WO2002039814A1 - Metodo y dispositivo de regulacion de caudal para un equipo de pulverizacion hidraulico de productos fitosanitarios - Google Patents

Metodo y dispositivo de regulacion de caudal para un equipo de pulverizacion hidraulico de productos fitosanitarios Download PDF

Info

Publication number
WO2002039814A1
WO2002039814A1 PCT/ES2001/000413 ES0100413W WO0239814A1 WO 2002039814 A1 WO2002039814 A1 WO 2002039814A1 ES 0100413 W ES0100413 W ES 0100413W WO 0239814 A1 WO0239814 A1 WO 0239814A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzles
speed
bar
operator
nozzle
Prior art date
Application number
PCT/ES2001/000413
Other languages
English (en)
French (fr)
Inventor
Antonio Justribo Baradad
Jordi Palacin Roca
Carles Zanuy Fontanet
Jaume Arno Satorra
Original Assignee
Antonio Justribo Baradad
Jordi Palacin Roca
Carles Zanuy Fontanet
Jaume Arno Satorra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Antonio Justribo Baradad, Jordi Palacin Roca, Carles Zanuy Fontanet, Jaume Arno Satorra filed Critical Antonio Justribo Baradad
Priority to AU2002214058A priority Critical patent/AU2002214058A1/en
Priority to EP01982495A priority patent/EP1346637A1/en
Publication of WO2002039814A1 publication Critical patent/WO2002039814A1/es

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D7/00Control of flow
    • G05D7/06Control of flow characterised by the use of electric means
    • G05D7/0617Control of flow characterised by the use of electric means specially adapted for fluid materials
    • G05D7/0629Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means
    • G05D7/0635Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means
    • G05D7/0641Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means
    • G05D7/0664Control of flow characterised by the use of electric means specially adapted for fluid materials characterised by the type of regulator means by action on throttling means using a plurality of throttling means the plurality of throttling means being arranged for the control of a plurality of diverging flows from a single flow
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/02Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery
    • B05B12/04Arrangements for controlling delivery; Arrangements for controlling the spray area for controlling time, or sequence, of delivery for sequential operation or multiple outlets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/04Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump
    • B05B9/06Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material with pressurised or compressible container; with pump the delivery being related to the movement of a vehicle, e.g. the pump being driven by a vehicle wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B12/00Arrangements for controlling delivery; Arrangements for controlling the spray area
    • B05B12/08Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means
    • B05B12/12Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus
    • B05B12/126Arrangements for controlling delivery; Arrangements for controlling the spray area responsive to condition of liquid or other fluent material to be discharged, of ambient medium or of target ; responsive to condition of spray devices or of supply means, e.g. pipes, pumps or their drive means responsive to conditions of ambient medium or target, e.g. humidity, temperature position or movement of the target relative to the spray apparatus responsive to target velocity, e.g. to relative velocity between spray apparatus and target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B9/00Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour
    • B05B9/03Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material
    • B05B9/035Spraying apparatus for discharge of liquids or other fluent material, without essentially mixing with gas or vapour characterised by means for supplying liquid or other fluent material to several spraying apparatus

Definitions

  • the present invention concerns a flow regulation method for a hydraulic spraying equipment for phytosanitary products, and more particularly a flow regulation method for an agricultural hydraulic spraying equipment for phytosanitary products of the type comprising a application bar equipped with multiple nozzles that moves on a ground to be treated, either on a self-propelled platform or dragged by a tractor vehicle, or mounted on it.
  • an application bar or bar will be understood as an elongated structure carrying a conduit to which distribution nozzles are connected and whose elongated structure is arranged, in general, transverse to the direction of advance.
  • a hydraulic spray equipment which generally consists of a reservoir of liquid to be sprayed, a support bar provided with multiple spray nozzles and a pump to propel the liquid from the tank to the nozzles
  • This set of spray equipment is generally mounted on a tractor or on a separate platform dragged by a tractor or self-propelled.
  • machines are also known that have a pressure regulation system installed that provides a proportional distribution, either at engine revolutions (DPM) or equipment advance (DPA), which keeps it constant the volume applied per unit area (V), regardless of the speed (v) of the machine.
  • DPM engine revolutions
  • DPA equipment advance
  • V volume applied per unit area
  • V volume applied per unit area
  • v speed
  • the regulation is carried out by varying the pressure of the liquid, the projection angles of the jet of the nozzles vary according to the speed, which produces an irregular transverse distribution of the liquid sprayed under the bar and produces an irregularity in the size of the drops and in the number of drop impacts per unit area.
  • Another known regulation system is the one that allows the direct injection of the active material (Concentration Proportional to the Advance CPA).
  • the phytosanitary product to be applied and a liquid support vehicle, typically water are in independent circuits and the system mixes them in suitable variable proportions according to the speed of movement of the machine, thereby achieving keep the applied dose constant per unit area, keeping the spray system of the mixture at constant pressure and therefore allowing the selection of the projection angle and the size of the drops.
  • US-A-5134961 discloses a nozzle and solenoid valve device for a liquid spray equipment that allows spraying according to a pattern, that is, projection angle and droplet size, predetermined and with a variable flow rate.
  • said solenoid valve comprises an actuator, such as a solenoid, for displacing opening-closing means of the valve between a first fully open position and a second completely closed position, and means for controlling said actuator so that the time taken to move the said opening-closing means from said first position to said second position is relatively short in relation to the time it remains in said first fully open position.
  • Said control means comprise a square wave generator by pulses regulated both in frequency and in duration of the part of the cycle corresponding to the open position.
  • the nozzle connected to the solenoid valve emits the liquid sprayed by varying pulses both in duration and in frequency keeping said predetermined pattern constant.
  • This device also provides means for detecting the movement or relative speed of a nozzle with respect to one or more targets to be sprayed, the same or different, and the possibility of varying the emission pulse depending on said detection.
  • the aforementioned patent only mentions the existence of a nozzle and solenoid valve assembly and, even assuming the case of having multiple nozzles associated with an application bar, since the described control means do not have an outlet of individualized signal for each nozzle, the regulation would equally affect the entire set of nozzles connected to the bar even if it described, for example, a curved path.
  • US-A-5653389 of the same inventors as the one cited above, describes a system and a method of independent flow and droplet control for spray equipment based on the use of nozzle and solenoid valve assemblies. controlled by pulses, such as those described above.
  • the spraying equipment is mounted on a vehicle that can be a land vehicle or an aircraft capable of moving consecutively over different areas to be treated.
  • the control system includes a memory for storing different reference values of flow and size of the drops entered by the operator and a subroutine of conversion of reference values to independently control said flow and size of the drops in response to means sensitive to the position, such as a GPS system, that receive information on the limits of the areas to be treated and the spray conditions, that is, the reference values to be used, provided for each zone.
  • the system continuously takes into account other parameters such as the speed of the vehicle, the altitude, in the case of an aircraft, the geometry of the spray equipment, the characteristics of the nozzles and the environmental and meteorological conditions, to independently adjust the flow and the size of the drops to the reference values.
  • the flow control is carried out by varying the open valve times at a constant period and the droplet size control by varying the working pressure.
  • the speed of the nozzles increases the farther from the center of the curve they are located and decreases the closer, being able to become negative at the end of the bar closest to the center of rotation when the turn is very close, specifically when such end is located beyond the instantaneous center of rotation. Under these conditions, if all the nozzles emit the same flow, the area of land covered by the fastest area of the bar would receive less liquid per unit area than the slowest zone.
  • An object of the present invention is to provide a method and a flow regulation device for a hydraulic spray equipment of phytosanitary products of the type that incorporates a plurality of nozzles arranged along an application bar carried by a vehicle that it travels on a terrain to be treated, the method and the device being such that they allow the operator to be able to carry out the treatment according to an optimal route, regardless of its trajectory, with a size of drops of the pre-set spray and a volume of liquid applied by constant surface unit.
  • the method and device of the invention provide a system that individually regulates the flow rate of each of the nozzles of a hydraulic spray equipment, so that it is able to keep constant both the volume applied per unit area and the size of drops, regardless of the speed of each of said nozzles, that is, even if the team describes non-straight paths. This improves application uniformity and decreases the incidence of negative effects on the environment.
  • the flow regulation method and system of the present invention comprises a control panel and a central electronic unit, with at least one microprocessor, adapted to determine by calculation the individual travel speed of each of the nozzles arranged along the busbar from the velocities of two points distanced from each other from the bar or from an element positionally related to it and from the geometry data of the equipment, whose two speeds are captured respectively by two speed sensors located at the two points mentioned.
  • the central electronic unit Based on the calculated speeds, the central electronic unit generates an electronic square wave signal to control each of the pulsating operation solenoid valves, associated with the nozzles, whose wave provides variations in the duration of the pulse opening time to frequency constant.
  • the system independently regulates the flow rate emitted by each nozzle in accordance with its speed.
  • the process is carried out by maintaining a constant working pressure preset by a pressure regulation system, which determines a substantially constant distribution spectrum of droplet sizes.
  • Another feature of the invention consists of a safety device implemented in the control system itself that emits alarms when the speed of at least one of the nozzles (typically the nozzles located at the ends of the bar) is inadequate.
  • a first alarm indicates that the speed of travel of any of the nozzles is excessive, that is, to emit the amount of liquid to be applied per unit of desired surface it would be necessary for the duration of the pulse opening time to be greater than the period , which is impossible.
  • This first excessive speed alarm comprises a visual or audible indication for the operator, which is capable of generating a corrective response, such as for example moderating the forward speed and / or extending the turning radius.
  • a second alarm indicates that the speed of some of the nozzles is negative, which can happen for example when the equipment makes a very pronounced turn and one or more nozzles describe a recoil movement over already treated areas.
  • This second alarm incorporates, in addition to a visual or audible indication for the operator similar to that described in relation to the first alarm, an automatism that generates the closing of the nozzles.
  • the invention also makes it possible to reduce the electric power consumption of the solenoid valves as much as possible by establishing, by means of said microprocessor, and depending on the aforementioned stored and acquired data, an optimal lag in the pulsation of the different nozzles in order to avoid a large number of solenoid valves activated simultaneously.
  • the invention is configured as a device that allows constantly maintain both the volume applied per unit area and the size of the drops, regardless of the path described by the machine (straight or curved, resulting from the machine turns), making a real-time regulation of the sprayed flow for each nozzle by microprocessor control of the pulsating operation of each solenoid valve according to the speeds of each of the nozzles calculated by the microprocessor from the speeds of two known points of the equipment captured by respective speed sensors.
  • the pressure with which the liquid reaches the nozzles is constantly maintained and to regulate the amount of liquid that must be applied, opening and closing cycles of the solenoid valves that control each nozzle or nozzle assembly are performed.
  • FIG. 1 is a schematic view of the different elements that constitute the invention, relative to a flow regulation device in hydraulic spray equipment of phytosanitary products;
  • Fig. 2 shows the situation on the tractor-sprayer assembly of the fundamental components of the invention;
  • Fig. 3 is a visualization of the application uniforms obtained when turning and the product is applied with conventional spray equipment;
  • Fig. 4 shows an operation similar to that shown in Fig. 3, but performed with a spray equipment equipped with the invention;
  • Fig. 1 is a schematic view of the different elements that constitute the invention, relative to a flow regulation device in hydraulic spray equipment of phytosanitary products;
  • Fig. 2 shows the situation on the tractor-sprayer assembly of the fundamental components of the invention;
  • Fig. 3 is a visualization of the application uniforms obtained when turning and the product is applied with conventional spray equipment;
  • Fig. 4 shows an operation similar to that shown in Fig. 3, but performed with a spray equipment equipped with the invention;
  • Fig. 1 is a schematic view of the different elements that constitute the invention
  • FIG. 5 is a graphical representation of the differential regulation that it happens in nozzles located on opposite sides of the spray bar, specifically on the left side in straight forward, being able to observe the sequence of the electrical pulses that drive the corresponding solenoid valves, the flow being possible according to the path, which in the case of this figure corresponds to a straight path;
  • Fig. 6 is a graphic representation corresponding to the nozzle on the right side;
  • Fig. 7 shows a graphical representation corresponding to a nozzle on the left side when a left turn is made;
  • Fig. 8 is a graphic representation corresponding to a nozzle on the right side;
  • Fig. 9 shows a representation of the nozzle on the left side when a right turn is made;
  • Fig. 6 is a graphic representation corresponding to the nozzle on the right side;
  • Fig. 7 shows a graphical representation corresponding to a nozzle on the left side when a left turn is made;
  • Fig. 8 is a graphic representation corresponding to
  • Fig. 10 shows a graphic representation corresponding to the nozzle on the right side
  • Fig. 11 is a schematic plan view showing an instant of action of the invention, in particular when the tractor-sprayer travels at a high speed and turns to the left, and can be seen as the nozzles at the right end of the bar exceed the maximum permissible feed rate, activating the corresponding speed alarm in the cabin monitor
  • Fig. 12 is a plan view similar to that shown in Fig.
  • Fig. 13 finally shows a flow chart of the flow control routine used by the present invention.
  • the device of Flow regulation for a proposed phytosanitary products hydraulic spraying equipment to execute the method of the invention, is configured as a control system for the nozzles of a hydraulic spraying equipment that, during turns, manages to individually adapt the flow rate of each nozzle at its effective travel speed depending on the relative position it occupies in the spray bar.
  • the volume applied per unit of surface remains constant during the treatment, being the regulation system used constant pressure.
  • the flow regulating device of the present invention is implanted in a spray equipment of the type that travels on a land to be treated either self-propelled, dragged by a tractor vehicle 24 or mounted therein, as shown in the figures.
  • a spray equipment of the type that travels on a land to be treated either self-propelled, dragged by a tractor vehicle 24 or mounted therein, as shown in the figures.
  • Such equipment comprises a reservoir 10 for the liquid to be sprayed, a fluid conduit driven by a pump 11 to drive the liquid from said reservoir 10 to a distribution conduit supported on a bar 14, to which distribution conduit a plurality of spray nozzles 16, and a pressure regulating system 12 disposed in said line between said pump 11 and said bar 14.
  • the regulating device is of the type comprising for each of said spray nozzles 16 a pulsating operating solenoid valve 15 controlled by a central electronic unit 20 under a constant operating pressure predetermined by said pressure regulator 12.
  • the regulating device further comprises two speed sensors 17 located at points away from each other from the support bar 14 or from an element positionally related thereto. Said sensors 17 are prepared to send respective speed signals to said central electronic unit so that it, from said signals and the known geometry of the spraying equipment, calculates the speeds of each of said nozzles of spray 16 located along the spray bar 14 and depending on each of said calculated speeds independently regulate the flow rate of each of the nozzles 16 by varying the duration of the pulse opening time at a constant frequency of its corresponding solenoid valve fifteen.
  • Means associated with said central electronic unit are prepared to emit a first alarm comprising an indication for an operator when the travel speed calculated for at least one of the nozzles 16 is excessive to allow the open time of the pulsation in a required period of the corresponding solenoid valve 15 and a second alarm comprising an indication for said operator when the calculated speed for at least one of the nozzles 16 is negative and for generating an electric closing signal of the corresponding solenoid valve 15.
  • the pulverized flow rate will depend on the specific duration reached by the opening pulse with respect to the total opening-closing cycle.
  • This opening time is calculated for each nozzle by means of said microprocessor, which generates said pulsed electrical signal that drives the solenoid valves.
  • Fig. 3 the performance of a conventional nozzle is shown, being able to observe how the surface of the land when making the turns both right and left does not appear properly treated, while on the surface number 4, in which it is applied the invention, the surface in all cases, appears to be treated correctly, the reason for the appropriate treatment being the fact that under this invention it is possible to overcome the difficulties existing in the current mechanisms, since the flow of each flow can be varied in real time nozzle, adapting it to its differential speed and the specific setpoint of the treatment.
  • the invention is configured from a tank 10 which stores the phytosanitary product mixed with a certain diluent, called broth, a pump 11 that extracts and drives the liquid, a regulation system formed by a pressure regulator 12 and its corresponding connection 13 to the tank 10, regardless of whether it is pressure constant or with distribution proportional to the engine speed, also incorporating a primary distributor and distributors of the bar sectors, a support bar 14 and the spray nozzles 16.
  • the invention incorporates a device for measuring the differential speed of the bar 17, a control panel provided with an operator control interface 18, as well as an equipment configuration interface 19, it should be indicated that the Differential speed measuring device of the bar 17 is configured as speed sensors connected to the calculation and application control module 20 constituting a central electronic unit, having a signal adaptation and actuation module 21, the solenoid valves 15 and connection wiring 22.
  • the central electronic unit 20 can detect the differential speed that occurs at the level of the nozzles, whether the machine moves in a straight line or if the equipment describes a curved path when making a turn.
  • said speed sensors 17 must be placed in an element positionally related to the busbar or on said busbar.
  • control panel By means of the control panel, the operator can connect and disconnect the control system by means of an on / off push-button, recording in real time the application volume through the control interface 18, indicating that the control panel formed by the two interfaces 18 and 19, includes the possibility of parameterizing the device data, through the configuration interface 19.
  • interface 19 allows setting the type of nozzle, that is to say flow-pressure ratio, as well as the separation between nozzles and the length of the bar.
  • the separation of the sensors 17 to the middle plane of the tractor must also be previously set by means of this module, and likewise, indicators indicating alarms of operation of the equipment appear on the control panel.
  • said indicators will be visual and / or auditory emitters to display or emit said first and second alarms of excessive speed and negative speed.
  • said visual indicators include witnesses indicative of the three possible states of speed: adequate; excessive and negative, for each of three of the nozzles (16) located respectively at the left end, in the middle and at the right end of the application bar.
  • the central electronic unit consists of two modules, and based on the information of the speed sensors 17 and the information on the control panel formed by the control interface 18 and the configuration interface 19, the application calculation and control module 20 generates for each nozzle or set of nozzles a certain sequence of opening-closing electrical pulses of its corresponding solenoid valve, thus achieving the adaptation of the flow rate of each nozzle according to its actual travel speed, generating the pulses with a constant frequency , ie opening-closing cycles per second, the variation in the duration of the open state being achieved by said regulation.
  • the signal adaptation and actuation module 21 is responsible for electrically adapting the pulsed opening-closing signals of each solenoid valve generated by the application calculation and control module 20, and by this adaptation, it is guaranteed that the electrical pulses are capable of Actuating the actuating elements, that is to say the solenoid valves 15, the whole assembly being activated through said wired electrical connection 22.
  • Fig. 2 the interconnection of the elements that make up the invention mounted on the tractor-sprayer assembly is shown, being able to observe the central electronic unit, calculation and control module of application 20 and the signal adaptation and actuation module 21 that receives, on the one hand, the information entered through the control panel, that is to say control interface 18 and configuration interface 19 and, on the other hand, the signal of the speed sensors 17, properly arranged.
  • the action on the spray nozzles is achieved by the wired connection 22 between the central unit 20, configured by the calculation and control module and the signal adaptation and actuation module 21, as well as by the relevant solenoid valves 15.
  • the pulverized flow rate is adapted to the volume set according to the time that the solenoid valve remains open, that is to say, opening time 32 with respect to the total cycle, ie cycle time 31, and the speed being equal in both nozzles, the open time 32 coincides, guaranteeing the same flow rate and maintaining the volume pulverized per hectare.
  • the tractor-sprayer assembly performs a left turn, as shown in Figures 7 and 8 corresponding respectively to the nozzles on the left-hand side
  • the speed of the nozzle located on the left side that is to say the one corresponding to that represented in Fig. 7, according to the direction of advancement, is inferior to that reached by the nozzle located on the right side, that is, the one represented in Fig. 8.
  • the central unit In order to keep the applied volume constant per surface unit, the central unit generates a different opening-closing pulse sequence for each nozzle or set of nozzles, although the constant cycle time or frequency 31 remains constant. Specifically, the nozzle on the left represented in Fig.
  • the sprayed flow can vary continuously between 0, when the open time is zero, and a maximum value that corresponds to the flow emitted at the working pressure, when the solenoid valve is permanently open, that is, when the open time coincides with the cycle time.
  • control system warns the operator by means of an alarm indication device 26 located in the control panel 18, specifically located in the operator control interface 18.
  • the central electronic unit that is to say the microprocessor is the unit in charge of carrying out the process of control and regulation of the opening-closing pulses of the solenoid valves, having been represented in the diagram shown in Fig. 13, the flow that describes the calculation and control algorithm of this microprocessor.
  • the electronic unit performs, first of all, a reading of the starting data, that is to say data of the equipment and of the treatment, remaining this invariable data throughout the same phytosanitary treatment, therefore, the microprocessor only records and stores them at the beginning of the application.
  • the data of the equipment to be configured are the length of the spray bar, the separation between nozzles, the type of nozzle, considering the flow-pressure ratio and the position or separation between the speed sensors.
  • treatment data the volume to be applied per hectare, the operating pressure and the pulsation frequency of the solenoid valves, ie opening-closing cycles per second, must be recorded.
  • the central unit calculates the position of each nozzle on the spray bar, the flow rate it emits in continuous service, since the solenoid valve remains permanently open and the maximum working speed, specifically the speed at which it can move each nozzle, according to the volume per unit of consigned surface.
  • the microprocessor establishes an optimal lag in the pulsation of the nozzles, and all these calculated values will not be modified throughout the same application.
  • the control and regulation loop is started, and when the position of the different nozzles and the position are known of the speed sensors, the central electronic unit can set the differential speed of each nozzle, from the signals supplied by the two speed sensors.
  • the microprocessor checks the existence of nozzles whose speed is higher than the maximum working speed, and if this happens, the maximum speed alarm 26 is activated in the panel of command, constituted by the operator control interface 18, and in this way, the operator warns of this fact and must reduce the tractor speed if he wishes to guarantee the consigned volume and a correct uniformity of application, since the affected nozzles will be continuously open , spraying the flow rate corresponding to the selected operating pressure.
  • the central electronic unit conveniently adapts the flow of each nozzle according to the treatment data, and since the volume to be applied per hectare is known, speed of each nozzle and the flow rate, in continuous service, that is to say permanently open nozzle, the microprocessor calculates the effective spraying time, open time, for each of the nozzles of the spray bar, and finally, the same central electronic unit generates an individualized sequence of electrical pulses, that is to say opening-closing, responsible for the final activation of the control solenoid valves.
  • a block diagram is shown in Fig. 13 in which it appears as from the beginning 40 the invention makes a parameter reading 41 checking the number of cycles / second, the separation of speed sensors and emitters, the length of the spray bar, the nominal flow of the sensors, etc., passing the information to the parameter calculation block 42, in which It makes the calculation of the positions of the emitters, passing from block 42 to block 43 destined to the reading of parameters, that is to say the dose that must be applied per hectare, from which the information is sent to block 44 corresponding to the calculation of parameters, in which the pertinent calculation of the maximum advance speed is made and from this block 44 the information is again sent to another parameter reading block 45 where the speeds of the right and left sensors are verified, to subsequently go to a parameter calculation block 46 where the calculation of the individual emitter speeds is made, intercommunicated with block 50 in which the emitter speed greater than the maximum speed is recorded, and from this to block 49 where the emitter speed, passing this information to another parameter calculation block 47 where the calculation of the application time

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Insects & Arthropods (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Catching Or Destruction (AREA)
  • Special Spraying Apparatus (AREA)
  • Nozzles (AREA)
  • Spray Control Apparatus (AREA)

Abstract

Método y dispositivo de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios, aplicado a mantener constante el volumen aplicado por unidad de superficie, tanto en trayectorias rectas como en trayectorias resultantes de los giros de la máquina, mediante un sistema de pulverización pulsante, consiguiéndose adecuar el caudal de cada boquilla (16) en función de la velocidad efectiva de la misma, comprendiendo dos sensores (17) de velocidad diferencial, una unidad electrónica central (20) con microprocesador, un panel de mandos y actuadores (15) gobernados individualmente para cada boquilla (16), regulándose el caudal de cada una de las boquillas (16) variando la duración del estado abierto de la electroválvula (15) correspondiente, y existiendo unos medios para generar alarmas cuando la velocidad de al menos una de las boquillas es inadecuada, posibilitando una medida correctora.

Description

MÉTODO Y DISPOSITIVO DE REGULACIÓN DE CAUDAL PARA UN EQUIPO
DE PULVERIZACIÓN HIDRÁULICO DE PRODUCTOS FITOSANITARIOS
Campo de la invención La presente invención concierne a un método de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios, y más particularmente a un método de regulación de caudal para un equipo agrícola de pulverización hidráulico de productos fitosanitarios del tipo que comprende una barra de aplicación provista de múltiples boquillas que se desplaza sobre un terreno a tratar, bien sea sobre una plataforma autopropulsada o arrastrada por un vehículo tractor, o montado sobre el mismo.
A lo largo del presente texto se entenderá por barra o barra de aplicación, una estructura alargada portadora de una conducción a la que estáiiconectadas unas boquillas distribuidoras y cuya estructura alargada se dispone, en general, transversal al sentido de avance.
Antecedentes de la invención
La pulverización de productos fitosanitarios en cultivos agrícolas es una práctica ampliamente extendida y presenta múltiples ventajas para los agricultores. La aplicación de productos fitosanitarios lleva implícito un notable riesgo de impacto medioambiental, y este hecho ha ocasionado que actualmente se tienda a potenciar el desarrollo de sistemas de aplicación que minimicen estos posibles efectos negativos.
Para la aplicación de productos fitosanitarios en cultivos bajos se utiliza habitualmente un equipo de pulverización hidráulico, el cual consta genéricamente de un depósito de líquido a pulverizar, una barra de soporte provista de múltiples boquillas de pulverización y una bomba para impulsar el líquido del depósito a las boquillas. Este conjunto de equipo de pulverización va montado generalmente sobre un tractor o sobre una plataforma independiente arrastrada por un tractor o autopropulsada.
En los equipos de pulverización de este tipo del estado de la técnica, la regulación del volumen de líquido aplicado por unidad de superficie así como el control y/o mantenimiento de un volumen por unidad de superficie constante, depende de tres parámetros básicos, a saber:
- la presión de funcionamiento (p);
- el caudal de las boquillas (q) o de la barra (Q); y
- la velocidad de avance de trabajo del equipo de pulverización (v). Se conocen aparatos que disponen de un sistema de regulación de la presión que proporciona una presión de trabajo constante (PC) instalado en el equipo, lo cual tiene la ventaja de que el ángulo de proyección y el espectro (distribución de los tamaños de gota) del líquido pulverizado se mantienen substancialmente constantes y, por consiguiente, se pueden fijar a un nivel deseado conociendo las características de las boquillas y seleccionando una presión constante de trabajo adecuada. Sin embargo, con una presión de trabajo constante (PC), para mantener uniforme el volumen de líquido aplicado por unidad de superficie (Y) es necesario mantener también constante la velocidad de avance de trabajo del equipo de pulverización (V), lo cual es un serio inconveniente.
Por otro lado, también se conocen máquinas que llevan instalado un sistema de regulación de la presión que suministra una distribución proporcional, ya sea a las revoluciones del motor (DPM) o al avance del equipo (DPA), con lo que se consigue mantener constante el volumen aplicado por unidad de superficie (V), independientemente de la velocidad (v) de la maquina. Sin embargo, debido a que en este caso la regulación se realiza variando la presión del líquido, los ángulos de proyección del chorro de las boquillas varían de acuerdo con la velocidad, lo que produce una irregular distribución transversal del líquido pulverizado bajo la barra y produce una irregularidad en el tamaño de las gotas y en número de impactos de gota por unidad de superficie. Estas irregularidades podrían llevar a que la aplicación se alejara de la considerada óptima según los objetivos del tratamiento.
Otro sistema de regulación conocido es el que permite la inyección directa de la materia activa (Concentración Proporcional al Avance CPA). En este sistema, el producto fitosanitario a aplicar y un vehículo de soporte líquido, típicamente agua, se encuentran en circuitos independientes y el sistema efectúa una mezcla de los mismos en proporciones variables adecuadas según la velocidad de desplazamiento de la máquina, consiguiéndose con ello mantener constante la dosis aplicada por unidad de superficie, manteniendo el sistema de pulverización de la mezcla a presión constante y por consiguiente permitiendo la selección del ángulo de proyección y el tamaño de las gotas.
La patente US-A-5134961 describe un dispositivo de boquilla y electroválvula para un equipo de pulverización de líquido que permite pulverizar según un patrón, es decir, ángulo de proyección y tamaño de las gotas, predeterminado y con un caudal variable. En este dispositivo, la citada electroválvula comprende un actuador, tal como un solenoide, para desplazar unos medios de apertura-cierre de la válvula entre una primera posición completamente abierta y una segunda posición completamente cerrada, y unos medios para controlar dicho actuador de manera que el tiempo empleado para desplazar los citados medios de apertura-cierre desde dicha primera posición hasta dicha segunda posición es relativamente breve en relación con el tiempo en que permanece en dicha primera posición completamente abierta. Los citados medios de control comprenden un generador de onda cuadrada por pulsos regulados tanto en frecuencia como en duración de la parte del ciclo correspondiente a la posición abierta. Dado que la pulverización se efectúa a presión constante, la boquilla conectada a la electroválvula emite el líquido pulverizado por pulsos variables tanto en duración como en frecuencia manteniendo dicho patrón predeterminado constante. En este dispositivo se prevén además unos medios para detectar el movimiento o la velocidad relativa de una boquilla respecto a uno o varios objetivos a pulverizar, iguales o diferentes, y la posibilidad de variar la pulsación de emisión en función de dicha detección. Sin embargo, en la citada patente sólo se menciona la existencia de un conjunto de boquilla y electroválvula y, aún suponiendo el caso de disponer de múltiples boquillas asociadas a una barra de aplicación, dado que los medios de control descritos no disponen de una salida de señal individualizada para cada boquilla, la regulación afectaría por igual a todo el conjunto de boquillas conectadas a la barra aunque ésta describiera, por ejemplo, una trayectoria curva. Esto significa que este dispositivo sólo efectuaría un ajuste correcto cuando las variaciones de velocidad fueran comunes a todas las boquillas, por ejemplo, las debidas a aceleraciones en trayectorias rectilíneas, pero cuando esto no se produce, por ejemplo en giros efectuados por la barra durante el tratamiento, la aplicación resultaría deficiente. Es decir, en la citada patente US- A-5134961 no se describe ni se sugiere una regulación de caudal a presión constante individualizada, diferencial para cada una de una pluralidad de boquillas asociadas a una barra que se desplaza sobre un terreno a tratar, en función de las diferentes velocidades que se pueden dar entre dichas boquillas cuando, por ejemplo, la barra efectúa una trayectoria curva.
La patente US-A-5653389, de los mismos inventores que la citada más arriba, describe un sistema y un método de control independiente de caudal y de tamaño de las gotas para un equipo de pulverización basados en la utilización de conjuntos de boquilla y electroválvula controlados por pulsos, tales como los arriba descritos. El equipo de pulverización está montado sobre un vehículo que puede ser un vehículo terrestre o una aeronave susceptible de desplazarse consecutivamente sobre diferentes zonas a tratar. El sistema de control incluye una memoria para almacenar unos diferentes valores de referencia de caudal y de tamaño de las gotas entrados por el operario y una subrutina de conversión de valores de referencia para controlar independientemente dichos caudal y tamaño de las gotas en respuesta a unos medios sensibles a la posición, tal como un sistema GPS, que reciben información de los límites de las zonas a tratar y de las condiciones de pulverización, es decir, de los valores de referencia a utilizar, previstas para cada zona. El sistema tiene continuamente en cuenta otros parámetros tales como la velocidad de avance del vehículo, la altitud, en caso de una aeronave, la geometría del equipo de pulverización, las características de las boquillas y las condiciones ambientales y metereológicas, para ajustar independientemente el caudal y el tamaño de las gotas a los valores de referencia. El control del caudal es llevado a cabo variando los tiempos de válvula abierta a período constante y el control del tamaño de las gotas variando la presión de trabajo.
Sin embargo, tampoco en esta patente US-A-5653389 se discute el problema de las diferentes velocidades que pueden adquirir cada una de las boquillas dispuestas en una barra de equipo de pulverización cuando la misma avanza en una trayectoria curva, y por consiguiente el sistema y método que da a conocer esta patente no aporta solución a tal problema. Concretamente, dicho problema reside en que cuando un equipo de pulverización hidráulico provisto de múltiples boquillas dispuestas a lo largo de una barra de aplicación realiza un giro, aunque las boquillas dispuestas en la zona central de la barra se desplazan prácticamente a la misma velocidad que el equipo tractor, la velocidad de las mismas varía a medida que se alejan desde el centro de la barra hacia los extremos a causa de los distintos radios de giro y diferentes longitudes de las trayectorias que deben describir. La velocidad de las boquillas aumenta cuanto más lejos del centro de la curva estén situadas y disminuye cuanto más cerca, pudiendo llegar a ser negativa en el extremo de la barra más próximo al centro de giro cuando el giro realizado es muy cerrado, concretamente cuando tal extremo queda situado más allá del centro instantáneo de giro. En estas condiciones, si todas las boquillas emitieran un mismo caudal, la zona de terreno cubierta por la zona más rápida de la barra recibiría menos líquido por unidad de superficie que la zona más lenta. En estas condiciones de utilización, las cuales son habituales durante la realización práctica de los tratamientos, los sistemas del estado de la técnica no consiguen adaptar individualmente la aplicación de cada boquilla a sus condiciones particulares de funcionamiento, y este hecho provoca una sobredosificación en la zona interior del giro, es decir la zona más próxima al centro instantáneo de rotación, así como una subdosificación en la zona más alejada.
Para evitar el fenómeno citado anteriormente, los operarios de los equipos de pulverización provistos de sistemas de regulación convencionales deben generalmente planificar las aplicaciones mediante trayectorias rectas y deteniendo la pulverización cuando la máquina ejecuta los giros necesarios en los cabeceros o junto a los bordes de la parcela a tratar y, por este motivo, la eficiencia de estos equipos pulverizadores conocidos en parcelas irregulares o con márgenes curvados disminuye considerablemente.
Un caso particular lo constituyen las parcelas regadas con pívot (sectorial o central), en las cuales se hace especialmente relevante lo anteriormente citado.
Existe la necesidad, por lo tanto, de desarrollar un sistema de control para un equipo pulverizador que haga posible la aplicación de productos agroquímicos fitosanitarios con un volumen de líquido aplicado uniforme por unidad de superficie, independientemente de las variaciones de velocidad experimentadas por cada boquilla, ya sea por aceleraciones del equipo de pulverización en trayectorias rectilíneas o por la realización de trayectorias curvas. Sin embargo, por parte del solicitante no se tiene conocimiento de la existencia en la actualidad de un dispositivo pulverizador que esté dotado de estas características arriba señaladas como idóneas.
Un objetivo de la presente invención es el de aportar un método y un dispositivo de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios del tipo que incorpora una pluralidad de boquillas dispuestas a lo largo de una barra de aplicación portada por un vehículo que se desplaza sobre un terreno a tratar, siendo el método y el dispositivo tales que permitan al operario poder realizar el tratamiento según un recorrido óptimo, independientemente de la trayectoria del mismo, con un tamaño de gotas del pulverizado prefijado y un volumen de líquido aplicado por unidad de superficie constante.
Breve descripción de la invención
El método y dispositivo de la invención proporcionan un sistema que regula individualmente el caudal de cada una de las boquillas de un equipo de pulverización hidráulico, de manera que el mismo es capaz de mantener constante tanto el volumen aplicado por unidad de superficie como el tamaño de las gotas, independientemente de la velocidad propia de cada una de dichas boquillas, es decir, aunque el equipo describa trayectorias no rectas. Con ello se mejora la uniformidad de aplicación y disminuye la incidencia de efectos negativos sobre el entorno.
El método y sistema de regulación del caudal de la presente invención comprende un panel de mando y una unidad electrónica central, con al menos un microprocesador, adaptada para determinar por cálculo la velocidad de desplazamiento individual de cada una de las boquillas dispuestas a lo largo de la barra distribuidora a partir de las velocidades de dos puntos distanciados entre sí de la barra o de un elemento relacionado posicionalmente con la misma y de los datos de la geometría del equipo, cuyas dos velocidades son captadas respectivamente por dos sensores de velocidad situados en los dos puntos citados. En función de las velocidades calculadas, la unidad electrónica central genera una señal electrónica de onda cuadrada para controlar cada una de las electroválvulas, de funcionamiento pulsante, asociadas a las boquillas, cuya onda proporciona variaciones de la duración del tiempo de apertura del pulso a frecuencia constante. Con ello el sistema regula independientemente el caudal emitido por cada boquilla de acuerdo con la velocidad de avance de la misma. El proceso se realiza manteniendo una presión de trabajo constante prefijada mediante un sistema de regulación de presión, lo que determina un espectro de distribución de tamaños de gota substancialmente constante.
Otra característica de la invención consiste en un dispositivo de seguridad implementado en el propio sistema de control que emite unas alarmas cuando la velocidad de al menos una de las boquillas (típicamente las boquillas situadas en los extremos de la barra) es inadecuada. Una primera alarma indica que la velocidad de desplazamiento de alguna de las boquillas es excesiva, es decir, que para emitir la cantidad de líquido a aplicar por unidad de superficie deseada haría falta que la duración del tiempo de apertura del pulso fuera mayor que el período, lo cual es imposible. Esta primera alarma de velocidad excesiva comprende una indicación visual o audible para el operario, el cual es susceptible de generar una respuesta correctora, tal como por ejemplo moderar la velocidad de avance y/o ampliar el radio de giro. Una segunda alarma indica que la velocidad de alguna de las boquillas es negativa, lo que puede suceder por ejemplo cuando el equipo efectúa un giro muy pronunciado y una o más boquillas describen un movimiento de retroceso sobre zonas ya tratadas. Esta segunda alarma incorpora, además de una indicación visual o audible para el operario similar a la descrita con relación a la primera alarma, un automatismo que genera el cierre de las boquillas.
También la invención permite disminuir al máximo posible el consumo de energía eléctrica de las electroválvulas estableciendo mediante dicho microprocesador, y en función de los citados datos almacenados y adquiridos, un desfase óptimo en la pulsación de las diferentes boquillas con objeto de evitar un gran número de electroválvulas activadas simultáneamente.
En síntesis, la invención se configura como un dispositivo que permite mantener de forma constante tanto el volumen aplicado por unidad de superficie como el tamaño de las gotas, independientemente de la trayectoria descrita por la máquina (recta o curva, resultante de los giros de la máquina), efectuando una regulación en tiempo real del caudal pulverizado por cada boquilla mediante el control por un microprocesador del funcionamiento pulsante de cada una electroválvula de acuerdo con las velocidades de cada una de las boquillas calculadas por el microprocesador a partir de las velocidades de dos puntos conocidos del equipo captadas por unos respectivos sensores de velocidad.
La presión con la cual el líquido llega a las boquillas se mantiene de forma constante y para regular la cantidad de líquido que debe ser aplicada, se efectúan ciclos de apertura y cierre de las electroválvulas que controla cada boquilla o conjunto de boquillas.
La duración de estos ciclos estará condicionada por la configuración del equipo, es decir tipos de boquillas, etc., que habrá que indicar a la unidad de control, pero sin embargo estos valores una vez establecidos para un equipo concreto, se mantendrán constantes, siendo las variables que nos condicionan la aplicación, la dosis y la velocidad de desplazamiento.
Otras características de la invención, así como detalles de su implementación mediante un ejemplo de ejecución no limitativo, aparecerán en la descripción de los dibujos que se realiza a continuación.
Breve descripción de los dibujos
En dichos dibujos se ha representado lo siguiente: la Fig. 1 es una vista esquemática de los distintos elementos que constituyen la invención, relativa a un dispositivo de regulación de caudal en equipos de pulverización hidráulicos de productos fitosanitarios; la Fig. 2 muestra la situación sobre el conjunto tractor-pulverizador de los componentes fundamentales de la invención; la Fig. 3 es una la visualización de las uniformidades de aplicación obtenidas cuando se realizan giros y se aplica el producto con un equipo de pulverización convencional; la Fig. 4 muestra una operación similar a la mostrada en la Fig. 3, pero realizada con un equipo de pulverización equipado con la invención; la Fig. 5 es una representación gráfica de la regulación diferencial que sucede en boquillas situadas en lados opuestos de la barra de pulverización, concretamente en el lado izquierdo en avance recto, pudiéndose observar la secuencia de los pulsos eléctricos que accionan las electroválvulas correspondientes, siendo posible adecuada el caudal según la trayectoria, que en el caso de esta figura corresponde a una trayectoria recta; la Fig. 6 es una representación gráfica correspondiente a la boquilla del lado derecho; la Fig. 7 muestra una representación gráfica correspondiente a una boquilla del lado izquierdo cuando se efectúa un giro a la izquierda; la Fig. 8 es una representación gráfica correspondiente a una boquilla del lado derecho; la Fig. 9 muestra una representación de la boquilla del lado izquierdo cuando se efectúa un giro a la derecha; la Fig. 10 muestra una representación gráfica correspondiente a la boquilla del lado derecho; la Fig. 11 es una vista en planta esquemática que muestra un instante de actuación de la invención, en concreto cuando el tractor-pulverizador se desplaza a una velocidad alta y gira a la izquierda, pudiendo observarse como las boquillas del extremo derecho de la barra superan la velocidad máxima de avance admisible, activándose la alarma de velocidad correspondiente en el monitor de la cabina; la Fig. 12 es una vista en planta similar a la mostrada en la Fig. 11 , pero cuando el tractor-pulverizador realiza un giro muy pronunciado a la izquierda, produciéndose un desplazamiento hacia atrás, es decir negativo de las boquillas del extremo izquierdo, a la vez que las boquillas del extremo derecho superan la velocidad máxima, activándose las alarmas de velocidad excesiva y de velocidad negativa, esta ultima acompañada con el cierre de las electroválvulas de las boquillas con desplazamiento negativo; y la Fig. 13 muestra por último un diagrama de flujo de la rutina de control de caudal que utiliza la presente invención.
Realización preferente de la invención
A la vista de estas figuras, puede observarse como el dispositivo de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios propuesto, para ejecutar el método de la invención, se configura como un sistema de control de las boquillas de un equipo de pulverización hidráulico que, durante la realización de giros, consigue adaptar individualmente el caudal de cada boquilla a su velocidad efectiva de desplazamiento en función de la posición relativa que ocupa en la barra de pulverización. El volumen aplicado por unidad de superficie se mantiene constante durante el tratamiento, siendo el sistema de regulación empleado de presión constante.
El dispositivo de regulación de caudal de la presente invención está implantado en un equipo de pulverización del tipo que se desplaza sobre un terreno a tratar ya sea autopropulsado, arrastrado por un vehículo tractor 24 o montado en el mismo, tal como se muestra en las figuras. Tal equipo comprende un depósito 10 para el líquido a pulverizar, una conducción de fluido impulsada por una bomba 11 para conducir el líquido desde dicho depósito 10 hasta un conducto de distribución soportado en una barra 14, a cuyo conducto de distribución están conectadas una pluralidad de boquillas de pulverización 16, y un sistema regulador de presión 12 dispuesto en dicha conducción entre la citada bomba 11 y dicha barra 14.
El dispositivo de regulación es del tipo que comprende para cada una de dichas boquillas de pulverización 16 una electroválvula 15 de funcionamiento pulsante controlada por una unidad electrónica central 20 bajo una presión de funcionamiento constante prefijada mediante dicho regulador de presión 12.
El dispositivo de regulación comprende además dos sensores de velocidad 17 situados en puntos alejados entre sí de la barra de soporte 14 o de un elemento relacionado posicionalmente con la misma. Los citados sensores 17 están preparados para enviar unas respectivas señales de velocidad a dicha unidad electrónica central para que la misma, a partir de dichas señales y de la geometría conocida del equipo de pulverización, efectúe un cálculo de las velocidades de cada una de dichas boquillas de pulverización 16 situadas a lo largo de la barra de pulverización 14 y en función de cada una de dichas velocidades calculadas regule independientemente el caudal de cada una de las boquillas 16 variando la duración del tiempo de apertura del pulso a frecuencia constante de su correspondiente electroválvula 15. Unos medios asociados a dicha unidad electrónica central están preparados para emitir una primera alarma comprendiendo una indicación para un operario cuando la velocidad de desplazamiento calculada para al menos una de las boquillas 16 es excesiva para permitir el tiempo abierto de la pulsación en un período requerido de la correspondiente electroválvula 15 y una segunda alarma comprendiendo una indicación para dicho operario cuando la velocidad calculada para al menos una de las boquillas 16 es negativa y para generar una señal eléctrica de cierre de la correspondiente electroválvula 15.
En concreto, y para un determinado número de ciclos de apertura-cierre por segundo, el caudal pulverizado dependerá de la duración concreta alcanzada por el pulso de apertura respecto al total del ciclo apertura-cierre. Este tiempo de apertura es calculado para cada boquilla mediante dicho microprocesador, el cual genera la citada señal eléctrica pulsante que acciona las electroválvulas. Cuando un equipo de pulverización hidráulico realiza un giro se produce una diferencia en la velocidad de avance de las distintas boquillas de la barra pulverizadora, y esta diferencia de velocidad está causada por el distinto radio de giro que deben describir las boquillas respecto al centro instantáneo de rotación, lo que conlleva a que evidentemente, esta diferencia se hace más acusada cuanto mayor es la longitud de la barra del equipo de pulverización.
En la Fig. 3 se ha representado la actuación de una boquilla convencional, pudiéndose observar como la superficie del terreno al realizar los giros tanto a derecha como a izquierda no aparece correctamente tratada, mientras que en la superficie número 4, en la que se aplica la invención, la superficie en todos los casos, aparece tratada correctamente, siendo el motivo del tratamiento adecuado el hecho de que a tenor de esta invención se logra superar las dificultades existentes en los mecanismos actuales, al poderse variar en tiempo real el caudal de cada boquilla, adecuándolo a su velocidad diferencial y a la consigna específica del tratamiento. Siguiendo la Fig. 1 puede observarse un esquema de los citados elementos que componen la invención, la cual puede incorporarse sobre cualquier equipo de pulverización hidráulica implementando al mismo, debiendo indicarse que la invención está configurada a partir de un depósito 10 que almacena el producto fitosanitario mezclado con un determinado diluyente, denominado caldo, una bomba 11 que extrae e impulsa el liquido, un sistema de regulación formado por un regulador de presión 12 y su correspondiente conexión 13 al depósito 10, con independencia de que sea de presión constante o con distribución proporcional al régimen del motor, incorporando igualmente un distribuidor primario y distribuidores de los sectores de la barra, una barra de soporte 14 y las boquillas de pulverización 16.
Sobre los elementos anteriores, la invención incorpora un dispositivo de medición de la velocidad diferencial de la barra 17, un panel de mando dotado de una interfaz de control de operario 18, así como de una interfaz de configuración de equipo 19, debiendo indicarse que el dispositivo de medición de la velocidad diferencial de la barra 17 se configura como unos sensores de velocidad conectados con el módulo de calculo y control de aplicación 20 constitutivo de una unidad electrónica central, disponiendo de un módulo de adaptación de señal y actuación 21 , las electroválvulas 15 y el cableado de conexión 22.
A partir de citados sensores de velocidad 17 que en número de dos se colocan estratégicamente en el equipo de pulverización, concretamente colocados en un elemento relacionado posicionalmente con la barra distribuidora o unidos a la barra distribuidora, de modo que midan la velocidad exacta de la barra, la unidad electrónica central 20 puede detectar la velocidad diferencial que se produce a nivel de las boquillas, tanto si la máquina se desplaza en línea recta como si el equipo describe una trayectoria curva al realizar un giro. Para que ello sea factible, dichos sensores 17 de velocidad deben estar colocados en un elemento relacionado posicionalmente con la barra distribuidora o sobre la citada barra distribuidora.
Mediante el panel de mando, el operario puede conectar y desconectar el sistema de control por un pulsador on/off consignando en tiempo real el volumen de aplicación a través de la interfaz de control 18, debiendo indicarse que el panel de mando formado por las dos interfaces 18 y 19, incluye la posibilidad de parametrizar los datos del equipo, a través de la interfaz de configuración 19.
Concretamente, la interfaz 19 permite fijar el tipo de boquilla, es decir relación caudal-presión, así como la separación entre boquillas y la longitud de la barra. La separación de los sensores 17 al plano medio del tractor también debe consignarse previamente mediante este módulo, y asimismo, en el panel de mando aparecen indicadores constitutivos de alarmas de funcionamiento del equipo.
En una ejecución preferida dichos indicadores serán visuales y/o emisores auditivos para mostrar o emitir dichas primera y segunda alarmas de velocidad excesiva y velocidad negativa.
Más en concreto dichos indicadores visuales comprenden unos testigos indicativos de los tres posibles estados de velocidad: adecuada; excesiva; y negativa, para cada una de tres de las boquillas (16) situadas respectivamente en el extremo izquierdo, en medio y en el extremo derecho de la barra de aplicación.
La unidad electrónica central consta de dos módulos, y a partir de la información de los sensores de velocidad 17 y la consignada en el panel de mando formado por la interfaz de control 18 y la interfaz de configuración 19, el módulo de cálculo y control de aplicación 20 genera para cada boquilla o conjunto de boquillas una determinada secuencia de pulsos eléctricos de apertura-cierre de su electroválvula correspondiente, consiguiéndose de este modo, adaptar el caudal de cada boquilla según sea su velocidad real de desplazamiento, generándose los pulsos con una frecuencia constante, es decir ciclos de apertura-cierre por segundo, siendo la variación en la duración del estado abierto la que consigue dicha regulación.
El módulo de adaptación de señal y actuación 21 se encarga de adaptar eléctricamente las señales pulsantes de apertura-cierre de cada electroválvula generadas por el módulo de cálculo y control de aplicación 20, y mediante esta adaptación, se garantiza que los pulsos eléctricos sean capaces de accionar los elementos de actuación, es decir las electroválvulas 15, realizándose el accionamiento de todo el conjunto a través de la citada conexión eléctrica cableada 22.
En la Fig. 2 se ha representado la interconexión de los elementos que conforman la invención montados sobre el conjunto tractor-pulverizador, pudiendo observarse la unidad electrónica central, módulo de cálculo y control de aplicación 20 y el módulo de adaptación de señal y actuación 21 que recibe, por una parte, la información consignada a través del panel de mando, es decir interfaz de control 18 e interfaz de configuración 19 y, por otra parte, la señal de los sensores de velocidad 17, dispuestos adecuadamente. La actuación sobre las boquillas de pulverización se consigue mediante la unión cableada 22 entre la unidad central 20, configurada por el módulo de cálculo y control y el módulo de adaptación de señal y actuación 21 , así como por las electroválvulas pertinentes 15.
En las figuras 5, 6, 7, 8, 9 y 10, se muestran sendos instantes de funcionamiento de dos boquillas hipotéticas situadas a ambos lados de la barra de pulverización, pudiendo observarse en las figuras 5 y 6 correspondientes a un tractor-pulverizador avanzando en línea recta, la secuencia 30 de pulsos eléctricos en ambas boquillas correspondientes al lado izquierdo y al lado derecho, es idéntica, siendo igualmente idéntico el tiempo del ciclo 31 y el tiempo de apertura 32, debiendo indicarse que en la Fig. 5, corresponde a la boquilla del lado izquierdo y la Fig. 6 a la boquilla del lado derecho.
Para una determinada frecuencia de pulsos de apertura-cierre por segundo, el caudal pulverizado se adecúa al volumen consignado según el tiempo que permanece abierta la electroválvula, es decir tiempo de apertura 32 respecto al total del ciclo, es decir tiempo de ciclo 31 , y al ser igual la velocidad en ambas boquillas, el tiempo abierto 32 coincide, garantizándose el mismo caudal y el mantenimiento del volumen pulverizado por hectárea.
Sin embargo, cuando el conjunto tractor-pulverizador realiza un giro a la izquierda, tal y como se muestra en las figuras 7 y 8 correspondientes respectivamente a las boquillas de lado izquierdo derecho, la velocidad de la boquilla situada en el lado izquierdo, es decir la correspondiente a la representada en la Fig. 7, según el sentido de avance, resulta inferior a la alcanzada por la boquilla situada en el lado derecho, es decir la representada en la Fig. 8. Con el fin de mantener constante el volumen aplicado por unidad de superficie, la unidad central genera una secuencia de pulsos de apertura-cierre distinta para cada boquilla o conjunto de boquillas, aunque la frecuencia o tiempo de ciclo constante 31 permanece constante. Concretamente la boquilla de la izquierda representada en la Fig. 7, recibe una secuencia en la cual el tiempo abierto 32 disminuye, consiguiéndose la adecuación del caudal a la distancia real recorrida, mientras que en la boquilla situada en el lado derecho representada en la Fig. 8, por el contrario, el tiempo de apertura de la electroválvula aumenta, incrementándose el caudal pulverizado en una proporción tal que se asegura también el volumen consignado por hectárea.
Sin embargo, cuando se efectúa un giro a la derecha, tal y como se representa en las figuras 9 y 10, los tiempos de apertura 32 están configurados de forma opuesta a los mostrados en las figuras 7 y 8.
A tenor del funcionamiento pulsado se logra un amplio rango de variación en el caudal pulverizado por cada boquilla, y con todo, pueden producirse dos situaciones puntuales en las que se sobrepasen por defecto o por exceso, los limites de dicho rango. Para un determinado tipo de boquilla y presión de funcionamiento, el caudal pulverizado puede variar de forma continua entre O, cuando el tiempo abierto es nulo, y un valor máximo que se corresponde con el caudal emitido a la presión de trabajo, cuando la electroválvula esta permanentemente abierta, es decir, cuando el tiempo abierto coincide con el tiempo de ciclo. Por tanto, y para un determinado volumen que debe ser aplicado por hectárea, existe una velocidad de avance de trabajo que requiere el funcionamiento en continuo de la boquilla, es decir funcionamiento no pulsado, y si se sobrepasa dicha velocidad máxima, ya sea en todas las boquillas de la barra cuando se realiza el tratamiento a una velocidad excesiva y en línea recta, ya sea en ciertas boquillas del extremo de la barra cuando se realiza un giro, tal y como se muestra en la Fig. 11 , el volumen aplicado por unidad de superficie se situará por debajo del valor consignado.
Cuando sucede lo anteriormente citado, el sistema de control advierte al operario mediante un dispositivo de indicación de alarma 26 situado en el panel de mando 18, concretamente situado en la interfaz de control de operario 18.
El efecto contrario puede llegar a producirse cuando, por la acción de un giro muy pronunciado, algunas boquillas del extremo interior de la barra llegan a desplazarse hacia atrás, es decir velocidad negativa, en sentido contrario al avance, tal y como se muestra en la Fig. 12, debiendo indicarse que evidentemente, este efecto se acentúa en los equipos con barras de gran longitud, y en este caso, la invención no solamente está capacitada para advertir al operario mediante la alarma 25, sino que cierra automáticamente las boquillas afectadas, evitándose la pulverización sobre una zona ya tratada.
Como ya se ha mencionado anteriormente, la unidad electrónica central, es decir el microprocesador es la unidad encargada de llevar a cabo el proceso de control y regulación de los pulsos de apertura-cierre de las electroválvulas, habiéndose representado en el diagrama mostrado en la Fig. 13, el flujo que describe el algoritmo de cálculo y control de este microprocesador.
Iniciado el proceso de control, la unidad electrónica realiza, en primer lugar, una lectura de los datos de partida, es decir datos del equipo y del tratamiento, permaneciendo estos datos invariables a lo largo de un mismo tratamiento fitosanitario, por tanto, el microprocesador únicamente los registra y almacena al inicio de la aplicación.
Concretamente, los datos del equipo que deben configurarse son la longitud de la barra de pulverización, la separación entre boquillas, el tipo de boquilla, contemplándose la relación caudal-presión y la posición o separación entre los sensores de velocidad. Como datos del tratamiento deben consignarse el volumen que debe de ser aplicado por hectárea, la presión de funcionamiento y la frecuencia de pulsación de las electroválvulas, es decir ciclos de apertura-cierre por segundo.
A partir de estos datos, la unidad central calcula la posición de cada boquilla en la barra de pulverización, el caudal que emite en servicio continuo, ya que la electroválvula permanece permanentemente abierta y la velocidad máxima de trabajo, concretamente la velocidad a la que puede desplazarse cada boquilla, según el volumen por unidad de superficie consignado.
Además, y con objeto de evitar un gran número de electroválvulas activadas simultáneamente, el microprocesador establece un desfase óptimo en la pulsación de las boquillas, y todos estos valores calculados no se modificarán a lo largo de una misma aplicación.
Una vez arrancado el equipo de pulverización, se inicia el bucle de control y regulación, y al ser conocidas la posición de las distintas boquillas y la posición de los sensores de velocidad, la unidad electrónica central puede establecer la velocidad diferencial de cada boquilla, a partir de las señales suministradas por los dos sensores de velocidad.
Conocidas en cada instante las velocidades de desplazamiento de cada una de las boquillas, el microprocesador comprueba la existencia de boquillas cuya velocidad sea superior a la velocidad máxima de trabajo, y si esto sucede, se activa la alarma de velocidad máxima 26 en el panel de mando, constituido por la interfaz de control de operario 18, y de este modo, el operario advierte este hecho y deberá disminuir la velocidad del tractor si desea garantizar el volumen consignado y una correcta uniformidad de aplicación, ya que las boquillas afectadas estarán continuamente abiertas, pulverizando el caudal correspondiente a la presión de funcionamiento seleccionada.
Con excepción de estos casos puntuales, es decir boquillas con velocidades excesivas y/o negativas, la unidad electrónica central adecúa convenientemente el caudal de cada boquilla según los datos del tratamiento, y dado que son conocidos el volumen que debe ser aplicado por hectárea, la velocidad de cada boquilla y el caudal, en servicio continuo, es decir boquilla permanentemente abierta, el microprocesador calcula el tiempo efectivo de pulverización, tiempo abierto, para cada una de las boquillas de la barra de pulverización, y finalmente, la misma unidad electrónica central genera una secuencia individualizada de pulsos eléctricos, es decir de apertura-cierre, responsables del accionamiento final de las electroválvulas de control.
El bucle termina con una doble posibilidad. A saber:
- Finalizar el control, si así lo desea el operario mediante el pulsador on/off.
- Reiniciar nuevamente dicho control a partir de la información procedente de los dos sensores de velocidad.
Con objeto de clarificar la actuación de la invención, se ha reflejado en la Fig. 13 un diagrama de bloques en el cual aparece como a partir del inicio 40 la invención efectúa una lectura de parámetros 41 comprobando el número de ciclos/segundo, la separación de sensores de velocidad y de los emisores, la longitud de la barra pulverizadora, el caudal nominal de los sensores, etc., pasando la información al bloque de cálculo de parámetros 42, en el cual se efectúa el cálculo de las posiciones de los emisores, pasando desde el bloque 42 al bloque 43 destinado a la lectura de parámetros, es decir la dosis que debe ser aplicada por hectárea, desde la cual la información es remitida al bloque 44 correspondiente al cálculo de parámetros, en el que se hace el pertinente cálculo de la velocidad máxima de avance y desde este bloque 44 la información es nuevamente remitida a otro bloque de lectura de parámetros 45 donde se constatan las velocidades de los sensores derecho e izquierdo, para posteriormente pasar a un bloque de cálculo de parámetros 46 donde se efectúa el cálculo de las velocidades individuales de los emisores, intercomunicado con el bloque 50 en el que se consta la velocidad del emisor mayor que la velocidad máxima, y de éste al bloque 49 donde se refleja la velocidad del emisor, pasando esta información a otro bloque de cálculo de parámetros 47 donde se efectúa el cálculo del tiempo de aplicación de los emisores, y desde éste al bloque de actuación 48 donde se genera la salida de los tiempos de aplicación, estando comunicados el bloque 48 con el bloque 53 donde se emiten las ordenes de detección, mientras que los bloques 49 y 50 están comunicados respectivamente con los bloques 51 y 52 relativos a las actuaciones para la apertura de la alarma con velocidad negativa o para la apertura de la alarma con velocidad excesiva respectivamente. El bloque de detener está ¡nterconectado con el bloque de lectura de parámetros 43 y a la vez con el bloque de actuación 54, donde se emiten las ordenes correspondientes para dar por terminada o finalizar la operación o actuación de la invención.

Claims

REIVINDICACIONES
1.- Método de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios, siendo dicho equipo de pulverización del tipo que se desplaza sobre un terreno a tratar ya sea autopropulsado, arrastrado por un vehículo tractor (24) o montado en el mismo, y que comprende un depósito (10) para el líquido a pulverizar, una conducción de fluido impulsada por una bomba (11 ) para conducir el líquido desde dicho depósito (10) hasta un conducto de distribución soportado en una barra (14), a cuyo conducto de distribución están conectadas una pluralidad de boquillas de pulverización (16), una electroválvula (15) de funcionamiento pulsante conectada a cada una de dichas boquillas (16) y controlada por una unidad electrónica central, y un sistema regulador de presión (12) dispuesto en dicha conducción entre la citada bomba (11 ) y dicha barra (14), siendo dicho método de regulación del tipo que comprende regular el citado funcionamiento pulsante de dichas electroválvulas
(15) en función de unos parámetros prefijados y/o adquiridos durante el desplazamiento del equipo de pulverización, bajo una presión de trabajo constante prefijada mediante dicho regulador de presión (12), estando el método de regulación caracterizado porque comprende los pasos de: calcular, mediante un módulo de cálculo y control (20) integrado en un microprocesador comprendido en dicha unidad electrónica central, las velocidades de cada una de dichas boquillas de pulverización (16) situadas a lo largo de la barra (16) a partir de unos datos conocidos de la geometría del equipo de pulverización y de unos datos referentes a las velocidades de dos puntos alejados entre sí de la barra de soporte (14), o de un elemento relacionado posicionalmente con la misma, adquiridos mediante dos sensores de velocidad (17) situados en dichos puntos; generar mediante dicho módulo de cálculo y control (20) unas señales eléctricas pulsantes para variar la duración del tiempo de apertura del pulso de cada electroválvula (15) operando a frecuencia constante en función de la velocidad calculada para su correspondiente boquilla
(16), para con ello regular independientemente el caudal de cada boquilla (16) de acuerdo con la velocidad de la misma; y en caso de que al menos una de dichas velocidad sea excesiva o negativa, emitir desde dicha unidad electrónica central unas alarmas susceptibles de generar una acción de corrección automática y/o por parte de un operario de manera que el volumen de líquido aplicado por unidad de superficie se mantiene substancialmente constante independientemente de las variaciones de velocidad de cada una las múltiples boquillas (16) respecto al terreno.
2.- Método, según la reivindicación 1 , caracterizado porque dicha alarma de velocidad excesiva comprende una indicación para dicho operario cuando la velocidad de desplazamiento calculada para al menos una de las boquillas (16) es excesiva para que con una duración del tiempo de apertura del pulso igual al período la cantidad de líquido aplicado por unidad de superficie pueda ser la deseada.
3.- Método, según la reivindicación 1 , caracterizado porque dicha alarma de velocidad negativa comprende una indicación para un operario cuando la velocidad de desplazamiento calculada para al menos una de las boquillas (16) es negativa, y la generación de una señal eléctrica de cierre de dicha boquilla
(16), que es al menos una.
4.- Método, según la reivindicación 1 , caracterizado porque comprende adaptar las señales pulsantes generadas por dicha unidad electrónica central a las características eléctricas de las electroválvulas (15) mediante un módulo de adaptación de señal y actuación (21 ).
5.- Método, según la reivindicación 1 , caracterizado porque comprende el paso previo de almacenar en dicho microprocesador datos referentes al tratamiento a aplicar, tales como el volumen de líquido a aplicar por unidad de superficie, la presión de funcionamiento y la frecuencia de pulsación de las electroválvulas, datos referentes a las características del equipo de pulverización, tales como el tamaño de las boquillas (16), y datos referentes a la geometría del equipo de pulverización, tales como longitud de la barra (14), separación entre boquillas (16) y posición de los sensores de velocidad (17), introducidos por el operario a través de una interfaz de configuración de equipo (19) incluida en un panel de mando.
6.- Método, según la reivindicación 1 , caracterizado porque comprende el paso opcional de cerrar el funcionamiento de un número seleccionado de electroválvulas (15) a partir gradualmente de uno cualquiera de los extremos de la barra (14), o de ambos, cuando por necesidades de la aplicación, uno o ambos de dichos extremos de la barra pasan sobre una zona previamente tratada o que no se desea tratar, siendo dicho paso ordenado por el operario a través de un mando adecuado.
7.- Método, según la reivindicación 5, caracterizado porque comprende el paso opcional de establecer mediante dicho microprocesador, y en función de los citados datos almacenados y adquiridos, un desfase óptimo en la pulsación de las diferentes boquillas (16) con objeto de evitar un gran número de electroválvulas (15) activadas simultáneamente.
8.- Dispositivo de regulación de caudal para un equipo de pulverización hidráulico de productos fitosanitarios, siendo dicho equipo de pulverización del tipo que se desplaza sobre un terreno a tratar ya sea autopropulsado, arrastrado por un vehículo tractor (24) o montado en el mismo, y que comprende un depósito (10) para el líquido a pulverizar, una conducción de fluido impulsada por una bomba (11 ) para conducir el líquido desde dicho depósito (10) hasta un conducto de distribución soportado en una barra (14), a cuyo conducto de distribución están conectadas una pluralidad de boquillas de pulverización (16), y un sistema regulador de presión (12) dispuesto en dicha conducción entre la citada bomba (11 ) y dicha barra (14), siendo el dispositivo de regulación del tipo que comprende para cada una de dichas boquillas de pulverización (16) una electroválvula (15) de funcionamiento pulsante controlada por una unidad electrónica central bajo una presión de funcionamiento constante prefijada mediante dicho regulador de presión (12), estando el dispositivo de regulación caracterizado porque comprende dos sensores de velocidad (17) situados en puntos alejados entre sí de la barra de soporte (14) o de un elemento relacionado posicionalmente con la misma, cuyos sensores (17) están preparados para enviar unas respectivas señales de velocidad a dicha unidad electrónica central para que la misma, a partir de dichas señales y de la geometría conocida del equipo de pulverización, efectúe un cálculo de las velocidades de cada una de dichas boquillas de pulverización (16) situadas a lo largo de la barra de pulverización (14) y en función de cada una de dichas velocidades calculadas regule independientemente el caudal de cada una de las boquillas (16) variando la duración del tiempo de apertura del pulso a frecuencia constante de su correspondiente electroválvula (15), estando dispuestos unos medios asociados a dicha unidad electrónica central preparados para emitir una primera alarma comprendiendo una indicación para un operario cuando la velocidad de desplazamiento calculada para al menos una de las boquillas (16) es excesiva para permitir que el tiempo abierto de la pulsación en un período requerido de la correspondiente electroválvula (15) aporte el caudal necesario y una segunda alarma comprendiendo una indicación para dicho operario cuando la velocidad calculada para al menos una de las boquillas (16) es negativa y para generar una señal eléctrica de cierre de la correspondiente electroválvula (15).
9.- Dispositivo, según la reivindicación 8, caracterizado porque dicha unidad electrónica central comprende un microprocesador que incluye un módulo de cálculo y control (20) para calcular las citadas velocidades de las boquillas (16) y para generar las citadas señales eléctricas pulsantes de control de las electroválvulas (15), estando dispuesta una salida dedicada conectada a cada una de las electroválvulas (15) para la transmisión de dichas señales eléctricas pulsantes de control.
10.- Dispositivo, según la reivindicación 9, caracterizado porque dicha unidad electrónica central comprende un módulo de adaptación de señal y actuación (21 ) que adapta las señales pulsantes generadas por el microprocesador a las características eléctricas de las electroválvulas (15).
11.- Dispositivo, según la reivindicación 10, caracterizado porque comprende un panel de mando que incluye una interfaz de configuración de equipo (19) a través de la cual el operario puede introducir al citado microprocesador datos referentes al tratamiento a aplicar, tales como el volumen de líquido a aplicar por unidad de superficie, la presión de funcionamiento y la frecuencia de pulsación de las electroválvulas, datos referentes a las características del equipo de pulverización, tales como el tamaño de las boquillas (16), y datos referentes a la geometría del equipo de pulverización, tales como longitud de la barra (14), separación entre boquillas (16) y posición de los sensores de velocidad (17), y una interfaz de control de operario (18) mediante la cual el operario puede conectar y desconectar el dispositivo.
12.- Dispositivo, según la reivindicación 11 , caracterizado porque dicho panel de mando incluye unos indicadores visuales y/o emisores auditivos para mostrar o emitir dichas primera y segunda alarmas de velocidad excesiva y velocidad negativa.
13.- Dispositivo, según la reivindicación 12, caracterizado porque dichos indicadores visuales comprenden unos testigos indicativos de los tres posibles estados de velocidad: adecuada; excesiva; y negativa, para cada una de tres de las boquillas (16) situadas respectivamente en el extremo izquierdo, en medio y en el extremo derecho de la barra de aplicación.
14.- Dispositivo, según la reivindicación 8, caracterizado porque comprende un mando susceptible de ser accionado por el operario para cerrar el funcionamiento de un número seleccionado de electroválvulas (15) a partir de uno cualquiera de los extremos de la barra (14), o de ambos, cuando por necesidades de la aplicación, uno o ambos de dichos extremos de la barra pasan sobre una zona previamente tratada o que no se desea tratar.
PCT/ES2001/000413 2000-11-16 2001-10-31 Metodo y dispositivo de regulacion de caudal para un equipo de pulverizacion hidraulico de productos fitosanitarios WO2002039814A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002214058A AU2002214058A1 (en) 2000-11-16 2001-10-31 Method and device for flow rate regulation in a hydraulic phytosanitary product spraying device
EP01982495A EP1346637A1 (en) 2000-11-16 2001-10-31 Method and device for flow rate regulation in a hydraulic phytosanitary product spraying device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200002753 2000-11-16
ES200002753A ES2171132B1 (es) 2000-11-16 2000-11-16 Dispositivo de regulacion de caudal de pulverizadores hidraulicos de productos fitosanitarios con control independiente en boquillas adaptado a la velocidad diferencial de desplazamiento.

Publications (1)

Publication Number Publication Date
WO2002039814A1 true WO2002039814A1 (es) 2002-05-23

Family

ID=8495666

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2001/000413 WO2002039814A1 (es) 2000-11-16 2001-10-31 Metodo y dispositivo de regulacion de caudal para un equipo de pulverizacion hidraulico de productos fitosanitarios

Country Status (4)

Country Link
EP (1) EP1346637A1 (es)
AU (1) AU2002214058A1 (es)
ES (1) ES2171132B1 (es)
WO (1) WO2002039814A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431211A (zh) * 2021-09-17 2022-05-06 吉林省农业机械研究院 变量施药系统及装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123503A1 (en) * 2004-06-20 2005-12-29 Colin Pay Injection variable rate chemical distribution
ES2417317T3 (es) * 2009-11-06 2013-08-07 Lemken Gmbh & Co. Kg Barra de pulverización telescópica para dispositivos de pulverización de campo con conmutación de toberas
DE102011054017A1 (de) * 2011-09-28 2013-03-28 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Elektronisches Rechensystem
US8844838B2 (en) * 2011-12-21 2014-09-30 Deere & Company Sprayer pulsing nozzle flow control using rotational step positions
EP2826366A1 (de) * 2013-07-18 2015-01-21 Herbert Dammann GmbH Flüssigkeitsflächenausbringverfahren für fahrende Flüssigkeitsverteilvorrichtungen
DE102017114637A1 (de) 2017-06-07 2018-12-13 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Spritzeinrichtung für ein landwirtschaftliches Spritzgerät Durchflussmengenregelung
WO2019028345A1 (en) 2017-08-03 2019-02-07 Capstan Ag Systems, Inc. SYSTEM AND METHODS FOR OPERATING A SOLENOID VALVE
EP3780953A1 (en) 2018-04-20 2021-02-24 Intelligent Agricultural Solutions LLC Continuously-variable nozzle system with integrated flow meter
US10953423B2 (en) 2018-04-23 2021-03-23 Capstan Ag Systems, Inc. Fluid dispensing apparatus including phased valves and methods of dispensing fluid using same
US11506228B2 (en) 2018-09-25 2022-11-22 Capstan Ag Systems, Inc. System and method for energizing a solenoid coil for fast solenoid actuation
CN110178824A (zh) * 2019-07-05 2019-08-30 秦邵恩 一种变量喷雾系统及控制方法
EP4162510A1 (en) 2020-06-03 2023-04-12 Capstan AG Systems, Inc. System and methods for operating a solenoid valve
EP4199713A1 (en) * 2020-08-20 2023-06-28 Exel Industries Agriculture device for dispensing a liquid
NL2027072B1 (en) * 2020-08-20 2022-04-14 Exel Ind Agriculture device for dispensing a liquid
DE102021108731A1 (de) 2021-04-08 2022-10-13 Amazonen-Werke H. Dreyer SE & Co. KG Verfahren zum Ausbringen einer Spritzflüssigkeit auf einer landwirtschaftlichen Nutzfläche
DE102021108730A1 (de) 2021-04-08 2022-10-13 Amazonen-Werke H. Dreyer SE & Co. KG Verfahren zum Ausbringen einer Spritzflüssigkeit auf einer landwirtschaftlichen Nutzfläche
AU2022302156A1 (en) * 2021-06-28 2024-02-08 Raven Industries, Inc. Valve control systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467961A (en) * 1981-02-12 1984-08-28 Imperial Chemical Industries Plc Container and spraying system
US4637547A (en) * 1982-08-05 1987-01-20 Hiniker Company Control method and apparatus for liquid distributor
US5134961A (en) * 1990-09-10 1992-08-04 The Regents Of The University Of California Electrically actuated variable flow control system
US5475614A (en) * 1994-01-13 1995-12-12 Micro-Trak Systems, Inc. Method and apparatus for controlling a variable fluid delivery system
US5704546A (en) * 1995-09-15 1998-01-06 Captstan, Inc. Position-responsive control system and method for sprayer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4467961A (en) * 1981-02-12 1984-08-28 Imperial Chemical Industries Plc Container and spraying system
US4637547A (en) * 1982-08-05 1987-01-20 Hiniker Company Control method and apparatus for liquid distributor
US5134961A (en) * 1990-09-10 1992-08-04 The Regents Of The University Of California Electrically actuated variable flow control system
US5475614A (en) * 1994-01-13 1995-12-12 Micro-Trak Systems, Inc. Method and apparatus for controlling a variable fluid delivery system
US5704546A (en) * 1995-09-15 1998-01-06 Captstan, Inc. Position-responsive control system and method for sprayer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114431211A (zh) * 2021-09-17 2022-05-06 吉林省农业机械研究院 变量施药系统及装置

Also Published As

Publication number Publication date
AU2002214058A1 (en) 2002-05-27
EP1346637A1 (en) 2003-09-24
ES2171132B1 (es) 2003-12-16
ES2171132A1 (es) 2002-08-16

Similar Documents

Publication Publication Date Title
WO2002039814A1 (es) Metodo y dispositivo de regulacion de caudal para un equipo de pulverizacion hidraulico de productos fitosanitarios
CA2918278C (en) Controlling application rates in liquid applicators
US11235345B2 (en) Spray pattern of nozzle systems
EP3162448B1 (en) System and methods for estimating fluid flow based on valve closure time
CA2674527C (en) A method and system to control flow from individual nozzles while controlling overall system flow and pressure
ES2934128T3 (es) Sistema de dispersión para un vehículo aéreo no tripulado
US4530463A (en) Control method and apparatus for liquid distributor
US9795977B2 (en) Electrically actuated variable pressure control system
US4637547A (en) Control method and apparatus for liquid distributor
BR102012032810A2 (pt) Cabeçote de pulverização, e , pulverizador agrícola
US20130256433A1 (en) Strobed Spray Nozzle Illuminator
US20150115058A1 (en) Sprayer nozzle system for variable application rates
CA3073319C (en) Seed furrow liquid application systems, methods, and apparatuses
US6938842B2 (en) Flow control for irrigation machines
JP2016086727A (ja) 圃場管理車両
GB2551345A (en) Agricultural sprayer
WO2017093583A1 (es) Pulverizador perfeccionado
US20240009689A1 (en) Agriculture device for dispensing a liquid
AU2015224502B2 (en) A method and system to control flow from individual nozzles while controlling overall system flow and pressure
BR102020015990A2 (pt) Dispositivo e método para dosagem de um meio pulverizável
BR102022011219A2 (pt) Sistema e método para controlar uma velocidade de solo de um pulverizador agrícola

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001982495

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001982495

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP