JPH10247835A - Love wave-type surface acoustic wave device - Google Patents
Love wave-type surface acoustic wave deviceInfo
- Publication number
- JPH10247835A JPH10247835A JP6173197A JP6173197A JPH10247835A JP H10247835 A JPH10247835 A JP H10247835A JP 6173197 A JP6173197 A JP 6173197A JP 6173197 A JP6173197 A JP 6173197A JP H10247835 A JPH10247835 A JP H10247835A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- wave
- electrode
- love
- surface acoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、LiNbO3 (ニ
オブ酸リチウム)又はLiTaO3 (タンタル酸リチウ
ム)の圧電単結晶基板を用い、ラブ波型表面波を利用し
た弾性表面波(Surface Acoustic Wave :以下SAWと
略記する)デバイスに関するものである。The present invention relates to the, LiNbO 3 (lithium niobate) or LiTaO 3 using a piezoelectric single crystal substrate (lithium tantalate), surface acoustic wave using a Love wave type surface acoustic wave (Surface Acoustic Wave: (Hereinafter abbreviated as SAW).
【0002】[0002]
【従来の技術】最初にLiNbO3 基板を用いたSAW
デバイスについて述べる。Yカット−X伝搬LiNbO
3 基板を用いたラブ波型SAWは、電気機械結合係数k
2 がレイリー波型のSAWに比べ格段に大きいため、広
帯域な特性が求められる共振子等に応用されている。2. Description of the Related Art First, SAW using a LiNbO 3 substrate
The device will be described. Y cut-X propagation LiNbO
A love wave type SAW using three substrates has an electromechanical coupling coefficient k
2 is much larger than a Rayleigh-wave type SAW, and is therefore applied to resonators and the like that require broadband characteristics.
【0003】LiNbO3 基板上に、質量が大きく表面
波速度が基板より遅い金(Au)の薄膜を付着させるこ
とにより、伝搬減衰の大きい擬似弾性表面波を減衰のな
いラブ波型のSAWに変えることができる。すなわち、
圧電基板上に存在する擬似弾性表面波を、質量が大きく
音速の遅い金(Au)の薄膜を付着させることにより擬
似弾性表面波の音速を低下させ、該基板の遅い横波(4
079m/s)より遅くすることで減衰のないラブ波型
SAWにすることができる。付着させる金の薄膜は圧電
基板上の全面に設ける必要はなく、SAWを励振するた
めのすだれ状電極(IDT電極)のみでもラブ波型のS
AWデバイスが形成される。[0003] By depositing a thin film of gold (Au) having a large mass and a surface wave velocity lower than that of a substrate on a LiNbO 3 substrate, a pseudo-acoustic surface wave having a large propagation attenuation is converted into a love-wave type SAW without attenuation. be able to. That is,
The pseudo acoustic surface wave existing on the piezoelectric substrate is deposited on a thin film of gold (Au) having a large mass and a low acoustic velocity to reduce the acoustic velocity of the pseudo acoustic surface wave.
079 m / s), a love wave type SAW without attenuation can be obtained. The gold thin film to be deposited does not need to be provided on the entire surface of the piezoelectric substrate, and only the interdigital electrode (IDT electrode) for exciting the SAW is formed of a love wave type S-shaped electrode.
An AW device is formed.
【0004】ラブ波型SAWデバイスの代表例として、
SAW共振子について以下説明する。図2(a)は、最
も単純な従来のラブ波型SAW共振子の例を示した平面
図であり、圧電基板1上にIDT電極2のみが設けられ
た構成である。図2(b)は図2(a)のA−A’切断
部端面図であり、IDT電極2の構成を示している。図
2ではIDT電極の対数を3対としているが、これは3
対に限る必要はないことは言うまでもない。また、図2
は説明を簡単にするため、IDT電極2のみが基板上に
設けられたSAWデバイスの例をあげたが、IDT電極
2の両側に反射器を配設した構成としてもよい。As a typical example of a Love wave type SAW device,
The SAW resonator will be described below. FIG. 2A is a plan view showing an example of the simplest conventional Love-wave type SAW resonator, in which only an IDT electrode 2 is provided on a piezoelectric substrate 1. FIG. 2B is a cross-sectional end view taken along the line AA ′ of FIG. 2A and shows the configuration of the IDT electrode 2. In FIG. 2, the number of pairs of IDT electrodes is three.
Needless to say, it is not necessary to limit to pairs. FIG.
Has described an example of a SAW device in which only the IDT electrode 2 is provided on the substrate for the sake of simplicity, but a configuration in which reflectors are provided on both sides of the IDT electrode 2 may be used.
【0005】IDT電極2の材質としては、金(Au)
が用いられることが一般的であるが、金は圧電基板1と
の密着性が悪いため、図2(b)に示したように、通常
Crなどの接着層23が下地として付けられ、その上に
金(Au)24が付けられている。しかし、金は高価で
あるため、原価的にSAWデバイスのコストがアップす
るという問題がある。The material of the IDT electrode 2 is gold (Au).
Although gold is generally used, gold has poor adhesion to the piezoelectric substrate 1, and therefore, as shown in FIG. 2B, an adhesive layer 23 such as Cr is usually provided as a base, and Is provided with gold (Au) 24. However, since gold is expensive, there is a problem that the cost of the SAW device is increased in terms of cost.
【0006】そこで、金のような貴金属の代わりに、T
a(タンタル),W(タングステン),Pd(パラジウ
ム)のような比較的安価で比重の大きい卑金属を用いる
ことでラブ波型の表面波が得られるように構成したもの
がある。Therefore, instead of a noble metal such as gold, T
There is a configuration in which a relatively inexpensive base metal such as a (tantalum), W (tungsten), and Pd (palladium) is used to obtain a Love-wave type surface wave by using a base metal having a large specific gravity.
【0007】次に、LiTaO3 基板を用いたSAWデ
バイスについて述べる。従来、LiTaO3 基板を用い
たラブ波型SAWデバイスには、本発明者らが先に提案
したものがある(特願平4−57231号参照)。Next, a SAW device using a LiTaO 3 substrate will be described. Heretofore, there has been a Love wave type SAW device using a LiTaO 3 substrate which has been previously proposed by the present inventors (see Japanese Patent Application No. 4-57231).
【0008】図3(A)は、LiTaO3 基板の回転角
θに対する表面波速度(位相速度)の特性図であり、同
図(B)に示すように、横軸はY−Z平面内のY軸から
の切断回転角θを示し、表面波はX軸方向に伝搬する。FIG. 3A is a characteristic diagram of the surface wave velocity (phase velocity) with respect to the rotation angle θ of the LiTaO 3 substrate. As shown in FIG. 3B, the horizontal axis is in the YZ plane. Indicates the cutting rotation angle θ from the Y axis, and the surface wave propagates in the X axis direction.
【0009】図3に示すように、回転YカットLiTa
O3 圧電基板上には、破線で示したレイリー波と、実線
で示した擬似弾性表面波(リーキー波)が存在すること
が知られている。As shown in FIG. 3, a rotating Y-cut LiTa
It is known that a Rayleigh wave indicated by a broken line and a pseudo elastic surface wave (leaky wave) indicated by a solid line exist on the O 3 piezoelectric substrate.
【0010】また、同図に遅い横波(3380m/s)
を示しているが、擬似弾性表面波のように、表面波速度
がこの遅い横波よりも速い場合は、伝搬しながらエネル
ギをバルク波に変換しながら伝搬するいわゆるリーキー
波であるため、36°回転Y板を除いては、実用的では
ない。また、レイリー波のように、表面波速度がこの遅
い横波より遅い場合は、伝搬減衰のない表面波である。[0010] Also, the slow transverse wave (3380 m / s) is shown in FIG.
However, when the surface wave velocity is higher than this slow transverse wave, such as a pseudo-surface acoustic wave, it is a so-called leaky wave that propagates while converting energy into a bulk wave while propagating. It is not practical except for the Y plate. If the surface wave velocity is lower than the slow transverse wave, such as a Rayleigh wave, the surface wave has no propagation attenuation.
【0011】LiTaO3 圧電基板上に、音速の遅い重
い物質を所定の膜厚で付着させて表面波速度を低下さ
せ、遅い横波よりも遅くすることにより、擬似弾性表面
波(リーキー波)を伝搬減衰のないラブ波型表面波にす
ることができる。A quasi-surface acoustic wave (leaky wave) is propagated by depositing a heavy substance having a slow sound velocity on a LiTaO 3 piezoelectric substrate with a predetermined film thickness to lower the surface wave velocity and make it slower than the slow transverse wave. Love wave type surface waves without attenuation can be obtained.
【0012】図4は、切断角θ=0°の時で、音速の遅
い重い物質として金(Au)を圧電基板上に一様に付着
した場合の膜厚と表面波速度との関係を計算した結果で
ある。図4からわかるように、表面波速度は、Au膜厚
(Ha/λ)を0.04(λ:表面波の波長)以上にす
れば3380m/s以下となり、ラブ波型の表面波が得
られることがわかる。FIG. 4 shows the relationship between the film thickness and the surface wave velocity when gold (Au) as a heavy substance having a low sound velocity is uniformly deposited on a piezoelectric substrate at a cutting angle θ = 0 °. This is the result. As can be seen from FIG. 4, the surface wave velocity becomes 3380 m / s or less when the Au film thickness (Ha / λ) is 0.04 or more (λ: wavelength of the surface wave), and a Love wave type surface wave can be obtained. It is understood that it is possible.
【0013】また、圧電基板上に一様な音速の遅い重い
物質を付着させる代わりに、表面波を励振させるすだれ
状電極(IDT:Interdigital Transducer )に金(A
u),銀(Ag),白金(Pt)等の比重の重い貴金属
を用い、所定の膜厚以上の厚さにすることで同様な効果
が得られることが知られている。Also, instead of attaching a heavy substance having a slow sound velocity uniformly on a piezoelectric substrate, gold (A) is applied to a IDT (Interdigital Transducer) for exciting a surface wave.
It is known that similar effects can be obtained by using a noble metal having a high specific gravity, such as u), silver (Ag), platinum (Pt), and the like and setting the thickness to a predetermined film thickness or more.
【0014】さらに、図3からわかるように、回転Yカ
ットの切断角度の範囲が−10°〜+50°の範囲であ
れば、36°回転Yカット−X伝搬LiTaO3 と同
等、もしくはそれ以上の電気機械結合係数k2 が得られ
る。この電気機械結合係数k2は図3のopen(基板表面
が電気的に開放)とshort (基板表面が電気的に短絡)
の音速の差に比例する。Further, as can be seen from FIG. 3, if the range of the cutting angle of the rotation Y cut is in the range of -10 ° to + 50 °, the rotation Y cut is equal to or larger than the rotation Y cut-X propagation LiTaO 3 . electromechanical coupling coefficient k 2 is obtained. The electromechanical coupling coefficient k 2 is shown in FIG. 3 as open (the substrate surface is electrically open) and short (the substrate surface is electrically shorted).
Is proportional to the difference in sound speed.
【0015】電極としては、金(Au)が用いられるこ
とが一般的であるが、金は圧電基板との密着性が悪いた
め、図2(b)に示したように、通常Crなどの接着層
23が下地として付けられ、その上に金(Au)24が
付けられている。しかし、金は高価であるため、原価的
にSAW共振子のコストがアップするという問題があ
る。As the electrode, gold (Au) is generally used, but since gold has poor adhesion to the piezoelectric substrate, as shown in FIG. A layer 23 is applied as a base, on which gold (Au) 24 is applied. However, since gold is expensive, there is a problem that the cost of the SAW resonator is increased in terms of cost.
【0016】そこで、金のような貴金属の代わりに、T
a(タンタル),W(タングステン),Pd(パラジウ
ム)のような比較的安価で比重の大きい卑金属を用いる
ことでラブ波型の表面波が得られるように構成されたも
のがある。Therefore, instead of a noble metal such as gold, T
There is a configuration in which a relatively inexpensive base metal such as a (tantalum), W (tungsten), and Pd (palladium) is used to obtain a Love-wave type surface wave by using a base metal having a large specific gravity.
【0017】[0017]
【発明が解決しようとする課題】しかしながら、前述の
LiNbO3 の場合も、上記のLiTaO3 の場合も、
卑金属のみを用いてID電極を構成した場合、これらの
電気抵抗(体積抵抗率:Ωm)が、金の2.4×10-8
に対して、Ta:15×10-8、W:5.5×10-8、
Pd:10.8×10-8といずれも金の約2倍〜6倍あ
るため、例えば、共振子ではQの低下、フィルタでは挿
入損失の増大などの不具合が生ずる欠点がある。また、
Auの密度は、19.3g/cm3 と大きく、デバイス
の特性は膜厚依存が大きいため、電極パターン形成時に
おいて、ライン幅及び膜厚のコントロールが厳しく要求
され、製造プロセス上の難しさがあった。However, both in the case of LiNbO 3 described above and in the case of LiTaO 3 described above,
When the ID electrode is formed using only the base metal, the electric resistance (volume resistivity: Ωm) of the ID electrode is 2.4 × 10 −8 of gold.
In contrast, Ta: 15 × 10 −8 , W: 5.5 × 10 −8 ,
Since Pd is 10.8 × 10 −8 , which is about 2 to 6 times that of gold, there are drawbacks such as a decrease in Q in a resonator and an increase in insertion loss in a filter. Also,
Since the density of Au is as large as 19.3 g / cm 3 and the characteristics of the device largely depend on the film thickness, control of the line width and film thickness is strictly required at the time of forming the electrode pattern, which makes the manufacturing process difficult. there were.
【0018】本発明の目的は、従来技術の問題点の金に
よるコスト高、および電極がTa,WまたはPdのみの
場合の電気抵抗の増大による特性劣化を低減させ、且
つ、製造プロセスを容易にしたLiNbO3 基板または
LiTaO3 基板を用いたラブ波型弾性表面波デバイス
を提供することにある。It is an object of the present invention to reduce costs due to gold, which is a problem of the prior art, and to reduce characteristic deterioration due to an increase in electrical resistance when the electrodes are only Ta, W or Pd, and to facilitate the manufacturing process. It is another object of the present invention to provide a Love wave type surface acoustic wave device using a LiNbO 3 substrate or a LiTaO 3 substrate.
【0019】[0019]
【課題を解決するための手段】本発明の請求項1記載の
ラブ波型弾性表面波デバイスは、回転Yカット−X伝搬
LiNbO3 圧電基板の表面上にラブ波型弾性表面波を
励振するようにすだれ状電極、またはすだれ状電極と反
射器電極とが配設されたラブ波型弾性表面波デバイスに
おいて、前記電極は上下に積層された2層構造を有し、
該2層構造の下層として前記基板上に接して形成された
第1層は所定の膜厚のアルミニウムで形成され、その上
に積層された第2層は所定の膜厚のタンタル,タングス
テンまたはパラジウムのいずれかで形成されたことを特
徴としている。According to a first aspect of the present invention, there is provided a Love type surface acoustic wave device which excites a Love type surface acoustic wave on the surface of a rotating Y-cut and X-propagating LiNbO 3 piezoelectric substrate. In an interdigital electrode, or in a Love-wave type surface acoustic wave device in which an interdigital electrode and a reflector electrode are disposed, the electrode has a two-layer structure that is vertically stacked,
As a lower layer of the two-layer structure, a first layer formed in contact with the substrate is formed of aluminum having a predetermined thickness, and a second layer laminated thereon is formed of tantalum, tungsten or palladium having a predetermined thickness. Characterized by being formed by any of the above.
【0020】また、本発明の請求項2記載のラブ波型弾
性表面波デバイスは、Y軸を法線としY−Z平面上でY
軸から回転角が−10°乃至+50°の範囲の所定の角
度で切断された回転YカットLiTaO3 圧電基板の表
面上にラブ波型弾性表面波を励振するようにすだれ状電
極、またはすだれ状電極と反射器電極とが配設されたラ
ブ波型弾性表面波デバイスにおいて、前記電極は上下に
積層された2層構造を有し、該2層構造の下層として前
記基板上に接して形成された第1層は所定の膜厚のアル
ミニウムで形成され、その上に積層された第2層は所定
の膜厚のタンタル,タングステンまたはパラジウムのい
ずれかで形成されたことを特徴としている。Further, in the Love type surface acoustic wave device according to the second aspect of the present invention, the Y-axis is a normal line, and the Y-axis
IDTs or IDTs for exciting Love-type surface acoustic waves on the surface of a rotating Y-cut LiTaO 3 piezoelectric substrate cut at a predetermined angle in the range of −10 ° to + 50 ° from the axis. In a Love-wave type surface acoustic wave device in which an electrode and a reflector electrode are provided, the electrode has a two-layer structure stacked vertically, and is formed as a lower layer of the two-layer structure in contact with the substrate. The first layer is formed of aluminum having a predetermined thickness, and the second layer laminated thereon is formed of tantalum, tungsten, or palladium having a predetermined thickness.
【0021】[0021]
【発明の実施の形態】以下、図面を用いて詳細に説明す
る。図1は本発明の実施例を示す平面図(a)とそのA
−A’切断部端面図(b)である。図のIDTの対数は
3対であるが、IDTの対数に関わらず、反射器があっ
てもその電極に対しても共通であることは言うまでもな
い。BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 is a plan view (a) showing an embodiment of the present invention, and FIG.
It is an end view (b) of -A 'cut part. Although the logarithm of the IDT in the figure is three, it goes without saying that regardless of the logarithm of the IDT, even if a reflector is provided, it is common to the electrodes.
【0022】請求項1記載の本発明の実施例では、回転
Yカット−X伝搬LiNbO3 圧電基板1上に、Alの
第1層IDT電極21が形成され、その上に、Ta,W
もしくはPdの第2層のIDT電極22が所定の膜厚で
形成されている。In the embodiment of the present invention, a first layer IDT electrode 21 of Al is formed on a rotating Y-cut and X-propagating LiNbO 3 piezoelectric substrate 1, and Ta, W
Alternatively, the IDT electrode 22 of the second layer of Pd is formed with a predetermined thickness.
【0023】また、請求項2に記載の本発明の実施例で
は、−10°乃至+50°回転YカットLiTaO3 圧
電基板1上に、Alの第1層IDT電極21が形成さ
れ、その上にTa,WもしくはPdの第2層のIDT電
極22が所定の膜厚で形成されている。In the embodiment of the present invention, an Al first IDT electrode 21 is formed on a Y-cut LiTaO 3 piezoelectric substrate 1 rotated from −10 ° to + 50 °, and an Al first IDT electrode 21 is formed thereon. An IDT electrode 22 of a second layer of Ta, W or Pd is formed with a predetermined thickness.
【0024】上記請求項1及び2の発明は、いずれもI
DT電極2を2層とし、アルミニウムの下層は電気抵抗
を下げる機能を果たし、Ta,WまたはPdで形成され
た上の層は、ラブ波化するための層であり、後述するよ
うに金に比較して膜厚コントロールが容易であるという
特徴を有している。In the first and second aspects of the present invention,
The DT electrode 2 has two layers, the lower layer of aluminum performs the function of lowering the electric resistance, and the upper layer made of Ta, W or Pd is a layer for making a love wave. It has the feature that film thickness control is easier than before.
【0025】第1層21のAlの密度は2.96g/c
m3 であり、Au,Ta,W,Pdの密度は、それぞ
れ、19.3、16.6、19.1、12.16であ
る。圧電基板1上に存在する伝搬減衰のある擬似弾性表
面波を、伝搬減衰のないラブ波型の表面波にするには、
所定の質量が必要となる。Alの密度はAuのそれに比
較して約1/6であるので、Al層21だけでラブ波化
しようとするとAuの6倍の膜厚が必要となり、プロセ
ス的に無理があるため、実質的にラブ波化に寄与するの
はTa,W又はPdの第2層22である。従って、Al
層21はあまりラブ波化には寄与しないため比較的厚く
付着させることが可能である。The density of Al in the first layer 21 is 2.96 g / c.
m 3 , and the densities of Au, Ta, W, and Pd are 19.3, 16.6, 19.1, and 12.16, respectively. In order to convert a quasi-surface acoustic wave with propagation attenuation existing on the piezoelectric substrate 1 into a Love-wave type surface wave without propagation attenuation,
A certain mass is required. Since the density of Al is about 1/6 of that of Au, if the Al layer 21 alone is used to make a love wave, a film thickness six times that of Au is required. The second layer 22 of Ta, W or Pd contributes to the generation of the love wave. Therefore, Al
The layer 21 does not contribute much to Love wave formation and can be deposited relatively thick.
【0026】また、Alの電気抵抗(体積抵抗率Ω・
m)は2.75×10-8であり、金の2.4×10-8と
あまり変わらず、Ta,W,Pdの体積抵抗率はそれぞ
れ15×10-8、5.5×10-8、10.8×10-8で
あるため、Ta,W,PdのみでIDT電極を構成した
場合に比べ、IDT電極2の電気抵抗を低くすることが
できる。The electrical resistance of Al (volume resistivity Ω ·
m) is 2.75 × 10 -8, not much different from 2.4 × 10 -8 gold, Ta, W, the volume resistivity of each 15 × 10 -8 of Pd, 5.5 × 10 - 8 and 10.8 × 10 −8 , the electric resistance of the IDT electrode 2 can be reduced as compared with the case where the IDT electrode is composed of only Ta, W and Pd.
【0027】さらに、前述の如く、Ta,W,Pdの密
度は、Auの密度に比較して、いずれも小さいため、ラ
ブ波化においてAuと同等の効果を得るためには、ライ
ン幅が同じ場合、密度に逆比例した膜厚を設定しなけれ
ばならないが、デバイス特性の膜厚依存の観点からは、
Auに比べて依存性は小さくなるため、従来のAuほど
のような厳しい膜厚コントロールは要求されない。さら
に、ラブ波化においては電極の全質量が関係するため、
ライン幅の視点からは、密度が小さくなった分だけAu
に比べコントロール精度がゆるくなる。また、Auにく
らべ、Ta,W,Pdの価格は格段に安いので、SAW
共振子としてのコストを下げることができる。Further, as described above, since the density of Ta, W, and Pd is smaller than the density of Au, the line width is the same in order to obtain the same effect as Au in the Love wave conversion. In this case, the film thickness must be set inversely proportional to the density, but from the viewpoint of the film thickness dependence of device characteristics,
Since the dependence is smaller than that of Au, strict film thickness control unlike the conventional Au is not required. In addition, since the total mass of the electrodes is involved in Love wave conversion,
From the viewpoint of the line width, Au is reduced by the amount corresponding to the decrease in the density.
Control accuracy is lower than that of. Also, the price of Ta, W, Pd is much lower than Au, so SAW
The cost as a resonator can be reduced.
【0028】[0028]
【発明の効果】以上詳細に述べたように、本発明を実施
することにより、IDT電極として、従来のAu電極を
用いた場合に比べて材料費が格段に安くなり、Ta,W
またはPdのみのときの電気抵抗増大によるデバイスの
特性劣化も抑えられ、且つ、製造プロセスが容易になる
ため、実用上の効果は極めて大きい。As described in detail above, by implementing the present invention, the material cost is significantly reduced as compared with the case where a conventional Au electrode is used as an IDT electrode, and Ta, W
Alternatively, deterioration of device characteristics due to an increase in electric resistance when only Pd is used is suppressed, and the manufacturing process is facilitated, so that the practical effect is extremely large.
【図1】本発明の実施例を示す平面図とそのAA’切断
部端面面である。FIG. 1 is a plan view showing an embodiment of the present invention and an end surface of an AA ′ cut portion thereof.
【図2】従来のSAWデバイスの平面図とそのAA’切
断部端面図である。FIG. 2 is a plan view of a conventional SAW device and an end view of an AA ′ cut section thereof.
【図3】回転YカットLiTaO3 基板における回転角
と表面波速度の関係図である。FIG. 3 is a diagram illustrating a relationship between a rotation angle and a surface wave velocity in a rotating Y-cut LiTaO 3 substrate.
【図4】回転Y板LiTaO3 基板における表面波速度
の膜厚依存性を示す説明図である。FIG. 4 is an explanatory diagram showing the film thickness dependence of the surface wave velocity in a rotating Y-plate LiTaO 3 substrate.
1 圧電基板 2 IDT電極 21 IDT電極の第1層 22 IDT電極の第2層 23 接着層(Cr) 24 IDT電極(Au) Reference Signs List 1 piezoelectric substrate 2 IDT electrode 21 first layer of IDT electrode 22 second layer of IDT electrode 23 adhesive layer (Cr) 24 IDT electrode (Au)
Claims (2)
基板の表面上にラブ波型弾性表面波を励振するようにす
だれ状電極、またはすだれ状電極と反射器電極とが配設
されたラブ波型弾性表面波デバイスにおいて、 前記電極は上下に積層された2層構造を有し、該2層構
造の下層として前記基板上に接して形成された第1層は
所定の膜厚のアルミニウムで形成され、その上に積層さ
れた第2層は所定の膜厚のタンタル,タングステンまた
はパラジウムのいずれかで形成されたことを特徴とする
ラブ波型弾性表面波デバイス。1. A rotation Y-cut -X propagation LiNbO 3 interdigital electrode to excite the Love wave type surface acoustic wave on the surface of the piezoelectric substrate or the Love wave with interdigital electrodes and reflector electrodes are disposed, In the surface acoustic wave device, the electrode has a two-layer structure stacked vertically, and a first layer formed in contact with the substrate as a lower layer of the two-layer structure is formed of aluminum having a predetermined thickness. And a second layer laminated thereon is formed of one of tantalum, tungsten and palladium having a predetermined thickness.
回転角が−10°乃至+50°の範囲の所定の角度で切
断された回転YカットLiTaO3 圧電基板の表面上に
ラブ波型弾性表面波を励振するようにすだれ状電極、ま
たはすだれ状電極と反射器電極とが配設されたラブ波型
弾性表面波デバイスにおいて、 前記電極は上下に積層された2層構造を有し、該2層構
造の下層として前記基板上に接して形成された第1層は
所定の膜厚のアルミニウムで形成され、その上に積層さ
れた第2層は所定の膜厚のタンタル,タングステンまた
はパラジウムのいずれかで形成されたことを特徴とする
ラブ波型弾性表面波デバイス。2. On the surface of a rotating Y-cut LiTaO 3 piezoelectric substrate cut at a predetermined angle in the range of −10 ° to + 50 ° from the Y axis on the YZ plane with the Y axis as a normal line. In a Love wave type surface acoustic wave device in which an interdigital transducer or an interdigital transducer and a reflector electrode are arranged so as to excite a Love acoustic wave, the electrode has a two-layer structure in which the electrodes are vertically stacked. A first layer formed on the substrate as a lower layer of the two-layer structure is formed of aluminum having a predetermined thickness, and a second layer laminated thereon is formed of tantalum having a predetermined thickness. A Love wave type surface acoustic wave device formed of either tungsten or palladium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6173197A JPH10247835A (en) | 1997-03-03 | 1997-03-03 | Love wave-type surface acoustic wave device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6173197A JPH10247835A (en) | 1997-03-03 | 1997-03-03 | Love wave-type surface acoustic wave device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH10247835A true JPH10247835A (en) | 1998-09-14 |
Family
ID=13179656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6173197A Pending JPH10247835A (en) | 1997-03-03 | 1997-03-03 | Love wave-type surface acoustic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH10247835A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6271617B1 (en) * | 1997-08-28 | 2001-08-07 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device with a tungsten-aluminum layered interdigital transducer |
EP1158669A2 (en) * | 2000-05-19 | 2001-11-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US6366002B1 (en) | 1999-09-02 | 2002-04-02 | Murata Manufacturing Co., Ltd | Surface acoustic wave device and communication device |
US6369491B1 (en) | 1999-09-02 | 2002-04-09 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method for manufacturing the same |
US6437668B1 (en) * | 1999-05-07 | 2002-08-20 | Murata Manufacturing Co., Ltd. | Surface acoustic wave resonator, surface acoustic wave device, and communication device using shear horizontal waves |
US6483224B1 (en) | 1999-05-27 | 2002-11-19 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method of producing the same |
US6545388B2 (en) | 2000-07-31 | 2003-04-08 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method of producing the same |
EP1330026A1 (en) * | 2000-10-23 | 2003-07-23 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave filter |
JP2004007846A (en) * | 2003-09-08 | 2004-01-08 | Murata Mfg Co Ltd | Surface acoustic wave resonator |
US6686675B2 (en) * | 1998-08-05 | 2004-02-03 | Murata Manufacturing Co., Ltd. | Electronic device and method for producing the same |
US6725513B2 (en) * | 2000-07-05 | 2004-04-27 | Murata Manufacturing Co., Ltd. | Method for manufacturing surface acoustic wave apparatus |
WO2005069485A1 (en) * | 2004-01-13 | 2005-07-28 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
JP2007074754A (en) * | 2002-04-15 | 2007-03-22 | Matsushita Electric Ind Co Ltd | Surface acoustic wave device, and mobile communication device and sensor both using same |
CN100384086C (en) * | 2003-04-11 | 2008-04-23 | 株式会社村田制作所 | Method for manufacturing surface acoustic wave device |
DE10147116B4 (en) * | 2000-09-25 | 2008-07-24 | Murata Manufacturing Co., Ltd., Nagaokakyo | A surface acoustic wave device having an anisotropy index smaller than -1 due to a multilayer structure of collecting electrodes, and duplexer and communication equipment using the same |
US7589453B2 (en) * | 2004-12-01 | 2009-09-15 | Epcos Ag | Wide bandwidth acoustic surface wave component |
JP2009535869A (en) * | 2006-04-28 | 2009-10-01 | エプコス アクチエンゲゼルシャフト | Electroacoustic parts |
WO2011161987A1 (en) * | 2010-06-22 | 2011-12-29 | 株式会社村田製作所 | Ladder-type acoustic wave filter device and demultiplexer |
WO2012036178A1 (en) * | 2010-09-17 | 2012-03-22 | 株式会社村田製作所 | Acoustic-wave device |
JP2014176076A (en) * | 2013-03-07 | 2014-09-22 | Kazuhiko Yamanouchi | Surface acoustic wave substrate using surface acoustic wave/pseudo surface acoustic wave/boundary acoustic wave, and surface acoustic wave function element employing the substrate |
US10355668B2 (en) | 2015-01-20 | 2019-07-16 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
JP2019129508A (en) * | 2018-01-26 | 2019-08-01 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
-
1997
- 1997-03-03 JP JP6173197A patent/JPH10247835A/en active Pending
Cited By (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6271617B1 (en) * | 1997-08-28 | 2001-08-07 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device with a tungsten-aluminum layered interdigital transducer |
US6686675B2 (en) * | 1998-08-05 | 2004-02-03 | Murata Manufacturing Co., Ltd. | Electronic device and method for producing the same |
US6437668B1 (en) * | 1999-05-07 | 2002-08-20 | Murata Manufacturing Co., Ltd. | Surface acoustic wave resonator, surface acoustic wave device, and communication device using shear horizontal waves |
US6483224B1 (en) | 1999-05-27 | 2002-11-19 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method of producing the same |
US6928720B2 (en) | 1999-05-27 | 2005-08-16 | Murata Manufacturing Co., Ltd. | Method of manufacturing a surface acoustic wave device |
USRE39975E1 (en) * | 1999-09-02 | 2008-01-01 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and communication device |
US6366002B1 (en) | 1999-09-02 | 2002-04-02 | Murata Manufacturing Co., Ltd | Surface acoustic wave device and communication device |
US6369491B1 (en) | 1999-09-02 | 2002-04-09 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method for manufacturing the same |
EP1158669A3 (en) * | 2000-05-19 | 2003-12-10 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US6762533B2 (en) | 2000-05-19 | 2004-07-13 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
EP1158669A2 (en) * | 2000-05-19 | 2001-11-28 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device |
US6725513B2 (en) * | 2000-07-05 | 2004-04-27 | Murata Manufacturing Co., Ltd. | Method for manufacturing surface acoustic wave apparatus |
US6898831B2 (en) | 2000-07-31 | 2005-05-31 | Murata Manufacturing Co., Ltd. | Method of producing a surface acoustic wave device |
US6545388B2 (en) | 2000-07-31 | 2003-04-08 | Murata Manufacturing Co., Ltd. | Surface acoustic wave device and method of producing the same |
DE10147116B4 (en) * | 2000-09-25 | 2008-07-24 | Murata Manufacturing Co., Ltd., Nagaokakyo | A surface acoustic wave device having an anisotropy index smaller than -1 due to a multilayer structure of collecting electrodes, and duplexer and communication equipment using the same |
EP1330026A4 (en) * | 2000-10-23 | 2009-02-25 | Panasonic Corp | Surface acoustic wave filter |
EP1330026A1 (en) * | 2000-10-23 | 2003-07-23 | Matsushita Electric Industrial Co., Ltd. | Surface acoustic wave filter |
JP2007074754A (en) * | 2002-04-15 | 2007-03-22 | Matsushita Electric Ind Co Ltd | Surface acoustic wave device, and mobile communication device and sensor both using same |
CN100384086C (en) * | 2003-04-11 | 2008-04-23 | 株式会社村田制作所 | Method for manufacturing surface acoustic wave device |
JP2004007846A (en) * | 2003-09-08 | 2004-01-08 | Murata Mfg Co Ltd | Surface acoustic wave resonator |
US7355319B2 (en) | 2004-01-13 | 2008-04-08 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
WO2005069485A1 (en) * | 2004-01-13 | 2005-07-28 | Murata Manufacturing Co., Ltd. | Boundary acoustic wave device |
US7589453B2 (en) * | 2004-12-01 | 2009-09-15 | Epcos Ag | Wide bandwidth acoustic surface wave component |
JP2009535869A (en) * | 2006-04-28 | 2009-10-01 | エプコス アクチエンゲゼルシャフト | Electroacoustic parts |
WO2011161987A1 (en) * | 2010-06-22 | 2011-12-29 | 株式会社村田製作所 | Ladder-type acoustic wave filter device and demultiplexer |
JP5397477B2 (en) * | 2010-06-22 | 2014-01-22 | 株式会社村田製作所 | Ladder type elastic wave filter device and duplexer |
US9154113B2 (en) | 2010-06-22 | 2015-10-06 | Murata Manufacturing Co., Ltd. | Ladder acoustic wave filter device and branching filter |
WO2012036178A1 (en) * | 2010-09-17 | 2012-03-22 | 株式会社村田製作所 | Acoustic-wave device |
JP5664655B2 (en) * | 2010-09-17 | 2015-02-04 | 株式会社村田製作所 | Elastic wave device |
US9184367B2 (en) | 2010-09-17 | 2015-11-10 | Murata Manufacturing Co., Ltd. | Elastic wave device |
JP2014176076A (en) * | 2013-03-07 | 2014-09-22 | Kazuhiko Yamanouchi | Surface acoustic wave substrate using surface acoustic wave/pseudo surface acoustic wave/boundary acoustic wave, and surface acoustic wave function element employing the substrate |
US10355668B2 (en) | 2015-01-20 | 2019-07-16 | Taiyo Yuden Co., Ltd. | Acoustic wave device |
JP2019129508A (en) * | 2018-01-26 | 2019-08-01 | 太陽誘電株式会社 | Elastic wave device, filter and multiplexer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH10247835A (en) | Love wave-type surface acoustic wave device | |
JP4613960B2 (en) | Lamb wave device | |
JP4356613B2 (en) | Boundary acoustic wave device | |
JP4337816B2 (en) | Boundary acoustic wave device | |
JP5187444B2 (en) | Surface acoustic wave device | |
JP3173300B2 (en) | Love wave device | |
JPH1174751A (en) | Surface acoustic wave device | |
JPWO2005086345A1 (en) | Boundary acoustic wave device | |
JP4109877B2 (en) | Surface acoustic wave functional element | |
JP3391309B2 (en) | Surface wave device and communication device | |
JPH10224172A (en) | Surface-wave device | |
JPS60169210A (en) | Surface wave device | |
JP3414373B2 (en) | Surface acoustic wave device | |
JP3168925B2 (en) | Surface wave device | |
JP4665965B2 (en) | Boundary acoustic wave device | |
JP4001157B2 (en) | Boundary acoustic wave device | |
JPH06232684A (en) | Surface acoustic wave device | |
WO2023106334A1 (en) | Acoustic wave device | |
JP2002152003A (en) | Surface acoustic wave filter | |
WO2005036744A1 (en) | Boundary acoustic wave device | |
JP2002076835A (en) | Surface acoustic wave element | |
WO2005036743A1 (en) | Boundary acoustic wave device | |
JP3341596B2 (en) | Surface wave device | |
JP2002141768A (en) | Surface acoustic wave element | |
WO2023058728A1 (en) | Elastic wave device and method for manufacturing elastic wave device |