WO2002035702A1 - Surface acoustic wave filter - Google Patents

Surface acoustic wave filter Download PDF

Info

Publication number
WO2002035702A1
WO2002035702A1 PCT/JP2001/009303 JP0109303W WO0235702A1 WO 2002035702 A1 WO2002035702 A1 WO 2002035702A1 JP 0109303 W JP0109303 W JP 0109303W WO 0235702 A1 WO0235702 A1 WO 0235702A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
layer
filter according
substrate
saw filter
Prior art date
Application number
PCT/JP2001/009303
Other languages
French (fr)
Japanese (ja)
Inventor
Ryoichi Takayama
Hidekazu Nakanishi
Tetsuo Kawasaki
Toru Sakuragawa
Yasuhiko Yokota
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/168,284 priority Critical patent/US6909341B2/en
Priority to JP2002538564A priority patent/JP4059080B2/en
Priority to EP01976828A priority patent/EP1330026A4/en
Publication of WO2002035702A1 publication Critical patent/WO2002035702A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02637Details concerning reflective or coupling arrays
    • H03H9/02653Grooves or arrays buried in the substrate
    • H03H9/02661Grooves or arrays buried in the substrate being located inside the interdigital transducers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/08Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of resonators or networks using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02897Means for compensation or elimination of undesirable effects of strain or mechanical damage, e.g. strain due to bending influence
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02818Means for compensation or elimination of undesirable effects
    • H03H9/02929Means for compensation or elimination of undesirable effects of ageing changes of characteristics, e.g. electro-acousto-migration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making

Definitions

  • the present invention relates to an elastic surface acoustic wave filter having electrodes formed on a substrate, such as a comb-shaped electrode, and a method for manufacturing the same.
  • a conventional surface acoustic wave device disclosed in Japanese Patent Application Laid-Open No. 3-143008 is a piezoelectric substrate and a migrating-resistant such as Cu, Ti, Ni, Mg, Pd provided on the piezoelectric substrate. It is equipped with an electrode of epitaxy-grown aluminum film that is oriented in a certain direction in the crystal orientation to which a small amount of additives with excellent properties are added. The film has a migration prevention function.
  • the electrode is a single-layer film composed of an epitaxially grown aluminum film, and the electrode grain size has grown to about the same as the film thickness. Therefore, if the electrode thickness exceeds a certain thickness, the electrode becomes brittle against the stress caused by the propagation of surface acoustic waves, and the power durability deteriorates.
  • single-crystal film electrodes without grain boundaries form sub-grain boundaries when stress is applied for a long time, and as a result, stress concentrates at that portion, and conversely, it becomes brittle against stress accompanying the propagation of surface acoustic waves. Become. Disclosure of the invention
  • S AW surface acoustic wave
  • the SAW filter is provided on a substrate and the substrate, and the substrate And an electrode having a metal layer having a film thickness of 20 O nm or less and having an alignment film oriented in a certain direction with respect to the electrode.
  • the method for manufacturing the SAW filter includes a step of forming an electrode having a metal layer containing A1, and forming at least a part of the A1 diffusion prevention layer on the side wall of the electrode by sputtering etching simultaneously with the electrode. And a step of performing.
  • FIG. 1 is a perspective view of a surface acoustic wave (SAW) file according to an embodiment of the present invention.
  • SAW surface acoustic wave
  • FIG. 2 is a configuration diagram of the SAW file in the embodiment.
  • FIG. 3 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to Example 1 of Embodiment 1 of the present invention.
  • FIG. 4 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to the second embodiment of the first embodiment.
  • FIG. 5 is a cross-sectional view of a comb-shaped electrode, which is a main part of the Saw fillet according to the third embodiment of the first embodiment.
  • FIG. 6 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to Example 4 of Embodiment 1.
  • FIG. 7 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW fill in Comparative Example 1 of Embodiment 1.
  • FIG. 8 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Comparative Example 2 of Embodiment 1.
  • FIG. 9 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Comparative Example 3 of the first embodiment.
  • FIG. 10 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Comparative Example 4 of the first embodiment.
  • FIG. 11 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter according to Example 5 of Embodiment 2 of the present invention.
  • FIG. 12 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to the sixth embodiment of the second embodiment.
  • FIG. 13 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Example 7 of Embodiment 2.
  • FIG. 14 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Example 8 of Embodiment 2.
  • FIG. 15 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter in Comparative Example 5 of Embodiment 2.
  • FIG. 16 is a cross-sectional view of a comb-shaped electrode, which is a main part of a SAW filer, in Example 9 of Embodiment 3 of the present invention.
  • FIG. 17 is a cross-sectional view of a comb-shaped electrode which is a main part of the S AW filter in Example 10 of Embodiment 3.
  • FIG. 18 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Example 11 of the third embodiment.
  • FIG. 19 is a cross-sectional view of a comb-shaped electrode, which is a main part of the S AW filter in Example 12 of Embodiment 3.
  • FIG. 20 is a cross-sectional view of a comb-shaped electrode, which is a main part of a SAW filter in Comparative Example 6 of Embodiment 3.
  • FIG. 21 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter in Examples 13 and 14, and Comparative Examples 7, 8, 9, and 10 of Embodiment 4 of the present invention. ,
  • FIG. 22 is a cross-sectional view of a comb-shaped electrode that is a main part of the SAW file in Examples 15 and 16 of the fourth embodiment.
  • FIG. 23 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW file in Examples 17 and 18 of the fourth embodiment.
  • FIG. 24 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter in Examples 19 and 20 of Embodiment 5 of the present invention.
  • FIG. 25 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW file in Examples 21 and 22 of the fifth embodiment.
  • m 26 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter in Example 23 of Embodiment 5.
  • FIG. 27 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Comparative Example 23 of the fifth embodiment.
  • FIG. 1 is a perspective view of a surface acoustic wave (SAW) file according to an embodiment of the present invention
  • FIG. 2 is a configuration diagram of a filter.
  • the SAW filter is a so-called ladder-type surface acoustic wave filter having an elastic wave resonator consisting of a substrate 1 and an electrode 2 formed on the upper surface thereof, and having five resonators connected in a ladder type.
  • the electrode 2 includes a comb-shaped electrode 21 and a reflector 22.
  • substrate 1 is a 36 ° rotated Y-cut substrate of lithium tantalum san.
  • a band-pass filter having a center frequency of 1.8 GHz and a pitch between combs of a comb-shaped electrode of about 0.6 m will be described.
  • FIGS. 3 to 6 are cross-sectional views of an electrode that is a main part of the SAW file of Examples 1 to 4 in the first embodiment.
  • 7 to 10 are cross-sectional views of the electrodes of the SAW filters of Comparative Examples 1 to 4.
  • the electrode 102 of Example 1 is the first layer 4 having a thickness of 20 nm formed on the substrate 1.
  • the electrodes 112 of Example 2 are arranged in order from the substrate 1 side.
  • a first layer 4 having a thickness of 20 O nm and a second layer 5 for preventing A1 atoms of the first layer from diffusing at the grain boundary in a direction perpendicular to the substrate.
  • the electrodes 122 of Example 3 are sequentially laminated from the substrate 1 and have an underlayer 3 and a first layer 4 having a thickness of 20 nm.
  • the electrodes 13 2 of Example 4 had an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 2 OO nm, and particles of the first metal layer. And a layer 5 for preventing field diffusion.
  • the electrode 144 of Comparative Example 1 is a metal layer 4 having a thickness of 20 nm formed on the substrate 1 as shown in FIG.
  • the electrode 15 2 of Comparative Example 2 is a metal layer 4 having a thickness of 25 nm formed on the substrate 1.
  • the electrode 16 2 of Comparative Example 3 was formed on the first metal layer 4 having a thickness of 2 OO nm and the A 1 atom substrate of the first metal layer, which were sequentially stacked from the substrate 1.
  • the electrode 17 2 of Comparative Example 4 has a first metal layer 3 serving as an underlayer laminated sequentially from the substrate 1, and a second metal layer 200 ⁇ m thick. Layer 4.
  • Table 1 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 1 to 4 and Comparative Examples 1 to 4.
  • IBS Ion beam sputtering
  • DCMS DC magnetron sputtering * In the column of material, * indicates an (111) oriented film.
  • the metal mainly composed of A 1 or A 1 in the first embodiment is an A 1 ZrCu alloy. Except for Comparative Example 4, T i was used for the electrode having the underlayer and the second layer. In Comparative Example 4, Cr was used for the underlayer. Film formation was performed using either an ion beam sputter or a DC magnetron sputter. As a result of examining the electrode films by the X-ray diffraction method after the formation of these electrode films, the orientation of the electrodes was confirmed to be the same as in Examples 1, 2 and Comparative Example 2 in which the electrode films were formed by ion beam sputtering.
  • Example 3 and Example 4 in which Ti was used as the underlayer 3 and Example 4 only the peak of the (1 1 1) plane of A 1 was observed in the A 1 ZrCu layer, and the A 1 alloy layer was (1 1 1) It was confirmed that the film was an alignment film whose axis was oriented perpendicular to the substrate. Is the specific crystal plane for other electrode films? These peaks were not observed, confirming that the film was not an oriented film but a non-oriented polycrystalline film.
  • the designed film thickness of the film used in the first embodiment is 20 O nm when the A 1 electrode is used. The deviation of the characteristics due to the electrode thickness and material was adjusted by changing the pitch of the comb-shaped electrode so that the center wave number was approximately 1.8 GHz.
  • the electrodes were patterned by photolithography and dry etching. After pattern formation, the wafer was diced and divided into chips. The chips were die-bonded to a ceramic package and electrically connected by wire bonds. The lid was then welded and hermetically sealed in a nitrogen atmosphere to produce a SAW filter with electrodes.
  • a signal of the highest frequency in the pass band which is the weakest point of the ladder type filter, was applied to the device, and a power durability test was performed.
  • the test was interrupted periodically after the start of the test, and the characteristics of the SAW filter were measured.
  • the point at which the insertion loss of the passband increased by 0.5 dB or more was defined as device degradation, and the total test time until the device degraded after the start of testing was defined as the life.
  • power and temperature were used as accelerated aging factors.
  • the S AW filters using the electrodes of Examples 1 to 4 exceeded the estimated life of 50,000 hours, while the filters of Comparative Examples 1 to 4 were less than 50,000 hours.
  • the crystal grain size of the AlZrCu layer was almost the same as the film thickness of each electrode.
  • the filter of Comparative Example 2 has a lifespan not exceeding 50,000 hours, but has significantly improved power durability compared to other Comparative Examples.
  • the difference between the electrode of Example 1 and the electrode of Comparative Example 2 is the film thickness and the crystal grain size. In the case of a conductor film, the crystal grain size increases in proportion to the film thickness. In a SAW device having a single-layer electrode of an alignment film as the electrode film, the lifetime exceeds 50,000 hours when the thickness of the electrode is less than 200 nm.
  • the film thickness is preferably set to less than 100 nm. From these results, in order to obtain an electrode with high power durability, it is necessary that the layer mainly composed of A 1 or A 1 be made of an alignment film and have a small crystal grain size. To reduce the crystal grain size, it is effective to limit the film thickness.
  • FIGS. 11 to 14 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 5 to 8 in Embodiment 2 of the present invention.
  • FIG. 15 is a sectional view of an electrode of the SAW filter of Comparative Example 5.
  • the electrode 18 2 of the fifth embodiment is the first layer 4 having a thickness of 20 nm formed on the top of the step 7 of the substrate 1.
  • the electrode 19 2 of Example 6 was formed on the top of the step 7 of the substrate 1, and the underlayer 3, which was sequentially laminated from the substrate 1, had a thickness of 200 nm. And a first layer 4.
  • the electrode 202 of Example 7 is a first metal layer having a thickness of 200 nm, which is formed on the top of the step 7 of the substrate 1 and is sequentially stacked from the substrate 1. 4 and a second layer 5 for preventing grain boundary diffusion of the first metal layer.
  • the electrode 211 of Example 8 has an underlayer 3 formed on the top of the step 7 of the substrate, which is laminated in order from the substrate 1, and a second layer having a thickness of 20 O nm.
  • the electrode 222 of Comparative Example 5 is a metal layer 4 having a thickness of 30 nm formed on the substrate 1 as shown in FIG.
  • Table 3 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 5 to 9 and Comparative Example 5.
  • A1MgCu alloy was used as the metal layer mainly composed of A1 or A1 in the second embodiment.
  • Ti is used for the electrode having the underlayer and the second layer.
  • Electrodes were formed by either ion beam sputtering or DC magnetron sputtering. With respect to these electrode films, the orientation of each electrode was examined by the 0-20 method of X-ray diffraction after forming the electrode films. Examples 5, 6, 7, 8 and Comparative Example 5 In each case, only the peak of the (1 1 1) plane of A 1 was observed in the Al Mg C Cu layer, and the A 1 alloy layer was oriented with the (1 1 1) axis oriented perpendicular to the substrate. It was confirmed that the film was formed.
  • the configuration of the filter according to the second embodiment was the same as that of the first embodiment, and a filter having a center frequency of approximately 1.75 GHz using an A1 electrode having a designed thickness of 300 nm was tested.
  • the center frequency was adjusted to approximately 1.75 GHz by changing the step of the step provided on the substrate for deviations in characteristics due to electrode thickness and material. Accordingly, the inter-electrode pitches of the comb-shaped electrodes of Examples 5 to 8 and Comparative Example 5 are almost the same.
  • the electrodes were patterned by photolithography and reactive ion etching. As an etching gas, a mixed gas of BC13 and C12 was used.
  • pattern formation is performed by sputter etching with BC 13 + ions simultaneously with chemical etching with C 1 * radicals and BC 13 * radicals.
  • the steps of the substrates in Examples 5 to 8 are formed by controlling the etching time. After pattern formation, the substrate is diced and divided, and each divided chip is die-bonded to a ceramic package. Further, each chip is electrically connected by a wire. Then, the lid was welded in a nitrogen atmosphere and hermetically sealed to produce a SAW filter having each electrode.
  • Table 4 shows the estimated lifespan of the SAW filter with the electrodes shown in Table 3.
  • Table 4 also shows the crystal grain size of the A1MgCu layer 4 of each electrode film.
  • the estimated lifetime of the SAW filter using the electrodes of Examples 5 to 8 exceeded 50,000 hours as a guide, whereas the filter of Comparative Example 5 did not exceed 50,000 hours.
  • the crystal grain size of the A1MgCu layer was almost the same as the film thickness of each electrode.
  • the designed film thickness of the A1 electrode in the filter is 30 O nm.
  • FIGS. 16 to 19 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 9 to 12 in Embodiment 3 of the present invention.
  • FIG. 20 is a cross-sectional view of the electrode of the SAW filter of Comparative Example 6.
  • the electrodes 2 32 of the ninth embodiment have a first metal layer 4 having a thickness of 20 nm and a first metal layer 4 having a thickness of 20 O nm, which are sequentially stacked from the substrate 1. It has a second layer 5 for preventing grain boundary diffusion in the direction perpendicular to the substrate of one atom, and a third layer 6 for adjusting the thickness of the electrode 232.
  • the electrode 24 of Example 10 has an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, and a first metal layer. Grain perpendicular to substrate of A 1 atom in layer 4 It has a second layer 5 for preventing field diffusion and a third layer 6 for adjusting the thickness of the electrode 242.
  • the electrode 25 of Example 11 is formed on the top of the step 7 of the substrate 1 and has a first metal layer 4 having a thickness of 20 nm and a first metal layer 4. It has a second layer 5 for preventing the diffusion of A 1 atoms in the layer 4 in the direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 25 2.
  • the electrode 26 2 of Example 12 was formed on the top of the step 7 of the substrate 1, and the underlayer 3, which was stacked in order from the substrate 1, had a thickness of 200 nm. It has a first metal layer 4, a second layer 5 for preventing the grain boundary diffusion of the first metal layer 4, and a third layer 6 for adjusting the thickness of the electrode 26 2.
  • the electrode 272 of the comparative example 6 includes an underlayer 3 laminated in order from the substrate 1 side, a first metal layer 4 having a thickness of 200 nm, and a first metal layer 4. It has a second layer 5 for preventing grain boundary diffusion of A 1 atoms in the layer 4 in a direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 27 2.
  • Table 5 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 5 to 9 and Comparative Example 5.
  • IBS Ion beam sputtering
  • DCMS DC magnetron sputtering * In the column of material, * indicates an (111) oriented film.
  • Al Mg alloy was used as the metal mainly composed of A 1 or A 1 in the third embodiment.
  • T i is used for the underlayer and the second layer.
  • the layer was formed by either ion beam sputtering or DC magnetron sputtering.
  • any of Example 9, Example 10, Example 11, Example 12, and Comparative Example 6 was used.
  • the Al Mg layer as well, only the peak of the (1 1 1) plane of A 1 is observed, and the A 1 alloy layer is an oriented film in which the (1 1 1) axis is oriented perpendicular to the substrate. was confirmed.
  • the electrode had two A1Mg layers, a first layer and a third layer, samples of the underlayer and the first layer were separately prepared under the same film forming conditions, and the orientation was confirmed.
  • the configuration of the filter used in the third embodiment is the same as that of the first embodiment.However, a filter having a design thickness of 480 nm and an A1 electrode has a center frequency of approximately 800 MHz. It is. For the deviation of the characteristics due to the electrode thickness and material, refer to the step on the substrate. By changing the thickness of the third layer and the third layer, the filter was adjusted so that the center frequency was approximately 800 MHz. Therefore, the inter-electrode pitches of the comb-shaped electrodes of Examples 9 to 12 and Comparative Example 6 are almost the same. The electrodes and the filter were made in the same manner as in the second embodiment.
  • Table 6 shows the estimated lifetime of each Saw filter having each electrode shown in Table 5.
  • Table 6 also shows the crystal grain size of the A1Mg layer, which is the first layer of each electrode film.
  • the crystal grain size indicates the crystal grain size of the first layer.As can be seen from Table 6, the estimated lifetime of SAW finole using the electrodes of Examples 9 to 12 exceeds 50,000 hours. On the other hand, in Comparative Example 6, the time was 50,000 hours or less.
  • the designed film thickness of the A1 electrode of the filter used as described above is 480 nm, but the above-mentioned A1 or A1 is mainly formed on the first layer mainly composed of A1.
  • the thickness of the metal layer is 200 nm or less.
  • the city has high power durability and a lifespan of 50,000 hours or more, which is a measure of power durability.
  • Example 9 and Example 10 After the test, it was observed that hillocks were formed on the surface of the comb-shaped electrode by diffusion of A 1 in areas other than the area where the electrode was deteriorated. The diffusion of these A 1 atoms is due to the third deterioration, which is the thickness adjustment layer.
  • the thickness of A 1 or the third layer mainly composed of A 1 is also set to a thickness of 200 nm or less. It is preferable. Further, a fourth layer for suppressing the diffusion of A 1 atoms from the third layer may be provided on the third layer.
  • the electrodes of Examples 11 and 12, and Comparative Example 6 when the electrodes after the test were observed, hillocks due to diffusion of A1 atoms were not observed on the electrode surface, but the comb-shaped electrodes were observed. It was observed that they occurred in the form of side hillocks in between.
  • the third layer is provided. In order to prevent the third layer from becoming thicker, provide a step on the substrate and use this as a part of the electrode.
  • the thickness of the layer mainly composed of A 1 or A 1 should be 20 nm or less. Can reduce the crystal grain size.
  • FIGS. 21 to 23 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 13 to 18 in Embodiment 4 of the present invention.
  • the sectional views of the electrodes of the SAW filters of Comparative Examples 7 to 10 are the same as the electrodes of FIG.
  • the electrodes 28 of Examples 13 and 14 A first metal layer 4 mainly composed of A 1 or A 1 and having a thickness of 200 nm, which is stacked in order from 1 and a direction perpendicular to the substrate of the A 1 atom of the first metal layer. And a third layer 6 for adjusting the film thickness of the electrode 28 2.
  • a diffusion preventing layer 8 for preventing the grain boundary diffusion of A1 atoms of the first metal layer 4 is formed. The diffusion preventing layer 8 does not reach the substrate as shown in FIG.
  • the electrodes 292 of Examples 15 and 16 each have an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm,
  • the first metal layer 4 includes a second layer 5 for preventing A1 atoms from diffusing in the direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 292.
  • a diffusion prevention layer 8 for preventing the grain boundary diffusion of A1 atoms of the first metal layer 4 is formed.
  • the diffusion prevention layer 8 does not reach the substrate as shown in FIG. 22, a part of the side walls of the first metal layer 4, the second layer 5, the third layer 6 and the underlayer 3 is provided. Is covered.
  • the electrodes 30 2 of Examples 17 and 18 are formed on the top of the step 7 of the substrate 1 as shown in FIG. 23, and the first metal layer 4 having a thickness of 200 nm
  • the second layer 5 for preventing the grain boundary diffusion of the A 1 atom of the first metal layer 4 in the direction perpendicular to the substrate, and the third layer 6 for adjusting the thickness of the electrode 302 are Have.
  • a diffusion preventing layer 8 for preventing the A 1 atom of the first metal layer 4 from diffusing at the grain boundary is formed on the side wall of the electrode 302, a diffusion preventing layer 8 for preventing the A 1 atom of the first metal layer 4 from diffusing at the grain boundary is formed.
  • the diffusion preventing layer 8 does not reach the bottom of the substrate as shown in FIG. However, the diffusion preventing layer 8 covers the side walls of the first metal layer 4, the second layer 5, the third layer 6, and a part of the side wall of the step 7 of the substrate 1.
  • Table 7 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 13 to 18 and Comparative Example 7 10.
  • IBS Ion beam sputtering
  • DCMS DC magnetron sputtering
  • a 1 Mg alloy was used as the metal 4 mainly composed of A 1 or A 1 in the fourth embodiment.
  • Ti was used for the underlayer.
  • the second layer has Ti, and Examples 14 to 16 and Examples 18 and 18 and Comparative Examples 8.
  • Cu was used for the second layer.
  • the layer was formed by either ion beam sputtering or DC magnetron sputtering.
  • the configuration and design of the filter used in the fourth embodiment are the same as in the third embodiment of the invention. All electrodes were patterned by ion milling with Ar + ions. Since the ion milling method physically forms a pattern by sputtering, a part of the sputtered atoms adheres to the side wall of the electrode, and a diffusion preventing layer is formed simultaneously with the pattern formation. However, the electrode side wall cannot be completely covered, and the diffusion preventing layer is not formed to the bottom of the substrate.
  • Table 8 shows the estimated lifetime of each SAW filter with each electrode shown in Table 7.
  • Table 8 also shows the crystal grain size of the AlMg layer as the first layer of each electrode film.
  • the crystal grain size indicates the crystal grain size of the first layer.
  • Table 8> As can be seen from Table 8, the estimated lifetime of the SAW filter using the electrodes of Examples 13 to 18 was 50,000 hours as a guide. Compared to the comparison example? The filter of ⁇ 10 was less than 50,000 hours. The crystal grain size of the Al Mg layer of the first layer of each electrode film was almost the same as the layer thickness of each electrode. In Examples 13 and 14, and Comparative Example, after the test, it was observed that side hillocks were formed on the side walls of the comb-shaped electrodes other than the portions where the electrodes were deteriorated.
  • the side hillocks were generated between the substrate and the diffusion preventing layer for preventing the A1 atom in the first metal layer provided on the side wall of the electrode from diffusing at the grain boundary.
  • the diffusion barrier layer partially covers the underlayer or part of the side wall of the substrate step and completely covers the first metal layer, the grain boundary of A 1 atoms on the electrode side wall is formed. It is considered that diffusion was suppressed.
  • the filter using Cu for the second metal layer has improved power durability compared to the filter using Ti.
  • Cu is the self-diffusion coefficient of A 1 Since Cu is a metal with a larger diffusion coefficient for A 1 than in the above, Cu diffuses into the grain boundaries of the second layer in the heating step during the device fabrication process, and the grain boundary diffusion path of A 1 atoms is changed by Cu atoms. Will be blocked. Therefore, it is considered that the grain boundary diffusion of A 1 atoms in the horizontal direction in the substrate was also suppressed. Cu not only easily diffuses into A 1, but also easily forms an intermetallic compound with A 1, and the second layer has a large grain size. As a result, the effect of suppressing A1 atoms greatly changes depending on the temperature change during the process and the thickness of the Cu layer, etc., and the resistance value of the electrode film is also likely to increase. There were many.
  • the second layer using a metal with a larger diffusion coefficient for A1 than the self-diffusion coefficient for A1 has a large effect on power durability, but each filter has an optimum value for the layer thickness, and process control
  • the thickness of the first layer of the metal mainly composed of A 1 or A 1 is less than 200 nm
  • the thickness of the second layer of Cu is less than 20 nm, preferably It is desirable that the thickness be 10 nm or less.
  • the heating step in the process is desirably 250 ° C or less, preferably 200 ° C or less.
  • the second layer using a metal having a smaller diffusion coefficient for A1 than the self-diffusion coefficient for A1 was mainly composed of A1 or A1.
  • the diffusion suppressing layer that suppresses the grain boundary diffusion of A 1 atoms from the first layer of A 1 or the metal mainly composed of A 1 to the substrate in the horizontal direction is the same as that of the first layer. It is effective to completely cover the side wall.
  • the method of forming the diffusion suppression layer is to form the pattern by sputtering etching and to provide an underlayer or to cut the substrate to form a step. Is valid.
  • the diffusion suppressing layer formed on the electrode side wall by this method naturally becomes an alloy layer or a laminated film of A 1 or a first metal layer mainly composed of A 1 and a base layer or a substrate material. Good oneness.
  • FIGS. 24 to 26 are cross-sectional views of an electrode which is a main part of the surface acoustic wave (SAW) filter of Examples 19 to 23 in the fifth embodiment.
  • FIG. 27 is a cross-sectional view of an electrode of the SAW filter of Comparative Example 11.
  • the electrodes 3 12 of Examples 19 and 20 are formed on the top of the step 7 of the substrate 1 as shown in FIG. 24, and the first metal layer 4 having a thickness of 200 nm
  • a second layer 5 for preventing grain boundary diffusion of A 1 atoms of the first metal layer in a direction perpendicular to the substrate; and a third layer 6 for adjusting the thickness of the electrode 312.
  • a protective film 9 made of silicon nitride having a thickness of 100 nm in Example 19 and silicon oxide having a thickness of 100 nm in Example 20 is formed on the electrode 312. .
  • the protective film was not sufficiently formed at the boundary between the comb-shaped electrode on the substrate step and the bottom of the substrate between the electrodes, and was discontinuous. Had become.
  • the electrodes 32 2 of Examples 21 and 22 each have an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm,
  • the first metal layer includes a second layer 5 for preventing grain boundary diffusion of A 1 atoms in a direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 3 22.
  • a protective film 9 made of silicon nitride having a thickness of 10 O nm in Example 21 and a silicon oxide having a thickness of 10 O nm in Example 22 is formed on the electrode 3 22. .
  • the protective film 9 was The film was not sufficiently formed at the boundary between the underlayer 3 and the bottom of the substrate 1 and was discontinuous.
  • the electrode 33 of Example 23 has an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, and a first metal layer 4. It has a second layer 5 for preventing grain boundary diffusion in the direction perpendicular to the substrate of A 1 atoms of the layer, and a third layer 6 for adjusting the thickness of the electrode 33 2.
  • a 50-nm-thick silicon nitride 9a and a 50-nm-thick silicon oxide 9b are formed on the electrode 3332. According to observation with an electron microscope, as shown in Fig. 26, the protective films 9a and 9b are not sufficiently formed at the boundary between the underlayer 3 and the bottom of the substrate 1 and become discontinuous. I was
  • the electrode 3 42 of Comparative Example 11 has a first metal layer 4 having a thickness of 20 O nm and the first metal layer A 1 in a direction perpendicular to the substrate. It has a second layer 5 for preventing grain boundary diffusion, and a third layer 6 for adjusting the thickness of the electrode 34 2.
  • a protective film 9 made of silicon nitride having a thickness of 100 nm is formed on the electrode 342. Observation with an electron microscope showed that the protective film 9 was not sufficiently formed at the boundary between the electrode 342 and the bottom of the substrate 1 and was discontinuous, as shown in FIG.
  • Table 9 shows the materials, film thicknesses, and film forming methods of each layer of the electrodes of Examples 19 to 23 and Comparative Example 11. (Table 9)
  • a 1 Mg alloy was used as the metal mainly composed of A 1 or A 1 in the fifth embodiment.
  • T i was used for the underlayer 3 and the second layer 5.
  • These layers were formed by either ion beam sputtering or DC magnetron sputtering. According to the 0-20 method of X-ray diffraction after the formation of these electrode films, the orientation of each electrode was as follows. Only the peak of the (111) plane was observed, confirming that the A1 alloy layer was an oriented film in which the (111) axis was oriented perpendicular to the substrate. However, since all samples have two A1Mg layers, the first and third layers, samples of the first layer or the underlayer and the first layer were separately prepared under the same deposition conditions.
  • the orientation was confirmed.
  • the configuration of the filter used in the fifth embodiment is the same as that of the first embodiment.
  • a filter with a wave number of approximately 800 MHz was used.
  • the electrodes were formed by photolithography and dry etching. After the formation of the electrode, a protective film is formed, and then the protective film in a portion where the electrode is electrically connected is removed by etching. Then, the resonator was face-down mounted on the alumina board.
  • the filter is not hermetically sealed.
  • the power durability of the filter was evaluated in the same manner as in the first embodiment. The filter was evaluated under the condition that the surface was exposed to the air, although the protective film was formed. Table 10 shows the estimated lifetime of each SAW filter having each electrode shown in Table 9. Table 10 also shows the crystal grain size of the A1Mg layer as the first layer of each electrode film.
  • the crystal grain size indicates the crystal grain size of the first layer.
  • the SAW filters using the electrodes of Examples 13 to 18 exceeded the estimated life expectancy of 50,000 hours, while the filters of Comparative Examples 7 to 10 used the filters. was less than 50,000 hours.
  • the crystal grain size of the Al Mg layer of the first layer of each electrode film was almost the same as the layer thickness of each electrode.
  • the filter having the protective film of silicon nitride was the same as the filter having the protective film of silicon oxide. It can be seen that the power durability is improved as compared with.
  • the filters of Examples 19 to 23 have almost the same power durability as those of the filters hermetically sealed. From this, the filter of Comparative Example 11 was caused by the fact that the first layer of the metal mainly composed of A1 or A1 was not completely covered with the protective film but was partially exposed. It is considered that the life is short. Discontinuous portions of the protective film as shown in FIGS. 25 to 27 are likely to be formed at the boundary between the electrode and the bottom of the substrate between the electrodes having a thin protective film. If a discontinuous portion is formed, providing a step on the substrate as in Embodiment 5 or using a metal underlayer with excellent moisture resistance is effective in extending the life of the filter. You can see that. '
  • the protective film suppresses the generation of hillocks caused by the A 1 atom middleing of the electrode, improves power durability, prevents short-circuiting between the electrodes, and improves moisture resistance.
  • the electrode structure for the purpose of achieving both the power resistance and the moisture resistance by the protective film has been described.
  • Providing a step on the substrate or an electrode with an underlayer with excellent moisture resistance as the underlayer On the other hand, forming a protective film is effective in extending the life of the film.
  • the structure of the electrode is described using a specific filter.
  • Each film configuration, film thickness, material, etc. are not limited to these.
  • the conductor powder is sufficiently miniaturized, and the stress applied to the electrode due to the propagation of the surface acoustic wave can be sufficiently dispersed.
  • the present invention provides a surface acoustic wave filter having improved resistance to stress caused by the propagation of surface acoustic waves, and a method for manufacturing the same.

Abstract

In a surface acoustic wave (SAW) filter having a substrate and electrodes formed on the substrate, an electrode has a base layer, a first metal layer made of Al or an Al-based metal and oriented in a constant direction to the substrate, a second metal layer which prevents Al atoms of the first metal layer from migrating vertically to the substrate, and a third metal layer for adjusting the film thickness. Thus, a SAW filter having an arbitrary film thickness enables the simultaneous attainment of a film quality of difficulty in grain boundary diffusion and micronization of the grain diameter of a film effective in stress resistance. Therefore, the SAW filter blocks the migration of Al atoms of the electrode due to a stress loaded on the electrode with the propagation of the SAW, so that the filter becomes excellent in power resistance.

Description

明細書 弾性表面波フィルタ 技術分野  Description Surface acoustic wave filter Technical field
本発明は櫛形電極等の、 基板上に形成された電極を有する弾 性表面波フィルタとその製造方法に関する。 背景技術  The present invention relates to an elastic surface acoustic wave filter having electrodes formed on a substrate, such as a comb-shaped electrode, and a method for manufacturing the same. Background art
特開平 3 — 1 4 3 0 8号に開示されている従来の弾性表面波 デバイスは圧電基板とその上に設けられた C u 、 T i 、 N i 、 M g 、 P d等の耐マイグレーショ ン特性に優れた添加物が微量 添加された結晶方位的に一定方向に配向したェピタキシャル成 長アルミニウム膜の電極を備え、 その膜によってマイグレーシ ヨ ン防止機能を持つ。  A conventional surface acoustic wave device disclosed in Japanese Patent Application Laid-Open No. 3-143008 is a piezoelectric substrate and a migrating-resistant such as Cu, Ti, Ni, Mg, Pd provided on the piezoelectric substrate. It is equipped with an electrode of epitaxy-grown aluminum film that is oriented in a certain direction in the crystal orientation to which a small amount of additives with excellent properties are added. The film has a migration prevention function.
その電極はェピタキシャル成長アルミニウム膜からなる単層 膜であ り、 その電極粒径は膜厚と同程度までに成長している。 そのためその電極はある膜厚以上では弾性表面波の伝搬に伴う 応力に対して脆くなり、 耐電力性が劣化する。 特に粒界のない 単結晶膜の電極では、 長時間の応力の印加に対し亜粒界が形成 され、 結果その部分に応力が集中し逆に弾性表面波の伝搬に伴 う応力に対して脆くなる。 発明の開示  The electrode is a single-layer film composed of an epitaxially grown aluminum film, and the electrode grain size has grown to about the same as the film thickness. Therefore, if the electrode thickness exceeds a certain thickness, the electrode becomes brittle against the stress caused by the propagation of surface acoustic waves, and the power durability deteriorates. In particular, single-crystal film electrodes without grain boundaries form sub-grain boundaries when stress is applied for a long time, and as a result, stress concentrates at that portion, and conversely, it becomes brittle against stress accompanying the propagation of surface acoustic waves. Become. Disclosure of the invention
弹性表面波の伝搬に伴う応力に対して耐性の向上した弹性表 面波 ( S A W ) フィルタを提供する。  Provide a surface acoustic wave (S AW) filter with improved resistance to stress caused by propagation of a surface acoustic wave.
その S A Wフィルタは基板と、 基板上に設けられ、 前記基板 に対して一定方向に配向した配向膜で膜厚が 2 0 O nm以下の 金属層を有する電極とを備える。 The SAW filter is provided on a substrate and the substrate, and the substrate And an electrode having a metal layer having a film thickness of 20 O nm or less and having an alignment film oriented in a certain direction with respect to the electrode.
その S AWフィルタの製造方法は A 1 を含む金属層を有する電 極を形成する工程と、 前記電極と同時に A 1 拡散防止層の少な く とも一部をスパッ夕エッチングにより前記電極の側壁に形成 する工程とを含む。 図面の簡単な説明  The method for manufacturing the SAW filter includes a step of forming an electrode having a metal layer containing A1, and forming at least a part of the A1 diffusion prevention layer on the side wall of the electrode by sputtering etching simultaneously with the electrode. And a step of performing. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態における弾性表面波 ( S AW) フ ィル夕の斜視図である。  FIG. 1 is a perspective view of a surface acoustic wave (SAW) file according to an embodiment of the present invention.
図 2は実施の形態における S AWフィル夕の構成図である。 図 3は本発明の実施の形態 1の実施例 1 における S AWフィ ル夕の要部である櫛型電極の断面図である。  FIG. 2 is a configuration diagram of the SAW file in the embodiment. FIG. 3 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to Example 1 of Embodiment 1 of the present invention.
図 4は実施の形態 1の実施例 2における S A Wフィルタの要 部である櫛型電極の断面図である。  FIG. 4 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to the second embodiment of the first embodiment.
図 5は実施の形態 1の実施例 3における S A Wフィル夕の要 部である櫛型電極の断面図である。  FIG. 5 is a cross-sectional view of a comb-shaped electrode, which is a main part of the Saw fillet according to the third embodiment of the first embodiment.
図 6は実施の形態 1の実施例 4における S AWフィル夕の要 部である櫛型電極の断面図である。  FIG. 6 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to Example 4 of Embodiment 1.
図 7 は実施の形態 1 の比較例 1 における S A Wフィル夕の要 部である櫛型電極の断面図である。  FIG. 7 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW fill in Comparative Example 1 of Embodiment 1.
図 8は実施の形態 1の比較例 2における S AWフィル夕の要 部である櫛型電極の断面図である。  FIG. 8 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Comparative Example 2 of Embodiment 1.
図 9は実施の形態 1の比較例 3における S A Wフィルタの要 部である櫛型電極の断面図である。  FIG. 9 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Comparative Example 3 of the first embodiment.
図 1 0は実施の形態 1 の比較例 4における S A Wフィルタの 要部である櫛型電極の断面図である。 図 1 1 は本発明の実施の形態 2 の実施例 5 における S A Wフ ィルタの要部である櫛型電極の断面図である。 FIG. 10 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Comparative Example 4 of the first embodiment. FIG. 11 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter according to Example 5 of Embodiment 2 of the present invention.
図 1 2 は実施の形態 2 の実施例 6 における S AWフィルタの 要部である櫛型電極の断面図である。  FIG. 12 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter according to the sixth embodiment of the second embodiment.
図 1 3 は実施の形態 2 の実施例 7 における S AWフィル夕の 要部である櫛型電極の断面図である。  FIG. 13 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Example 7 of Embodiment 2.
図 1 4は実施の形態 2 の実施例 8 における S AWフィル夕の 要部である櫛型電極の断面図である。  FIG. 14 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Example 8 of Embodiment 2.
図 1 5は実施の形態 2 の比較例 5 における S AWフィル夕の 要部である櫛型電極の断面図である。  FIG. 15 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter in Comparative Example 5 of Embodiment 2.
図 1 6 は本発明の実施の形態 3 の実施例 9 における S AWフ ィル夕の要部である櫛型電極の断面図である。  FIG. 16 is a cross-sectional view of a comb-shaped electrode, which is a main part of a SAW filer, in Example 9 of Embodiment 3 of the present invention.
図 1 7は実施の形態 3 の実施例 1 0 における S AWフィルタ の要部である櫛型電極の断面図である。  FIG. 17 is a cross-sectional view of a comb-shaped electrode which is a main part of the S AW filter in Example 10 of Embodiment 3.
図 1 8 は実施の形態 3 の実施例 1 1 における S AWフィルタ の要部である櫛型電極の断面図である。  FIG. 18 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter according to Example 11 of the third embodiment.
図 1 9は実施の形態 3 の実施例 1 2 における S AWフィルタ の要部である櫛型電極の断面図である。  FIG. 19 is a cross-sectional view of a comb-shaped electrode, which is a main part of the S AW filter in Example 12 of Embodiment 3.
図 2 0 は実施の形態 3 の比較例 6 における S AWフィルタの 要部である櫛型電極の断面図である。  FIG. 20 is a cross-sectional view of a comb-shaped electrode, which is a main part of a SAW filter in Comparative Example 6 of Embodiment 3.
図 2 1 は本発明の実施の形態 4の実施例 1 3 , 1 4、 比較例 7 , 8 , 9 , 1 0 における S AWフィル夕の要部である櫛型電 極の断面図である。 ,  FIG. 21 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter in Examples 13 and 14, and Comparative Examples 7, 8, 9, and 10 of Embodiment 4 of the present invention. ,
図 2 2は実施の形態 4の実施例 1 5, 1 6 における S AWフ ィル夕の要部である櫛型電極の断面図である。  FIG. 22 is a cross-sectional view of a comb-shaped electrode that is a main part of the SAW file in Examples 15 and 16 of the fourth embodiment.
図 2 3は実施の形態 4の実施例 1 7 , 1 8 における S AWフ ィル夕の要部である櫛型電極の断面図である。 図 2 4は本発明の実施の形態 5 の実施例 1 9 , 2 0 における S AWフィルタの要部である櫛型電極の断面図である。 FIG. 23 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW file in Examples 17 and 18 of the fourth embodiment. FIG. 24 is a cross-sectional view of a comb-shaped electrode which is a main part of a SAW filter in Examples 19 and 20 of Embodiment 5 of the present invention.
図 2 5 は実施の形態 5 の実施例 2 1, 2 2 における S AWフ ィル夕の要部である櫛型電極の断面図である。  FIG. 25 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW file in Examples 21 and 22 of the fifth embodiment.
m 2 6 は実施の形態 5 の実施例 2 3 における S AWフィル夕 の要部である櫛型電極の断面図である。  m 26 is a cross-sectional view of a comb-shaped electrode which is a main part of the SAW filter in Example 23 of Embodiment 5.
図 2 7 は実施の形態 5 の比較例 2 3 における S A Wフィルタ の要部である櫛型電極の断面図である。 発明を実施するための最良の形態  FIG. 27 is a cross-sectional view of a comb-shaped electrode, which is a main part of the SAW filter in Comparative Example 23 of the fifth embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
図 1 は本発明の実施の形態における弾性表面波 ( S AW) フ ィル夕の斜視図、 図 2 はフィル夕の構成図である。 その S AW フィルタは基板 1 と、 その上面に形成された電極 2 からなる弾 性波共振子を備え、 5つの共振子が梯子型に接続されたいわゆ るラダー型表面弾性波フィルタである。 電極 2 は櫛形電極 2 1 および反射器 2 2 により構成されている。 本発明の実施の形態 においては基板 1 はタンタルサンリチウムの 3 6 ° 回転 Yカツ ト基板である。 また実施の形態 1 においては櫛型電極の櫛間ピ ツチは約 0. 6 mである、 中心周波数が 1 . 8 G H z のバン ドパスフィルタを説明する。  FIG. 1 is a perspective view of a surface acoustic wave (SAW) file according to an embodiment of the present invention, and FIG. 2 is a configuration diagram of a filter. The SAW filter is a so-called ladder-type surface acoustic wave filter having an elastic wave resonator consisting of a substrate 1 and an electrode 2 formed on the upper surface thereof, and having five resonators connected in a ladder type. The electrode 2 includes a comb-shaped electrode 21 and a reflector 22. In the embodiment of the present invention, substrate 1 is a 36 ° rotated Y-cut substrate of lithium tantalum san. In the first embodiment, a band-pass filter having a center frequency of 1.8 GHz and a pitch between combs of a comb-shaped electrode of about 0.6 m will be described.
図 3〜図 6 は実施の形態 1 における実施例 1〜 4の S AWフ ィル夕の要部である電極の断面図である。 図 7〜図 1 0 は比較 例 1〜 4の S AWフィル夕の電極の断面図である。  FIGS. 3 to 6 are cross-sectional views of an electrode that is a main part of the SAW file of Examples 1 to 4 in the first embodiment. 7 to 10 are cross-sectional views of the electrodes of the SAW filters of Comparative Examples 1 to 4.
実施例 1 の電極 1 0 2 は図 3 に示すよう に、 基板 1 上に形成 された膜厚が 2 0 O n mの第 1 の層 4である。  As shown in FIG. 3, the electrode 102 of Example 1 is the first layer 4 having a thickness of 20 nm formed on the substrate 1.
実施例 2 の電極 1 1 2 は図 4 に示すよう に、 基板 1側から順 に積層された膜厚が 2 0 O n mの第 1 の層 4 と、 第 1 の層の A 1 原子の基板に対し垂直方向の粒界拡散を防止する第 2 の層 5 とを有する。 As shown in FIG. 4, the electrodes 112 of Example 2 are arranged in order from the substrate 1 side. A first layer 4 having a thickness of 20 O nm and a second layer 5 for preventing A1 atoms of the first layer from diffusing at the grain boundary in a direction perpendicular to the substrate.
実施例 3 の電極 1 2 2 は図 5 に示すよう に、 基板 1から順に 積層され こ下地層 3 と、 膜厚が 2 0 O n mの第 1 の層 4 とを有 する。  As shown in FIG. 5, the electrodes 122 of Example 3 are sequentially laminated from the substrate 1 and have an underlayer 3 and a first layer 4 having a thickness of 20 nm.
実施例 4の電極 1 3 2 は図 6 に示すよう に、 基板 1 から順に 積層された下地層 3 と、 膜厚が 2 O O nmの第 1 の金属層 4と、 第 1 の金属層の粒界拡散を防止する層 5 とを有する。  As shown in FIG. 6, the electrodes 13 2 of Example 4 had an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 2 OO nm, and particles of the first metal layer. And a layer 5 for preventing field diffusion.
比較例 1 の電極 1 4 2 は図 7 に示すよう に、 基板 1上に形成 された膜厚が 2 0 O n mの金属層 4である。  The electrode 144 of Comparative Example 1 is a metal layer 4 having a thickness of 20 nm formed on the substrate 1 as shown in FIG.
比較例 2 の電極 1 5 2 は図 8 に示すよう に、 基板 1上に形成 された膜厚が 2 5 O n mの金属層 4である。  As shown in FIG. 8, the electrode 15 2 of Comparative Example 2 is a metal layer 4 having a thickness of 25 nm formed on the substrate 1.
比較例 3 の電極 1 6 2 は図 9 に示すよう に、 基板 1 から順に 積層された膜厚が 2 O O n mの第 1 の金属層 4 と、 第 1 の金属 層の A 1 原子の基板に対し垂直方向の粒界拡散を防止する第 2 の金属層 5 とを有する。  As shown in FIG. 9, the electrode 16 2 of Comparative Example 3 was formed on the first metal layer 4 having a thickness of 2 OO nm and the A 1 atom substrate of the first metal layer, which were sequentially stacked from the substrate 1. A second metal layer 5 for preventing grain boundary diffusion in the vertical direction.
比較例 4の電極 1 7 2 は図 1 0 に示すように、 基板 1から順 に積層された下地層となる第 1 の金属層 3 と、 膜厚が 2 0 0 η mの第 2の金属層 4とを有する。  As shown in FIG. 10, the electrode 17 2 of Comparative Example 4 has a first metal layer 3 serving as an underlayer laminated sequentially from the substrate 1, and a second metal layer 200 μm thick. Layer 4.
実施例 1 〜 4および比較例 1 〜 4の電極の各層の材料および 膜厚、 成膜方法を表 1 に示す。 (表 1 ) Table 1 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 1 to 4 and Comparative Examples 1 to 4. (table 1 )
Figure imgf000008_0001
Figure imgf000008_0001
※IBS:イオンビームスパッタリング, DCMS:DCマグネトロンスパッタリング ※材料の欄において *は(111 )の配向膜を示す。  * IBS: Ion beam sputtering, DCMS: DC magnetron sputtering * In the column of material, * indicates an (111) oriented film.
※膜厚の単位: nm 表 1 にあるよう に、 実施の形態 1 における A 1 もしく は A 1 を主体とした金属は A 1 Z r C u合金である。 下地層および第 2 の層を有する電極は比較例 4を除き T i を用いている。 比較 例 4については下地層に C r を用いた。 成膜はイオンビームス パッタおよび D Cマグネ トロンスパッ夕のいずれかによ り行つ た。 これらの電極膜の成膜後に X線回折 Θ — 2 0法により調 ベた結果、 電極の配向性は、 イオンビームスパッ夕により電極 膜を成膜した実施例 1 、 実施例 2、 比較例 2および下地層 3 に T i を用いた実施例 3 、 実施例 4の A 1 Z r C u層については A 1 の ( 1 1 1 ) 面の ピークのみ観測され、 A 1 合金層は ( 1 1 1 ) 軸が基板に対し垂直方向に配向した配向膜となっている ことが確認された。 その他の電極膜については特定の結晶面か らのピークは観測されず、 配向膜ではなく無配向な多結晶膜で あることを確認している。 実施の形態 1 において用いたフィル 夕の設計膜厚は A 1 電極をもちいた場合 2 0 O n mである。 電 極の厚さや材料に伴なう特性のずれについては櫛型電極のピッ チを変えることで中心 波数がほぼ 1 . 8 G H z になるよう に 調節した。 電極はフォ ト リ ソグラフィーおよびドライエツチン グ法によってパターン形成された。 パターン形成後ダイシング してチップに分割し、 チップはセラミ ックパッケージにダイポ ン ドを施され、 ワイヤーポン ドにより電気的接続された。 その 後窒素雰囲気中で蓋が溶接され気密封止されて電極を有する S A Wフィルタを作成した。 * Unit of film thickness: nm As shown in Table 1, the metal mainly composed of A 1 or A 1 in the first embodiment is an A 1 ZrCu alloy. Except for Comparative Example 4, T i was used for the electrode having the underlayer and the second layer. In Comparative Example 4, Cr was used for the underlayer. Film formation was performed using either an ion beam sputter or a DC magnetron sputter. As a result of examining the electrode films by the X-ray diffraction method after the formation of these electrode films, the orientation of the electrodes was confirmed to be the same as in Examples 1, 2 and Comparative Example 2 in which the electrode films were formed by ion beam sputtering. In Example 3 and Example 4 in which Ti was used as the underlayer 3 and Example 4, only the peak of the (1 1 1) plane of A 1 was observed in the A 1 ZrCu layer, and the A 1 alloy layer was (1 1 1) It was confirmed that the film was an alignment film whose axis was oriented perpendicular to the substrate. Is the specific crystal plane for other electrode films? These peaks were not observed, confirming that the film was not an oriented film but a non-oriented polycrystalline film. The designed film thickness of the film used in the first embodiment is 20 O nm when the A 1 electrode is used. The deviation of the characteristics due to the electrode thickness and material was adjusted by changing the pitch of the comb-shaped electrode so that the center wave number was approximately 1.8 GHz. The electrodes were patterned by photolithography and dry etching. After pattern formation, the wafer was diced and divided into chips. The chips were die-bonded to a ceramic package and electrically connected by wire bonds. The lid was then welded and hermetically sealed in a nitrogen atmosphere to produce a SAW filter with electrodes.
本実施例において作成されたフィルタに対し、 ラダ一型フィ ル夕の最弱点である通過帯域中の最も高い周波数の信号をデバ イスに印加して耐電力性試験を行った。 試験開始後定期的に試 験を中断し S A Wフィル夕の特性を測定した。 通過帯域の挿入 損失が 0 . 5 d B以上増加した時点をデバイスの劣化と定義し、 試験開始後デバイスが劣化に至るまでの総試験時間を寿命とし た。 加速劣化試験においては、 加速劣化要因として電力と温度 を用いた。 チップ表面の温度を一定に保ち、 幾つかの印加電力 下での寿命を測定する電力加速劣化試験および、 印加電力を一 定に保ち、 幾つかのチップ温度下での寿命を測定する温度加速 劣化試験のフィル夕の 2種類の加速劣化試験を行った。 その 2 つの試験の結果からアイ リ ングモデルをもちいて、 印加電力 1 W、 環境温度 5 0 °Cの時の寿命を推定した。 耐電力性としては 寿命が 5万時間以上であることを評価の目安とした。 表 1 に示 した電極を有する S A Wフィ ル夕の推定寿命を表 2 に示す。 表 2 には A 1 Z r C u金層の各電極膜の結晶粒径もあわせて示す。 (表 2 ) For the filter created in this example, a signal of the highest frequency in the pass band, which is the weakest point of the ladder type filter, was applied to the device, and a power durability test was performed. The test was interrupted periodically after the start of the test, and the characteristics of the SAW filter were measured. The point at which the insertion loss of the passband increased by 0.5 dB or more was defined as device degradation, and the total test time until the device degraded after the start of testing was defined as the life. In the accelerated aging test, power and temperature were used as accelerated aging factors. A power accelerated aging test that measures the life under several applied powers while maintaining a constant chip surface temperature and a temperature accelerated aging test that measures the life under several applied chip temperatures while maintaining a constant applied power Two types of accelerated aging tests were performed during the test. Based on the results of these two tests, the life was estimated at an applied power of 1 W and an ambient temperature of 50 ° C using an Iring model. Regarding the power durability, a lifespan of 50,000 hours or more was used as a guide for evaluation. Table 2 shows the estimated lifetime of SAW filters with the electrodes shown in Table 1. Table 2 also shows the crystal grain size of each electrode film of the A 1 ZrCu gold layer. (Table 2)
Figure imgf000010_0001
表 2から実施例 1〜 4の電極を用いた S AWフィルタは、 推 定寿命 5万時間を越えているのに対し、 比較例 1〜 4のフィル 夕は 5万時間以下であった。 A l Z r C u層の結晶粒径はどの 電極もほぼ膜厚と同じ程度であった。 しかし比較例 2のフィ ル 夕は寿命が 5万時間をこえてはいないものの他の比較例と違い かなり耐電力性が改善されている。 実施例 1の電極と比較例 2 の電極の違いはその膜厚および結晶粒径である。 導体膜の場合、 その結晶粒径は膜厚に比例して大きくなる。 配向膜の単層電極 を電極膜として有する S AWデバイスでは、 電極の膜厚が 2 0 0 nm以下で寿命が 5万時間を越える。 ただし耐電力性のばら つきを考慮して、 好ましく は膜厚を 1 0 0 n m未満とすること が望ましい。 これらの結果から、 耐電力性の高い電極を得るに は、 A 〗 もしく は A 1 を主体とする層が配向膜からなりかつ結 晶粒径が小さいことが必要である。 結晶粒径を小さくするには 膜厚を制限することが有効である。
Figure imgf000010_0001
From Table 2, the S AW filters using the electrodes of Examples 1 to 4 exceeded the estimated life of 50,000 hours, while the filters of Comparative Examples 1 to 4 were less than 50,000 hours. The crystal grain size of the AlZrCu layer was almost the same as the film thickness of each electrode. However, the filter of Comparative Example 2 has a lifespan not exceeding 50,000 hours, but has significantly improved power durability compared to other Comparative Examples. The difference between the electrode of Example 1 and the electrode of Comparative Example 2 is the film thickness and the crystal grain size. In the case of a conductor film, the crystal grain size increases in proportion to the film thickness. In a SAW device having a single-layer electrode of an alignment film as the electrode film, the lifetime exceeds 50,000 hours when the thickness of the electrode is less than 200 nm. However, in consideration of variations in power durability, the film thickness is preferably set to less than 100 nm. From these results, in order to obtain an electrode with high power durability, it is necessary that the layer mainly composed of A 1 or A 1 be made of an alignment film and have a small crystal grain size. To reduce the crystal grain size, it is effective to limit the film thickness.
(実施の形態 2 ) (Embodiment 2)
図 1 1〜図 1 4は本発明の実施の形態 2における実施例 5〜 8の弾性表面波 (S AW) フィル夕の要部である電極の断面図 である。 図 1 5は比較例 5の S AWフィルタの電極の断面図で ある。 実施例 5 の電極 1 8 2 は図 1 1 に示すよう に、 基板 1 の段部 7の頂部に形成された膜厚が 2 0 O n mの第 1 の層 4である。 実施例 6 の電極 1 9 2 は図 1 2 に示すよう に、 基板 1 の段部 7 の頂部に形成された、 基板 1 から順積層された下地層 3 と、 膜厚が 2 0 0 n mの第 1 の層 4とを有する。 FIGS. 11 to 14 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 5 to 8 in Embodiment 2 of the present invention. FIG. 15 is a sectional view of an electrode of the SAW filter of Comparative Example 5. As shown in FIG. 11, the electrode 18 2 of the fifth embodiment is the first layer 4 having a thickness of 20 nm formed on the top of the step 7 of the substrate 1. As shown in FIG. 12, the electrode 19 2 of Example 6 was formed on the top of the step 7 of the substrate 1, and the underlayer 3, which was sequentially laminated from the substrate 1, had a thickness of 200 nm. And a first layer 4.
実施例 7 の電極 2 0 2 は図 1 3 に示すように、 基板 1 の段部 7 の頂部に形成された、 基板 1から順に積層された膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層の粒界拡散を防止す る第 2の層 5 とを有する。  As shown in FIG. 13, the electrode 202 of Example 7 is a first metal layer having a thickness of 200 nm, which is formed on the top of the step 7 of the substrate 1 and is sequentially stacked from the substrate 1. 4 and a second layer 5 for preventing grain boundary diffusion of the first metal layer.
実施例 8 の電極 2 1 2 は図 1 4に示すよう に、 基板の段部 7 の頂部に形成された、 基板 1 から順に積層された下地層 3 と、 膜厚が 2 0 O n mの第 1 の金属層 4 と、 第 1 の金属層の粒界拡 散を防止する第 2の層 5 とを有する。  As shown in FIG. 14, the electrode 211 of Example 8 has an underlayer 3 formed on the top of the step 7 of the substrate, which is laminated in order from the substrate 1, and a second layer having a thickness of 20 O nm. A first metal layer, and a second layer for preventing grain boundary diffusion of the first metal layer.
比較例 5 の電極 2 2 2 は図 1 5 に示すように、 基板 1上に形 成された膜厚が 3 0 O n mの金属層 4である。  The electrode 222 of Comparative Example 5 is a metal layer 4 having a thickness of 30 nm formed on the substrate 1 as shown in FIG.
実施例 5〜 9および比較例 5の電極の各層の材料および膜厚、 成膜方法を表 3 に示す。 Table 3 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 5 to 9 and Comparative Example 5.
(表 3 ) (Table 3)
Figure imgf000012_0001
※材料の欄において *は(111)の配向膜を示す。
Figure imgf000012_0001
* In the column of material, * indicates an orientation film of (111).
※膜厚の単位: nm * Unit of film thickness: nm
表 3 にあるよう に、 本実施の形態 2 における A 1 もしく は A 1 を主体とした金属層としては A 1 M g C u合金をもちいた。 下地層および第 2 の層を有する電極については T i を用いてい る。 電極はイオンビ一ムスパッタおよび D Cマグネ トロンスパ ッ夕のいずれかによ り成膜した。 これらの電極膜について、 電 極膜成膜後 X線回折の 0 — 2 0法により調べた各電極の配向性 にっき、 実施例 5 、 実施例 6、 実施例 7、 実施例 8 、 比較例 5 の何れも A l M g C u層については A 1 の ( 1 1 1 ) 面のピ一 クのみ観測され、 A 1 合金層は ( 1 1 1 ) 軸が基板に対し垂直 方向に配向した配向膜となっていることが確認された。 実施の 形態 2 におけるフィルタの構成は実施の形態 1 と同じとし、 設 計膜厚 3 0 0 n mの A 1 電極をもちいた、 中心周波数がほぼ 1. 7 5 G H z のフィルタを試験した。 電極の厚さや材料に伴なう 特性のずれに対しては基板に設けた段部の段差をかえることに よ り 中心周波数がほぼ 1 . 7 5 G H z になるように調節した。 従って実施例 5 〜 8および比較例 5 の櫛型電極の電極間ピッチ はほぼ一致している。 電極はフォ ト リ ソグラフィ一およびリ ア クティ ブイオンエッチング法によってパターン形成した。 エツ チングガスとしては B C 1 3 と C 1 2 の混合ガスを用いた。 従 つてリ アクティ ブイオンエッチングにおいて、 C 1 * ラジカル および B C 1 3 * ラジカルによるケミカルエッチングと同時に B C 1 3 +イオンによってスパッタエッチングによってパター ン形成が行われる。 実施例 5 〜 8 における基板の段部はエッチ ング時間をコン トロールすることで形成される。 パターン形成 後基板をダイシングして分割し、 分割された各チップがセラミ ックパッケージにダイポン ドを施される。 さ らに各チップはヮ ィヤーポン ドにより電気的に接続される。 その後窒素雰囲気中 で蓋を溶接し気密封止を行い各電極を有する S A Wフィルタを 作成した。 As shown in Table 3, A1MgCu alloy was used as the metal layer mainly composed of A1 or A1 in the second embodiment. Ti is used for the electrode having the underlayer and the second layer. Electrodes were formed by either ion beam sputtering or DC magnetron sputtering. With respect to these electrode films, the orientation of each electrode was examined by the 0-20 method of X-ray diffraction after forming the electrode films. Examples 5, 6, 7, 8 and Comparative Example 5 In each case, only the peak of the (1 1 1) plane of A 1 was observed in the Al Mg C Cu layer, and the A 1 alloy layer was oriented with the (1 1 1) axis oriented perpendicular to the substrate. It was confirmed that the film was formed. The configuration of the filter according to the second embodiment was the same as that of the first embodiment, and a filter having a center frequency of approximately 1.75 GHz using an A1 electrode having a designed thickness of 300 nm was tested. The center frequency was adjusted to approximately 1.75 GHz by changing the step of the step provided on the substrate for deviations in characteristics due to electrode thickness and material. Accordingly, the inter-electrode pitches of the comb-shaped electrodes of Examples 5 to 8 and Comparative Example 5 are almost the same. The electrodes were patterned by photolithography and reactive ion etching. As an etching gas, a mixed gas of BC13 and C12 was used. Accordingly, in reactive ion etching, pattern formation is performed by sputter etching with BC 13 + ions simultaneously with chemical etching with C 1 * radicals and BC 13 * radicals. The steps of the substrates in Examples 5 to 8 are formed by controlling the etching time. After pattern formation, the substrate is diced and divided, and each divided chip is die-bonded to a ceramic package. Further, each chip is electrically connected by a wire. Then, the lid was welded in a nitrogen atmosphere and hermetically sealed to produce a SAW filter having each electrode.
実施の形態 2 のフィルタにおいて、 実施の形態 1 の場合と同 様の方法で耐電力性を評価した。 表 3 に示した電極を有する S A Wフィル夕の推定寿命を表 4 に示す。 表 4にはあわせて各電 極膜の A 1 M g C u層 4の結晶粒径もあわせて示す。  The power durability of the filter of the second embodiment was evaluated in the same manner as in the first embodiment. Table 4 shows the estimated lifespan of the SAW filter with the electrodes shown in Table 3. Table 4 also shows the crystal grain size of the A1MgCu layer 4 of each electrode film.
(表 4 )  (Table 4)
Figure imgf000013_0001
表 4から分かるように、 実施例 5 〜 8 の電極を用いた S A W フィル夕については、 目安とする推定寿命 5万時間を越えてい るのに対し、 比較例 5 のフィルタにおいては 5万時間以下であ つた。 また A 1 M g C u層の結晶粒径はどの電極もほぼ膜厚と 同じ程度であった。 実施の形態 2 においては前述のよう に、 フ ィル夕の A 1 電極の設計膜厚は 3 0 O n mである。 基板に段部 を設けこれを電極の一部とし、 A 1 もしく は A 1 を主体とした 金属の層の膜厚を 2 0 0 n m以下とすることにより、 フィル夕 は実施の形態 1 で示した実施例 1 〜 4の電極と同程度の耐電力 性を実現し、 耐電力性の目安である 5万時間以上の寿命を実現 している。 これらの結果から、 所望のフィルタ特性を実現する ために電極膜の膜厚が 2 0 0 n m以上必要とする S AWフィル 夕において、 所望の特性を実現すると同時に耐電力性の向上''を 図るのに、 基板に段部を設けこれを電極の一部とし、 A 1 もし く は A 1 を主体とする層は膜厚を 2 0 0 n m以下にし結晶粒径 を小さくするとともに配向膜とすることが有効である。 (実施の形態 3 )
Figure imgf000013_0001
As can be seen from Table 4, the estimated lifetime of the SAW filter using the electrodes of Examples 5 to 8 exceeded 50,000 hours as a guide, whereas the filter of Comparative Example 5 did not exceed 50,000 hours. In I got it. The crystal grain size of the A1MgCu layer was almost the same as the film thickness of each electrode. In the second embodiment, as described above, the designed film thickness of the A1 electrode in the filter is 30 O nm. By providing a step on the substrate and using this as a part of the electrode, and by setting the thickness of the metal layer mainly composed of A 1 or A 1 to 200 nm or less, the filter according to the first embodiment is used. It achieves the same level of power durability as the electrodes of Examples 1 to 4 shown, and achieves a life expectancy of 50,000 hours or more, which is a measure of power durability. Based on these results, we aim to achieve the desired characteristics and improve the power durability at the same time in a SAW filter that requires an electrode film thickness of 200 nm or more to achieve the desired filter characteristics. However, a step is provided on the substrate and this is used as a part of the electrode, and the layer mainly composed of A 1 or A 1 has a thickness of 200 nm or less to reduce the crystal grain size and to be an alignment film. It is effective. (Embodiment 3)
図 1 6〜図 1 9 は本発明の実施の形態 3 における実施例 9〜 1 2 の弾性表面波 ( S AW) フィル夕の要部である電極の断面 図である。 図 2 0 は比較例 6 の S AWフィル夕の電極の断面図 である。  FIGS. 16 to 19 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 9 to 12 in Embodiment 3 of the present invention. FIG. 20 is a cross-sectional view of the electrode of the SAW filter of Comparative Example 6.
実施例 9 の電極 2 3 2は図 1 6 に示すように、 基板 1 から順 に積層された、 膜厚が 2 0 O n mの第 1 の金属層 4 と、 第 1 の 金属層 4の A 1 原子の基板に対し垂直方向の粒界拡散を防止す る第 2の層 5 と、 電極 2 3 2 の膜厚を調節する第 3 の層 6 とを 有する。  As shown in FIG. 16, the electrodes 2 32 of the ninth embodiment have a first metal layer 4 having a thickness of 20 nm and a first metal layer 4 having a thickness of 20 O nm, which are sequentially stacked from the substrate 1. It has a second layer 5 for preventing grain boundary diffusion in the direction perpendicular to the substrate of one atom, and a third layer 6 for adjusting the thickness of the electrode 232.
実施例 1 0 の電極 2 4 2 は図 1 7 に示すように、 基板 1から 順に積層された下地層 3 と、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層 4の A 1 原子の基板に対して垂直方向の粒 界拡散を防止する第 2 の層 5 と、 電極 2 4 2 の膜厚を調節する 第 3の層 6 とを有する。 As shown in FIG. 17, the electrode 24 of Example 10 has an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, and a first metal layer. Grain perpendicular to substrate of A 1 atom in layer 4 It has a second layer 5 for preventing field diffusion and a third layer 6 for adjusting the thickness of the electrode 242.
実施例 1 1 の電極 2 5 2 は図 1 8 に示すように、 基板 1 の段 部 7の頂部に形成されて膜厚が 2 0 O n mの第 1 の金属層 4と、 第 1 の金 層 4の A 1 原子の基板に対し垂直方向の粒界拡散を 防止する第 2 の層 5 と、 電極 2 5 2 の膜厚を調節する第 3の層 6 とを有する。  As shown in FIG. 18, the electrode 25 of Example 11 is formed on the top of the step 7 of the substrate 1 and has a first metal layer 4 having a thickness of 20 nm and a first metal layer 4. It has a second layer 5 for preventing the diffusion of A 1 atoms in the layer 4 in the direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 25 2.
実施例 1 2 の電極 2 6 2は図 1 9 に示すように、 基板 1 の段 部 7の頂部に形成され、 基板 1から順に積層された下地層 3 と、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層 4の粒界 拡散を防止する第 2 の層 5 と、 電極 2 6 2 の膜厚を調節する第 3 の層 6 とを有する。  As shown in FIG. 19, the electrode 26 2 of Example 12 was formed on the top of the step 7 of the substrate 1, and the underlayer 3, which was stacked in order from the substrate 1, had a thickness of 200 nm. It has a first metal layer 4, a second layer 5 for preventing the grain boundary diffusion of the first metal layer 4, and a third layer 6 for adjusting the thickness of the electrode 26 2.
比較例 6 の電極 2 7 2 は図 2 0 に示すよう に、 基板 1側から 順に積層された下地層 3 を、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層 4の A 1 原子の基板に対し垂直方向の粒界 拡散を防止する第 2 の層 5 と、 電極 2 7 2 の膜厚を調節する第 3 の層 6 とを有する。  As shown in FIG. 20, the electrode 272 of the comparative example 6 includes an underlayer 3 laminated in order from the substrate 1 side, a first metal layer 4 having a thickness of 200 nm, and a first metal layer 4. It has a second layer 5 for preventing grain boundary diffusion of A 1 atoms in the layer 4 in a direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 27 2.
実施例 5〜 9および比較例 5の電極の各層の材料および膜厚、 成膜方法を表 5 に示す。 Table 5 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 5 to 9 and Comparative Example 5.
(表 5 ) (Table 5)
Figure imgf000016_0001
Figure imgf000016_0001
«IBS:イオンビームスパッタリング, DCMS: DCマグネトロンスパッタリング ※材料の欄において *は(111 )の配向膜を示す。  «IBS: Ion beam sputtering, DCMS: DC magnetron sputtering * In the column of material, * indicates an (111) oriented film.
※膜厚の単位: nm 表 5 にあるよう に、 実施の形態 3 における A 1 もしく は A 1 を主体とした金属としては A l M g合金をもちいた。 また下地 層および第 2 の層については T i を用いている。 層はイオンビ ムスパッ夕および D Cマグネ トロンスパッ夕のいずれかによ り成膜した。 電極膜成膜後 X線回折の 0 — 2 6»法により調べた 各電極の配向性については、 実施例 9、 実施例 1 0 、 実施例 1 1 、 実施例 1 2、 比較例 6 の何れも A l M g層については A 1 の ( 1 1 1 ) 面のピークのみ観測され、 A 1 合金層は ( 1 1 1 ) 軸が基板に対し垂直方向に配向した配向膜となっている こ とが確認された。 ただし電極は第 1 の層および第 3 の層の 2層 の A 1 M g層を有するため、 下地層および第 1 の層のサンプル を別途同一成膜条件で作成しその配向性を確認した。 実施の形 態 3 において用いたフィルタの構成は実施の形態 1 と同じであ り、 ただし設計膜厚 4 8 0 n mの A 1 電極を有するフィル夕は 中心周波数がほぼ 8 0 0 M H z なる設計である。 電極の厚さや 材料に伴なう特性のずれについては、 基板に設けた段部の段差 および第 3 の層の層厚をかえることによ り フィルタは中心周波 数がほぼ 8 0 0 M H z になるよう に調節した。 従って実施例 9 〜 1 2および比較例 6 の櫛型電極の電極間ピッチはほぼ一致し ている。 電極お'よびフィルタは実施の形態 2 と同様の方法で作 成された。 * Unit of film thickness: nm As shown in Table 5, Al Mg alloy was used as the metal mainly composed of A 1 or A 1 in the third embodiment. T i is used for the underlayer and the second layer. The layer was formed by either ion beam sputtering or DC magnetron sputtering. Regarding the orientation of each electrode examined by the 0-26 method of X-ray diffraction after forming the electrode film, any of Example 9, Example 10, Example 11, Example 12, and Comparative Example 6 was used. In the Al Mg layer as well, only the peak of the (1 1 1) plane of A 1 is observed, and the A 1 alloy layer is an oriented film in which the (1 1 1) axis is oriented perpendicular to the substrate. Was confirmed. However, since the electrode had two A1Mg layers, a first layer and a third layer, samples of the underlayer and the first layer were separately prepared under the same film forming conditions, and the orientation was confirmed. The configuration of the filter used in the third embodiment is the same as that of the first embodiment.However, a filter having a design thickness of 480 nm and an A1 electrode has a center frequency of approximately 800 MHz. It is. For the deviation of the characteristics due to the electrode thickness and material, refer to the step on the substrate. By changing the thickness of the third layer and the third layer, the filter was adjusted so that the center frequency was approximately 800 MHz. Therefore, the inter-electrode pitches of the comb-shaped electrodes of Examples 9 to 12 and Comparative Example 6 are almost the same. The electrodes and the filter were made in the same manner as in the second embodiment.
実施の形態 3 においても、 フィル夕の耐電力性を実施の形態 1 の場合と同様に評価した。 表 5 に示した各電極を有する各 S A Wフィルタの推定寿命を表 6 に示す。 表 6 には各電極膜の第 1 の層である A 1 M g層の結晶粒径もあわせて示した。  Also in the third embodiment, the power durability of the filter was evaluated in the same manner as in the first embodiment. Table 6 shows the estimated lifetime of each Saw filter having each electrode shown in Table 5. Table 6 also shows the crystal grain size of the A1Mg layer, which is the first layer of each electrode film.
(表 6 )  (Table 6)
Figure imgf000017_0001
Figure imgf000017_0001
※結晶粒径は第 1の層の結晶粒径を示す 表 6から分かるよう に、 実施例 9〜 1 2 の電極を用いた S A Wフィノレ夕については推定寿命が 5万時間を越えているのに対 し、 比較例 6 においては 5万時間以下であった。 また各電極膜 の第 1 の層である A 1 M g層の結晶粒径はどの電極もほぼ層厚 と同じ程度であつた。 実施の形態 2 においては前述のように用 いたフィ レタの A 1 電極の設計膜厚は 4 8 0 n mであるが、 A 1 もしく は A 1 を主体とした第 1 の層の上に前記第 1 の層の層 厚を制限する第 2 の層および電極膜厚を調整するための第 3 の 層を設けるか、 基板に段部を設けこれを電極の一部とすること で、 第 1 の金属の層の膜厚を 2 0 0 n m以下とする。 これによ り、 フィル夕は高耐電力性を有し、 耐電力性の目安である 5万 時間以上の寿命を有する。 実施例 9、 実施例 1 0 のフイリレ夕に おいては試験後、 電極が劣化した部分以外のにも櫛型電極の表 面に A 1 の拡散によるヒロックが形成されているのが観察され た。 これらの A 1 原子の拡散は膜厚の調整層である第 3 の劣化 による ものである。 一方実施例 1 1 、 実施例 1 2 についてはそ れが観測されなかったことから、 A 1 もしく は A 1 を主体とす る第 3 の層についても 2 0 0 n m以下の層厚にすることが好ま しい。 さ らに第 3 の層の上に第 3 の層からの A 1 原子の拡散を 抑制するための第 4の層を設けてもよい。 また、 実施例 1 1 、 実施例 1 2、 比較例 6 のフィル夕については、 試験後の電極を 観察したところ電極表面には A 1 原子の拡散によるヒロックは 観測されなかったが、 櫛型電極間にサイ ドヒロック という形で 発生していることが観察された。 これらの結果から、 所望のフ ィル夕特性のために電極膜の膜厚が 2 0 0 n m以上必要とする S AWフィルタの特性を実現すると同時に耐電力性の向上を計 るのに、 A 1 もしく は A 1 を主体とした膜厚 2 0 0 n m以下の 第 1 の層の上に前記第 1 の層の層厚を制限する第 2 の層および 電極膜厚を調整するための第 3 の層を設ける。 さらに第 3 の層 が厚く ならないように、 基板に段部を設けこれを電極の一部と し、 A 1 もしく は A 1 を主体とする層の膜厚を 2 0 O n m以下 にすることで結晶粒径を小さくできる。 * The crystal grain size indicates the crystal grain size of the first layer.As can be seen from Table 6, the estimated lifetime of SAW finole using the electrodes of Examples 9 to 12 exceeds 50,000 hours. On the other hand, in Comparative Example 6, the time was 50,000 hours or less. The crystal grain size of the A 1 Mg layer, which is the first layer of each electrode film, was almost the same as the thickness of each electrode. In the second embodiment, the designed film thickness of the A1 electrode of the filter used as described above is 480 nm, but the above-mentioned A1 or A1 is mainly formed on the first layer mainly composed of A1. By providing a second layer for limiting the layer thickness of the first layer and a third layer for adjusting the electrode thickness, or by providing a step on the substrate and making this a part of the electrode, The thickness of the metal layer is 200 nm or less. As a result, the city has high power durability and a lifespan of 50,000 hours or more, which is a measure of power durability. Example 9 and Example 10 After the test, it was observed that hillocks were formed on the surface of the comb-shaped electrode by diffusion of A 1 in areas other than the area where the electrode was deteriorated. The diffusion of these A 1 atoms is due to the third deterioration, which is the thickness adjustment layer. On the other hand, since it was not observed in Examples 11 and 12, the thickness of A 1 or the third layer mainly composed of A 1 is also set to a thickness of 200 nm or less. It is preferable. Further, a fourth layer for suppressing the diffusion of A 1 atoms from the third layer may be provided on the third layer. For the electrodes of Examples 11 and 12, and Comparative Example 6, when the electrodes after the test were observed, hillocks due to diffusion of A1 atoms were not observed on the electrode surface, but the comb-shaped electrodes were observed. It was observed that they occurred in the form of side hillocks in between. From these results, it is possible to realize the characteristics of a SAW filter that requires an electrode film thickness of 200 nm or more for the desired filter characteristics, and at the same time to improve the power durability, 1 or a second layer for limiting the thickness of the first layer and a second layer for adjusting the electrode thickness on the first layer having a thickness of 200 nm or less and mainly containing A 1. The third layer is provided. In order to prevent the third layer from becoming thicker, provide a step on the substrate and use this as a part of the electrode.The thickness of the layer mainly composed of A 1 or A 1 should be 20 nm or less. Can reduce the crystal grain size.
(実施の形態 4 ) (Embodiment 4)
図 2 1 〜図 2 3 は本発明の実施の形態 4 における実施例 1 3〜 1 8 の弾性表面波 ( S AW) フィルタの要部である電極の断面 図である。 比較例 7〜 1 0 の S AWフィルタの電極の断面図は 図 2 1 の電極と同様である。 FIGS. 21 to 23 are cross-sectional views of an electrode which is a main part of a surface acoustic wave (SAW) filter of Examples 13 to 18 in Embodiment 4 of the present invention. The sectional views of the electrodes of the SAW filters of Comparative Examples 7 to 10 are the same as the electrodes of FIG.
実施例 1 3、 1 4の電極 2 8 2 は図 2 1 に示すように、 基板 1から順に積層された、 A 1 もしく は A 1 を主体とする膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層の A 1 原子の基 板に対し垂直方向の粒界拡散を防止する第 2 の層 5 と、 電極 2 8 2 の膜厚を調節する第 3 の層 6 とを有する。 電極 2 8 2 の側 壁には第 1 の金属層 4の A 1 原子の粒界拡散を防止するための 拡散防止層 8が形成される。 拡散防止層 8 は図 2 1 に示されて いるように基板にまで至っていない。 As shown in FIG. 21, the electrodes 28 of Examples 13 and 14 A first metal layer 4 mainly composed of A 1 or A 1 and having a thickness of 200 nm, which is stacked in order from 1 and a direction perpendicular to the substrate of the A 1 atom of the first metal layer. And a third layer 6 for adjusting the film thickness of the electrode 28 2. On the side wall of the electrode 282, a diffusion preventing layer 8 for preventing the grain boundary diffusion of A1 atoms of the first metal layer 4 is formed. The diffusion preventing layer 8 does not reach the substrate as shown in FIG.
実施例 1 5 、 1 6 の電極 2 9 2 は図 2 2に示すように、 基板 1から順に積層された下地層 3 と、 膜厚が 2 0 0 n mの第 1 の 金属層 4 と、 第 1 の金属層 4の A 1 原子の基板に対し垂直方向 の粒界拡散を防止する第 2 の層 5 と、 電極 2 9 2 の膜厚を調節 する第 3 の層 6 とを有する。 電極 2 9 2 の側壁には第 1 の金属 層 4の A 1 原子の粒界拡散を防止するための拡散防止層 8が形 成される。 拡散防止層 8 は図 2 2 に示されているように基板に まで至っていないが第 1 の金属層 4、 第 2 の層 5、 第 3 の層 6 の側壁および下地層 3の側壁の一部を覆つている。  As shown in FIG. 22, the electrodes 292 of Examples 15 and 16 each have an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, The first metal layer 4 includes a second layer 5 for preventing A1 atoms from diffusing in the direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 292. On the side wall of the electrode 292, a diffusion prevention layer 8 for preventing the grain boundary diffusion of A1 atoms of the first metal layer 4 is formed. Although the diffusion prevention layer 8 does not reach the substrate as shown in FIG. 22, a part of the side walls of the first metal layer 4, the second layer 5, the third layer 6 and the underlayer 3 is provided. Is covered.
実施例 1 7 , 1 8 の電極 3 0 2 は図 2 3 に示すように、 基板 1 の段部 7 の頂部に形成されており、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層 4の A 1 原子の基板に対し垂直方 向の粒界拡散を防止する第 2 の層 5 と、 電極 3 0 2 の膜厚を調 節する第 3 の層 6 とを有する。 電極 3 0 2 の側壁には第 1 の金 属層 4の A 1 原子の粒界拡散を防止するための拡散防止層 8が 形成されている。 拡散防止層 8 は図 2 3 に示されているよう に 基板底部にまで至っていない。 しかし拡散防止層 8 は第 1 の金 属層 4、 第 2 の層 5、 第 3 の層 6 の側壁および基板 1 の段部 7 の側壁の一部を覆っている。  The electrodes 30 2 of Examples 17 and 18 are formed on the top of the step 7 of the substrate 1 as shown in FIG. 23, and the first metal layer 4 having a thickness of 200 nm The second layer 5 for preventing the grain boundary diffusion of the A 1 atom of the first metal layer 4 in the direction perpendicular to the substrate, and the third layer 6 for adjusting the thickness of the electrode 302 are Have. On the side wall of the electrode 302, a diffusion preventing layer 8 for preventing the A 1 atom of the first metal layer 4 from diffusing at the grain boundary is formed. The diffusion preventing layer 8 does not reach the bottom of the substrate as shown in FIG. However, the diffusion preventing layer 8 covers the side walls of the first metal layer 4, the second layer 5, the third layer 6, and a part of the side wall of the step 7 of the substrate 1.
比較例 7 、 8 、 9 , 1 0 の電極は実施例 1 3 、 1 4 と同様の 図 2 1 に示される構成とした。 The electrodes of Comparative Examples 7, 8, 9, and 10 were the same as in Examples 13 and 14. The configuration shown in Fig. 21 was adopted.
実施例 1 3〜 1 8および比較例 7 1 0 の電極の各層の材料 および膜厚、 成膜方法を表 7に示す。  Table 7 shows the material, film thickness, and film forming method of each layer of the electrodes of Examples 13 to 18 and Comparative Example 7 10.
(表 7 )  (Table 7)
Figure imgf000020_0001
Figure imgf000020_0001
※IBS:イオンビ一厶スパッタリング, DCMS:DCマグネトロンスパッタリング  * IBS: Ion beam sputtering, DCMS: DC magnetron sputtering
※材料の欄において *は(111)の配向膜を示す。 * In the column of material, * indicates an orientation film of (111).
※膜厚の単位: nm 表 7 にあるよう に、 実施の形態 4における A 1 もしく は A 1 を主体とした金属 4 としては A 1 M g合金をもちいた。 下地層 については T i を用いた。 また実施例 1 3 、 実施例 1 5、 実施 例 1 7、 比較例 7 、 比較例 8 において第 2 の層は T i を、 実施 例 1 4、 実施例 1 6、 実施例 1 8、 比較例 8、 比較例 1 0 にお いて第 2 の層は C uを用いた。 層はイオンビ一ムスパッタおよ び D Cマグネ トロンスパッ夕のいずれかによ り成膜した。 これ らの電極膜成膜後 X線回折の 0 — 2 0法によ り調べられた各電 極の配向性について、 実施例 1 3〜 1 8 、 比較例 9 、 1 0 の何 れも A l M g層については A 1 の ( 1 1 1 ) 面のピークのみ観 測され、 A 1 合金層は ( 1 1 1 ) 軸が基板に対し垂直方向に配 向した配向膜となっていることが確認された。 ただし A 1 M g 層が第 1 と第 3 の層の 2層あるため、 下地層および第 1 の層の 2層のサンプルを別途同一成膜条件で作成しその配向性を確認 した。 比較例 7、 8 については特定の結晶面からのピークは観 測されず、 配向膜ではなく無配向な多結晶膜である ことを確認 している。 実施の形態 4 において用いたフィル夕の構成および 設計は発明の実施の形態 3 と同様である。 電極は全て A r +ィォ ンによるイオンミ リ ング法によってパターン形成した。 イオン ミ リ ング法はスパッタ リ ングによって物理的にパターン形成す るためスパッタされた原子の一部は電極側壁に付着し、 パター ン形成と同時に拡散防止層が形成される。 ただし電極側壁を完 全に覆う ことはできず、 拡散防止層は基板底部にまで形成され ない。 * Unit of film thickness: nm As shown in Table 7, A 1 Mg alloy was used as the metal 4 mainly composed of A 1 or A 1 in the fourth embodiment. Ti was used for the underlayer. In Examples 13 and 15, Examples 15 and 17, Comparative Examples 7 and 8, the second layer has Ti, and Examples 14 to 16 and Examples 18 and 18 and Comparative Examples 8. In Comparative Example 10, Cu was used for the second layer. The layer was formed by either ion beam sputtering or DC magnetron sputtering. this Regarding the orientation of each electrode examined by the 0-20 method of X-ray diffraction after forming these electrode films, all of Examples 13 to 18 and Comparative Examples 9 and 10 were Al In the Mg layer, only the peak of the (1 1 1) plane of A1 was observed, and the A 1 alloy layer was an oriented film with the (1 1 1) axis oriented perpendicular to the substrate. confirmed. However, since there are two A1Mg layers, the first and third layers, a sample of two layers, an underlayer and a first layer, was separately prepared under the same film forming conditions, and the orientation was confirmed. In Comparative Examples 7 and 8, no peak was observed from a specific crystal plane, confirming that the film was not an oriented film but a non-oriented polycrystalline film. The configuration and design of the filter used in the fourth embodiment are the same as in the third embodiment of the invention. All electrodes were patterned by ion milling with Ar + ions. Since the ion milling method physically forms a pattern by sputtering, a part of the sputtered atoms adheres to the side wall of the electrode, and a diffusion preventing layer is formed simultaneously with the pattern formation. However, the electrode side wall cannot be completely covered, and the diffusion preventing layer is not formed to the bottom of the substrate.
表 7 に示した各電極を有する各 S AWフィル夕の推定寿命を 表 8 に示す。 また、' 表 8 には各電極膜の第 1 の層の A l M g層 の結晶粒径もあわせて示す。 Table 8 shows the estimated lifetime of each SAW filter with each electrode shown in Table 7. Table 8 also shows the crystal grain size of the AlMg layer as the first layer of each electrode film.
(表 8 ) (Table 8)
Figure imgf000022_0001
Figure imgf000022_0001
※結晶粒径は第 1の層の結晶粒径を示す < 表 8から分かるように、 実施例 1 3〜 1 8 の電極を用いた S A Wフィ ル夕は、 目安とする推定寿命 5万時間を越えているのに 対し、 比較例?〜 1 0 のフィルタにおいては 5万時間以下であ つた。 また各電極膜の第 1 の層の A l M g層の結晶粒径はどの 電極もほぼ層厚と同じ程度であった。 実施例 1 3、 実施例 1 4 、 および比較例においては試験後、 電極が劣化した部分以外のに も櫛型電極側壁にサイ ドヒロックが形成されているのが観察さ れた。 このサイ ドヒロックは電極の側壁に設けられた第 1 の金 属層の A 1 原子の粒界拡散を防止するための拡散防止層と基板 の間から発生していた。 実施例 1 5〜実施例 1 8 については電 極が劣化した部分以外に電極の劣化が観測されなかった。 した がって拡散防止層が下地層の一部もしく は基板段部の側壁の一 部まで覆いかつ第 1 の金属層を完全に覆っていたために、 電極 側壁への A 1 原子の粒界拡散が抑制されていたと考えられる。 また第 2 の金属層に C uを用いたフィルタは T i を用いたもの と比べ、 耐電力性が向上している。 C uは A 1 の自己拡散係数 より も A 1 に対する拡散係数が大きい金属であるため、 デバイ ス作成工程中の加熱工程において第 2 の層の粒界に C uが拡散 し、 A 1 原子の粒界拡散経路が C u原子により塞がれる。 その ため基板に水平方向の A 1 原子の粒界拡散についても抑制され たものと考えられる。 C uは A 1 中に拡散しやすいだけでなく、 A 1 との間で簡単に金属間化合物を形成し、 また第 2の層粒径 も大きく成長しやすい。 そのため、 工程中の温度変化や C u層 の膜厚等で A 1 原子抑制効果が大きく変わり、 更に電極膜の抵 抗値も上がりやすく、 フィル夕の耐電力性、 フィルタ特性とも にばらつきが若干多かった。 従って A 1 の自己拡散係数より も A 1 に対する拡散係数が大きい金属を用いた第 2 の層は耐電力 性への効果は大きいが、 それぞれのフィルタで層厚の最適値が あり、 工程の管理とく に加熱工程の管理が必要である。 特に A 1 もしく は A 1 を主体とした金属の第 1 の層の層厚が 2 0 0 n m以下の場合、 C uの第 2の層の層厚は 2 0 n m以下、 好まし く は 1 0 n m以下であることが望ましい。 また工程中の加熱ェ 程については 2 5 0 °C以下、 好ましく は 2 0 0 °C以下の温度が 望ましい。 A 1 の自己拡散係数よ り も A 1 に対する拡散係数が 小さい金属を用いた第 2 の層は、 A 1 もしく は A 1 を主体とし た.金属の第 1 の層の A 1 原子の基板に対する水平方向への粒界 拡散に対する抑制効果はあまり期待できないが、 フィルタの耐 電力性および特性は安定していた。 これらの結果から A 1 もし く は A 1 を主体とした金属の第 1 の層からの A 1 原子の基板に 対し水平方向への粒界拡散を抑制する拡散抑制層は、 第 1 の層 の側壁を完全に覆う ことが効果的である。 その拡散抑制層を形 成する方法は、 パターン形成をスパッ夕エッチングにより行い 更に下地層を設けるかもしくは基板を削り段部を形成すること が有効である。 またこの方法によって電極側壁に形成された拡 散抑制層は自然と A 1 もしくは A 1 を主体とした第 1 の金属層 と下地層もしくは基板の材料との合金層もしく は積層膜となり 耐マイダレ一ショ ン性がよい。 * The crystal grain size indicates the crystal grain size of the first layer. <Table 8> As can be seen from Table 8, the estimated lifetime of the SAW filter using the electrodes of Examples 13 to 18 was 50,000 hours as a guide. Compared to the comparison example? The filter of ~ 10 was less than 50,000 hours. The crystal grain size of the Al Mg layer of the first layer of each electrode film was almost the same as the layer thickness of each electrode. In Examples 13 and 14, and Comparative Example, after the test, it was observed that side hillocks were formed on the side walls of the comb-shaped electrodes other than the portions where the electrodes were deteriorated. The side hillocks were generated between the substrate and the diffusion preventing layer for preventing the A1 atom in the first metal layer provided on the side wall of the electrode from diffusing at the grain boundary. In Examples 15 to 18, no electrode deterioration was observed except for the portions where the electrodes were deteriorated. Therefore, since the diffusion barrier layer partially covers the underlayer or part of the side wall of the substrate step and completely covers the first metal layer, the grain boundary of A 1 atoms on the electrode side wall is formed. It is considered that diffusion was suppressed. Also, the filter using Cu for the second metal layer has improved power durability compared to the filter using Ti. Cu is the self-diffusion coefficient of A 1 Since Cu is a metal with a larger diffusion coefficient for A 1 than in the above, Cu diffuses into the grain boundaries of the second layer in the heating step during the device fabrication process, and the grain boundary diffusion path of A 1 atoms is changed by Cu atoms. Will be blocked. Therefore, it is considered that the grain boundary diffusion of A 1 atoms in the horizontal direction in the substrate was also suppressed. Cu not only easily diffuses into A 1, but also easily forms an intermetallic compound with A 1, and the second layer has a large grain size. As a result, the effect of suppressing A1 atoms greatly changes depending on the temperature change during the process and the thickness of the Cu layer, etc., and the resistance value of the electrode film is also likely to increase. There were many. Therefore, the second layer using a metal with a larger diffusion coefficient for A1 than the self-diffusion coefficient for A1 has a large effect on power durability, but each filter has an optimum value for the layer thickness, and process control In particular, it is necessary to control the heating process. In particular, when the thickness of the first layer of the metal mainly composed of A 1 or A 1 is less than 200 nm, the thickness of the second layer of Cu is less than 20 nm, preferably It is desirable that the thickness be 10 nm or less. Further, the heating step in the process is desirably 250 ° C or less, preferably 200 ° C or less. The second layer using a metal having a smaller diffusion coefficient for A1 than the self-diffusion coefficient for A1 was mainly composed of A1 or A1. Although the effect of suppressing grain boundary diffusion in the horizontal direction is not so expected, the power durability and characteristics of the filter were stable. From these results, the diffusion suppressing layer that suppresses the grain boundary diffusion of A 1 atoms from the first layer of A 1 or the metal mainly composed of A 1 to the substrate in the horizontal direction is the same as that of the first layer. It is effective to completely cover the side wall. The method of forming the diffusion suppression layer is to form the pattern by sputtering etching and to provide an underlayer or to cut the substrate to form a step. Is valid. In addition, the diffusion suppressing layer formed on the electrode side wall by this method naturally becomes an alloy layer or a laminated film of A 1 or a first metal layer mainly composed of A 1 and a base layer or a substrate material. Good oneness.
(実施の形態 5 ) , (Embodiment 5),
図 2 4〜図 2 6 は実施の形態 5 における実施例 1 9〜 2 3 の弹 性表面波 ( S AW) フィル夕の要部である電極の断面図である。 図 2 7は比較例 1 1 の S AWフィルタの電極の断面図である。 実施例 1 9, 2 0 の電極 3 1 2は図 2 4に示すように、 基板 1 の段部 7 の頂部に形成されており、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層の A 1 原子の基板に対し垂直方向 の粒界拡散を防止する第 2 の層 5 と、 電極 3 1 2の膜厚を調節 する第 3 の層 6 とを有する。 また電極パターン形成後に、' 実施 例 1 9では厚さ 1 0 O n mの窒化珪素、 実施例 2 0では厚さ 1 0 0 n mの酸化珪素による保護膜 9が電極 3 1 2上に形成され る。 電子顕微鏡による観察の結果、 図 2 4に示されているよう に保護膜は基板段部の櫛型電極と電極間の基板の底部との境界 部分で十分に膜が形成されておらず不連続になつていた。 FIGS. 24 to 26 are cross-sectional views of an electrode which is a main part of the surface acoustic wave (SAW) filter of Examples 19 to 23 in the fifth embodiment. FIG. 27 is a cross-sectional view of an electrode of the SAW filter of Comparative Example 11. The electrodes 3 12 of Examples 19 and 20 are formed on the top of the step 7 of the substrate 1 as shown in FIG. 24, and the first metal layer 4 having a thickness of 200 nm A second layer 5 for preventing grain boundary diffusion of A 1 atoms of the first metal layer in a direction perpendicular to the substrate; and a third layer 6 for adjusting the thickness of the electrode 312. Further, after the electrode pattern is formed, a protective film 9 made of silicon nitride having a thickness of 100 nm in Example 19 and silicon oxide having a thickness of 100 nm in Example 20 is formed on the electrode 312. . As a result of observation with an electron microscope, as shown in Fig. 24, the protective film was not sufficiently formed at the boundary between the comb-shaped electrode on the substrate step and the bottom of the substrate between the electrodes, and was discontinuous. Had become.
実施例 2 1 , 2 2 の電極 3 2 2は図 2 5 に示すように、 基板 1から順に積層された下地層 3 と、 膜厚が 2 0 0 n.mの第 1 の 金属層 4 と、 第 1 の金属層の A 1 原子の基板に対し垂直方向の 粒界拡散を防止する第 2 の層 5 と、 電極 3 2 2 の膜厚を調節す る第 3の層 6 とを有する。 電極 3 2 2形成後、 実施例 2 1 では 厚さ 1 0 O n mの窒化珪素、 実施例 2 2では厚さ 1 0 O n mの 酸化珪素による保護膜 9が電極 3 2 2上に形成される。 電子顕 微鏡による観察では、 図 2 5 に示されているように保護膜 9 は 下地層 3 と基板 1 の底部との境界部分で十分に膜が形成されて おらず不連続になっていた。 As shown in FIG. 25, the electrodes 32 2 of Examples 21 and 22 each have an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, The first metal layer includes a second layer 5 for preventing grain boundary diffusion of A 1 atoms in a direction perpendicular to the substrate, and a third layer 6 for adjusting the thickness of the electrode 3 22. After the formation of the electrode 32 2, a protective film 9 made of silicon nitride having a thickness of 10 O nm in Example 21 and a silicon oxide having a thickness of 10 O nm in Example 22 is formed on the electrode 3 22. . In observation with an electron microscope, the protective film 9 was The film was not sufficiently formed at the boundary between the underlayer 3 and the bottom of the substrate 1 and was discontinuous.
実施例 2 3 の電極 3 3 2 は図 2 6 に示すよう に、 基板 1 から 順に積層された下地層 3 と、 膜厚が 2 0 0 n mの第 1 の金属層 4 と、 第 1 の金属層の A 1 原子の基板に対し垂直方向の粒界拡 散を防止する第 2 の層 5 と、 電極 3 3 2 の膜厚を調節する第 3 の層 6 とを有する。 電極 3 3 2 の形成後、 厚さ 5 0 n mの窒化 珪素 9 a と厚さ 5 0 n mの酸化珪素 9 bが電極 3 3 2上に形成 される。 電子顕微鏡による観察では、 図 2 6 に示されているよ うに保護膜 9 a と 9 bは下地層 3 と基板 1 の底部との境界部分 で十分に膜が形成されておらず不連続になっていた。  As shown in FIG. 26, the electrode 33 of Example 23 has an underlayer 3 laminated in order from the substrate 1, a first metal layer 4 having a thickness of 200 nm, and a first metal layer 4. It has a second layer 5 for preventing grain boundary diffusion in the direction perpendicular to the substrate of A 1 atoms of the layer, and a third layer 6 for adjusting the thickness of the electrode 33 2. After the formation of the electrode 3332, a 50-nm-thick silicon nitride 9a and a 50-nm-thick silicon oxide 9b are formed on the electrode 3332. According to observation with an electron microscope, as shown in Fig. 26, the protective films 9a and 9b are not sufficiently formed at the boundary between the underlayer 3 and the bottom of the substrate 1 and become discontinuous. I was
比較例 1 1 の電極 3 4 2 は図 2 7 に示すように、 膜厚が 2 0 O n mの第 1 の金属層 4 と、 第 1 の金属層の A 1 原子の基板に 対し垂直方向の粒界拡散を防止する第 2 の層 5 と、 電極 3 4 2 の膜厚を調節する第 3 の層 6 とを有する。 電極の形成後、 厚さ 1 0 0 n mの窒化珪素による保護膜 9が電極 3 4 2 上に形成さ れる。 電子顕微鏡による観察では、 図 2 7 に示されているよう に保護膜 9 は電極 3 4 2 と基板 1 の底部との境界部分で十分に 形成されておらず不連続になっていた。  As shown in FIG. 27, the electrode 3 42 of Comparative Example 11 has a first metal layer 4 having a thickness of 20 O nm and the first metal layer A 1 in a direction perpendicular to the substrate. It has a second layer 5 for preventing grain boundary diffusion, and a third layer 6 for adjusting the thickness of the electrode 34 2. After the formation of the electrode, a protective film 9 made of silicon nitride having a thickness of 100 nm is formed on the electrode 342. Observation with an electron microscope showed that the protective film 9 was not sufficiently formed at the boundary between the electrode 342 and the bottom of the substrate 1 and was discontinuous, as shown in FIG.
実施例 1 9〜 2 3および比較例 1 1 の電極の各層の材料およ び膜厚、 成膜方法を表 9 .に示す。 (表 9 ) Table 9 shows the materials, film thicknesses, and film forming methods of each layer of the electrodes of Examples 19 to 23 and Comparative Example 11. (Table 9)
Figure imgf000026_0002
Figure imgf000026_0001
表 9 に示すように、 実施の形態 5 における A 1 もしく は A 1 を主体と した金属としては A 1 M g合金をもちいた。 下地層 3 および第 2 の層 5 については T i を用いた。 これらの層はィォ ンビームスパッ夕および D Cマグネ トロンスパッ夕のいずれか によ り成膜した。 これらの電極膜の成膜後の X線回折の 0 — 2 0 法によると、 各電極の配向性について、 実施例 1 9 2 3 比較例 1 1 の何れも A l M g層については A 1 の ( 1 1 1 ) 面 のピークのみ観測され、 A 1 合金層は ( 1 1 1 ) 軸が基板に対 し垂直方向に配向した配向膜となっていることが確認された。 ただし全てのサンプルについて A 1 M g層が第 1 と第 3 の層の 2 層あるため、 第 1 の層もしく は下地層および第 1 の層のサン プルを別途同一成膜条件で作成しその配向性を確認した。 実施 の形態 5 において用いたフィル夕の構成は実施の形態.1 と同じ である。 設計膜厚 4 8 0 n mの A 1 電極を有するときに中心周 波数がほぼ 8 0 0 M H z のフィルタを用いた。 電極はフ ォ ト リ ソグラフィ一およびドライエッチング法によって形成した。 電 極の形成後に保護膜を形成し、 その後電極の電気的接続を行う 部分の保護膜をエッチングにより取り除く。 そして共振子をァ ルミナ基板上にフ ェイ スダウン実装した。 実施の形態 5 におい てはフィルタは気密封止されていない。 実施の形態 5 において も、 フィル夕の耐電力性を実施の形態 1 と同様に評価した。 フ ィルタは保護膜が形成されているものの、 表面が大気にされさ れた状況で評価された。 表 9 に示した各電極を有する各 S A W フィルタの推定寿命を表 1 0 に示す。 表 1 0 には各電極膜の第 1 の層の A 1 M g層の結晶粒径もあわせて示す。
Figure imgf000026_0002
Figure imgf000026_0001
As shown in Table 9, A 1 Mg alloy was used as the metal mainly composed of A 1 or A 1 in the fifth embodiment. For the underlayer 3 and the second layer 5, T i was used. These layers were formed by either ion beam sputtering or DC magnetron sputtering. According to the 0-20 method of X-ray diffraction after the formation of these electrode films, the orientation of each electrode was as follows. Only the peak of the (111) plane was observed, confirming that the A1 alloy layer was an oriented film in which the (111) axis was oriented perpendicular to the substrate. However, since all samples have two A1Mg layers, the first and third layers, samples of the first layer or the underlayer and the first layer were separately prepared under the same deposition conditions. The orientation was confirmed. The configuration of the filter used in the fifth embodiment is the same as that of the first embodiment. When the designed film thickness of 480 nm A1 electrode is A filter with a wave number of approximately 800 MHz was used. The electrodes were formed by photolithography and dry etching. After the formation of the electrode, a protective film is formed, and then the protective film in a portion where the electrode is electrically connected is removed by etching. Then, the resonator was face-down mounted on the alumina board. In the fifth embodiment, the filter is not hermetically sealed. Also in the fifth embodiment, the power durability of the filter was evaluated in the same manner as in the first embodiment. The filter was evaluated under the condition that the surface was exposed to the air, although the protective film was formed. Table 10 shows the estimated lifetime of each SAW filter having each electrode shown in Table 9. Table 10 also shows the crystal grain size of the A1Mg layer as the first layer of each electrode film.
(表 1 0 )  (Table 10)
Figure imgf000027_0001
Figure imgf000027_0001
※結晶粒径は第 1の層の結晶粒径を示す。 表 1 0から分かるように、 実施例 1 3 〜 1 8 の電極を用いた S A Wフィルタは、 目安とする推定寿命 5万時間を越えている のに対し、 比較例 7 〜 1 0 のフィル夕においては 5万時間以下 であった。 また各電極膜の第 1 の層の A l M g層の結晶粒径は どの電極もほぼ層厚と同じ程度であった。 実施例 1 9 と 2 0 .と を比較、 さ らに実施例 2 1 と 2 2 を比較した場合、 窒化珪素の 保護膜を有するフィルタは酸化珪素の保護膜を有するフィルタ に比べ耐電力性が向上することが分かる。 窒化珪素の保護膜で はその形成前に比べ形成後のフィル夕の電気的特性に若干の劣 化が観察された。 酸化珪素の保護膜ではその形成前後において フィル夕の電気的特性に変化はなかった。 窒化珪素と酸化珪素 と積層した保護膜を有する実施例 2 3 のフィルタについても保 護膜形成前後において電気的特性に変化はなく、 また耐電力性 についても窒化珪素を単独で用いた場合と同様な向上が見られ た。 比較例 1 1 のフィル夕は実施 4の実施例 1 3 とほぼ同じ電 極構成を有して耐電力性に優れた構造であるにもかかわらず推 定寿命は 3 2 0時間と短い。 これは実施の形態 5 においては気 密封止をしていなかつたためであると考えられる。 実施例 1 9 〜 2 3 のフィルタについては気密封止を行ったものとほぼ同等 な耐電力性を示している。 このことから、 比較例 1 1 のフィル タは A 1 もしく は A 1 を主体とした金属の第 1 の層が完全に保 護膜に覆われずに一部が露出していることが原因で寿命が短い と考えられる。 保護膜の膜厚が薄い電極の電極間では、 電極と 基板の底部との境界において図 2 5 〜 2 7 に示したような保護 膜の不連続部分が形成されやすい。 不連続部分が形成された場 合、 実施の形態 5 のように基板に段部を設けるもしく は耐湿性 に優れた金属の下地層を用いることがフィル夕の寿命を延ばす のに有効であることがわかる。 . ' * The crystal grain size indicates the crystal grain size of the first layer. As can be seen from Table 10, the SAW filters using the electrodes of Examples 13 to 18 exceeded the estimated life expectancy of 50,000 hours, while the filters of Comparative Examples 7 to 10 used the filters. Was less than 50,000 hours. The crystal grain size of the Al Mg layer of the first layer of each electrode film was almost the same as the layer thickness of each electrode. When Examples 19 and 20 were compared with each other and Examples 21 and 22 were compared, the filter having the protective film of silicon nitride was the same as the filter having the protective film of silicon oxide. It can be seen that the power durability is improved as compared with. With the silicon nitride protective film, a slight deterioration in the electrical characteristics of the film after formation was observed as compared to before the formation. There was no change in the electrical characteristics of the silicon oxide protective film before and after its formation. In the filter of Example 23 having a protective film laminated with silicon nitride and silicon oxide, the electrical characteristics did not change before and after the protective film was formed, and the power durability was the same as when silicon nitride was used alone. Significant improvement was seen. Although the filter of Comparative Example 11 has almost the same electrode configuration as that of Example 13 of Example 4, and has a structure with excellent power durability, the estimated life is as short as 320 hours. This is considered to be because the hermetic sealing was not performed in the fifth embodiment. The filters of Examples 19 to 23 have almost the same power durability as those of the filters hermetically sealed. From this, the filter of Comparative Example 11 was caused by the fact that the first layer of the metal mainly composed of A1 or A1 was not completely covered with the protective film but was partially exposed. It is considered that the life is short. Discontinuous portions of the protective film as shown in FIGS. 25 to 27 are likely to be formed at the boundary between the electrode and the bottom of the substrate between the electrodes having a thin protective film. If a discontinuous portion is formed, providing a step on the substrate as in Embodiment 5 or using a metal underlayer with excellent moisture resistance is effective in extending the life of the filter. You can see that. '
保護膜は電極の A 1 原子のマイダレ一ショ ンにより生じるヒ ロックの発生を抑制し、 耐電力性を改善するとともに、 電極間 のショートを防止しかつ耐湿性を向上させる。  The protective film suppresses the generation of hillocks caused by the A 1 atom middleing of the electrode, improves power durability, prevents short-circuiting between the electrodes, and improves moisture resistance.
なお実施の形態 5 においては耐電力性と保護膜による耐湿性 の両立を目的とする電極構造を説明した。 基板に段部を設ける もしく は下地層として耐湿性に優れた下地層をもうけた電極に 対し保護膜を形成することはフィル夕の長寿命化に効果的であ る。 In the fifth embodiment, the electrode structure for the purpose of achieving both the power resistance and the moisture resistance by the protective film has been described. Providing a step on the substrate or an electrode with an underlayer with excellent moisture resistance as the underlayer On the other hand, forming a protective film is effective in extending the life of the film.
実施の形態 1 〜 5はあく までもある特定のフィルタで電極の 構造を説明した。 それぞれの膜構成や膜厚、 材料等はこれに限 定されるものではない。 特に A 1 もしく は A 1 を主体とする層 の層厚は、 S A Wフィルタの電極の幅 Lの対して 0 . O I L以 下にすることが望ましい。 これにより十分に導体粉が微細化さ れ弹性表面波の伝播によって電極に受ける応力を十分に分散で きる。 産業上の利用可能性  In the first to fifth embodiments, the structure of the electrode is described using a specific filter. Each film configuration, film thickness, material, etc. are not limited to these. In particular, it is desirable that the thickness of the layer mainly composed of A 1 or A 1 be equal to or less than 0.00IL with respect to the width L of the electrode of the SAW filter. As a result, the conductor powder is sufficiently miniaturized, and the stress applied to the electrode due to the propagation of the surface acoustic wave can be sufficiently dispersed. Industrial applicability
本発明は弾性表面波の伝搬に伴う応力に対して耐性の向上し た弾性表面波フィルタとその製造方法を提供する。  The present invention provides a surface acoustic wave filter having improved resistance to stress caused by the propagation of surface acoustic waves, and a method for manufacturing the same.

Claims

請求の範囲 The scope of the claims
1 . 基板と、  1. The substrate and
前記基板上に設けられ、 前記基板に対して一定方向に配 向した配向膜で膜厚が 2 0 0 n m以下の第 1 の層を有する電極 と  An electrode provided on the substrate and having a first layer having a thickness of 200 nm or less, which is an alignment film oriented in a certain direction with respect to the substrate;
を備えた弾性表面波 ( S AW) フィルタ。 Surface acoustic wave (S AW) filter with
2 . 前記第 1 の層は A 1 を含む金属からなる、 請求の範囲第 1 項に記載の S AWフィルタ。 2. The S AW filter according to claim 1, wherein the first layer is made of a metal containing A1.
3 . A 1 を含む前記金属は A 1 単体または A 1 に M g と Z r と C u と S c と T i と T aのうちの少なく とも 1つを含む合金で ある、 請求の範囲第 2項に記載の S AWフィルタ。 3. The metal containing A1 is A1 alone or an alloy in which A1 contains at least one of Mg, Zr, Cu, Sc, Ti, and Ta. S AW filter according to paragraph 2.
4. 前記電極は前記第 1 の層上に設けられた、 前記第 1 の層の 粒界拡散を防止する第 2 の層をさ らに有する、 請求の範囲第 2 または 3項に記載の S A Wフィルタ。 4. The SAW according to claim 2, wherein the electrode further has a second layer provided on the first layer, for preventing grain boundary diffusion of the first layer. filter.
5. 前記電極は前記第 2の層上に設けられた、 前記電極の膜厚 を調整するための第 3 の層をさ らに有する、 請求の範囲第 4項 に記載の S A Wフィルタ。 5. The SAW filter according to claim 4, wherein the electrode further has a third layer provided on the second layer for adjusting the thickness of the electrode.
6 . 前記電極上に設けられた粒界拡散防止層をさ らに備えた、 請求の範囲第 2〜 5項のいずれかに記載の S AWフィルタ。 6. The SAW filter according to any one of claims 2 to 5, further comprising a grain boundary diffusion preventing layer provided on the electrode.
7 . 前記粒界拡散防止層は、 A 1 の自己拡散係数より も A 1 に 対する拡散係数が小さい金属を含む材料からなる、 請求の範囲 第 6項に記載の S A Wフィルタ。 7. The grain boundary diffusion preventing layer is made of a material containing a metal having a smaller diffusion coefficient for A 1 than the self diffusion coefficient of A 1. SAW filter according to clause 6.
8 . A 1 の自己拡散係数より も A 1 に対する拡散係数が小さい 前記金属は T i と T a と Wと C r のうちの 1 つである、 請求の 範囲第 7項に記載の S AWフィルタ。 8. The S AW filter according to claim 7, wherein the metal having a smaller diffusion coefficient for A1 than the self-diffusion coefficient of A1 is one of Ti, Ta, W, and Cr. .
• 9 . 前記粒界拡散防止層は、 A 1 の自己拡散係数より も A 1 に 対する拡散係数が大きい金属を含む材料からなる、 請求の範囲 第 6項に記載の S AWフィルタ。 9. The S AW filter according to claim 6, wherein the grain boundary diffusion preventing layer is made of a material containing a metal having a larger diffusion coefficient for A 1 than the self diffusion coefficient of A 1.
1 0. A 1 の自己拡散係数よ り も A 1 に対する拡散係数が大き い前記金属は C r と P d と M gのうちの 1 つである、 請求の範 囲第 9項に記載の S AWフィル夕。 10. The S according to claim 9, wherein the metal having a larger diffusion coefficient for A 1 than the self-diffusion coefficient of A 1 is one of Cr, Pd, and Mg. AW Phil evening.
1 1 . 前記電極の側壁に設けられた、 A 1 原子拡散防止層をさ らに備えた、 請求の範囲第 2〜 1 0項のいずれかに記載の S A Wフィルタ。 11. The SAW filter according to any one of claims 2 to 10, further comprising an A1 atomic diffusion preventing layer provided on a side wall of the electrode.
1 2. 前記 A 1 原子拡散防止層は前記第 1 の層の側壁を覆う、 請求の範囲第 1 1項に記載の S AWフィル夕。 12. The SAW filter according to claim 11, wherein the A 1 atomic diffusion preventing layer covers a side wall of the first layer.
1 3. 前記電極の一部を少なく とも覆う保護膜をさらに備えた、 請求の範囲第 1〜 1 2項のいずれかに記載の S AWフィルタ。 1 4. 前記保護膜が窒化珪素からなる、 請求の範囲第 1 3項に 記載の S AWフィルタ。 1 3. The SAW filter according to any one of claims 1 to 12, further comprising a protective film that covers at least a part of the electrode. 14. The SAW filter according to claim 13, wherein said protective film is made of silicon nitride.
1 5 . 前記保護膜が窒化珪素と酸化珪素の積層膜からなる、 請 求の範囲第 1 3項に記載の S AWフィル夕。 15. The SAW filter according to claim 13, wherein said protective film comprises a laminated film of silicon nitride and silicon oxide.
1 6. 前記基板は段部を有し、 1 6. The substrate has a step,
前記電極は前記段部の頂部に設けられた、 請求の範囲第 The electrode is provided on a top of the step,
1〜 1 0項のいずれかに記載の S AWフィルタ。 S AW filter according to any one of Items 1 to 10.
1 7 . 前記電極の側壁に設けられた、 A 1 原子拡散防止層をさ らに備えた、 請求の範囲第 1 6項に記載の S AWフィルタ。 17. The SAW filter according to claim 16, further comprising an A1 atom diffusion preventing layer provided on a side wall of said electrode.
1 8 . 前記 A 1 原子拡散防止層は前記第 1 の層の側壁を覆う、 請求の範囲第 1 7項に記載の S AWフィルタ。 18. The SAW filter according to claim 17, wherein the A1 atomic diffusion preventing layer covers a side wall of the first layer.
1 9. 前記 A 1 原子拡散防止層は前記段部の側壁の一部を少な く とも覆う、 請求の範囲第 1 8項に記載の S AWフィルタ。 19. The S AW filter according to claim 18, wherein said A 1 atomic diffusion preventing layer covers at least a part of a side wall of said stepped portion.
2 0. 前記電極の一部を少なく とも覆う保護膜をさらに備えた、 請求の範囲第 1 6〜 1 9項のいずれかに記載の S AWフィルタ。 2 1 . 前記保護膜は前記段部の側壁の一部を少なく とも覆う、 請求の範囲第 2 0項に記載の S AWフィル夕.。 , . 20. The SAW filter according to any one of claims 16 to 19, further comprising a protective film that covers at least a part of the electrode. 21. The SAW filter according to claim 20, wherein said protective film covers at least a part of a side wall of said step portion. ,.
2 2 . 前記保護膜が窒化珪素からなる、 請求の範囲第 2 0 また は 2 1項に記載の S A Wフィルタ。 22. The S AW filter according to claim 20 or 21, wherein said protective film is made of silicon nitride.
2 3 . 前記保護膜が窒化珪素と酸化珪素の積層膜からなる、 請 求の範囲第 2 0 または 2 1項に記載の S AWフィルタ。 23. The SAW filter according to claim 20, wherein said protective film comprises a laminated film of silicon nitride and silicon oxide.
2 4. 前記電極は前記基板と前記第 1 の層の間に設けられた下 地層をさ らに有する、 請求の範囲第 1 〜 1 0項のいずれかに記 載の S AWフィルタ。 2 5. 前記電極の側壁に設けられた、 A 1 原子拡散防止層をさ らに備えた、 請求の範囲第 2 4項に記載の S AWフィルタ。 24. The SAW filter according to any one of claims 1 to 10, wherein the electrode further has an underlayer provided between the substrate and the first layer. 25. The S AW filter according to claim 24, further comprising an A 1 atomic diffusion preventing layer provided on a side wall of said electrode.
2 6. 前記 A 1 原子拡散防止層は前記第 1 の層の側壁を覆う、 請求の範囲第 2 5項に記載の S AWフィル夕。 26. The SAW filter according to claim 25, wherein said A 1 atomic diffusion preventing layer covers a side wall of said first layer.
2 7. 前記 A 1 原子拡散防止層は前記下地層の側壁の一部を少 なく とも覆う、 請求の範囲第 2 6項に記載の S AWフィル夕。 27. The SAW filter according to claim 26, wherein said A1 atomic diffusion preventing layer covers at least a part of a side wall of said underlayer.
2 8. 前記電極の一部を少なく とも覆う保護膜をさ らに備えた、 請求の範囲第 2 4〜 2 7項のいずれかに記載の S A Wフィルタ。 28. The Saw filter according to any one of claims 24 to 27, further comprising a protective film that covers at least a part of the electrode.
2 9. 前記保護膜は前記下地層の側壁の一部を少なく とも覆う、 請求の範囲第 2 8項に記載の S AWフィルタ。 3 0. 前記保護膜が窒化珪素からなる、 請求の範囲第 2 8 また は 2 9項に記載の S A Wフィルタ。 29. The SAW filter according to claim 28, wherein said protective film covers at least a part of a side wall of said base layer. 30. The SAW filter according to claim 28, wherein said protective film is made of silicon nitride.
3 1 . 前記保護膜が窒化珪素と酸化珪素の積層膜からなる、 請 求の範囲第 2 8または 2 9項に記載の S AWフィル夕。 31. The SAW filter according to claim 28, wherein said protective film comprises a laminated film of silicon nitride and silicon oxide.
3 2. A 1 を含む金属層を有する電極を基板上に形成する工程 と、 前記電極と同時に A 1 拡散防止層の少なく とも一部をス パッ夕エッチングにより前記電極の側壁に形成する工程と を含む、 弾性表面波フィル夕の製造方法。 3 2. forming an electrode having a metal layer containing A 1 on the substrate; Forming at least a part of the A 1 diffusion prevention layer at the same time as the electrode on the side wall of the electrode by sputtering etching.
PCT/JP2001/009303 2000-10-23 2001-10-23 Surface acoustic wave filter WO2002035702A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/168,284 US6909341B2 (en) 2000-10-23 2001-10-23 Surface acoustic wave filter utilizing a layer for preventing grain boundary diffusion
JP2002538564A JP4059080B2 (en) 2000-10-23 2001-10-23 Surface acoustic wave filter
EP01976828A EP1330026A4 (en) 2000-10-23 2001-10-23 Surface acoustic wave filter

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000322322 2000-10-23
JP2000-322322 2000-10-23
JP2000-322321 2000-10-23
JP2000322321 2000-10-23

Publications (1)

Publication Number Publication Date
WO2002035702A1 true WO2002035702A1 (en) 2002-05-02

Family

ID=26602573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009303 WO2002035702A1 (en) 2000-10-23 2001-10-23 Surface acoustic wave filter

Country Status (6)

Country Link
US (1) US6909341B2 (en)
EP (2) EP2458735A3 (en)
JP (1) JP4059080B2 (en)
KR (1) KR100791708B1 (en)
CN (2) CN1551496A (en)
WO (1) WO2002035702A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499019A1 (en) * 2003-07-17 2005-01-19 TDK Corporation Surface acoustic wave element, surface acoustic wave device, surface acoustic wave duplexer, and method of manufacturing surface acoustic wave element
WO2005083881A1 (en) * 2004-03-02 2005-09-09 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7504760B2 (en) 2004-10-08 2009-03-17 Alps Electric Co., Ltd. Surface acoustic wave element and method of manufacturing the same
WO2020158673A1 (en) * 2019-01-31 2020-08-06 株式会社村田製作所 Elastic wave device and multiplexer
WO2023136293A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Elastic wave device

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7148610B2 (en) * 2002-02-01 2006-12-12 Oc Oerlikon Balzers Ag Surface acoustic wave device having improved performance and method of making the device
JP2005117151A (en) * 2003-10-03 2005-04-28 Murata Mfg Co Ltd Method of manufacturing surface acoustic wave device and surface acoustic wave device
US7795788B2 (en) * 2004-10-26 2010-09-14 Kyocera Corporation Surface acoustic wave element and communication device
DE102004058016B4 (en) 2004-12-01 2014-10-09 Epcos Ag High-bandwidth surface acoustic wave device
GB0512836D0 (en) * 2005-06-21 2005-08-03 Jha Animesh Inert alloy anodes for aluminium electrolysis cell using molten salt bath confidential
DE102009021508B4 (en) * 2009-05-15 2014-05-22 Epcos Ag Electrode with improved power resistance
DE102012202727B4 (en) * 2012-02-22 2015-07-02 Vectron International Gmbh Method for connecting a first electronic component to a second component
US9331667B2 (en) * 2014-07-21 2016-05-03 Triquint Semiconductor, Inc. Methods, systems, and apparatuses for temperature compensated surface acoustic wave device
US10305448B2 (en) * 2014-07-28 2019-05-28 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave elements, antenna duplexers, modules and electronic devices using the same
US9634644B2 (en) 2014-07-28 2017-04-25 Skyworks Filter Solutions Japan Co., Ltd. Acoustic wave elements and antenna duplexers, and modules and electronic devices using same
US9973169B2 (en) * 2015-10-01 2018-05-15 Qorvo Us, Inc. Surface acoustic wave filter with a cap layer for improved reliability
CN111641399A (en) * 2020-06-01 2020-09-08 中国电子科技集团公司第二十六研究所 Is provided with SiO2RF filter of passivation layer
CN114592172A (en) * 2022-03-10 2022-06-07 广东广纳芯科技有限公司 Interdigital electrode of surface acoustic wave filter, preparation method thereof and surface acoustic wave filter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122961A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Surface acoustic wave element and its manufacture
JPH10256862A (en) * 1997-03-14 1998-09-25 Tdk Corp Surface acoustic wave device
WO1999005788A1 (en) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Surface acoustic wave device and method of producing the same

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62272610A (en) * 1986-05-21 1987-11-26 Hitachi Ltd Elastic surface wave element
JP2936228B2 (en) 1989-06-13 1999-08-23 株式会社村田製作所 Surface acoustic wave filter
US5162690A (en) * 1989-04-14 1992-11-10 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US5923231A (en) * 1994-08-05 1999-07-13 Kinseki Limited Surface acoustic wave device with an electrode insulating film and method for fabricating the same
US5494854A (en) * 1994-08-17 1996-02-27 Texas Instruments Incorporated Enhancement in throughput and planarity during CMP using a dielectric stack containing HDP-SiO2 films
JPH0897671A (en) * 1994-09-27 1996-04-12 Oki Electric Ind Co Ltd Surface acoustic wave device
JPH0969748A (en) * 1995-09-01 1997-03-11 Matsushita Electric Ind Co Ltd Saw device and its manufacture
JPH09172351A (en) * 1995-10-16 1997-06-30 Japan Energy Corp Surface acoustic wave device and its manufacture
JPH09223944A (en) * 1995-12-13 1997-08-26 Fujitsu Ltd Surface acoustic wave element and its manufacture
JPH09199976A (en) * 1996-01-18 1997-07-31 Hitachi Ltd Surface acoustic wave device
JPH10247835A (en) * 1997-03-03 1998-09-14 Kokusai Electric Co Ltd Love wave-type surface acoustic wave device
WO1999016168A1 (en) * 1997-09-22 1999-04-01 Tdk Corporation Surface acoustic wave apparatus and method of production thereof
JP3659455B2 (en) * 1997-12-01 2005-06-15 京セラ株式会社 Surface acoustic wave device
DE19758195C2 (en) * 1997-12-30 2000-05-18 Siemens Ag Surface wave (SAW) component on in particular lithium tantalate or niobate substrate
CN1599243A (en) * 1998-04-21 2005-03-23 松下电器产业株式会社 Surface acoustic wave device and production method thereof and mobile communication equipment using it
US6259185B1 (en) * 1998-12-02 2001-07-10 Cts Corporation Metallization for high power handling in a surface acoustic wave device and method for providing same
JP3846221B2 (en) * 2000-07-14 2006-11-15 株式会社村田製作所 Surface acoustic wave device
JP3521864B2 (en) * 2000-10-26 2004-04-26 株式会社村田製作所 Surface acoustic wave device
JP3445971B2 (en) * 2000-12-14 2003-09-16 富士通株式会社 Surface acoustic wave device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07122961A (en) * 1993-10-27 1995-05-12 Fujitsu Ltd Surface acoustic wave element and its manufacture
JPH10256862A (en) * 1997-03-14 1998-09-25 Tdk Corp Surface acoustic wave device
WO1999005788A1 (en) * 1997-07-28 1999-02-04 Kabushiki Kaisha Toshiba Surface acoustic wave device and method of producing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1499019A1 (en) * 2003-07-17 2005-01-19 TDK Corporation Surface acoustic wave element, surface acoustic wave device, surface acoustic wave duplexer, and method of manufacturing surface acoustic wave element
US7352114B2 (en) 2003-07-17 2008-04-01 Tdk Corporation Surface acoustic wave element, surface acoustic wave device, surface acoustic wave duplexer, and method of manufacturing surface acoustic wave element
WO2005083881A1 (en) * 2004-03-02 2005-09-09 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7327071B2 (en) 2004-03-02 2008-02-05 Murata Manufacturing Co., Ltd. Surface acoustic wave device
US7504760B2 (en) 2004-10-08 2009-03-17 Alps Electric Co., Ltd. Surface acoustic wave element and method of manufacturing the same
WO2020158673A1 (en) * 2019-01-31 2020-08-06 株式会社村田製作所 Elastic wave device and multiplexer
JPWO2020158673A1 (en) * 2019-01-31 2021-11-25 株式会社村田製作所 Elastic wave devices and multiplexers
JP7168009B2 (en) 2019-01-31 2022-11-09 株式会社村田製作所 Acoustic wave devices and multiplexers
US11936359B2 (en) 2019-01-31 2024-03-19 Murata Manufacturing Co., Ltd. Acoustic wave device and multiplexer
WO2023136293A1 (en) * 2022-01-13 2023-07-20 株式会社村田製作所 Elastic wave device

Also Published As

Publication number Publication date
EP1330026A4 (en) 2009-02-25
EP1330026A1 (en) 2003-07-23
JP4059080B2 (en) 2008-03-12
JPWO2002035702A1 (en) 2004-03-04
CN1394388A (en) 2003-01-29
US6909341B2 (en) 2005-06-21
KR100791708B1 (en) 2008-01-03
EP2458735A3 (en) 2012-08-29
KR20020062661A (en) 2002-07-26
CN1551496A (en) 2004-12-01
EP2458735A2 (en) 2012-05-30
US20030174028A1 (en) 2003-09-18
CN1190007C (en) 2005-02-16

Similar Documents

Publication Publication Date Title
WO2002035702A1 (en) Surface acoustic wave filter
CN100563100C (en) Surface acoustic wave device
US6297580B1 (en) Surface acoustic wave device and production method thereof and mobile communication equipment using it
US7730596B2 (en) Method for manufacturing a surface acoustic wave device
US6936837B2 (en) Film bulk acoustic resonator
US7602099B2 (en) Surface acoustic wave device and method of manufacturing the same
US7467447B2 (en) Method of manufacturing a SAW device
US6407486B1 (en) Surface acoustic wave device
JP3411908B2 (en) Surface acoustic wave device and method of manufacturing the same
JP2004312657A (en) Thin film bulk acoustics resonator element and its manufacturing method
JPH09223944A (en) Surface acoustic wave element and its manufacture
WO1999016168A1 (en) Surface acoustic wave apparatus and method of production thereof
US9105846B2 (en) Method of manufacturing a boundary acoustic wave device
JP3925366B2 (en) Surface acoustic wave device and manufacturing method thereof
JP2004221622A (en) Piezoelectric resonator, piezoelectric filter, duplexer, communication apparatus, and manufacturing method of piezoelectric resonator
US20120091862A1 (en) Electrode, Microacoustic Component and Production Method for an Electrode
JP2005142629A (en) Surface acoustic wave element and manufacturing method thereof
JP7298994B2 (en) Aluminum nitride films, acoustic wave devices, filters and multiplexers
JP3624535B2 (en) SAW device and manufacturing method thereof
KR20200094995A (en) Bulk-acoustic wave resonator

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2002 538564

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2001976828

Country of ref document: EP

Ref document number: 018031978

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020027008060

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027008060

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10168284

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001976828

Country of ref document: EP