WO2002031895A1 - Mineral cell containing polar crystal powder - Google Patents

Mineral cell containing polar crystal powder Download PDF

Info

Publication number
WO2002031895A1
WO2002031895A1 PCT/JP2000/007059 JP0007059W WO0231895A1 WO 2002031895 A1 WO2002031895 A1 WO 2002031895A1 JP 0007059 W JP0007059 W JP 0007059W WO 0231895 A1 WO0231895 A1 WO 0231895A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposed
terminal
crystalline powder
housing
electrode plate
Prior art date
Application number
PCT/JP2000/007059
Other languages
French (fr)
Japanese (ja)
Inventor
Mitsuo Maeyama
Original Assignee
Mitsuo Maeyama
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuo Maeyama filed Critical Mitsuo Maeyama
Priority to PCT/JP2000/007059 priority Critical patent/WO2002031895A1/en
Priority to AU2000276839A priority patent/AU2000276839A1/en
Publication of WO2002031895A1 publication Critical patent/WO2002031895A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a mineral battery containing a powder of a polar crystal.
  • the mineral battery of the present invention utilizes a potential difference between polar crystals.
  • tourmaline is also called a “polar crystal” because it is electrically polarized from the beginning, even if it is not placed in an electric field. Disclosure of the invention
  • the present inventor has found that a battery (namely, a mineral battery) containing the above-mentioned polar crystalline powder such as tourmaline together with a certain amount or more of water has sufficient electromotive force.
  • the present invention is based on these findings.
  • the polar crystalline powder is contained in the accommodating portion in the housing substantially constituting the entire outer wall portion in an amount of 5% by mass or more based on the absolute dry weight of the polar crystalline powder.
  • a positive electrode and a negative electrode which are filled and contained together with water and are embedded in the polar crystalline powder, and are electrically connected to the respective embedded electrodes, and protrude outward from a wall surface of the housing.
  • a mineral battery hereinafter, referred to as a terminal type mineral battery according to the present invention).
  • the present invention provides a method for manufacturing a polar crystal powder in an exposed positive electrode plate, an exposed negative electrode plate, and an accommodating portion formed by a housing constituting an entire outer wall together with the exposed positive electrode plate and the exposed negative electrode plate.
  • the present invention also relates to a mineral battery (hereinafter, referred to as an exposed electrode type mineral battery according to the present invention), characterized by being filled and contained together with water in an amount of 5% by mass or more as a standard.
  • the present invention provides an exposed electrode plate that is either a positive electrode or a negative electrode, and A polar crystal powder is filled in a housing portion formed of a housing that substantially forms the entire outer wall together with a water content of 5% by mass or more based on the absolute dry weight of the polar crystal powder.
  • FIG. 1 is a perspective view schematically showing one embodiment of the terminal type mineral battery according to the present invention.
  • FIG. 2 is a longitudinal sectional view of the terminal type mineral battery of FIG.
  • FIG. 3 is a perspective view schematically showing a state in which a coiled electrode is embedded in a terminal type mineral battery according to the present invention.
  • FIG. 4 is a perspective view schematically showing a state in which two electrode plates are embedded in a terminal type mineral battery according to the present invention.
  • FIG. 5 is a longitudinal sectional view schematically showing an embodiment of a terminal type minerals battery according to the invention, which is out collision outwardly from the housing side
  • FIG. 7 is a perspective view schematically showing one embodiment of an exposed electrode type mineral battery according to the present invention.
  • FIG. 7 is a longitudinal sectional view of the exposed electrode type mineral battery of FIG.
  • FIG. 8 is a vertical sectional view schematically showing one embodiment of a terminal-exposed electrode type mineral battery according to the present invention.
  • the polar crystals that can be used in the mineral battery of the present invention are not particularly limited.
  • tourmaline can be mentioned.
  • a conventionally known tourmaline can be used, and examples thereof include dravit (tourite) tourmaline, schorl (schorl) tourmaline, ⁇ baite (uvite) tourmaline, and L Bite (eIbaite) tourmaline can be used.
  • the tourmaline can be a natural tourmaline or an artificial tourmaline. Natural tourmaline is produced, for example, from crystalline schist, gneiss, and contact metamorphic rocks, and granite-gammaite produces giant crystals.
  • the polar crystalline powder used in the mineral battery of the present invention is, for example, the polar crystal.
  • the particle size of the powder is not particularly limited as long as it shows a sufficient electromotive force as a battery when a mineral battery is manufactured using the same, but, for example, 1 mm from fine particles of 1 / ⁇ m or more.
  • the following granular materials can be used. Although there is no lower limit for the average particle size, if the average particle size is less than 1 ⁇ m, no increase in electromotive force due to an increase in manufacturing cost is observed.
  • the average particle size of the powder of the polar crystal is preferably 2 to 5 ym.
  • the mineral battery of the present invention (that is, including the terminal-type mineral battery, the exposed-electrode-type mineral battery, and the terminal-exposed-electrode-type mineral battery according to the present invention) contains 5% by mass or more of water together with the polar crystalline powder. contains.
  • the “absolute dry mass” in this specification means the mass of the polar crystalline powder after drying the polar crystalline powder at 105 for 1 hour.
  • M ⁇ (m. One m d ) / m d ⁇ X 1 0 0
  • the amount of water contained together with the polar crystalline powder is 5% by mass or more.
  • the water content is preferably at least 10% by mass, more preferably at least 15% by mass.
  • the upper limit of the water content is not particularly limited, but the water content is preferably 30% by mass or more, more preferably 20% by mass or more. If the water content exceeds 30% by mass, electric energy may decrease, so that it is not preferable.
  • the polarity direction of each powder of the polar crystal is different in a state where no water is contained, whereas it is oriented in a certain direction in a state where more than 5% by mass of water is contained. It is considered that sufficient electromotive force is generated.
  • the polar crystalline powder obtained by pulverizing the polar crystal in an atmosphere having a relative humidity of about 60 to 70% contains about 6 to 8% by mass of water.
  • the polar crystalline powder obtained as described above can be used as it is in the production of the mineral battery of the present invention without any particular water treatment.
  • a polar crystalline powder with a higher water content can be obtained by adding an appropriate amount of water to the polar crystalline powder obtained by pulverization and sufficiently kneading the mixture.
  • the mineral battery according to the present invention will be specifically described below with reference to the accompanying drawings, regarding one embodiment of a terminal type mineral battery, an exposed electrode type mineral battery, and a terminal exposed electrode type mineral battery.
  • FIG. 1 and 2 show a terminal type mineral battery 1 according to the present invention.
  • FIG. 1 is a schematic perspective view of the terminal type mineral battery 1
  • FIG. 2 is a schematic longitudinal sectional view thereof.
  • the terminal-type mineral battery 1 shown in FIGS. 1 and 2 has a housing 14, a polar crystalline powder 13 filled in a housing part 14 a therein, and moisture, and further has moisture.
  • the positive electrode plate 11 and the negative electrode plate 12 are embedded in a crystalline yarn 13 containing polar yarn.
  • the positive electrode plate 11 and the negative electrode plate 12 are arranged so as not to directly contact each other (preferably substantially in parallel).
  • the positive electrode plate 11 and the negative electrode plate 12 are made of conductive material, respectively.
  • the housing 14 is made of a non-conductive material (for example, plastic).
  • a non-conductive material for example, plastic.
  • an electrode made of a conductive material having a high electric conductivity is used in the mineral battery of the present invention.
  • An electrode made of a conductive material having a low electric conductivity becomes a negative electrode.
  • Positive electrode plate 11 is electrically connected to positive electrode terminal 15 via conductive line 15a.
  • negative electrode plate 12 is electrically connected to negative electrode terminal 16 via conductive line 16a. Connected.
  • the positive electrode terminal ⁇ 5 and the negative electrode terminal 16 respectively penetrate through holes formed in the wall of the housing 14 and are exposed on the outer surface of the housing 14. Electric energy from the terminal type mineral battery 1 can be supplied to the outside from the terminal 16. Note that, in FIG. 1, in order to show the arrangement state of the positive electrode plate 11 and the negative electrode plate 12 and the conductive wires 15 a and the conductive wires 16 a arranged in the housing portion 14 a, The raw crystal powder 13 similarly filled in a is omitted.
  • the shape of the electrodes (that is, the positive electrode plate 11 and the negative electrode plate 12 in FIGS. 1 and 2) in the terminal type mineral battery according to the present invention is such that the shape of the housing is in contact with the polar crystalline powder containing water.
  • a square, polygon, circle or ellipse Plate, or cylindrical or elliptical cylinder, or polygonal prism, or a rod or pin shape of a combination thereof, or a linear, curved, or coil shape as shown in FIG. 3, or a combination thereof can be linear.
  • the coiled electrode 17 and the terminal 15 provided at one end thereof are represented by a solid line, and the upper half of the housing 14 is represented by a dotted line. The other parts are omitted.
  • the coiled electrode 17 can be used as a positive electrode or a negative electrode.
  • the number of electrodes of each polarity that is, the number of each of the positive electrode and the negative electrode is not particularly limited, and one or more positive electrodes can be provided, and one or more negative electrodes can be provided.
  • FIG. 4 shows an embodiment of a terminal type mineral battery having two electrode plates 11a and 11b. Since the purpose of FIG. 4 is to indicate the number and shape of the electrodes and the connection state with the terminals, the electrode plates 11a, 11b, the conductive wires 15b, 15c, 15d, The terminal 15 and the terminal 15 are shown by solid lines, the upper half of the housing 14 is shown by a dotted line, and the other parts are omitted.
  • the two electrode plates 11a, 11b and the terminal 15 are connected to the conductive wires 15b, 11b, connected to the two electrode plates 11a, 11b. They are electrically connected by 15 c and a conductive wire 15 d connected to the terminal 15.
  • each conductive wire 15b, 15c and conductive wire 15d It can be connected inside the body 14 or each conductive wire 15b, 15c protrudes to the outside of the housing 14 and outside the housing ⁇ 4, each conductive wire ⁇ 5b, 15 And the conductive layer 15 d may be connected.
  • the positive electrode terminal 15 and the negative electrode terminal ⁇ 6 are provided separately from the positive electrode plate 11 and the negative electrode plate 12.
  • One end of at least one of the electrodes of the plate 11 or the negative electrode plate 12 may protrude outward from the housing side surface to serve as a connection terminal.
  • FIG. 5 shows a schematic longitudinal sectional view of such an embodiment.
  • the terminal-type mineral battery 1 shown in FIG. 5 has a housing 14, a polar crystalline powder 13 filled in an accommodating portion 14 a inside the housing 14, water, and a polarity containing water.
  • the positive electrode plate 11 and the negative electrode plate 12 are embedded in the crystalline powder 13.
  • the positive electrode plate 11 and the negative electrode plate 12 are arranged so as not to directly contact each other (preferably substantially parallel).
  • One end 11c of the positive electrode plate 11 and one end 12c of the negative electrode plate 12 protrude outside the housing 14 and function as a positive terminal and a negative terminal, respectively. Can be.
  • the number of terminals provided for extracting electric energy to the outside is not particularly limited.
  • a plurality of conductive wires are connected to one positive electrode, and the Can be connected to one or more positive terminals.
  • a plurality of conductive lines can be connected to one negative electrode, and connected to one or more negative terminals via those conductive lines.
  • increasing the number of conductive wires connected to one electrode (and the number of terminals connected to it) increases the total amount of electrical energy that can be extracted from one electrode.
  • the housing used in the terminal-type mineral battery according to the present invention substantially forms the outer wall of the entire terminal-type mineral battery (that is, forms all outer walls except holes for the positive terminal and the negative terminal). And the negative electrode and the polar crystalline powder in a state where each electrode is in contact with the polar crystalline powder, and in a state where evaporation of water contained together with the polar crystalline powder can be substantially prevented.
  • the shape and the material can be appropriately selected according to the use form or mode.
  • 6 and 7 show an exposed electrode type mineral battery 2 according to the present invention.
  • FIG. 6 is a schematic perspective view of the exposed electrode type mineral battery 2 according to the present invention
  • FIG. 7 is a schematic longitudinal sectional view thereof.
  • the circular positive electrode plate 21 and the negative electrode plate 22 arranged substantially parallel to each other, and the opposing surfaces (the upper surface and the lower surface) are opened.
  • a polar crystal powder 23 is filled together with moisture in a housing portion 24 a formed of the cylindrical frame 24.
  • Each of the positive electrode plate 21 and the negative electrode plate 22 can be made of a conductive material (for example, a metal or alloy plate, a carbonaceous plate, or a conductive resin plate). Inner surface 21 a of positive electrode plate 21 and inner surface 22 a of negative electrode plate 22 are in contact with polar crystalline powder 23, respectively.
  • the outer surface 21b of the positive electrode plate 21 functions as a positive electrode terminal
  • the outer surface 22b of the negative electrode plate 22 can function as a negative electrode terminal.
  • the frame 24 is made of a non-conductive material (for example, plastic), and electrically insulates the positive electrode plate 21 and the negative electrode plate 22.
  • the shape of the positive electrode plate and the negative electrode plate in the exposed electrode type mineral battery according to the present invention is plate-shaped so that the accommodating portion accommodating the polar crystalline powder can be formed together with the frame.
  • it may be a circular or elliptical shape, a polygonal shape (for example, a square or a rectangular shape), or a plate shape of a combination thereof.
  • the number of each of the positive electrode plate and the negative electrode plate is not particularly limited, and one or more positive electrode plates can be provided, and one or more negative electrode plates can be provided.
  • the frame used in the exposed electrode type mineral battery according to the present invention forms a side wall other than the exposed positive electrode plate and the exposed negative electrode plate with respect to the outer wall of the exposed electrode type mineral battery (that is, the exposed electrode together with the exposed positive electrode plate and the exposed negative electrode plate).
  • Forming an outer wall of the whole type mineral battery having an opening in a portion corresponding to the exposed positive electrode plate and the exposed negative electrode plate, and combining with the exposed positive electrode plate and the exposed negative electrode plate to form a polar crystalline powder.
  • Forming accommodation part that can be There is no particular limitation as long as it can be performed.
  • the shape and the material can be appropriately selected according to the use form or the mode.
  • Examples of such a frame include a tubular (cylindrical or square tubular) case made of a non-permeable and non-conductive material or a non-permeable seal (eg, a resin seal).
  • 1 shows a terminal / exposed electrode mineral battery 3 according to the invention.
  • FIG. 8 is a schematic longitudinal sectional view of the terminal / exposed electrode type mineral battery 3 according to the present invention.
  • the polarity is provided in the housing portion 34 a formed of the rectangular parallelepiped container 34 having only one surface opened and the positive electrode plate 31. Crystal powder 33 is filled together with moisture. Also, a negative electrode plate 32 is embedded in the polar crystalline powder 33 with moisture, and the negative electrode plate 32 is electrically connected to the negative electrode terminal 35 via a conductive wire 35a. I have.
  • the negative electrode terminal 35 protrudes from the through hole of the container 34 to the outer surface of the container 34 and is fixed.
  • the positive electrode plate 31 and the negative electrode plate 32 are not in contact with each other, and can be made of a conductive material (for example, a metal or alloy plate, a carbonaceous plate, or a conductive resin plate).
  • the inner surface 31 a of the positive electrode plate 31 is in contact with the polar crystalline powder 33.
  • the outer surface 31b of the positive electrode plate 31 can function as a positive electrode terminal.
  • the terminal / exposed electrode type mineral battery As one of the positive electrode and the negative electrode, (1) a plate-like electrode, and one surface is exposed to the outer surface of the mineral battery; An electrode (hereinafter, referred to as an exposed electrode) which is arranged in a state where the other surface is in contact with the polar crystalline powder; and (2) a polar crystalline powder as an electrode having a polarity opposite to that of the exposed electrode.
  • embedded electrodes Includes electrodes that are placed embedded in the body (hereinafter referred to as embedded electrodes).
  • the shape of the exposed electrode is not particularly limited as long as it can form an accommodating portion accommodating the polar crystalline powder together with the container.
  • a circular or elliptical plate is used. It may be in the form of a plate, a polygon (for example, a square or a rectangle), or a combination thereof.
  • the number of exposed electrodes is not particularly limited, and may be one or more.
  • the shape of the embedded electrode is such that the embedded electrode is housed in the housing portion in contact with the polar crystalline powder.
  • a square, polygonal, circular or oval plate shape Alternatively, it must be cylindrical, elliptical, polygonal, or a combination of rods or pins, or linear, curved, or coiled as shown in Figure 3, or a combination of these. Can be.
  • the number of embedded electrodes is not particularly limited, and may be one or more.
  • connection terminal is not limited to the embodiment shown in FIG. 8, and for example, one end of the embedded electrode may be protruded outward from the side surface of the housing to be a connection terminal.
  • the positive electrode plate may be an embedded electrode
  • the negative electrode plate may be an exposed electrode.
  • the number of terminals provided to connect to the embedded electrode and take out electric energy to the outside is not particularly limited, and a plurality of conductive electrodes are provided on one embedded electrode. Wires can be connected and connected to one or more terminals via those conductive wires. In general, increasing the number of conductors connected to one embedded electrode (and the number of terminals connected to it) increases the total amount of electrical energy that can be extracted from one embedded electrode.
  • the container used in the terminal Z exposed electrode type mineral battery according to the present invention substantially forms an outer wall portion other than the exposed electrode with respect to the outer wall of the terminal Z exposed electrode type mineral battery (that is, the terminal exposed electrode type mineral battery together with the exposed electrode). Substantially forming the entire outer wall) and, further, together with the exposed electrode, contacting the embedded electrode and the polar crystalline powder with one surface of the exposed electrode in contact with the polar crystalline powder; and In a state where the embedded electrode is in contact with the polar crystalline powder, and in a state where the water contained together with the polar crystalline powder can be prevented from evaporating, as long as it has an accommodating portion that can be accommodated therein.
  • the shape and material can be appropriately selected according to the use form or mode. As such a container, for example, a case that is open on one side and is made of a non-breathable material can be cited.
  • the accommodating portion includes a polar crystal.
  • a polar crystal When storing the powder and the water, it is preferable to store the powder and the water under a pressure. When pressure is applied to the polar crystalline powder and moisture inside the battery, a higher electromotive force can be obtained as compared to a battery in a state where no pressure is applied.
  • the pressure is not particularly limited, but is preferably 3 Pa or more.
  • the temperature of the battery when using the mineral battery of the present invention, it is preferable to increase the temperature of the battery itself because the temperature can be further increased and an electromotive force can be obtained.
  • the temperature is not particularly limited, but when the mineral battery of the present invention is used, the temperature of the battery is preferably set to 30 ° C.
  • the method of maintaining the temperature of the battery within the above range is not particularly limited.
  • a method of directly maintaining the battery temperature within the above temperature range by providing a heating device for the battery Alternatively, a method of indirectly maintaining the battery temperature within the above-mentioned temperature range by maintaining the external temperature in the vicinity of the battery within the above-mentioned range can be cited.
  • the voltage of the obtained direct current gradually decreases over time.
  • the extraction of electric energy is stopped, left for a certain period of time, and then started to be extracted again, the voltage of the obtained DC current returns to the original voltage (that is, the voltage before dropping). Return.
  • the extraction is stopped for about twice as long as the time required for the extraction of the electric energy, the battery returns to the original voltage.
  • the mineral battery of the present invention can be used alone, or a plurality of the mineral batteries according to the present invention can be connected in parallel and / or in series. Example
  • the current value obtained from the mineral battery of the present invention obtained in each of Examples 1 and 2 was measured using a digital voltmeter (VD4C-81; Iwasaki Tsushin).
  • Example ⁇ In the terminal type mineral battery according to the present invention obtained in Example ⁇ , a DC of about 900 to 11 O OmV was obtained without load and left for 3 hours with a 10 k ⁇ resistor attached. After the measurement, a direct current of about 810 to 83 OmV was obtained. The resistor was removed, left unloaded for another 6 hours, and measured again. As a result, a direct current of about 900 to 110 mV was obtained.
  • Example 2 With the exposed electrode type mineral battery according to the present invention obtained in Example 2, a direct current of about 900 to 950 mV was obtained without load, and left for 3 hours with a 10 k ⁇ resistor attached. After the measurement, a direct current of about 540 to 67 O mV was obtained. The resistor was removed, left unloaded for another 6 hours, and measured again. A DC of approximately 900-95 OmV was obtained.
  • the mineral battery of the present invention uses a polar crystal (for example, tourmaline), electric energy can be constantly taken out.
  • a polar crystal for example, tourmaline

Abstract

A mineral cell (1) comprises a housing (14) constituting the whole outer wall and having a housing section, a polar crystal powder (13) housing together with more than 5 mass% of water in terms of the absolute dry weight of the polar crystal powder in the housing section, an anode (11) and a cathode (12) buried in the polar crystal power, and terminals (15, 16) which are electrically connected to the anode and the cathode, respectively and protruded outward from the wall surface of the housing. From the mineral cell of the present invention, electric energy can be taken out.

Description

明 細 書 極性結晶体粉体を含有する鉱物電池 技術分野  Description Mineral battery containing polar crystalline powder Technical field
本発明は、 極性結晶体の粉体を含む鉱物電池に関する。 本発明の鉱物電池は、 極性結晶体の電位差を利用したものである。 背景技術  The present invention relates to a mineral battery containing a powder of a polar crystal. The mineral battery of the present invention utilizes a potential difference between polar crystals. Background art
天然に産出される鉱物の中には、 電位差を生じるものが数多く存在する。 それ らの天然鉱物の内でも、 電気石 (トルマリン) は、 電場の中に置かなくても、 最 初から電気分極をしているので 「極性結晶体」 とも称されている。 発明の開示  There are many naturally occurring minerals that produce a potential difference. Of these natural minerals, tourmaline is also called a “polar crystal” because it is electrically polarized from the beginning, even if it is not placed in an electric field. Disclosure of the invention
本発明者は、 前記の電気石などの極性結晶体の粉体を一定量以上の水分と共に 含む電池 (すなわち、 鉱物電池) を製造したところ、 充分な起電力を有すること を見出した。 本発明は、 こうした知見に基づくものである。  The present inventor has found that a battery (namely, a mineral battery) containing the above-mentioned polar crystalline powder such as tourmaline together with a certain amount or more of water has sufficient electromotive force. The present invention is based on these findings.
従って、 本発明は、 外壁部全体を実質的に構成するハウジング内の収容部に、 極性結晶体粉体を、 その極性結晶体粉体の絶対乾燥重量を基準として 5質量%以 上の量の水分と共に充填して含有し、 前記の極性結晶体粉体内部に包埋された正 極及び負極を備え、 前記の各包埋電極とそれぞれ電気的に接続され、 ハウジング 壁面から外側に突出する端子を備えることを特徴とする、 鉱物電池 (以下、 本発 明による端子型鉱物電池と称する) に関する。  Therefore, according to the present invention, the polar crystalline powder is contained in the accommodating portion in the housing substantially constituting the entire outer wall portion in an amount of 5% by mass or more based on the absolute dry weight of the polar crystalline powder. A positive electrode and a negative electrode which are filled and contained together with water and are embedded in the polar crystalline powder, and are electrically connected to the respective embedded electrodes, and protrude outward from a wall surface of the housing. A mineral battery (hereinafter, referred to as a terminal type mineral battery according to the present invention).
また、 本発明は、 露出正極板及び露出負極板、 並びにそれらと共に外壁部全体 を構成するハウジングから形成される収容部に、 極性結晶体粉体を、 その極性結 晶体粉体の絶対乾燥重量を基準として 5質量%以上の量の水分と共に充填して含 有することを特徴とする、 鉱物電池 (以下、 本発明による露出電極型鉱物電池と 称する) にも関する。  In addition, the present invention provides a method for manufacturing a polar crystal powder in an exposed positive electrode plate, an exposed negative electrode plate, and an accommodating portion formed by a housing constituting an entire outer wall together with the exposed positive electrode plate and the exposed negative electrode plate. The present invention also relates to a mineral battery (hereinafter, referred to as an exposed electrode type mineral battery according to the present invention), characterized by being filled and contained together with water in an amount of 5% by mass or more as a standard.
更に、 本発明は、 正極又は負極のいずれか一方である露出電極板、 及びそれと 共に外壁部全体を実質的に構成するハウジングから形成される収容部に、 極性結 晶体粉体を、 その極性結晶体粉体の絶対乾燥重量を基準として 5質量%以上の量 の水分と共に充填して含有し、 前記露出電極板とは反対の極性であって、 しかも、 前記の極性結晶体粉体内部に包埋された電極を備え、 前記の包埋電極と電気的に 接続され、 ハウジング壁面から外側に突出する端子を備えることを特徴とする、 鉱物電池 (以下、 本発明による端子ノ露出電極型鉱物電池と称する〉 にも関する c 図面の簡単な説明 Further, the present invention provides an exposed electrode plate that is either a positive electrode or a negative electrode, and A polar crystal powder is filled in a housing portion formed of a housing that substantially forms the entire outer wall together with a water content of 5% by mass or more based on the absolute dry weight of the polar crystal powder. An electrode having a polarity opposite to that of the exposed electrode plate, and further comprising an electrode embedded inside the polar crystalline powder, electrically connected to the embedded electrode, and a housing wall surface. characterized in that it comprises a terminal projecting outwardly from, the mineral battery (hereinafter, a brief description of the present invention according to the terminal carrying the exposed electrode type minerals called battery> also relates c drawings
図 1 は、 本発明による端子型鉱物電池の一態様を模式的に示す斜視図である。 図 2は、 図 1の端子型鉱物電池の縦断面図である。  FIG. 1 is a perspective view schematically showing one embodiment of the terminal type mineral battery according to the present invention. FIG. 2 is a longitudinal sectional view of the terminal type mineral battery of FIG.
図 3は、 コイル状電極を、 本発明による端子型鉱物電池に包埋した状態を模式 的に示す斜視図である。  FIG. 3 is a perspective view schematically showing a state in which a coiled electrode is embedded in a terminal type mineral battery according to the present invention.
図 4は、 2枚の極板を、 本発明による端子型鉱物電池に包埋した状態を模式的 に示す斜視図である。  FIG. 4 is a perspective view schematically showing a state in which two electrode plates are embedded in a terminal type mineral battery according to the present invention.
図 5は、 正極板及び負極板のそれぞれの端部が、 ハウジング側面から外側に突 出している本発明による端子型鉱物電池の一態様を模式的に示す縦断面図である c 図 6は、 本発明による露出電極型鉱物電池の一態様を模式的に示す斜視図であ 図 7は、 図 6の露出電極型鉱物電池の縦断面図である。 5, c 6 each end of the positive electrode plate and the negative electrode plate is a longitudinal sectional view schematically showing an embodiment of a terminal type minerals battery according to the invention, which is out collision outwardly from the housing side, FIG. 7 is a perspective view schematically showing one embodiment of an exposed electrode type mineral battery according to the present invention. FIG. 7 is a longitudinal sectional view of the exposed electrode type mineral battery of FIG.
図 8は、 本発明による端子ノ露出電極型鉱物電池の一態様を模式的に示す縦断 面図である。 発明を実施するための最良の形態  FIG. 8 is a vertical sectional view schematically showing one embodiment of a terminal-exposed electrode type mineral battery according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の鉱物電池 (すなわち、 本発明による端子型鉱物電池、 露出電極型鉱物 電池、 及び端子 Z露出電極型鉱物電池を含む) で用いることのできる極性結晶体 は、 特に限定されるものではないが、 例えば、 電気石 (トルマリン; t o u r m a l i n e ) を挙げることができる。 前記電気石としては、 従来公知の電気石を 用いることができ、 例えば、 ドラバイ 卜 (d r a V i t e ) トルマリン、 スコー ル (s c h o r l ) トルマリン、 ゥバイ ト (u v i t e ) 卜ルマリン、 又はエル バイ 卜 (e I b a i t e ) トルマリンを用いることができる。 電気石は、 天然電 気石又は人工電気石であることができる。 天然電気石は、 例えば、 結晶片岩、 片 麻岩、 接触変成岩などから産出され、 花崗岩ぺグマタイ 卜からは巨晶が産出されThe polar crystals that can be used in the mineral battery of the present invention (that is, including the terminal-type mineral battery, the exposed-electrode-type mineral battery, and the terminal Z-exposed-electrode-type mineral battery according to the present invention) are not particularly limited. However, for example, tourmaline can be mentioned. As the tourmaline, a conventionally known tourmaline can be used, and examples thereof include dravit (tourite) tourmaline, schorl (schorl) tourmaline, ゥ baite (uvite) tourmaline, and L Bite (eIbaite) tourmaline can be used. The tourmaline can be a natural tourmaline or an artificial tourmaline. Natural tourmaline is produced, for example, from crystalline schist, gneiss, and contact metamorphic rocks, and granite-gammaite produces giant crystals.
- ) o -) o
本発明の鉱物電池 (すなわち、 本発明による端子型鉱物電池、 露出電極型鉱物 電池、 及び端子 Z露出電極型鉱物電池を含む) で用いる極性結晶体の粉体は、 例 えば、 前記極性結晶体を粉砕することにより得ることができる。 粉体の粒径は、 それを用いて鉱物電池を製造した場合に、 電池として充分な起電力を示す限り、 特に限定されるものではないが、 例えば、 1 /^ m以上の微粒子から 1 m m以下の 粒状体であることができる。 平均粒径に下限は存在しないが、 平均粒径が 1 μ m 未満になると製造コストの上昇に伴う起電力の上昇が認められない。 また、 平均 粒径の上限も存在しないが、 平均粒径が 1 m mを超えると、 空気層の存在により 起電力が低下することがある。 従って、 極性結晶体の粉体の平均粒径は、 好まし くは 2〜5 y mである。  The polar crystalline powder used in the mineral battery of the present invention (that is, including the terminal mineral battery according to the present invention, the exposed electrode type mineral battery, and the terminal Z exposed electrode type mineral battery) is, for example, the polar crystal. Can be obtained by grinding. The particle size of the powder is not particularly limited as long as it shows a sufficient electromotive force as a battery when a mineral battery is manufactured using the same, but, for example, 1 mm from fine particles of 1 / ^ m or more. The following granular materials can be used. Although there is no lower limit for the average particle size, if the average particle size is less than 1 μm, no increase in electromotive force due to an increase in manufacturing cost is observed. Although there is no upper limit for the average particle size, if the average particle size exceeds 1 mm, the electromotive force may decrease due to the presence of the air layer. Therefore, the average particle size of the powder of the polar crystal is preferably 2 to 5 ym.
本発明の鉱物電池 (すなわち、 本発明による端子型鉱物電池、 露出電極型鉱物 電池、 及び端子 露出電極型鉱物電池を含む) は、 5質量%以上の量の水分を極 性結晶体粉体と共に含有する。  The mineral battery of the present invention (that is, including the terminal-type mineral battery, the exposed-electrode-type mineral battery, and the terminal-exposed-electrode-type mineral battery according to the present invention) contains 5% by mass or more of water together with the polar crystalline powder. contains.
本明細書における 「絶対乾燥質量」 とは、 極性結晶体粉体を 1 0 5でで 1時間 乾燥した後の極性結晶体粉体の質量を意味する。  The “absolute dry mass” in this specification means the mass of the polar crystalline powder after drying the polar crystalline powder at 105 for 1 hour.
従って、 水分量 (M;単位-質量%) の測定は、 例えば、 以下の手順で実施す ることができる。 すなわち、 水分を含んだ状態の測定対象極性結晶体粉体の質量 (m。 ;単位 = g ) を予め測定した後、 その極性結晶体粉体を 1 0 5 °Cの温度で 1時間加熱することにより完全乾燥させ、 完全乾燥した状態の極性結晶体粉体の 質量 (m d ;単位 = g ) を測定する。 続いて、 式: Therefore, the measurement of the water content (M; unit-% by mass) can be carried out, for example, by the following procedure. That is, after measuring the mass (m; unit = g) of the polar crystalline powder to be measured in a state containing water, the polar crystalline powder is heated at a temperature of 105 ° C for 1 hour. Then, the polar crystalline powder in a completely dried state (m d ; unit = g) is measured. Then, the formula:
M= { (m。一 m d) /m d} X 1 0 0 M = {(m. One m d ) / m d } X 1 0 0
により水分量を算出することができる。 Can calculate the moisture content.
本発明の鉱物電池 (すなわち、 本発明による端子型鉱物電池、 露出電極型鉱物 電池、 及び端子 露出電極型鉱物電池を含む) において極性結晶体粉体と共に含 有させる水分量は、 5質量%以上である限り、 特に限定されるものではないが、 水分量は、 好ましくは 1 0質量%以上、 より好ましくは 1 5質量%以上である。 また、 水分量の上限も特に限定されるものではないが、 水分量は、 好ましくは 3 0質量%以上、 より好ましくは 2 0質量%以上である。 水分量が 3 0質量%を超 えると、 電気エネルギーが減少することがあるので好ましない。 なお、 極性結晶 体の各粉体の極性の方向は、 水分を含有しない状態では、 ばらばらであるのに対 し、 5質量%以上の水分を含有させた状態では、 一定の方向に配向するため、 充 分な起電力が生じるものと考えられる。 In the mineral battery of the present invention (that is, including the terminal-type mineral battery, the exposed-electrode-type mineral battery, and the terminal-exposed-electrode-type mineral battery according to the present invention), the amount of water contained together with the polar crystalline powder is 5% by mass or more. Is not particularly limited as long as The water content is preferably at least 10% by mass, more preferably at least 15% by mass. The upper limit of the water content is not particularly limited, but the water content is preferably 30% by mass or more, more preferably 20% by mass or more. If the water content exceeds 30% by mass, electric energy may decrease, so that it is not preferable. The polarity direction of each powder of the polar crystal is different in a state where no water is contained, whereas it is oriented in a certain direction in a state where more than 5% by mass of water is contained. It is considered that sufficient electromotive force is generated.
一般に、 極性結晶体を、 相対湿度が約 6 0〜7 0 %の大気中で粉碎して得られ る極性結晶体粉体は、 約 6 ~ 8質量%の水分を含有するので、 このようにして得 られた極性結晶体粉体を、 特に加水処理を実施することなく、 そのまま、 本発明 の鉱物電池の製造に用いることができる。 あるいは、 粉碎して得られた極性結晶 体粉体に、 適当量の水を加え、 充分に練り混ぜることにより、 より高い水分量を 伴う極性結晶体粉体を得ることができる。  Generally, the polar crystalline powder obtained by pulverizing the polar crystal in an atmosphere having a relative humidity of about 60 to 70% contains about 6 to 8% by mass of water. The polar crystalline powder obtained as described above can be used as it is in the production of the mineral battery of the present invention without any particular water treatment. Alternatively, a polar crystalline powder with a higher water content can be obtained by adding an appropriate amount of water to the polar crystalline powder obtained by pulverization and sufficiently kneading the mixture.
本発明による鉱物電池を、 端子型鉱物電池、 露出電極型鉱物電池及び端子 露 出電極型鉱物電池のそれぞれの一態様に関して、 添付図面を参照しながら以下に 具体的に説明する。  The mineral battery according to the present invention will be specifically described below with reference to the accompanying drawings, regarding one embodiment of a terminal type mineral battery, an exposed electrode type mineral battery, and a terminal exposed electrode type mineral battery.
図 1及び図 2に本発明による端子型鉱物電池 1 を示す。 図 1 は、 端子型鉱物電 池 1の模式的斜視図であり、 図 2は、 その模式的縦断面図である。  1 and 2 show a terminal type mineral battery 1 according to the present invention. FIG. 1 is a schematic perspective view of the terminal type mineral battery 1, and FIG. 2 is a schematic longitudinal sectional view thereof.
図 1及び図 2に示す端子型鉱物電池 1 は、 筐体 1 4と、 その内部の収容部 1 4 a内に充填された極性結晶体粉体 1 3及び水分を有し、 更に、 水分を含む極性糸;吉 晶体粉体 1 3の中に、 正極板 1 1及び負極板 1 2が埋め込まれている。 正極板 1 1及び負極板 1 2は、 相互に直接は接触しないように (好ましくは実質的に平行 に) 配置されている。 また、 正極板 1 1及び負極板 1 2は、 それぞれ導電性材料 The terminal-type mineral battery 1 shown in FIGS. 1 and 2 has a housing 14, a polar crystalline powder 13 filled in a housing part 14 a therein, and moisture, and further has moisture. The positive electrode plate 11 and the negative electrode plate 12 are embedded in a crystalline yarn 13 containing polar yarn. The positive electrode plate 11 and the negative electrode plate 12 are arranged so as not to directly contact each other (preferably substantially in parallel). The positive electrode plate 11 and the negative electrode plate 12 are made of conductive material, respectively.
(例えば、 金属若しくは合金板、 炭素質板、 又は導電性樹脂板) からなることが できる。 また、 筐体 1 4は非導電性材料 (例えば、 プラスチック) からなる。 本発明の鉱物電池 (すなわち、 本発明による端子型鉱物電池、 並びに後述する 露出電極型鉱物電池及び端子 露出電極型鉱物電池を含む) においては、 電気伝 導率の高い導電性材料からなる電極が正極となり、 電気伝導率の低い導電性材料 からなる電極が負極となる。 正極板 1 1 は、 導電線 1 5 aを介して正極端子 1 5と電気的に接続されている c 同様に、 負極板 1 2は、 導電線 1 6 aを介して負極端子 1 6と電気的に接続され ている。 正極端子〗 5及び負極端子 1 6は、 それぞれ、 筐体 1 4の壁部に設けた 貫通孔を突き抜けて、 筐体 1 4の外側表面に露出しており、 これらの正極端子 1 5及び負極端子 1 6から、 端子型鉱物電池 1による電気エネルギーを外部に供給 することができる。 なお、 図 1では、 収容部 1 4 a内に配置されている正極板 1 1及び負極板 1 2並びに導電線 1 5 a及び導電線 1 6 aの配置状態を示すために、 収容部 1 4 a内に同様に充填されている極 ·!生結晶体粉体 1 3を省略している。 本発明による端子型鉱物電池における電極 (すなわち、 図 1及び図 2における 正極板 1 1及び負極板 1 2 ) の形状は、 水分を含む極性結晶体粉体と接触した状 態で、 筐体の収容部内に収容することができる限り、 特に限定されるものではな いが、 例えば、 図 1及び図 2に示すような長方形のプレー卜状の他にも、 正方形、 多角形、 円形若しくは楕円形のプレー卜状、 あるいは、 円柱若しくは楕円柱、 若 しくは多角柱、 又はそれらの組み合わせの棒又はピン形状、 あるいは、 直線状、 曲線状、 若しくは図 3に示すようなコイル状、 又はそれらの組み合わせの線状で あることができる。 なお、 図 3では、 電極の形状を示すことが目的であるので、 コイル状電極 1 7及びその一方の端部に設けた端子 1 5を実線で、 そして、 筐体 1 4の上半分を点線で示し、 それ以外の部分は省略している。 なお、 コイル状電 極 1 7は、 正電極としても、 あるいは、 負電極としても用いることができる。 また、 各極性の電極の数、 すなわち、 正極及び負極の各々の数も、 特に限定さ れるものではなく、 1又はそれ以上の正極を設けることができるし、 1又はそれ 以上の負極を設けることができる。 2枚の極板 1 1 a , 1 1 bを有する端子型鉱 物電池の一態様を図 4に示す。 なお、 図 4では、 電極の数及び形状並びに端子と の接続状態を示すことが目的であるので、 極板 1 1 a, 1 1 b、 導電線 1 5 b, 1 5 c , 1 5 d、 及び端子 1 5を実線で、 そして、 筐体 1 4の上半分を点線で示 し、 それ以外の部分は省略している。 図 4に示すように、 2枚の極板 1 1 a, 1 1 bと端子 1 5とは、 2枚の極板 1 1 a, 1 1 bと接続されている各導電線 1 5 b , 1 5 cと、 端子 1 5と接続されている導電線 1 5 dとにより、 電気的に接続 されている。 各導電線 1 5 b, 1 5 cと導電線 1 5 dとは、 図 4に示すように筐 体 1 4の内部で連結していることもできるし、 あるいは、 各導電線 1 5 b, 1 5 cが筐体 1 4の外側まで突出しており、 筐体〗 4の外部で、 各導電線〗 5 b, 1 5。と導電 ¾ 1 5 dとが連結していることもできる。 (For example, a metal or alloy plate, a carbonaceous plate, or a conductive resin plate). The housing 14 is made of a non-conductive material (for example, plastic). In the mineral battery of the present invention (ie, the terminal-type mineral battery according to the present invention, and the exposed-electrode-type mineral battery and the terminal-exposed-electrode-type mineral battery described below), an electrode made of a conductive material having a high electric conductivity is used. An electrode made of a conductive material having a low electric conductivity becomes a negative electrode. Positive electrode plate 11 is electrically connected to positive electrode terminal 15 via conductive line 15a.Similarly, negative electrode plate 12 is electrically connected to negative electrode terminal 16 via conductive line 16a. Connected. The positive electrode terminal〗 5 and the negative electrode terminal 16 respectively penetrate through holes formed in the wall of the housing 14 and are exposed on the outer surface of the housing 14. Electric energy from the terminal type mineral battery 1 can be supplied to the outside from the terminal 16. Note that, in FIG. 1, in order to show the arrangement state of the positive electrode plate 11 and the negative electrode plate 12 and the conductive wires 15 a and the conductive wires 16 a arranged in the housing portion 14 a, The raw crystal powder 13 similarly filled in a is omitted. The shape of the electrodes (that is, the positive electrode plate 11 and the negative electrode plate 12 in FIGS. 1 and 2) in the terminal type mineral battery according to the present invention is such that the shape of the housing is in contact with the polar crystalline powder containing water. There is no particular limitation as long as it can be accommodated in the accommodation part. For example, in addition to a rectangular plate shape as shown in FIGS. 1 and 2, a square, polygon, circle or ellipse Plate, or cylindrical or elliptical cylinder, or polygonal prism, or a rod or pin shape of a combination thereof, or a linear, curved, or coil shape as shown in FIG. 3, or a combination thereof Can be linear. In FIG. 3, since the purpose is to show the shape of the electrode, the coiled electrode 17 and the terminal 15 provided at one end thereof are represented by a solid line, and the upper half of the housing 14 is represented by a dotted line. The other parts are omitted. The coiled electrode 17 can be used as a positive electrode or a negative electrode. In addition, the number of electrodes of each polarity, that is, the number of each of the positive electrode and the negative electrode is not particularly limited, and one or more positive electrodes can be provided, and one or more negative electrodes can be provided. Can be. FIG. 4 shows an embodiment of a terminal type mineral battery having two electrode plates 11a and 11b. Since the purpose of FIG. 4 is to indicate the number and shape of the electrodes and the connection state with the terminals, the electrode plates 11a, 11b, the conductive wires 15b, 15c, 15d, The terminal 15 and the terminal 15 are shown by solid lines, the upper half of the housing 14 is shown by a dotted line, and the other parts are omitted. As shown in FIG. 4, the two electrode plates 11a, 11b and the terminal 15 are connected to the conductive wires 15b, 11b, connected to the two electrode plates 11a, 11b. They are electrically connected by 15 c and a conductive wire 15 d connected to the terminal 15. As shown in Fig. 4, each conductive wire 15b, 15c and conductive wire 15d It can be connected inside the body 14 or each conductive wire 15b, 15c protrudes to the outside of the housing 14 and outside the housing〗 4, each conductive wire 〗 5b, 15 And the conductive layer 15 d may be connected.
図 1及び図 2に示す態様では、 正極板 1 1及び負極板 1 2とは別に、 正極端子 1 5及び負極端子〗 6を設けているが、 本発明の端子型鉱物電池においては、 正 極板 1 1又は負極板 1 2の少なくとも一方の電極における一方の端部を、 ハウジ ング側面から外側に突出させ、 接続端子とすることもできる。 このような態様の 模式的縦断面図を図 5に示す。  In the embodiments shown in FIGS. 1 and 2, the positive electrode terminal 15 and the negative electrode terminal〗 6 are provided separately from the positive electrode plate 11 and the negative electrode plate 12. One end of at least one of the electrodes of the plate 11 or the negative electrode plate 12 may protrude outward from the housing side surface to serve as a connection terminal. FIG. 5 shows a schematic longitudinal sectional view of such an embodiment.
図 5に示す端子型鉱物電池 1 は、 筐体 1 4と、 その内部の収容部 1 4 a内に充 填された極性結晶体粉体 1 3及び水分を有し、 更に、 水分を含む極性結晶体粉体 1 3の中に、 正極板 1 1及び負極板 1 2が埋め込まれている。 正極板 1 1及び負 極板 1 2は、 相互に直接は接触しないように (好ましくは実質的に平行に) 配置 されている。 正極板 1 1の一方の端部 1 1 c、 及び負極板 1 2の一方の端部 1 2 cは、 それぞれ、 筐体 1 4の外側に突出しており、 正極端子及び負極端子として 機能することができる。  The terminal-type mineral battery 1 shown in FIG. 5 has a housing 14, a polar crystalline powder 13 filled in an accommodating portion 14 a inside the housing 14, water, and a polarity containing water. The positive electrode plate 11 and the negative electrode plate 12 are embedded in the crystalline powder 13. The positive electrode plate 11 and the negative electrode plate 12 are arranged so as not to directly contact each other (preferably substantially parallel). One end 11c of the positive electrode plate 11 and one end 12c of the negative electrode plate 12 protrude outside the housing 14 and function as a positive terminal and a negative terminal, respectively. Can be.
本発明による端子型鉱物電池において、 外部へ電気エネルギーを取り出すため に設ける端子の数は特に限定されるものではなく、 例えば、 1つの正極に複数の 導電線を接続し、 それらの導電線を介して、 1又は複数の正端子に接続すること ができ、 同様に、 1つの負極に複数の導電線を接続し、 それらの導電線を介して、 1又は複数の負端子に接続することができる。 一般には、 1つの電極に接続させ る導電線の数 (及びそれに接続する端子の数) を増加させると、 1つの電極から 取り出すことのできる電気エネルギ一の総量が多くなる。  In the terminal type mineral battery according to the present invention, the number of terminals provided for extracting electric energy to the outside is not particularly limited. For example, a plurality of conductive wires are connected to one positive electrode, and the Can be connected to one or more positive terminals. Similarly, a plurality of conductive lines can be connected to one negative electrode, and connected to one or more negative terminals via those conductive lines. . In general, increasing the number of conductive wires connected to one electrode (and the number of terminals connected to it) increases the total amount of electrical energy that can be extracted from one electrode.
本発明による端子型鉱物電池において用いる筐体は、 端子型鉱物電池全体の外 壁を実質的に形成 (すなわち、 正端子用及び負端子用の孔を除く全ての外壁を形 成) し、 正極及び負極並びに極性結晶体粉体を、 各電極がそれぞれ極性結晶体粉 体と接触した状態で、 しかも、 前記極性結晶体粉体と共に含有される水分の蒸発 を実質的に防止可能な状態で、 内部に収容することができる収容部を有する限り、 特に限定されるものではなく、 例えば、 その使用形態又は態様に応じて、 形状や 材料を適宜選択することができる。 図 6及び図 7に、 本発明による露出電極型鉱物電池 2を示す。 図 6は、 本発明 による露出電極型鉱物電池 2の模式的斜視図であり、 図 7は、 その模式的縦断面 図である。 The housing used in the terminal-type mineral battery according to the present invention substantially forms the outer wall of the entire terminal-type mineral battery (that is, forms all outer walls except holes for the positive terminal and the negative terminal). And the negative electrode and the polar crystalline powder in a state where each electrode is in contact with the polar crystalline powder, and in a state where evaporation of water contained together with the polar crystalline powder can be substantially prevented. There is no particular limitation as long as it has a housing portion that can be housed inside. For example, the shape and the material can be appropriately selected according to the use form or mode. 6 and 7 show an exposed electrode type mineral battery 2 according to the present invention. FIG. 6 is a schematic perspective view of the exposed electrode type mineral battery 2 according to the present invention, and FIG. 7 is a schematic longitudinal sectional view thereof.
図 6及び図 7に示す態様の鉱物電池 2では、 互いに実質的に平行になるように 配置された円形の正極板 2 1及び負極板 2 2と、 対向面 (上面及び底面) が開口 している円筒形状のフレーム 2 4とから形成されている収容部 2 4 aの内部に、 極性結晶体粉体 2 3が水分と共に充填されている。 正極板 2 1及び負極板 2 2は、 それぞれ導電性材料 (例えば、 金属若しくは合金板、 炭素質板、 又は導電性樹脂 板) からなることができる。 正極板 2 1の内側表面 2 1 aと、 負極板 2 2の内側 表面 2 2 aとは、 それぞれ極性結晶体粉体 2 3と接触している。 正極板 2 1の外 側表面 2 1 bは、 正極端子として機能し、 負極板 2 2の外側表面 2 2 bは、 負極 端子として機能することができる。 また、 フレーム 2 4は、 非導電性材料 (例え ば、 プラスチック〉 からなり、 正極板 2 1 と負極板 2 2とを電気的に絶縁してい In the mineral battery 2 of the embodiment shown in FIGS. 6 and 7, the circular positive electrode plate 21 and the negative electrode plate 22 arranged substantially parallel to each other, and the opposing surfaces (the upper surface and the lower surface) are opened. A polar crystal powder 23 is filled together with moisture in a housing portion 24 a formed of the cylindrical frame 24. Each of the positive electrode plate 21 and the negative electrode plate 22 can be made of a conductive material (for example, a metal or alloy plate, a carbonaceous plate, or a conductive resin plate). Inner surface 21 a of positive electrode plate 21 and inner surface 22 a of negative electrode plate 22 are in contact with polar crystalline powder 23, respectively. The outer surface 21b of the positive electrode plate 21 functions as a positive electrode terminal, and the outer surface 22b of the negative electrode plate 22 can function as a negative electrode terminal. The frame 24 is made of a non-conductive material (for example, plastic), and electrically insulates the positive electrode plate 21 and the negative electrode plate 22.
"0 o "0 o
本発明による露出電極型鉱物電池における正極板及び負極板の形状は、 前記フ レームと一緒になって、 極性結晶体粉体を収容する収容部を形成することができ るように、 プレート状である限り、 特に限定されるものではないが、 例えば、 円 形若しくは楕円形、 若しくは多角形 (例えば、 正方形又は長方形) 、 又はそれら の組み合わせのプレー卜状であることができる。  The shape of the positive electrode plate and the negative electrode plate in the exposed electrode type mineral battery according to the present invention is plate-shaped so that the accommodating portion accommodating the polar crystalline powder can be formed together with the frame. As long as there is no particular limitation, for example, it may be a circular or elliptical shape, a polygonal shape (for example, a square or a rectangular shape), or a plate shape of a combination thereof.
また、 正極板及び負極板の各々の数も、 特に限定されるものではなく、 1又は それ以上の正極板を設けることができるし、 1又はそれ以上の負極板を設けるこ とができる。  Also, the number of each of the positive electrode plate and the negative electrode plate is not particularly limited, and one or more positive electrode plates can be provided, and one or more negative electrode plates can be provided.
本発明による露出電極型鉱物電池において用いるフレームは、 露出電極型鉱物 電池の外壁に関して露出正極板及び露出負極板以外の側壁部を形成し (すなわち、 露出正極板及び露出負極板と一緒に露出電極型鉱物電池全体の外壁を形成し) 、 露出正極板及び露出負極板に相当する部分に開口部を有し、 更に、 露出正極板及 び露出負極板と一緒になつて、 極性結晶体粉体を、 各電極の一方の表面がそれぞ れ極性結晶体粉体と接触した状態で、 しかも、 前記極性結晶体粉体と共に含有さ れる水分の蒸発を防止可能な状態で、 内部に収容することができる収容部を形成 することができる限り、 特に限定されるものではなく、 例えば、 その使用形態又 は態様に応じて、 形状や材料を適宜選択することができる。 このようなフレーム としては、 例えば、 非通気性及び非導電性材料からなる筒型 (円筒型若しくは角 筒型) ケース又は非通気性シール (例えば、 樹脂シール) を挙げることができる c 図 8に本発明による端子/露出電極型鉱物電池 3を示す。 図 8は、 本発明によ る端子/露出電極型鉱物電池 3の模式的縦断面図である。 The frame used in the exposed electrode type mineral battery according to the present invention forms a side wall other than the exposed positive electrode plate and the exposed negative electrode plate with respect to the outer wall of the exposed electrode type mineral battery (that is, the exposed electrode together with the exposed positive electrode plate and the exposed negative electrode plate). Forming an outer wall of the whole type mineral battery), having an opening in a portion corresponding to the exposed positive electrode plate and the exposed negative electrode plate, and combining with the exposed positive electrode plate and the exposed negative electrode plate to form a polar crystalline powder. Are housed in a state where one surface of each electrode is in contact with the polar crystalline powder, and in a state where the water contained together with the polar crystalline powder can be prevented from evaporating. Forming accommodation part that can be There is no particular limitation as long as it can be performed. For example, the shape and the material can be appropriately selected according to the use form or the mode. Examples of such a frame include a tubular (cylindrical or square tubular) case made of a non-permeable and non-conductive material or a non-permeable seal (eg, a resin seal). 1 shows a terminal / exposed electrode mineral battery 3 according to the invention. FIG. 8 is a schematic longitudinal sectional view of the terminal / exposed electrode type mineral battery 3 according to the present invention.
図 8に示す態様の端子 露出電極型鉱物電池 3では、 1面のみが開口している 直方体形状の容器 3 4と、 正極板 3 1 とから形成されている収容部 3 4 a内に、 極性結晶体粉体 3 3が水分と共に充填されている。 また、 水分を伴う極性結晶体 粉体 3 3の中に負極板 3 2が埋め込まれており、 その負極板 3 2は導電線 3 5 a を介して負極端子 3 5と電気的に接続されている。 負極端子 3 5は、 容器 3 4の 貫通孔から容器 3 4の外側表面に突出して固定されている。 正極板 3 1及び負極 板 3 2は相互に接触せず、 それぞれ導電性材料 (例えば、 金属若しくは合金板、 炭素質板、 又は導電性樹脂板) からなることができる。 正極板 3 1の内側表面 3 1 aは、 極性結晶体粉体 3 3と接触している。 正極板 3 1の外側表面 3 1 bは、 正極端子として機能することができる。  In the exposed electrode type mineral battery 3 of the embodiment shown in FIG. 8, the polarity is provided in the housing portion 34 a formed of the rectangular parallelepiped container 34 having only one surface opened and the positive electrode plate 31. Crystal powder 33 is filled together with moisture. Also, a negative electrode plate 32 is embedded in the polar crystalline powder 33 with moisture, and the negative electrode plate 32 is electrically connected to the negative electrode terminal 35 via a conductive wire 35a. I have. The negative electrode terminal 35 protrudes from the through hole of the container 34 to the outer surface of the container 34 and is fixed. The positive electrode plate 31 and the negative electrode plate 32 are not in contact with each other, and can be made of a conductive material (for example, a metal or alloy plate, a carbonaceous plate, or a conductive resin plate). The inner surface 31 a of the positive electrode plate 31 is in contact with the polar crystalline powder 33. The outer surface 31b of the positive electrode plate 31 can function as a positive electrode terminal.
本発明による端子/露出電極型鉱物電池では、 正極又は負極のいずれか一方の 電極として、 (1 ) プレー卜状であり、 しかも、 その一方の表面を鉱物電池の外 側表面に露出させ、 且つ他方の表面を極性結晶体粉体と接触させた状態で配置す る電極 (以下、 露出電極と称する) を含み、 更に、 前記露出電極と反対極性の電 極として、 (2 ) 極性結晶体粉体の中に埋め込まれた状態で配置する電極 (以下、 包埋電極と称する) を含む。  In the terminal / exposed electrode type mineral battery according to the present invention, as one of the positive electrode and the negative electrode, (1) a plate-like electrode, and one surface is exposed to the outer surface of the mineral battery; An electrode (hereinafter, referred to as an exposed electrode) which is arranged in a state where the other surface is in contact with the polar crystalline powder; and (2) a polar crystalline powder as an electrode having a polarity opposite to that of the exposed electrode. Includes electrodes that are placed embedded in the body (hereinafter referred to as embedded electrodes).
前記露出電極の形状は、 容器と一緒になって、 極性結晶体粉体を収容する収容 部を形成することができる限り、 特に限定されるものではないが、 例えば、 円形 若しくは楕円形のプレー卜状、 若しくは多角形 (例えば、 正方形又は長方形) の プレー卜状、 又はそれらの組み合わせのプレー卜状であることができる。  The shape of the exposed electrode is not particularly limited as long as it can form an accommodating portion accommodating the polar crystalline powder together with the container. For example, a circular or elliptical plate is used. It may be in the form of a plate, a polygon (for example, a square or a rectangle), or a combination thereof.
また、 露出電極の数も、 特に限定されるものではなく、 1又はそれ以上である ことができる。  Also, the number of exposed electrodes is not particularly limited, and may be one or more.
前記包埋電極の形状は、 極性結晶体粉体と接触した状態で、 前記収容部内に収 容することができる限り、 特に限定されるものではないが、 例えば、 図 8に示す ような長方形のプレー卜状の他にも、 正方形、 多角形、 円形若しくは楕円形のプ レ一卜状、 あるいは、 円柱若しくは楕円柱、 若しくは多角柱、 又はそれらの組み 合わせの棒又はピン形状、 あるいは、 直線状、 曲線状、 若しくは図 3に示すよう なコイル状、 又はそれらの組み合わせの線状であることができる。 The shape of the embedded electrode is such that the embedded electrode is housed in the housing portion in contact with the polar crystalline powder. There is no particular limitation as long as it can be accommodated. For example, in addition to a rectangular plate shape as shown in FIG. 8, a square, polygonal, circular or oval plate shape, Alternatively, it must be cylindrical, elliptical, polygonal, or a combination of rods or pins, or linear, curved, or coiled as shown in Figure 3, or a combination of these. Can be.
また、 包埋電極の数も、 特に限定されるものではなく、 1又はそれ以上である ことができる。  Also, the number of embedded electrodes is not particularly limited, and may be one or more.
更に、 接続端子は、 図 8に示す態様に限定されず、 例えば、 包埋電極の一方の 端部を、 ハウジング側面から外側に突出させ、 接続端子とすることもできる。 なお、 本発明の端子ノ露出電極型鉱物電池においては、 正極板を包埋電極とし、 負極板を露出電極とすることもできる。  Further, the connection terminal is not limited to the embodiment shown in FIG. 8, and for example, one end of the embedded electrode may be protruded outward from the side surface of the housing to be a connection terminal. Note that, in the terminal-exposed electrode-type mineral battery of the present invention, the positive electrode plate may be an embedded electrode, and the negative electrode plate may be an exposed electrode.
本発明による端子 Z露出電極型鉱物電池において、 包埋電極に接続させて外部 へ電気エネルギーを取り出すために設ける端子の数は特に限定されるものではな く、 1つの包埋電極に複数の導電線を接続し、 それらの導電線を介して、 1又は 複数の端子に接続することができる。 一般には、 1つの包埋電極に接続させる導 電線の数 (及びそれに接続する端子の数) を増加させると、 1つの包埋電極から 取り出すことのできる電気エネルギーの総量が多くなる。  Terminals In the Z-exposed electrode type mineral battery according to the present invention, the number of terminals provided to connect to the embedded electrode and take out electric energy to the outside is not particularly limited, and a plurality of conductive electrodes are provided on one embedded electrode. Wires can be connected and connected to one or more terminals via those conductive wires. In general, increasing the number of conductors connected to one embedded electrode (and the number of terminals connected to it) increases the total amount of electrical energy that can be extracted from one embedded electrode.
本発明による端子 Z露出電極型鉱物電池において用いる容器は、 端子 Z露出電 極型鉱物電池の外壁に関して露出電極以外の外壁部を実質的に形成し (すなわち、 露出電極と共に端子 露出電極型鉱物電池全体の外壁を実質的に形成し) 、 更に、 露出電極と一緒になつて、 包埋電極及び極性結晶体粉体を、 露出電極の一方の表 面が極性結晶体粉体と接触し、 且つ包埋電極が極性結晶体粉体と接触した状態で、 しかも、 前記極性結晶体粉体と共に含有される水分の蒸発を防止可能な状態で、 内部に収容することができる収容部を有する限り、 特に限定されるものではなく、 例えば、 その使用形態又は態様に応じて、 形状や材料を適宜選択することができ る。 このような容器としては、 例えば、 一面が開口し、 しかも、 非通気性材料か らなるケースを挙げることができる。  The container used in the terminal Z exposed electrode type mineral battery according to the present invention substantially forms an outer wall portion other than the exposed electrode with respect to the outer wall of the terminal Z exposed electrode type mineral battery (that is, the terminal exposed electrode type mineral battery together with the exposed electrode). Substantially forming the entire outer wall) and, further, together with the exposed electrode, contacting the embedded electrode and the polar crystalline powder with one surface of the exposed electrode in contact with the polar crystalline powder; and In a state where the embedded electrode is in contact with the polar crystalline powder, and in a state where the water contained together with the polar crystalline powder can be prevented from evaporating, as long as it has an accommodating portion that can be accommodated therein. There is no particular limitation, and for example, the shape and material can be appropriately selected according to the use form or mode. As such a container, for example, a case that is open on one side and is made of a non-breathable material can be cited.
本発明の鉱物電池 〈すなわち、 本発明による端子型鉱物電池、 露出電極型鉱物 電池、 及び端子 露出電極型鉱物電池を含む) においては、 収容部に極性結晶体 粉体及び水分を収容する際に、 圧力を加えた状態で収容することが好ましい。 電 池内部の極性結晶体粉体及び水分に圧力がかかっていると、 圧力がかかっていな い状態の電池に比べて、 より高い起電力を得ることができる。 前記圧力は特に限 定されるものではないが、 3 P a以上であることが好ましい。 In the mineral battery of the present invention (that is, the terminal-type mineral battery, the exposed-electrode-type mineral battery, and the terminal-exposed-electrode-type mineral battery according to the present invention), the accommodating portion includes a polar crystal. When storing the powder and the water, it is preferable to store the powder and the water under a pressure. When pressure is applied to the polar crystalline powder and moisture inside the battery, a higher electromotive force can be obtained as compared to a battery in a state where no pressure is applied. The pressure is not particularly limited, but is preferably 3 Pa or more.
また、 本発明の鉱物電池を使用する際には、 電池それ自体の温度を高くすると、 より高し、起電力を得ることができるので好ましい。 前記温度は特に限定されるも のではないが、 本発明の鉱物電池を使用する際には、 電池の温度を 3 0 °Cとする ことが好ましい。  In addition, when using the mineral battery of the present invention, it is preferable to increase the temperature of the battery itself because the temperature can be further increased and an electromotive force can be obtained. The temperature is not particularly limited, but when the mineral battery of the present invention is used, the temperature of the battery is preferably set to 30 ° C.
電池の温度を前記範囲内に維持する方法は、 特に限定されるものではないが、 例えば、 電池に加温装置を設けることにより、 直接的に、 電池温度を前記温度範 囲内に維持する方法、 あるいは、 電池近傍の外界温度を前記範囲内に維持するこ とにより、 間接的に、 電池温度を前記温度範囲内に維持する方法などを挙げるこ とができる。  The method of maintaining the temperature of the battery within the above range is not particularly limited. For example, a method of directly maintaining the battery temperature within the above temperature range by providing a heating device for the battery, Alternatively, a method of indirectly maintaining the battery temperature within the above-mentioned temperature range by maintaining the external temperature in the vicinity of the battery within the above-mentioned range can be cited.
本発明の鉱物電池から電気エネルギーを取り出すと、 時間の経過に従って、 得 られる直流電流の電圧が次第に低下する。 電気エネルギーの取り出しを中止し、 或る時間、 そのまま放置してから、 再度、 電気エネルギーの取り出しを開始する と、 得られる直流電流の電圧は、 元の電圧 (すなわち、 低下する前の電圧) に戻 る。 本発明の鉱物電池では、 通常、 電気エネルギーの取り出しに要した時間に対 して、 約 2倍の時間、 取り出しを中止したまま放置すると、 元の電圧に戻る。 本発明の鉱物電池は、 それを単独で用いることもできるが、 本発明による鉱物 電池の複数個を並列及び 又は直列に接続して用いることもできる。 実施例  When electric energy is extracted from the mineral battery of the present invention, the voltage of the obtained direct current gradually decreases over time. When the extraction of electric energy is stopped, left for a certain period of time, and then started to be extracted again, the voltage of the obtained DC current returns to the original voltage (that is, the voltage before dropping). Return. In the mineral battery of the present invention, if the extraction is stopped for about twice as long as the time required for the extraction of the electric energy, the battery returns to the original voltage. The mineral battery of the present invention can be used alone, or a plurality of the mineral batteries according to the present invention can be connected in parallel and / or in series. Example
以下、 実施例によって本発明を具体的に説明するが、 これらは本発明の範囲を 限定するものではない。  Hereinafter, the present invention will be described specifically with reference to Examples, but these do not limit the scope of the present invention.
実施例 1 Example 1
本実施例では、 図 1及び図 2に示す態様の端子型鉱物電池を製造した。  In this example, a terminal type mineral battery of the embodiment shown in FIGS. 1 and 2 was manufactured.
すなわち、 平均粒径が 4 / mで、 水分率が 2 0質量%のトルマリン粉体 5 g (水分質量を含む) を、 直方体型プラスチック製筐体 (縦 = 5 c m , 横 = 5 c m , 高さ =0. 9 cm) に、 若干の圧力を加えた状態で満杯状態に充填した。 また、 正極板として、 長方形の銅板 (縦 =3 cm, 横 =3 cm, 厚さ =0· 3 mm) を 用い、 負極板として、 長方形の亜鉛板 (縦 =3 cm, 横 =3 cm, 厚さ =0. 3 mm) を用いた。 正極板及び負極板にそれぞれ導電線 1本を接続し、 もう一方の 端部で正極端子 1つ及び負極端子 1つと接続した。 That is, 5 g of tourmaline powder having an average particle diameter of 4 / m and a water content of 20% by mass (including the water content) was put into a rectangular plastic housing (length = 5 cm, width = 5 cm, At a height of 0.9 cm) with a slight pressure applied. In addition, a rectangular copper plate (length = 3 cm, width = 3 cm, thickness = 0.3 mm) was used as the positive electrode plate, and a rectangular zinc plate (length = 3 cm, width = 3 cm, Thickness = 0.3 mm) was used. One conductive wire was connected to each of the positive electrode plate and the negative electrode plate, and the other end was connected to one positive electrode terminal and one negative electrode terminal.
実施例 2 Example 2
本実施例では、 図 6及び図 7に示す態様の露出電極型鉱物電池を製造した。 すなわち、 円形の銅板 (直径 =3. 3 cm, 厚さ =0. 3 mm) と、 円形の亜 鉛板 (直径 =3· 3 cm, 厚さ =0. 3 mm) との間に、 平均粒径が 4 mで、 水分率が 20質量%のトルマリン粉体 5 g (水分質量を含む) を、 若干の圧力を 加えて挾んだ状態で、 側面を樹脂シールを用いて封止することにより、 本発明に よる露出電極型鉱物電池 (厚さ =約 9 mm) を得た。  In this example, an exposed electrode type mineral battery of the embodiment shown in FIGS. 6 and 7 was manufactured. That is, the average between the circular copper plate (diameter = 3.3 cm, thickness = 0.3 mm) and the circular zinc plate (diameter = 3.3 cm, thickness = 0.3 mm) 5 g (including water content) of tourmaline powder with a particle size of 4 m and a water content of 20% by weight is sandwiched under slight pressure, and the sides are sealed with a resin seal. As a result, an exposed electrode type mineral battery (thickness = about 9 mm) according to the present invention was obtained.
評価 Evaluation
前記各実施例 1及び 2で得られた本発明の鉱物電池から得られる電流値を、 デ ジタルボル卜メーター (VD 4 C— 8 1 ;岩崎通信) を用いて測定した。  The current value obtained from the mineral battery of the present invention obtained in each of Examples 1 and 2 was measured using a digital voltmeter (VD4C-81; Iwasaki Tsushin).
実施例〗で得られた本発明による端子型鉱物電池では、 無負荷の状態で約 90 0〜1 1 O OmVの直流が得られ、 1 0 k Ωの抵抗体を取り付けた状態で 3時間 放置した後に測定したところ、 約 8 1 0〜83 OmVの直流が得られた。 抵抗体 を外して無負荷の状態で更に 6時間放置し、 再度、 測定したところ、 約 900〜 1 1 00 mVの直流が得られた。  In the terminal type mineral battery according to the present invention obtained in Example〗, a DC of about 900 to 11 O OmV was obtained without load and left for 3 hours with a 10 kΩ resistor attached. After the measurement, a direct current of about 810 to 83 OmV was obtained. The resistor was removed, left unloaded for another 6 hours, and measured again. As a result, a direct current of about 900 to 110 mV was obtained.
実施例 2で得られた本発明による露出電極型鉱物電池では、 無負荷の状態で約 900〜 950 m Vの直流が得られ、 1 0 k Ωの抵抗体を取り付けた状態で 3時 間放置した後に測定したところ、 約 54 0〜6 7 O mVの直流が得られた。 抵抗 体を外して無負荷の状態で更に 6時間放置し、 再度、 測定したところ、 約 900 -95 OmVの直流が得られた。 産業上の利用可能性  With the exposed electrode type mineral battery according to the present invention obtained in Example 2, a direct current of about 900 to 950 mV was obtained without load, and left for 3 hours with a 10 kΩ resistor attached. After the measurement, a direct current of about 540 to 67 O mV was obtained. The resistor was removed, left unloaded for another 6 hours, and measured again. A DC of approximately 900-95 OmV was obtained. Industrial applicability
本発明の鉱物電池は、 極性結晶体 (例えば、 電気石) を利用しているので、 恒 常的に電気エネルギーを取り出すことができる。 以上、 本発明を特定の態様に沿って説明したが、 当業者に自明の変形や改良は 本発明の範囲に含まれる。 Since the mineral battery of the present invention uses a polar crystal (for example, tourmaline), electric energy can be constantly taken out. As described above, the present invention has been described according to the specific embodiments. However, modifications and improvements obvious to those skilled in the art are included in the scope of the present invention.

Claims

請 求 の 範 囲 The scope of the claims
1 . 外壁部全体を実質的に構成するハウジング内の収容部に、 極性結晶体粉体を、 その極性結晶体粉体の絶対乾燥重量を基準として 5質量%以上の量の水分と共に 充填して含有し、 前記の極性結晶体粉体内部に包埋された正極及び負極を備え、 前記の各包埋電極とそれぞれ電気的に接続され、 ハウジング壁面から外側に突出 する端子を備えることを特徴とする、 鉱物電池。 1. Fill the accommodating part in the housing, which substantially constitutes the entire outer wall, with the polar crystalline powder together with 5% by mass or more of water based on the absolute dry weight of the polar crystalline powder. Comprising a positive electrode and a negative electrode embedded in the polar crystalline powder, a terminal protruding outward from a housing wall surface and electrically connected to each of the embedded electrodes. Yes, mineral batteries.
2 . 露出正極板及び露出負極板、 並びにそれらと共に外壁部全体を構成するハウ ジングから形成される収容部に、 極性結晶体粉体を、 その極性結晶体粉体の絶対 乾燥重量を基準として 5質量%以上の量の水分と共に充填して含有することを特 徵とする、 鉱物電池。  2. Place the polar crystalline powder in the receiving part formed from the exposed positive electrode plate, the exposed negative electrode plate, and the housing that constitutes the entire outer wall together with them, based on the absolute dry weight of the polar crystalline powder. Mineral batteries characterized by being filled together with water in an amount of at least mass%.
3 . 正極又は負極のいずれか一方である露出電極板、 及びそれと共に外壁部全体 を実質的に構成するハウジングから形成される収容部に、 極性結晶体粉体を、 そ の極性結晶体粉体の絶対乾燥重量を基準として 5質量%以上の量の水分と共に充 填して含有し、 前記露出電極板とは反対の極性であって、 しかも、 前記の極性結 晶体粉体内部に包埋された電極を備え、 前記の包埋電極と電気的に接続され、 ハ ウジング壁面から外側に突出する端子を備えることを特徴とする、 鉱物電池。  3. The polar crystalline powder is placed in an exposed electrode plate, which is one of the positive electrode and the negative electrode, and a housing portion formed of a housing that substantially forms the entire outer wall together with the exposed electrode plate. 5% by weight or more based on the absolute dry weight of water, and contained therein, having a polarity opposite to that of the exposed electrode plate, and embedded in the polar crystalline powder. And a terminal that is electrically connected to the embedded electrode and that protrudes outward from a housing wall surface.
PCT/JP2000/007059 2000-10-12 2000-10-12 Mineral cell containing polar crystal powder WO2002031895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/007059 WO2002031895A1 (en) 2000-10-12 2000-10-12 Mineral cell containing polar crystal powder
AU2000276839A AU2000276839A1 (en) 2000-10-12 2000-10-12 Mineral cell containing polar crystal powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007059 WO2002031895A1 (en) 2000-10-12 2000-10-12 Mineral cell containing polar crystal powder

Publications (1)

Publication Number Publication Date
WO2002031895A1 true WO2002031895A1 (en) 2002-04-18

Family

ID=11736580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007059 WO2002031895A1 (en) 2000-10-12 2000-10-12 Mineral cell containing polar crystal powder

Country Status (2)

Country Link
AU (1) AU2000276839A1 (en)
WO (1) WO2002031895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010531128A (en) * 2007-04-25 2010-09-16 グゥン チョイ、スン Power saving device
US8017219B2 (en) * 2006-06-28 2011-09-13 Unique Stones, Inc. Process for making a mineral battery

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268282A (en) * 1992-06-11 1994-09-22 Kubo Gijutsu Jimusho:Kk Permanent electrode carrier utilizing tourmaline
JPH07302596A (en) * 1994-04-28 1995-11-14 Oyo Kogaku Kenkyusho:Kk Manufacture of semipermanent battery
JPH10241728A (en) * 1997-02-25 1998-09-11 Koken Kk Electrolyte for storage battery
JPH1154136A (en) * 1997-07-30 1999-02-26 Yoshinari Hasegawa Plate-like battery and manufacture thereof
JPH11307115A (en) * 1998-04-27 1999-11-05 Bio Techno:Kk Reinforcing agent for lead-acid battery
JP2000216054A (en) * 1999-01-20 2000-08-04 Akio Maeyama Mineral battery element and mineral battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06268282A (en) * 1992-06-11 1994-09-22 Kubo Gijutsu Jimusho:Kk Permanent electrode carrier utilizing tourmaline
JPH07302596A (en) * 1994-04-28 1995-11-14 Oyo Kogaku Kenkyusho:Kk Manufacture of semipermanent battery
JPH10241728A (en) * 1997-02-25 1998-09-11 Koken Kk Electrolyte for storage battery
JPH1154136A (en) * 1997-07-30 1999-02-26 Yoshinari Hasegawa Plate-like battery and manufacture thereof
JPH11307115A (en) * 1998-04-27 1999-11-05 Bio Techno:Kk Reinforcing agent for lead-acid battery
JP2000216054A (en) * 1999-01-20 2000-08-04 Akio Maeyama Mineral battery element and mineral battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8017219B2 (en) * 2006-06-28 2011-09-13 Unique Stones, Inc. Process for making a mineral battery
JP2010531128A (en) * 2007-04-25 2010-09-16 グゥン チョイ、スン Power saving device

Also Published As

Publication number Publication date
AU2000276839A1 (en) 2002-04-22

Similar Documents

Publication Publication Date Title
Kettlgruber et al. Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics
JP6228009B2 (en) Ionic gel electrolytes, energy storage devices, and methods for their production
KR102169774B1 (en) Method and system for estimating a capacity of individual electrodes and the total capacity of a lithium-ion battery system
CN103928711B (en) Charge storage element and its manufacturing method
KR20120025529A (en) Lithium ion battery pack having cathode and anode current collectors
US20110183186A1 (en) Solid state battery
WO2017190270A1 (en) Battery electrode with carbon additives in meta-solid-state battery
KR100408140B1 (en) Cell and cell inspecting method
WO2008155761A2 (en) Carbon nano-tube power cell
EP1602161B1 (en) Quantum generator and related devices of energy extraction and conversion
TW200941523A (en) Electrophoretically deposite cathode capacitor
CN106953130A (en) Battery unit
US7501788B2 (en) Quantum generator and related devices of energy extraction and conversion
WO2002031895A1 (en) Mineral cell containing polar crystal powder
US20170279166A1 (en) Lithium-Ion Cell
Holmes The lithium/iodine-polyvinylpyridine pacemaker battery-35 years of successful clinical use
WO2003026046A1 (en) Active material for cell and its manufacturing method
JP6830950B2 (en) Electric double layer capacitor and its manufacturing method
US20040056640A1 (en) Method and device to resist sulfatizing in electric accumulators
US8017219B2 (en) Process for making a mineral battery
US20100015527A1 (en) Electromotive device
TWM307199U (en) Fuel metering device for capacitive fuel battery
KR102012453B1 (en) Rechargeable battery
KR101777805B1 (en) Gel electrolyte for super capacitor and preparing thereof
RU2729880C1 (en) Solid-state capacitor-ionistor with dielectric layer made of dielectric nanopowder

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP