WO2002042218A1 - Detecteur pour installation de traitement de l'eau - Google Patents

Detecteur pour installation de traitement de l'eau Download PDF

Info

Publication number
WO2002042218A1
WO2002042218A1 PCT/CA2001/001670 CA0101670W WO0242218A1 WO 2002042218 A1 WO2002042218 A1 WO 2002042218A1 CA 0101670 W CA0101670 W CA 0101670W WO 0242218 A1 WO0242218 A1 WO 0242218A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
water
life
flow
signal
Prior art date
Application number
PCT/CA2001/001670
Other languages
English (en)
Inventor
Wayne E. Conrad
Terry Bohrson
Original Assignee
Polar Light Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/758,251 external-priority patent/US6491811B2/en
Application filed by Polar Light Limited filed Critical Polar Light Limited
Priority to AU2002221387A priority Critical patent/AU2002221387A1/en
Publication of WO2002042218A1 publication Critical patent/WO2002042218A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/003Processes for the treatment of water whereby the filtration technique is of importance using household-type filters for producing potable water, e.g. pitchers, bottles, faucet mounted devices
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/008Control or steering systems not provided for elsewhere in subclass C02F
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • C02F9/20Portable or detachable small-scale multistage treatment devices, e.g. point of use or laboratory water purification systems
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/40Liquid flow rate
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2307/00Location of water treatment or water treatment device
    • C02F2307/04Location of water treatment or water treatment device as part of a pitcher or jug

Definitions

  • This invention relates of an apparatus for the production of water fit for human consumption from water contaminated by micro-organisms, chemicals, heavy metals and minerals.
  • the most popular system in widespread domestic (household) use for the purification of contaminated water is a pitcher wherein contaminated water is passed through a filter made of a combination of a porous media filter, activated carbon, and an ion exchange resin and into a clean water reservoir within the pitcher.
  • This type of system will reduce the levels of chlorine, lead, and pesticides.
  • the first disadvantage of this water purification system is that the structure of the filter provides a breeding ground for micro-organisms thereby multiplying the dangers of micro-organisms which may be present in very low numbers.
  • Another disadvantage of such a water purification system is that the filter life is not measured and it is possible for the user to employ the filter beyond its useful life.
  • a further disadvantage of such a water purification system is that oils and fuels often present in water drawn from lakes and rivers are not readily removed and that these oils and fuels tend to coat the filters and damage their operational life and effectiveness.
  • Other filters incorporate an iodine product to minimize the risk of microbiological hazards, however, these materials often impart undesirable tastes and many are potential carcinogens.
  • Another popular system in use for the purification of contaminated water is a system which employs an ultraviolet light for disinfection in series with a porous media and carbon filter. This type of system will reduce the levels of chlorine, lead, and pesticides and has some disinfection capability.
  • a disadvantage of this water purification system is that the ultraviolet light's disinfection efficacy is greatly diminished by turbidity or colour in the water which can cause the filter to become contaminated by micro-organisms which can readily live and breed therein thereby multiplying the danger from any microorganisms which may be present.
  • the present invention provides several novel features for a water treatment apparatus and components which may be used therein including a novel control system for a water treatment apparatus, a novel construction for an ozone generator, a novel filter assembly for a water treatment apparatus, a novel method for monitoring the concentration of ozone produced by a corona discharge ozone generator, a novel method for monitoring the life of a filter based on the flow rate of gas through a venturi and a novel structure for an ozone generator to prevent water backing up into the ozone generator.
  • a household apparatus for treating water comprising a housing having an inlet for water to be treated in fluid flow communication with a water treatment reactor and a lid mounted to selectively cover the inlet; a filter removably mounted in the apparatus; and, a sensor for detecting the movement of the lid and providing a signal to a counter whereby after a predetermined number of movements of the lid, the apparatus issues a signal advising a user to change the filter.
  • the senor comprises a magnet and a reed switch. In another embodiment, the sensor comprises a magnet associated with the lid and a reed switch provided on the housing proximate the magnet.
  • a household apparatus for treating water comprising a water treatment reactor; a dispense water path extending from the water treatment reactor to a dispenser whereby treated water produced in the water treatment reactor exits the apparatus by the dispenser; a filter removably mounted in the dispense water path; and, a timer for monitoring the flow of a treated water through the filter, the apparatus issuing a signal advising a user to change the filter when the time for the treated water to flow through the filter exceeds a predetermined value.
  • the signal advises the user that the filter is approaching the end of the filter life.
  • the signal advises the user that the filter has reached the end of the filter life.
  • the apparatus includes a controller that is programmed with two predetermined values, the first predetermined value corresponds to the time required for the treated water to pass through the filter when the filter is approaching the end of its life and the second predetermined value corresponds to the time required for the treated water to pass through the filter when the filter has reached the end of its life.
  • the controller prevents the apparatus from treating water when the filter has reached the end of its life.
  • a household apparatus for treating water comprising a water treatment reactor; a dispense water path extending from the water treatment reactor to a dispenser whereby treated water produced in the water treatment reactor exits the apparatus by the dispenser; a filter removably mounted in the dispense water path; and, a flow sensor for monitoring the flow produced by the flow of treated water through the filter, the apparatus issuing a signal advising a user to change the filter when the flow sensor issues a signal that is not within predetermined range.
  • the flow sensor measures the back pressure produced by the flow of treated water through the filter and /or the flow rate of treated water through the filter. In another embodiment, the signal advises the user that the filter is approaching the end of the filter life.
  • the signal advises the user that the filter has reached the end of the filter life.
  • the apparatus includes a controller that is programmed with two predetermined values, the first predetermined value corresponds to the back pressure produced by the treated water passing through the filter when the filter is approaching the end of its life and the second predetermined value corresponds to the back pressure produced by the treated water passing through the filter when the filter has reached the end of its life.
  • the controller prevents the apparatus from treating water when the filter has reached the end of its life.
  • the apparatus includes a controller that is programmed with two predetermined values, the first predetermined value corresponds to the flow rate of treated water through the filter when the filter is approaching the end of its life and the second predetermined value corresponds to the flow rate of treated water through the filter when the filter has reached the end of its life.
  • the controller prevents the apparatus from treating water when the filter has reached the end of its life.
  • a household apparatus for treating water comprising a water pump which circulates at least a portion of the water to be treated through a fluid flow path; a filter removably mounted in the fluid flow path; a venturi provided in the fluid flow path and in fluid flow communication with an ozone generator in a gas flow path whereby the flow of water through the fluid flow path draws an oxygen bearing gas through the ozone generator so as to produce ozone that is drawn into the water travelling through the fluid flow path; a flow rate sensor which monitors the flow rate of gas through the gas flow path; and, a controller preprogrammed with at least one preset value whereby the controller prevents further treatment cycles of water if the flow rate of gas through the gas flow path vary from the at least one preset value.
  • the preset value corresponds to the flow rate of gas through the gas flow path when the filter is removed from the fluid flow path.
  • the preset value corresponds to the flow rate of gas through the gas flow path when the filter when the filter is approaching the end of its life.
  • the preset value corresponds to the flow rate of gas through the gas flow path when the filter has reached the end of its life.
  • Figure 1 is a perspective view of a treatment apparatus according to one aspect of this invention
  • FIG. 2 is a schematic drawing of a treatment apparatus according to one aspect of this invention.
  • Figure 3 is a cross-section through an ozone generator according to another aspect of this invention.
  • Figure 4 is a cross-section through a water filter assembly according to another aspect of this invention which includes a polishing filter; and,
  • Figure 5 is a perspective view of the water filter assembly of Figure 4.
  • a domestic liquid treatment apparatus can be used in a house, cottage, mobile home or the like.
  • the sources of liquid that may be treated include, but are not limited to: a municipal water supply which is fed to a house through supply pipes; a well maintained by a home owner; or any other source of water to which a home owner may have access.
  • the liquid treatment apparatus is also well adapted to be used outside of a residence, such as on a camping trip provided a suitable source of power, e.g. battery, a small generator or solar power, is available.
  • a water treatment apparatus 100 for treating liquid comprising water with a gas comprising ozone is exemplified.
  • the liquid consists of water and the gas comprises air containing ozone.
  • the apparatus 100 may be used for purifying and disinfecting water by means of ozone.
  • Water treatment apparatus 100 may be of any configuration and size which will house a water treatment reactor 9 comprising a reservoir for receiving the desired volume to be treated.
  • Water treatment reactor 9 may be sized to treat from about 0.5 to about 5, preferably from about 1 to about 3 and more preferably from about 1 to about 2 litres of water per batch.
  • Water treatment apparatus 100 may include a handle 101 which is affixed to outer housing 103 for lifting and carrying the unit.
  • some of the working components of the system such as the electronics, may be house in handle 101.
  • Water treatment apparatus 100 comprises a water treatment reactor 9, a water inlet 7, an ozone source (e.g. ozone generator 20) and a filter 10.
  • a schematic of how the working components may be placed within outer housing 103 is shown in Figure 2; however, it will be appreciated that differing configurations of the working components is possible using the operating principles exemplified by the embodiment of Figure 2.
  • water inlet 7 is provided with a cover, which is used to prevent undesirable material, e.g. leaves, twigs etc. from entering the apparatus in the event the unit is used outdoors.
  • the cover may be a resealable cap which may be removably affixed to the system by any suitable method, such as a thread or a bayonet mount. In such an embodiment, when the cap is closed the system is sealed.
  • lid 1 does not seal water inlet 7 and is rotatably mounted to top 105 of apparatus 100 such as by a pivot or a hinge 2 is provided.
  • Lid 1 may be provided with lid handle la for use in opening and closing lid 1.
  • a sensor may optionally be employed to assess whether the lid 1 is in the closed position.
  • the sensor may be an optical sensor or a mechanical sensor (e.g. a switch is moved to close an electric circuit when lid 1 is closed) or an electrical sensor (e.g. lid 1 may itself close an electric circuit when lid 1 is closed).
  • the sensor is magnetic.
  • the senor may comprise a magnet 5 and a corresponding magnetic reed switch 3.
  • Magnet 5 is located in the end of the lid 1 such that when lid 1 is in the closed position, magnet 5 is proximate to a magnetic reed switch 3 which is located on, e.g., circuit board 4.
  • a filter assembly having at least two filter elements shown generally at 29 is provided (see Figures 4 and 5).
  • filter assembly 29 is provided within reactor 9 although, in some embodiments, it will be appreciated that filter assembly may be positioned exterior to reactor 9 and connected in flow communication with reactor 9 by suitable piping as is known in the art.
  • filter assembly 29 has optional top perimeter 82 and inner side walls 83 to define a recess which functions as water inlet 7 and hold a quantity of water to be filtered through pre-filter 8.
  • the filter assembly 29 may be comprised of two or more of the following filter elements: a pre-filter 8; a main filter 10; and, a polishing filter 54.
  • the filter assembly 29 may comprise a main filter 10 and a polishing filter 54.
  • the filter assembly 29 comprises a pre-filter 8 and a main filter 10, and more preferably the filter assembly 29 comprises a pre-filter 8, a main filter
  • filter assembly 29 with all of its filter elements, is adapted to be removable as a unit from the apparatus 100.
  • Filter assembly 29 may be removably mounted in apparatus 100 by any means known in the filter art such as a screw thread or a bayonet mount.
  • bayonet members 84 are provided on the lower end 85 of outer housing 86 and are releasably engagable with female bayonet members provided in apparatus 29 (not shown).
  • the timing of the replacement of filter assembly 29 may be left to the user, such as once every three months.
  • apparatus 100 includes a mechanism to advise the consumer when to change the filter (e.g.
  • apparatus 100 may include all three filter elements, but that filter assembly 29 may contain only two of the filter elements or so that only two filter elements (e.g. pre-filter 8 and main filter 10) are removable as a unit. It will also be appreciated that filter assembly 29 may be configured to contain all three filter elements but that only two are removable as a unit with the third filter element being separately removable for replacement as may be required.
  • polishing filter 54 could be provided as a separate removable filter element.
  • Filter assembly 29 is preferably provided with treated water passageway mount 90 for removably receiving treated water passageway 91. It will be appreciated that treated water passageway 91 may be provided as a part of filter assembly 29.
  • pre-filter 8 is located just below the water inlet 7 so that water 80 entering apparatus 100 will flow directly through pre-filter 8.
  • the pre-filter 8 may be comprised of any material that is well known in the art.
  • pre-filter 8 is comprised of granular activated carbon and may be covered by screen 81.
  • the pre-filter 8 removes particulate matter and some chemicals from water 80 prior to water 80 entering the reactor 9.
  • pre-filter 8 is also positioned in the flow path of the off . gas from reactor 9 to the atmosphere. Accordingly, the pre-filter 8 is used to destroy residual ozone.
  • the ozone in the off gas also serves to disinfect the granular activated carbon.
  • the off gas After passing through pre-filter 8, the off gas passes through water inlet 7, past lid 1 to the atmosphere. It will be appreciated that if lid 1 is sealed, then pressure will build up in reactor 9. In such a case, a separate vent path for the off gas may be provided or a pressure actuated valve may be associated with water inlet 7, or lid 1 if lid 1 seals water inlet 7, to allow the pressure in reactor
  • Main filter 10 may be located adjacent to or below the pre-filter 8, and may be comprised of any material that is well known in the art.
  • main treatment filter 10 is comprised of a carbon block having inner space 31, which is surrounded by an annular space 30.
  • a polishing filter 54 is located adjacent the main filter 10 (beside main filter 10 in the embodiment of Figure 2 and above main filter 10 in the embodiment of Figures 4 and 5). Polishing filter 54 is optionally provided to filter compounds present in the water after a treatment cycle.
  • system 100 is constructed to operate as a continuous flow batch process and, to this end, may have one or more fluid flow loops in fluid communication with reactor 9.
  • Reactor 9 could comprise a flow reactor through which the water travels as it is ozonated. Alternately, or in addition, reactor 9 could comprise a tank from which the water is directed to flow through main filter 10 before being returned to the tank. The water may be ozonated in the tank or as the water is in transit.
  • reactor 9 is a multipass reactor. In a multi-pass reactor, the water is caused to pass at least twice, preferably, from 3 to 8 times and more preferably from 4 to 6 times through main filter 10 during a single treatment cycle.
  • FIG. 2 An embodiment of a multi-pass reactor is shown in Figure 2 wherein there is provided a filtration loop 120 and an ozonation loop 122.
  • a polishing filtration loop 124 is optionally provided. It will be appreciated that other of the developments of the embodiment of Figure 2 may be used in other than a multi-pass reactor.
  • Filtration loop shown generally at 120 withdraws water from reactor 9 and returns it to main filter 10. More specifically, the filtration loop comprises the following elements in fluid communication: reactor 9, reactor outlet 104, first partially treated water passageway 24, water pump 15, second partially treated water passageway 25, valve 26 (which may be manually adjustable or electrically controlled such as a solenoid valve), main filter inlet passageway 27, and main filter inlet 28.
  • Main filter inlet 28 is in fluid communication with annular space 30 which surrounds main filter element 10. Inner space 31 is provided interior of main filter element 10 (see Figure 4) and is in fluid communication with main filter outlet 32.
  • Ozonation loop shown generally at 122 withdraws water from main filter 10, injects the water with air containing ozone, and returns it to reactor 9. Alternately, if the filtered water enters reactor 9 after passing through main filter 10, e.g. it is positioned in reactor 9 or upstream of reactor 9, then ozonation loop 122 may draw water directly from reactor 9. More specifically, the ozonation loop 122 comprises the following elements in fluid communication: inner space
  • An ozone generator 20 is in fluid communication with venturi 33 so that as water flows through ozonation loop 122, ozone produced in ozone generator 20 will be drawn into the water to be treated through venturi 33.
  • a check valve is provided to prevent the back flow of water into ozone generator 20.
  • spring loaded check valve 38 is provided at the exit from ozone generator 20 and is comprised of the following elements: spring 57, ball seal 58, o-ring seal 59 and check valve support 60.
  • passageway 37 As water flows through passages 34 and 35, a negative pressure is created in passageway 37 causing ball seal 58 to be drawn away from o-ring 59 thus opening the fluid connection with ozone generator 20 and permitting ozone enriched air to be drawn into passageway 37 and into the water passing through venturi 33.
  • Ozone generator 20 may be any type as is well known in the art and may be powered by any means known in the art.
  • Polishing filtration loop shown generally at 124 withdraws water from reactor 9, and directs it to a polishing filter 54 prior to the treated water being dispensed. More specifically, the polishing filtration loop 124 comprises the following elements in fluid communication: reactor 9, reactor outlet 104, first partially treated water passageway 24, water pump 15, second partially treated water passageway 25, valve 26, polishing filter inlet passageway 52, polishing filter inlet 108, and polishing filter 54.
  • the polishing filter 54 is fluidly connected to a treated water passageway 91, which is in fluid communication with a treated water outlet 92.
  • Apparatus 100 can receive power from any source of current including, but not limited to: an electrical outlet, a battery, a fuel cell, or any other power device well known in the art.
  • power is supplied by means of a wall plug 47, which is electrically connected to circuit board 4 via wires 48, 49.
  • a transformer for stepping down the voltage may be provided as is known in the electrical art.
  • a simplified construction of an ozone generator is provided.
  • Ozone generator 20 is preferably of the corona discharge type and has a discharge gap 73 and a dielectric element 62 that is provided between high voltage electrode 71 and ground electrode 63. Ozone generator 20 may be powered by any means known in the art.
  • a high frequency signal applied to wires 16, 17 passes into primary coil 21, which induces a magnetic flux through ferrite 22 and transmits the flux to high voltage secondary bobbin 23.
  • a high voltage is applied between the spiralled wire 71 and the metal ground plane 63, a cold corona discharge is produced which converts at least a portion of the oxygen in the gas flowing through air gap 73 to ozone.
  • ozone generator does not have a longitudinally extending outer housing. Instead, ozone generator has opposed end caps fixedly held in place with respect to each other. The end caps have an air inlet and an air outlet and together with air gap 73, define the air flow passage through ozone generator 20.
  • the inlet end cap is denoted by reference numeral 39 which has air inlet 74 and check valve support 60 is used as the outlet end cap such that passageway 37 form the air outlet. It will be appreciated that a separate outlet end cap may be provided so that ozone generator 20 may be separately assembled prior to insertion into a device such as apparatus 100.
  • the ozone generator will not retain as much heat during operation and, in fact, is easier to cool, such as by providing a cooling air flow over ground electrode 63.
  • the use of a construction which does not include an outer housing allows ozone generator 20 to operate at cooler temperatures and avoid a drop off in ozone production which occurs at higher operating temperatures.
  • the end caps are releasably secured together so that ozone generator may be easily disassembled for servicing as may be required.
  • the end caps may be held into place by a plurality of securing members which are preferably resilient such as elastomeric members or springs 75 (e.g.
  • the dielectric element 62 may be comprised of any material as is well known in the art such as ceramic. In one embodiment of the invention, the dielectric 62 is preferably comprised of plastic.
  • Ground electrode 63 may be a metal tube provided exterior to dielectric 62. Preferably, dielectric element 62 is coated with a metal to form ground plane 63. The metal ground plane 63 is electrically connected to ground such as by spring 67 which secures ground wire 68 to ground plane 63.
  • High voltage electrode 71 may comprise a spiralled wire 71 which is wrapped around plastic support 70.
  • apparatus 100 is turned on.
  • water treatment cycle water continuously travels through the filtration loop 120 and the ozonation loop 122 (the multi-pass filtration cycle).
  • apparatus 100 may be shut down by turning off both the water pump 15 and the ozone generator 20.
  • the micro-controller 6 will terminate the water treatment cycle, so that the failure may be further investigated and fixed.
  • the user may initiate a dispense cycle by depressing the dispense button 53 or apparatus 100 may include an auto dispense mode.
  • the water pump 15 is activated, and the treated water preferably flows through the polishing filtration loop 124 (i.e. through polishing filter 54) prior to exiting the apparatus via treated water passageway 91 and treated water outlet 92.
  • a user opens optional lid 1 and pours the water into the water inlet 7.
  • the water flows through pre-filter 8 into the reactor 9.
  • the user then depresses start button 11 or the start of a water treatment cycle may be delayed until treated water is desired.
  • micro-controller 6 energizes water pump 15 via wires 13 and 14 to draw water from reactor 9 and to cause the water to flow sequentially through filtration loop 120 and then through ozonation loop 122.
  • ozone generator 20 is energized shortly after water pump 15 commences operation. In this way, the provision of current to ozone generator 20 may be delayed until the water flow produces an air flow through ozone generator 20.
  • Water pump 15 withdraws water from reactor outlet 104, and causes the water to flow through first partially treated water passageway 24, water pump 15, second partially treated water passageway 25, solenoid valve 26, main filter inlet passageway 27, and into filter assembly 29 via main filter inlet 28.
  • the water enters annular space 30 surrounding main filter 10.
  • the water flows through main filter 10 into inner space 31, travels downwards through inner space 31, and exits the filter assembly 29 through filter outlet 32.
  • the water is withdrawn from the filter assembly 29, and flows through the ozonation loop 122.
  • the water is withdrawn from filter outlet 32, and flows through filtered water passageway 34 through venturi 33, where it receives an injection of air containing ozone gas.
  • the water laden with ozone rich gas bubbles 36 then travels through an ozonated water passageway 35, and returns to reactor 9 via reactor inlet 106.
  • the water is filtered and ozonated.
  • the treatment cycle preferably includes passing a volume of water equal to the volume of water to be treated in reactor 9 several times through the flow loops to achieve the multi-pass treatment.
  • Ozone introduced into the water via venturi 33 is also used to treat water in reactor 9 since ozone rich bubbles 36 rise through the reactor 9, thus disinfecting the water in reactor 9.
  • the bubbles 36 collect in an off gas collection area 96.
  • the off gas passes from collection area 96 through pre-filter 8 to at least partially disinfect pre-filter 8 while converting the residual ozone in the off gas to oxygen.
  • the treatment cycle may be controlled by a timer.
  • the micro-processor 6 may shut off both the water pump 15 and ozone generator 20.
  • ozone generator 20 may be de-energized while water pump continues to operate (e.g. for 30 seconds to 2 minutes) so as to draw air which does not contain ozone into reactor 9 to flush ozone from collection area 96.
  • the water may be automatically dispensed or dispense switch 53 may be energized.
  • the user is signalled that the water is safe to dispense and use at the end of a successful treatment cycle.
  • the user may be signalled when dispense switch 53 is energized.
  • an audible signal may be issued or a visual signal may be provided.
  • dispense switch 53 contains a light. Once dispense switch 53 is energized, it may be manually actuated to initiate the dispensing of treated water when desired. By configuring the apparatus so that dispense switch 53 must be energized before if may be actuated to dispense water, water which has not been properly treated can not be accidentally dispensed.
  • valve 26 e.g. sends a signal by wires 50 and 51 to a solenoid valve
  • valve 26 e.g. sends a signal by wires 50 and 51 to a solenoid valve
  • valve 26 is in the dispense position, water is withdrawn from reactor 9 and flows through polishing filtration loop 124. Specifically, water is withdrawn from reactor outlet 106, and flows through first partially treated water passageway 24, water pump 15, second partially treated water passageway 25, valve 26, polishing filter inlet passageway 52, and filter assembly 29 via polishing filter inlet 108.
  • the water then travels from the polishing filter inlet 108, through the polishing filter 54, and ultimately exits apparatus 100 through treated water passageway 91 and treated water outlet 92.
  • the dispense cycle is preferably terminated by monitoring the current drawn by water pump 15 and de-energizing pump 15 when the current drawn by water pump 15 changes to a lower current associated with cavitation of water pump 15.
  • Apparatus 100 may optionally include various safeguards and /or monitors to ensure that the system is running safely and optimally.
  • One such safeguard is an automatic cycle counter to determine when one or more filters should be replaced. If apparatus 100 includes a filter assembly 29, then, together with a cycle counter, the user may be advised when to change all of the filters and may in fact change all of the filters in a single step.
  • the cycle counter may optionally be employed to keep track of the number of water treatment cycles, and signal the user to replace the filter assembly 29 after a preset number of cycles.
  • the cycle counter may be any type which is well known in the art.
  • the treatment cycles may be counted by the number of times that a cycle is initiated (e.g. by counting the number of times that start button 11 is pressed) or by the number of times that lid 1 is opened and/or closed.
  • an automatic counter which counts the number of times that lid 1 is opened and/or closed is used.
  • the automatic counter consists of a light beam that is directed across one end of the water inlet 7. The lid 1 is determined to be in the closed position when the beam of light is broken by the presence of lid 1.
  • the automatic counter comprises a magnet 5 and a corresponding reed switch 3.
  • magnet 5 moves away from magnetic reed switch 3.
  • lid 1 is closed, magnet 5 is brought back into proximity of magnetic reed switch 3. Either or both of these movements may produce a signal that is used by micro-controller 6 to count an additional cycle.
  • a cycle is counted when lid 1 is moved to the closed position ( magnet 5 is proximate to reed switch 3).
  • Micro-controller 6 preferably signal the user when one or more filter elements approaches and/or reaches the end of their useable life.
  • the signal could be an audio or visual signal and is preferably filter monitor light switch 55, which flashes when a first preset number of cycles is reached to advise a user that the filter is approaching the end of its life.
  • micro-controller 6 preferably sends a different signal to the user (e.g. filter monitor light switch is lit but not flashing) advising the user that the filter has reached the end of its life and preventing the apparatus from operating another treatment cycle until the filter is replaced.
  • the cycle counter could be automatically reset when filter assembly 29 is withdrawn from apparatus 100 or it may be manually reset such as by manually depressing filter monitor light switch 55.
  • the signal may also be utilized to initiate a new water treatment cycle.
  • a signal may be issued (e.g. process light 12 may flash or change to a different colour) to alert a user that an error has occurred and the water treatment cycle will not proceed until the lid is properly.
  • the operation of a treatment cycle may also be delayed until lid 1 is closed.
  • the user may depresses start button 11. This action sends a signal to micro-controller 6 to initiate a new water treatment cycle.
  • the magnetic reed switch 3 is used to determine whether the lid 1 is in the closed position. The lid 1 is determined to be in the closed position when the magnet 5 is proximate to the magnetic reed switch 3 to change the status of reed switch 3.
  • Micro-controller 6 checks the status of reed switch 3 to ensure that lid 1 is .
  • micro-controller 6 initiates the water treatment cycle by turning on the water pump 15 via wires 13 and 14, and the ozone generator 20 via wires 16 and 17. If lid 1 is not in the closed position, process light 12 will flash to indicate that an error has occurred. The water treatment cycle will not proceed until lid 1 is properly closed. Additionally, if lid 1 is not closed within a preset time, for example 30 seconds, the system 100 may shut down, and the start button 11 will need to be depressed again in order to initiate a new water treatment cycle. Another such safeguard is to monitor the treatment of the water in reactor 9.
  • This may be accomplished by use of an ORP sensor to monitor the degree of treatment of the water or an off gas ozone sensor to monitor the level of ozone in the off gas exiting collection area 96 or an ozone sensor 126 located downstream of the ozone generator 20.
  • a range of acceptable ozone concentrations may be preset in controller 6 prior to the initiation of the water treatment cycle. If the concentration of the ozone as sensed by the ozone sensor 126 is too high or too low, a signal may be sent to the micro-controller 6 to terminate the water treatment cycle, and actuate a signal to notify the user of a system failure.
  • the signal could include an audio or visual signal.
  • process failure light 102 is illuminated.
  • a simplified system for ensuring that the water is treated to a desired level before it is dispensed.
  • a given quality of water will need a predetermined dosage of ozone to purify the water.
  • apparatus 100 is given a predetermined quality of water, and apparatus 100 is programmed to give that quality of water a predetermined dosage of ozone, then apparatus 100 will produce water of the desired purity.
  • apparatus 100 may include a switch (e.g. tapping start button 11 to advise microcontroller 6 of the source of the water) to advise controller 6 of the quality of water which is fed to reactor 9 (e.g. municipal water, lake or well water, etc.) and controller 6 may be pre-programmed with different treatment times for each such setting.
  • reactor 9 e.g. municipal water, lake or well water, etc.
  • the flow of air through apparatus 100 or the amount of ozone produced by ozone generator 20 are preferably monitored and compared with preset values that may be programmed into micro-controller 6. Preferably both of these factors are monitored.
  • Monitoring the operation of ozone generator 20 ensures that ozone generator 20 is producing the expected amount of ozone.
  • Measuring air flow ensures that the ozone generated by ozone generator 20 is reaching the water to be treated and enables controller 6 to indirectly monitor the concentration of ozone in the air being injected into the water by venturi 33. This ensures that the ozone generator 20 is continuously producing a concentration of ozone sufficient to completely treat the water.
  • the water treatment cycle is terminated if any of the monitored parameters fall outside of the acceptable preset ranges. If the parameters are within the acceptable preset ranges, then the water treatment cycle preferably continues until a sensor detects that the water has been treated to a desired level or, more preferably, for a preset duration.
  • the air flow may be monitored by providing an air flow sensor.
  • the air flow sensor is positioned upstream of ozone generator 20.
  • air flow sensor 42 and airflow sensor cover 41 are provided upstream of ozone generator 20 and immediately downstream of air inlet 40.
  • controller 6 may send a fault signal to the user and /or terminate the treatment cycle. For example, if there is an obstruction in one of the passageways, or if venturi 33 becomes fouled, then controller 6 will detect a decrease in air flow (or an increase in back pressure) and may terminate the treatment cycle as insufficient ozone will be provided to the water in a preset time limit. If there is a sudden increase in air flow
  • the gas flow sensor employed may be any that is well know in the art.
  • the gas flow sensor is a thermistor 42.
  • spring loaded check valve 38 to open (e.g. ball 58 moves downwards away from o-ring seal 59, thus allowing gas to flow freely through gas flow passageway 37).
  • Controller 6 is preprogrammed with an acceptable air flow range is preset prior to the initiation of the water treatment cycle. If the air flow as sensed by the thermistor 42 is too high or too low, a signal may be sent to the micro-controller 6 to terminate the water treatment cycle and actuate a signal to notify the user of a system failure.
  • One of the preset value programmed into controller 6 preferably corresponds to the rate of air flow when main filter has reached the end of its life. The signal could include an audio or visual signal.
  • Air flow sensor 42 may also be used to monitor filter life.
  • one of the preset value programmed into controller 6 preferably corresponds to the rate of air flow when main filter 10 is approaching the end of its life and /or when main filter 10 has reached the end of its life. If controller 6 receives a signal from air flow sensor 42 that main filter 10 is approaching the end of its life, this signal may be used to signal a user that filter assembly 29, or at least main filter 10, is approaching the end of its life and, thus, may be used to cause filter monitor light 55 to flash.
  • controller 6 receives a signal from air flow sensor 42 that main filter 10 has reached the end of its life, this signal may be used to signal a user that filter assembly 29, or at least main filter 10, has reached the end of its life and, thus, may be used to cause filter monitor light 55 to stay on full time.
  • the amount of ozone produced by ozone generator 20 may be monitored by monitoring the concentration of ozone in the air exiting ozone generator 20 and preferably, by monitoring the current drawn by ozone generator 20.
  • a current sensor may be electrically connected to ozone generator 20 to monitor whether sufficient power is being drawn by ozone generator 20 to produce a predetermined amount of ozone.
  • the current sensor 114 may be any type as is well known in the art. For example, an acceptable current range for the primary coil 21 may be preset prior to the initiation of a water treatment cycle. This current range is based on the ozone generator 20 drawing a current that is indicative of the ozone generator 20 producing a predetermined amount of ozone per unit time. If the current sensor 114 senses that the current to the primary coil 21 is either too high or too low, a signal is preferably sent to the micro-controller 6 to terminate the water treatment cycle and actuate a signal to notify the user of a system failure. The signal could include an audio or a visual signal. Preferably, the same or a different process failure light 102 is illuminated.
  • current sensor 114 comprises a light emitting member 46 powered by the same current source as the ozone generator 20 and a light sensor 98 located proximate to light emitting member 46 to monitor the amount of illumination produced by light emitting member 46.
  • the level of illumination provided by light emitting member 46 can be correlated to the level of current being drawn by the ozone generator 20 and, as such, the signal received by light sensor 98 is an indirect measure of the level of current drawn by the ozone generator 20. This information can be related to the concentration of ozone being produced by the ozone generator 20.
  • the light emitting member 46 is a light bulb, and more preferably a neon light bulb.
  • the neon light bulb 46 is preferably capacitively coupled to the high voltage secondary bobbin 23.
  • An acceptable range for the light sensor 98 is preferably preset prior to the initiation of a water treatment cycle. If the illumination of the neon bulb 46 as sensed by the light sensor 98 is too high or too low, a signal may be sent to the micro-controller 6 to terminate the water treatment cycle and actuate a signal to notify the user of a system failure.
  • the signal could include an audio or a visual signal.
  • the same or a different process failure light 102 is illuminated.
  • the dielectric 62 may crack, or otherwise break down.
  • the ozone generator 20 it is possible for the ozone generator 20 to become disconnected from the high voltage source. Moreover, it is possible for the high voltage transformer to fail altogether. If any of these events occur, current sensor 114 will detect a change in current supplied to the ozone generator 20, the brightness of the neon light bulb 46 connected to the ozone generator 20 will vary accordingly. It will be appreciated that other electromagnetic wavelengths, other than visible light, may be utilized. These parameters can be monitored either on an intermittent basis, or more preferably, on a continual basis. Moreover, these parameters can be monitored for only a part of the water treatment cycle, or more preferably, for the entire duration of the water treatment cycle.
  • the gas flow sensor may be beneficially employed to terminate the water treatment cycle when the filter assembly 29 is removed from the system 100.
  • the flow of water through both the filtration loop 120 and the ozonation loop 122 will be interrupted.
  • the flow of water through venturi 33 causes air to be drawn in past the air flow sensor 42.
  • the gas flow sensor 42 will register this change in gas flow rate, and send a signal to the micro-controller 6 to actuate a signal to terminate the water treatment cycle, and notify the user of a system failure.
  • one of the preset values programmed into micro-controller 6 may optionally be a value corresponding to the flow rate of air through ozone generator 20 when filter assembly 29 is removed from apparatus 29. It will be appreciated that micro-controller is preferably programmed to terminate a treatment cycle when the flow rate through ozone generator 20 decreases by a lesser amount which is indicative of a small leak in the air/ozone fluid flow passage.
  • the signal could be audio or visual and is preferably the same or a different process failure light 102.
  • the filter life may be monitored other than by counting cycles such as by the time required for the volume of water in reactor 9 to pass through a filter element. For example, a timer may optionally be employed to monitor the time required for the water to pass through the polishing filter 54.
  • a dispense cycle is initiated by depressing the dispense switch 53.
  • the duration of the dispense cycle represented by the time to pass the entire batch of water through the polishing filter 54, is known.
  • Two different flow times which are both longer than the normal duration of the dispense cycle, may be preset in controller 6.
  • micro-controller 6 sends a signal to warn the user that the filter assembly 29 must be changed soon.
  • the signal is filter monitor light switch 55, which flashes when the first preset time is reached. Subsequent dispense cycles are monitored, and when the duration of the dispense cycle corresponds to a second preset time, micro-controller 6 sends a signal to warn the user that the filter assembly 29 must be replaced in order to initiate a new water treatment cycle.
  • this second signal is filter monitor light switch 55, which is fully lit when the second preset time is reached. At this point, the system 100 will not initiate a new cycle until the filter assembly 29 is replaced.
  • the filter life may also be monitored by a water flow sensor to monitor the flow rate of water passing through the polishing filter 54 and/or, a pressure sensor may optionally be employed to monitor the pressure of the water passing through the polishing filter 54
  • a dispense cycle is initiated by depressing the dispense switch 53.
  • the flow rate and back pressure caused by the water passing through the polishing filter 54 is known.
  • Two different water flow rates /back pressures which are both less than the normal water flow rates (or higher than the normal back pressure), may be preset into controller 6.
  • micro-controller 6 sends a signal to warn the user that the filter assembly 29 must be changed soon.
  • the signal is a filter monitor light switch 55, which flashes when the first preset flow rate is reached. Subsequent dispense cycles are monitored, and when the flow rate of the water through the polishing filter 54 corresponds to a second preset flow rate (or the pressure corresponds to the second back pressure), micro-controller 6 sends a signal to warn the user that the filter assembly 29 must be replaced in order to initiate a new water treatment cycle.
  • the signal is the filter monitor light switch 55, which is fully lit when the second preset flow rate is reached.
  • the system 100 will not initiate a new cycle until the filter assembly 29 is replaced. It will be appreciated that the apparatus need not have a polishing filter and that any of these methods may be used to monitor the filter life of the filter through which the water passes as it is dispensed (the exit filter).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Inorganic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

Cette invention concerne une installation domestique de traitement de l'eau qui comprend les éléments suivants : réacteur de traitement de l'eau ; conduit d'amenée d'eau entre ledit réacteur et un distributeur par lequel l'eau traitée dans le réacteur quitte l'installation ; filtre monté amovible dans le conduit d'amenée ; et détecteur (pouvant se présenter sous la forme d'une horloge, d'un détecteur de débit et/ou d'un détecteur de contre-pression) contrôlant de débit d'eau traité qui traverse le filtre. L'installation produit un signal avertissant l'utilisateur qu'il faut remplacer le filtre lorsque le temps requis par l'eau pour traverser ce filtre dépasse une valeur prédéterminée.
PCT/CA2001/001670 2000-11-22 2001-11-21 Detecteur pour installation de traitement de l'eau WO2002042218A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002221387A AU2002221387A1 (en) 2000-11-22 2001-11-21 Sensor for a water treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US60/252,425 2000-11-22
US09/758,251 US6491811B2 (en) 2000-11-22 2001-01-12 Sensor for a water treatment apparatus
US09/758,251 2001-01-12

Publications (1)

Publication Number Publication Date
WO2002042218A1 true WO2002042218A1 (fr) 2002-05-30

Family

ID=25051082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2001/001670 WO2002042218A1 (fr) 2000-11-22 2001-11-21 Detecteur pour installation de traitement de l'eau

Country Status (1)

Country Link
WO (1) WO2002042218A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953523B2 (en) 2002-12-05 2005-10-11 Headwaters Research & Development, Inc Portable, refillable water dispenser serving batches of water purified of organic and inorganic pollutants
WO2007090622A1 (fr) * 2006-02-09 2007-08-16 Anna Distribution Lp Affichage reversible pour dispositif de filtration d'eau
WO2007125490A1 (fr) * 2006-05-01 2007-11-08 Koninklijke Philips Electronics N.V. Disoisitif autonome de purification d'eau
EP1892221A1 (fr) * 2006-08-22 2008-02-27 Global Innovation Venture Foundation Co., Ltd. Couvercle pour appareil pour filtrer l'eau
ITPD20090171A1 (it) * 2009-06-10 2010-12-11 Laica Spa Sistema filtrante

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681677A (en) * 1978-02-17 1987-07-21 Olin Corporation Water processor having automatic shutoff and bypass means
US5328597A (en) * 1992-07-27 1994-07-12 The Clorox Corporation Electronic monitoring unit for monitoring number of uses of cartridge
US5451314A (en) * 1994-04-09 1995-09-19 Neuenschwander; Peter Plant for the treatment of drinking water from raw water
EP0880986A2 (fr) * 1997-05-16 1998-12-02 Everpure, Inc. Filtre à eau moniteur d'écoulement actionné par pression
US5900138A (en) * 1994-10-28 1999-05-04 Laica S.R.L Vessel for filtering liquids, particularly drinking water having device for counting occasions of vessel access
US6024867A (en) * 1994-12-28 2000-02-15 Water Safety Corp. Of America Counter top water filter with replaceable electronic display monitor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4681677A (en) * 1978-02-17 1987-07-21 Olin Corporation Water processor having automatic shutoff and bypass means
US5328597A (en) * 1992-07-27 1994-07-12 The Clorox Corporation Electronic monitoring unit for monitoring number of uses of cartridge
US5451314A (en) * 1994-04-09 1995-09-19 Neuenschwander; Peter Plant for the treatment of drinking water from raw water
US5900138A (en) * 1994-10-28 1999-05-04 Laica S.R.L Vessel for filtering liquids, particularly drinking water having device for counting occasions of vessel access
US6024867A (en) * 1994-12-28 2000-02-15 Water Safety Corp. Of America Counter top water filter with replaceable electronic display monitor
EP0880986A2 (fr) * 1997-05-16 1998-12-02 Everpure, Inc. Filtre à eau moniteur d'écoulement actionné par pression

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6953523B2 (en) 2002-12-05 2005-10-11 Headwaters Research & Development, Inc Portable, refillable water dispenser serving batches of water purified of organic and inorganic pollutants
WO2007090622A1 (fr) * 2006-02-09 2007-08-16 Anna Distribution Lp Affichage reversible pour dispositif de filtration d'eau
EP2641872A1 (fr) * 2006-02-09 2013-09-25 BWT water+more GmbH Affichage réversible pour dispositif de filtration d'eau
WO2007125490A1 (fr) * 2006-05-01 2007-11-08 Koninklijke Philips Electronics N.V. Disoisitif autonome de purification d'eau
CN101437760B (zh) * 2006-05-01 2013-05-08 皇家飞利浦电子股份有限公司 自主工作的水净化设备
EP1892221A1 (fr) * 2006-08-22 2008-02-27 Global Innovation Venture Foundation Co., Ltd. Couvercle pour appareil pour filtrer l'eau
GB2441121A (en) * 2006-08-22 2008-02-27 Global Innovation Venture Foun A lid for a water filtration apparatus
ITPD20090171A1 (it) * 2009-06-10 2010-12-11 Laica Spa Sistema filtrante
WO2010142473A1 (fr) * 2009-06-10 2010-12-16 Laica S.P.A. Système de filtration

Similar Documents

Publication Publication Date Title
US6491811B2 (en) Sensor for a water treatment apparatus
US6491879B2 (en) Ozone generator
US20020060189A1 (en) Method and apparatus for controlling a household water purifier
US20020060177A1 (en) Filter assembly for a household water purifier
US6475352B2 (en) Method and apparatus for monitoring an ozone generator in a household water purifier
US8192619B2 (en) Portable filtration and ozonation apparatus
US20020040867A1 (en) Continuous water cycle water treatment apparatus
US4902411A (en) Drinking water purifier
US6153111A (en) Method and apparatus for purifying water
US8177966B2 (en) UV liquid storage and dispensing device
US6312588B1 (en) Water purifier
EP2089322B1 (fr) Dispositif de purification d'eau
US7713336B2 (en) Water sanitazation system having safety features and removable filter
JP4831513B2 (ja) 光触媒滅菌器
JP2004505770A (ja) 流し台の下の水処理システム
EA001688B1 (ru) Устройство для очистки и розлива воды
WO2002042225A1 (fr) Procede et dispositif de surveillance d'un generateur d'ozone dans un purificateur d'eau a usage domestique
WO2002042218A1 (fr) Detecteur pour installation de traitement de l'eau
WO2002042217A1 (fr) Ensemble de filtres pour purificateur d'eau domestique
WO2002042224A1 (fr) Procede et dispositif de commande pour purificateur d'eau a usage domestique
KR102263914B1 (ko) 정수장치
EP1233932B1 (fr) Procede et appareil domestique de distribution d'eau purifiee
JP3319841B2 (ja) 電解水生成装置
KR20110056160A (ko) 정수기 및 이 정수기의 자동 살균 방법
WO2004063098A2 (fr) Systeme de nettoyage antiseptique a champ electrique pulse et composants du systeme

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP