN103156613A (en) * 2011-12-19 2013-06-19 天津九安医疗电子股份有限公司 Baby height measuring equipment
CN105100495A (en) * 2015-08-25 2015-11-25 李万鸿 Method for measuring a plan view size of an object by utilizing a mobile phone photographing function
WO2017159626A1 (en) * 2016-03-15 2017-09-21 新日鐵住金株式会社 Device, system, and method for inspecting crankshaft shape
US10598481B2 (en) 2016-03-15 2020-03-24 Nippon Steel Corporation Crankshaft shape inspection apparatus, system and method

Also Published As

Publication number Publication date
JPWO2002042714A1 (en) 2004-04-02
AU2001215504A1 (en) 2002-06-03

Similar Documents

Publication Publication Date Title
US9197800B2 (en) Imaging robot
US7551272B2 (en) Method and an apparatus for simultaneous 2D and 3D optical inspection and acquisition of optical inspection data of an object
JP2001160135A (en) Method and system for image processing, and method for preparing correction data
KR101659302B1 (en) Three-dimensional shape measurement apparatus
JP2007010346A (en) Imaging device
WO2008004332A1 (en) Image processing method and input interface apparatus
JP2000259340A (en) Device and method for input, input system, and distribution medium
JPH06503215A (en) image reading system
WO2002042714A1 (en) Shape measuring method and apparatus
US7440606B2 (en) Defect detector and defect detection method
JP2001330915A (en) Stereoscopic image photographing method and auxiliary tool for photographing
CN106599930B (en) Virtual reality space positioning feature point screening method
JP3632707B2 (en) Automatic foul judgment device and method for athletics
JPH09210653A (en) Surface direction detection device
JP2001004339A (en) Illumination non-uniformity measuring method for picture recognition inspecting system and picture recognition inspecting method
WO2001077615A1 (en) Shape determining method and device
JP2003083715A (en) Method and apparatus for detecting indication position as well as gun controller-type game machine
JP5272431B2 (en) Object ranging device and program
JP2004023359A (en) Presentation system using data presenting apparatus
JP2001165655A (en) Distance estimation device and distance estimation method
JP2006277023A (en) Apparatus for acquiring three-dimensional information, method for creating pattern light, method for acquiring three-dimensional information, program, and recording medium
JP3797207B2 (en) Physical quantity measuring device with small lens unit
JP2784163B2 (en) Position recognition method and device
JP4262832B2 (en) Image input method and apparatus
JP2000299599A (en) Component recognizing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002544606

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase