WO2002031355A1 - Control method for spark ignition engine - Google Patents

Control method for spark ignition engine Download PDF

Info

Publication number
WO2002031355A1
WO2002031355A1 PCT/JP2000/007025 JP0007025W WO0231355A1 WO 2002031355 A1 WO2002031355 A1 WO 2002031355A1 JP 0007025 W JP0007025 W JP 0007025W WO 0231355 A1 WO0231355 A1 WO 0231355A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
fuel
valve
spark ignition
temperature
Prior art date
Application number
PCT/JP2000/007025
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshihiro Sukegawa
Minoru Oosuga
Toshiharu Nogi
Masami Nagano
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002534701A priority Critical patent/JPWO2002031355A1/en
Priority to PCT/JP2000/007025 priority patent/WO2002031355A1/en
Publication of WO2002031355A1 publication Critical patent/WO2002031355A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • F02B31/08Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages
    • F02B31/085Movable means, e.g. butterfly valves having multiple air inlets, i.e. having main and auxiliary intake passages having two inlet valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4214Shape or arrangement of intake or exhaust channels in cylinder heads specially adapted for four or more valves per cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/1502Digital data processing using one central computing unit
    • F02P5/1506Digital data processing using one central computing unit with particular means during starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B2031/006Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air intake valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a method for controlling a spark ignition engine, and more particularly, to a method for controlling a spark ignition engine which is effective for controlling exhaust emission suitable for control at the time of starting the spark ignition engine.
  • a spark ignition engine When a spark ignition engine is started, if the engine temperature is low, the injected fuel collides with a low-temperature intake valve or an intake port, and a liquid film of fuel is formed on a wall surface. The liquid film on the low-temperature wall is poorly vaporized and deteriorates in combustion, so that a large amount of unburned hydrocarbons (H C) is emitted in the exhaust gas.
  • H C unburned hydrocarbons
  • the intake valve is heated by an electric heater to reduce HC. It is also known to reduce. Disclosure of Invention ⁇
  • a heater is directly provided at an intake valve that repeats opening and closing operations at high speed.
  • the present invention provides a spark ignition engine having a fuel injection valve, in which, when the engine temperature is lower than a predetermined temperature, the ignition timing is advanced from the ignition timing at which the fuel efficiency becomes best. It is like that.
  • the temperature of the combustion gas in the combustion chamber can be raised to a higher temperature, and heat transfer from this high-temperature gas causes the intake valve to heat up quickly.
  • the heat transfer from the valve allows the adhering fuel to be quickly vaporized, reducing wall flow when starting the engine and reducing HC.
  • the present invention provides a spark igniter having a fuel injection valve, comprising: means for changing an opening timing of an intake valve, wherein when an engine temperature is lower than a predetermined temperature, The opening timing of the intake valve is advanced from the normal opening timing.
  • the present invention provides a spark ignition engine having a fuel injection valve, further comprising a swirl control valve for generating a swirl by changing a flow passage step area of an intake pipe, wherein an engine temperature is lower than a predetermined temperature.
  • a swirl control valve for generating a swirl by changing a flow passage step area of an intake pipe, wherein an engine temperature is lower than a predetermined temperature.
  • FIG. 1 is a system configuration diagram showing a configuration of an engine control system using a spark ignition engine control method according to a first embodiment of the present invention.
  • FIG. 2 is a transparent perspective view showing a configuration of an engine using the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 3 is a transparent plan view showing a configuration of an engine using the spark ignition engine control method according to the first embodiment of the present invention.
  • FIG. 4 is a block diagram showing a configuration of a control unit in an engine control system using the spark ignition engine control method according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing the content of the engine start-up process by the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 6 is an explanatory diagram illustrating the relationship between the injection pulse width of the fuel injection valve and the fuel injection amount in the engine control system using the spark ignition engine control method according to the first embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of the ratio of fuel adhesion to the intake valve when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention. .
  • FIG. 8 is an explanatory diagram of a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 9 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the intake stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 10 is an explanatory diagram of the time history of the gas temperature in the combustion chamber in the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 11 shows an explosion stroke when the air-fuel mixture formed by the intake stroke injection in the control method of the spark ignition engine according to the first embodiment of the present invention is burned with the ignition timing advanced from normal, (Expansion stroke) It is explanatory drawing of a state.
  • FIG. 12 is a diagram illustrating a suction method in the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 4 is an explanatory diagram of how to determine a valve operating time t 1.
  • FIG. 13 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the exhaust stroke in the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 14 is an explanatory diagram of the behavior of the air-fuel mixture during the intake stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of the behavior of the air-fuel mixture during the exhaust stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 16 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 17 is an explanatory diagram of the operation of an intake valve of an engine using the method for controlling a spark ignition engine according to the second embodiment of the present invention.
  • FIG. 18 is a flowchart showing the processing content of the engine start-up processing by the control method of the spark ignition engine according to the second embodiment of the present invention.
  • FIG. 19 is an explanatory diagram of the gas behavior immediately before the end of the exhaust stroke in the intake valve heating mode in the control method of the spark ignition engine according to the second embodiment of the present invention.
  • FIG. 20 is an explanatory diagram of the behavior of gas and fuel spray at the initial stage of the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 21 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the third embodiment of the present invention.
  • FIG. 22 is an explanatory diagram of the operation of an exhaust valve of an engine using the control method for a spark ignition engine according to the third embodiment of the present invention.
  • FIG. 23 is a flowchart showing the processing content of the engine startup processing by the control method of the spark ignition engine according to the third embodiment of the present invention.
  • FIG. 24 is a transparent perspective view showing the configuration of an engine using the method for controlling a spark ignition engine according to the fourth embodiment of the present invention.
  • FIG. 25 is a front view showing a configuration of a swirl control valve attached to an engine using the method for controlling a spark ignition engine according to the second embodiment of the present invention.
  • FIG. 26 is a flowchart showing a method for controlling a spark ignition engine according to the second embodiment of the present invention.
  • FIG. 5 is an explanatory view of the operation of the swirl control valve attached to the engine.
  • FIG. 27 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 28 is a front view showing another configuration of the swirl control valve attached to the engine using the control method of the spark ignition engine according to the second embodiment of the present invention.
  • FIG. 29 is a flowchart showing the processing content of the engine startup processing by the control method of the spark ignition engine according to the fourth embodiment of the present invention.
  • FIG. 30 is an explanatory diagram of the fuel and gas behavior in the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the fourth embodiment of the present invention.
  • FIG. 31 is an explanatory diagram of the fuel and gas behavior during the intake stroke as a reference example.
  • FIG. 32 is an explanatory diagram of the fuel and gas behavior during the intake stroke in the catalyst activation mode in the spark ignition engine control method according to the fourth embodiment of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION a control method for a spark ignition engine according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 15.
  • FIG. 1 is a system configuration diagram showing a configuration of an engine control system using a control method for a spark ignition engine according to a first embodiment of the present invention.
  • the air introduced from the inlet 12 of the air cleaner 11 passes through the air filter 11 ′ and then enters the collector 16 through the downstream duct 14 and the throttle pod 15.
  • the air in the collector 16 is charged into the cylinder of the engine 1 through the intake pipe 18.
  • the amount of air drawn into the duct 14 from the air cleaner 11 is detected by a hot wire air flow meter 13.
  • the fuel pressurized by the fuel pump 20 from the fuel tank 19 passes through the fuel damper 21 and the fuel filter 22 and is guided to the fuel injection valve 4.
  • Part of the fuel guided to the fuel injection valve 4 is guided to the fuel pressure regulator 24, and the fuel tank 1 Returned to 9.
  • the pressure of the fuel supplied to the fuel injection valve 4 is regulated to a constant value.
  • the fuel injection valve 4 injects atomized fuel into the intake pipe 18.
  • the fuel injection valve 4 is attached to the intake pipe of each cylinder, and in the case of a multi-cylinder engine, controls the amount of fuel supplied to each cylinder.
  • FIG. 2 is a transparent perspective view showing a configuration of an engine using the control method of the spark ignition engine according to the first embodiment of the present invention.
  • FIG. 3 is a transparent plan view showing the configuration of an engine using the control method for a spark ignition engine according to the first embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same parts.
  • the engine 1 has a so-called 4-valve engine configuration in which the combustion chamber 11 has two intake valves 5 and two exhaust valves 6.
  • An ignition plug 45 is provided above the combustion chamber 11.
  • a fuel injection valve 4 is attached to an intake pipe 18 upstream of the intake valve 5. Fuel is injected by injecting fuel spray S from the fuel injection valve 4 toward the head 5 ′ of the intake valve 5.
  • the fuel injection timing is determined in either the exhaust stroke in which the intake valve 5 is closed and the piston 7 in the cylinder 8 is in the upward movement, or the intake stroke in which the intake valve 5 is opened and the piston 7 is in the downward movement. Done.
  • the spray injected from the fuel injection valve 4 is in the form of a two-way spray which is injected toward each intake passage 2.
  • the spray direction and spray width are determined so as not to collide with the wall surface of the intake pipe 18 and to collide with the head 5 ′ of the intake valve 5 when the intake valve 5 is closed.
  • the spray S is atomized by the fuel injection valve 4 so that the Sauter average particle diameter becomes about 50 m or less.
  • the fuel injected into the intake pipe 18 evaporates, mixes with the air filled in the combustion chamber 11, and is ignited by a spark plug (not shown) and burns.
  • the combustion gas in the combustion chamber 11 passes through the exhaust pipe 31, is purified by the catalyst 32, and is released into the atmosphere.
  • the catalyst 32 is a so-called three-way catalyst, and the exhaust gas Simultaneous oxidation of CO and HC and reduction of NO.
  • the temperature of the catalyst 32 is low and not activated, so that harmful components in the exhaust gas are difficult to purify.
  • An electrical output signal representing the amount of intake air detected by the air flow meter 13 is input to the control unit 25.
  • the throttle body 15 is provided with a throttle sensor 26 for detecting the opening of the throttle valve.
  • the output signal of the throttle sensor 26 is also input to the control unit 25.
  • a distributor 28 is provided near the engine 1.
  • a crank angle sensor (not shown) for detecting the crank angle of the engine is built in the interior of the distributor 28.
  • the output signal of the crank angle sensor is also input to the control unit 25.
  • the control unit 25 also receives output signals from a water temperature sensor 29 for detecting the temperature of the engine cooling water and an O2 sensor 30 for detecting the oxygen concentration in the exhaust gas. .
  • the control unit 25 performs predetermined arithmetic processing based on the signals from the various sensors described above, and drives various actuators in order to perform optimal control according to the engine operating state.
  • the ignition timing is controlled by controlling the voltage applied to the induction coil 27, and the fuel injection timing and the injection amount are controlled by controlling the opening of the fuel injection valve 4.
  • FIG. 4 is a block diagram showing a configuration of a control port in an engine control system using the control method of the spark ignition engine according to the first embodiment of the present invention.
  • the control unit 25 consists of an arithmetic unit (MPU) 251, a rewritable nonvolatile memory (EP-ROM) 252, a random access memory 253, an input port 2524, and an output port. It consists of 2 5 5.
  • the arithmetic unit 151 operates in synchronization with a fixed frequency clock generated by a crystal oscillator (not shown), and has a built-in timer that can measure the elapsed time from an arbitrary point based on the clock.
  • the input ports 254 include a water temperature sensor 29, an air flow sensor 13, a crank angle sensor, a throttle sensor 26, a starter switch, Inputs signals indicating the operating state of the engine detected by various sensors and switches, such as a battery voltage sensor, idle switch, # 2 sensor 30 and engine temperature sensor. From the output port 255, a signal for controlling various factories such as the fuel injection valve 4, the ignition coil 28, and the fuel pump 20 is output.
  • FIG. 5 is a flowchart showing the processing content of the engine start processing by the control method of the spark ignition engine according to the first embodiment of the present invention.
  • step s100 when detecting the ON of the ignition key, the control unit 25 starts the engine start processing according to the present embodiment.
  • step s105 the control unit 25 starts the cell motor.
  • step s110 the control unit 25 sets the internal timer time t to 0.
  • step s115 the control unit 25 reads the water temperature T detected by the water temperature sensor 29, and determines whether the temperature is lower than a predetermined temperature Twl.
  • the predetermined temperature Twl is usually about 50 to 80 ° C. If the detected water temperature T is higher than the predetermined temperature Twl, the mode shifts to the normal operation mode. On the other hand, if the water temperature T is lower than the predetermined temperature Twl, the process proceeds to the process after step s120, and shifts to the operation control of the intake valve heating mode.
  • step s120 the control unit 25 calculates the amount of injected fuel based on signals from the water temperature sensor, the air amount sensor, and the like.
  • the fuel injection amount is appropriately corrected according to the water temperature in order to prevent the combustion from being deteriorated due to fuel vaporization delay. That is, when the water temperature is low, the fuel injection amount is increased so as to be richer than the stoichiometric mixture ratio (in the case of gasoline, the air-fuel ratio is about 15), assuming a delay in vaporization.
  • FIG. 6 is an explanatory diagram illustrating the relationship between the injection pulse width of the fuel injection valve and the fuel injection amount in the engine control system using the spark ignition engine control method according to the first embodiment of the present invention.
  • an almost proportional relationship is established between the injection pulse width of the fuel injection valve and the injection amount.
  • the relationship shown in FIG. 6 is obtained in advance and stored in the control unit.
  • the control unit 25 determines the valve opening time (injection pulse width) of the fuel injection valve from the required fuel amount.
  • the control unit 25 applies a valve opening signal (injection pulse) to the fuel injection valve only during the determined valve opening time to inject a predetermined amount of fuel.
  • step s1 25 of FIG. 5 the control unit 25 detects the crank angle of the engine based on the signal of the crank angle sensor, and calculates the crank angle of the engine in the intake pipe by the fuel injection valve during the intake stroke of each cylinder. Inject the required amount of fuel.
  • the feature of the intake valve heating mode according to the present embodiment is that fuel is injected during the intake stroke.
  • the fuel attachment ratio to the intake valve (the ratio of the fuel attachment to the total injection amount) when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke, with reference to FIG. .
  • FIG. 7 is an explanatory diagram of the ratio of fuel adhesion to the intake valve when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention. .
  • the horizontal axis shows the crank angle (° ATDC), and the vertical axis shows the fuel adhesion ratio (%).
  • Dotted line A indicates the fuel adhesion ratio when fuel is injected during the exhaust stroke.
  • fuel is injected with the intake valve closed, so about half of the injected fuel adheres to the intake valve.
  • the solid line B shows the fuel adhesion ratio when fuel is injected during the intake stroke.
  • fuel is injected with the intake valve open, so much fuel is supplied directly into the combustion chamber without colliding with the intake valve. Because of this, intake Fuel adhesion to the valve is significantly reduced compared to exhaust stroke injection.
  • FIG. 8 is an explanatory diagram of a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • the horizontal axis shows the fuel injection timing (° ATDC)
  • the vertical axis shows the unburned hydrocarbon (H C) emission from the engine.
  • Dotted line C shows the change in unburned hydrocarbon (H C) emission from the engine with respect to the fuel injection timing when the engine is warmed up.
  • H C unburned hydrocarbon
  • the solid line D shows a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing when the engine is cold.
  • the intake stroke injection When the engine is cold, the intake stroke injection has less HC than the exhaust stroke injection. This is because the temperature of the intake valve is low when the engine is cold, and the fuel adhering to the intake valve is poorly vaporized. As a result, the fuel and air are not sufficiently mixed, and most of the adhered fuel is discharged from the engine without completely burning in the combustion chamber. For this reason, the intake stroke injection with less fuel adhesion to the intake valve can suppress HC emissions.
  • HC can be reduced when the engine is started by reducing the amount of fuel adhering to the intake valve as much as possible during cold periods, and by raising the temperature of the intake valve as soon as possible and using the heat of the intake valve for fuel vaporization.
  • FIG. 9 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the intake stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention.
  • the same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
  • the fuel spray S injected from the fuel injection valve 4 is injected toward the head 5 ′ of the intake valve 5. Fired.
  • the intake valve 5 is opened toward the combustion chamber 11, and a part of the fuel spray S enters the combustion chamber 11 without colliding with the umbrella section 5 ′, and is vaporized and mixed. Forming Qi.
  • the remaining fuel spray collides with the umbrella section 5 ′, but a high-speed air flow from the intake passage 2 toward the combustion chamber 11 occurs on the surface of the intake valve 5 with the intake, so that the fuel spray quickly It is atomized and vaporized and enters the combustion chamber 11 to form an air-fuel mixture.
  • the fuel liquid film formed on the umbrella portion 5 ' is small, and most of the fuel injected in the cycle enters the combustion chamber 11 in the cycle to form an air-fuel mixture.
  • step s130 of FIG. 5 the control unit 25 sets the ignition timing by advancing the ignition timing by a predetermined amount ⁇ ad with respect to the normal ignition timing. Then, when the crank angle reaches the set angle, an ignition signal is output to the ignition coil. The high-voltage current generated by the ignition coil is distributed to the ignition plug of each cylinder by the distributor, and the gas in the cylinder burns to obtain the engine output.
  • the normal ignition timing is the ignition timing at which the fuel efficiency of the engine is the best, and is usually obtained in advance by a preliminary test on a test bench and stored in the control unit as a function of the engine load, rotation speed, water temperature, etc. I have.
  • FIG. 10 is an explanatory diagram of the time history of the gas temperature in the combustion chamber in the control method of the spark ignition engine according to the first embodiment of the present invention.
  • the horizontal axis indicates the crank angle
  • the vertical axis indicates the gas temperature in the combustion chamber.
  • the star N indicates the ignition timing at which the usual fuel economy is best
  • the stars A l and A 2 indicate the ignition timing at the time of ignition advance
  • the star D 1 indicates the ignition timing at the time of ignition retard Shows the ignition timing.
  • the dotted line E when the ignition timing is shifted to the advanced side (ignition timing A1 leftward) based on the combustion chamber gas temperature at the ignition timing (ignition timing N) at which the best fuel consumption is obtained.
  • the solid line F the maximum temperature of the combustion gas increases. This means that by burning in the compression stroke, the fuel is burned while receiving the compression work accompanying the rise of the piston, and is originally taken from the crankshaft of the engine as kinetic energy. This is because part of the combustion energy that is released becomes heat energy.
  • ignition timing A 2 when the ignition timing is further advanced (ignition timing A 2), the gas is ignited without being sufficiently compressed by the piston, and the combustion becomes incomplete. The temperature reached decreases. On the other hand, when the ignition timing is retarded (ignition timing D 1), the maximum temperature of the gas decreases as shown by the two-dot chain line H.
  • the ignition advance width ⁇ 0 ad is set such that the maximum temperature of the gas reaches the highest.
  • the spark advance width ad is obtained by a preliminary test using a test bench or the like, and is usually about 5 to 20 ° crank angle.
  • FIG. 11 shows an explosion stroke when the air-fuel mixture formed by the intake stroke injection in the control method of the spark ignition engine according to the first embodiment of the present invention is burned with the ignition timing advanced from normal, (Expansion stroke) It is explanatory drawing of a state.
  • the same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
  • the maximum attained temperature of the combustion gas C is higher than that during normal combustion, and the convective heat transfer and radiant heat transfer of the high-temperature combustion gas cause the intake valve 5 to operate.
  • the temperature is raised early. This promotes atomization of the spray colliding with the intake valve 5 and vaporization of the attached droplets.
  • this operation mode by injecting fuel during the intake stroke, fuel adhesion to the intake valve is suppressed, and the temperature of the intake valve is quickly raised with the high-temperature combustion gas generated at the advanced ignition timing.
  • the amount of HC discharged when the engine is started is reduced.
  • the formation of a liquid film is suppressed by the intake stroke injection, the amount of fuel increase at startup when the engine temperature is low can be reduced, and the increase in HC due to excess fuel can be prevented.
  • step s1 35 in FIG. 5 the control unit 25 compares the timer time t with a predetermined intake valve warm-up time t1, and if t ⁇ t1, Returning to si 20, the procedure of the intake valve heating mode in which fuel is injected during the intake stroke in the next cycle and the ignition timing is advanced is repeated. On the other hand, if t> t 1 First, it is determined that the temperature of the intake valve has been sufficiently raised, and the operation mode is shifted to the operation mode for activating the catalyst after step s140.
  • FIG. 12 is an explanatory diagram of how to determine the required intake valve warm-up time t1 in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • the horizontal axis represents the elapsed time after the engine started
  • the vertical axis represents the surface temperature of the intake valve. That is, the solid line in the figure shows the change of the intake valve surface temperature with respect to the elapsed time after the engine start.
  • the intake valve surface temperature rises with time due to heat transfer from the combustion gas, and eventually stabilizes at a constant temperature if the engine load is steady.
  • the intake valve warm-up required time t1 is determined as the time when the intake valve reaches a predetermined temperature tc.
  • the temperature t c is a temperature at which the fuel attached to the intake valve can be quickly vaporized, and is desirably, for example, about 50 to 100 ° C.
  • the effect can be obtained even when the temperature t1 is set to a constant value.
  • the temperature rise characteristics of the intake valve vary depending on the initial temperature of the engine and the outside air temperature.For example, when the cooling water temperature is low, the time t1 is longer when the cooling water temperature is low, and Is desirably corrected to shorten the time t1.
  • step s 1 35 in FIG. 5 if the elapsed time t from the start of starting exceeds t 1, that is, if the temperature of the intake valve becomes higher than the predetermined temperature, the control unit unit 25 Shifts the operation mode of the engine to the catalyst activation mode.
  • step s140 of FIG. 5 the control unit 25 calculates the amount of injected fuel based on the signals of the water temperature sensor, the air amount sensor, and the like. At this time, when the water temperature is low, the fuel injection amount is appropriately corrected according to the water temperature in order to prevent the combustion from being deteriorated due to the fuel vaporization delay. In other words, when the water temperature is low, evaporation delay is assumed, and the mixture becomes richer than the stoichiometric mixture ratio (in the case of gasoline, the air-fuel ratio is about 15). The fuel injection amount is increased.
  • step s145 the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
  • FIG. 13 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the exhaust stroke in the control method of the spark ignition engine according to the first embodiment of the present invention.
  • the same reference numerals as in FIGS. 3 and 4 indicate the same parts.
  • the air flow in the intake passage 2 is weak, and the fuel spray S injected by the fuel injection valve 4 collides with the head 5 ′ of the intake valve 5 without changing its trajectory.
  • the temperature of the head 5 ′ of the intake valve is raised to about 60 to 100 ° C. by the intake valve heating mode performed before the present catalyst activation mode. Therefore, the spray S ′ that has collided with the intake valve head 5 ′ receives heat from the intake valve 5 ′ and quickly evaporates to form a mixture M in the intake passage 2.
  • FIG. 14 is an explanatory diagram of the behavior of the air-fuel mixture during the intake stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • the same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
  • the air-fuel mixture M generated in the intake passage 2 is sucked into the combustion chamber 11 together with the air, mixed by the air flow generated at the time of suction, and the fuel and air are well mixed in the combustion chamber 11 To form an air-fuel mixture. Combustion becomes stable by homogenizing the air-fuel mixture, and the ignition timing in this catalyst activation mode can be greatly retarded.
  • step s150 of FIG. 5 the control unit 25 ignites the ignition timing on the retard side with respect to the ignition timing at which the fuel efficiency is the best.
  • the gas temperature in the exhaust stroke increases. This is because heat is mainly generated during the expansion stroke due to ignition retardation, and part of the energy originally extracted as engine output is thermal energy. This increases the temperature of the gas supplied to the catalyst and activates the catalyst early.
  • the ignition retard width ⁇ 0 re is usually about 10 to 30 ° crank angle, the combustion does not deteriorate, that is, the torque cycle fluctuation of the engine does not become extremely large. It is desirable to take as large a value as possible within the optimal range.
  • FIG. 15 is an explanatory diagram of the behavior of the air-fuel mixture during the exhaust stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
  • the same reference numerals as in FIGS. 3 and 4 denote the same parts.
  • the ignition timing is retarded, and as shown in FIG. 10, the combustion gas temperature during the exhaust stroke is higher than when the ignition is not retarded. Therefore, as shown in FIG. 15, the high-temperature combustion gas is discharged to the exhaust passage 9 and guided to a three-way catalyst (not shown) provided downstream of the exhaust passage 9. As a result, the temperature of the catalyst is rapidly raised and activated.
  • step s155 of FIG. 5 the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2.
  • the procedure of the catalyst activation mode in which fuel is injected in the exhaust stroke in the next cycle and the ignition timing is retarded is repeated.
  • t> t2 it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
  • the catalyst activation period t2 is the time required until the catalyst is activated (light-off), and is usually the time required for the catalyst temperature to rise to 200 to 300 ° C.
  • the time t 2 is determined in advance by a preliminary experiment using a test bench or the like.
  • the ignition timing in the intake valve heating mode, the ignition timing is advanced and the fuel injection timing is set to the intake stroke.
  • the fuel injection timing may be set to the exhaust stroke.
  • the intake valve heating mode of the present embodiment by elevating the temperature of the intake valve early by advancing the ignition timing, the fuel vaporization in the subsequent catalyst activation mode and the normal operation mode is promoted.
  • the HC can be reduced at the time of starting.
  • the emission can be reduced by about 50% compared to the past.
  • the operation shifts to the normal operation mode via the catalyst activation mode.However, the catalyst activation mode is omitted, and after the intake valve heating mode, The operation may shift to the normal operation mode. In this case, too, by increasing the temperature of the intake valve early in the intake valve heating mode, it is possible to reduce HC in the subsequent normal operation mode.
  • DI multi-port injection
  • the intake valve heating mode not only the intake valve but also the exhaust valve, the combustion chamber wall surface, the piston crown surface, etc. are quickly heated by the high-temperature combustion gas at the same time, so the DI engine injected fuel into the combustion chamber.
  • the fuel collides with the intake valve, exhaust valve, combustion chamber wall, and piston crown these fuels can be vaporized at an early stage, and HC at startup can be reduced.
  • the timing of switching from the intake valve heating mode to the catalyst activation mode is determined based on the elapsed time from the start of the start, but the cooling water temperature detected by the water temperature sensor has reached the predetermined temperature. It may be switched at the time. Alternatively, the temperature may be switched when the temperature reaches a predetermined temperature by using a temperature detected by an intake valve, a combustion chamber wall surface, a sensor for detecting a catalyst temperature, or the like. That is, as shown in Fig. 6, in addition to detecting the temperature of the intake valve at or above the predetermined temperature in advance by measuring it on a test bench and detecting the elapsed time, the intake valve and the combustion chamber wall It can be detected from the engine temperature by a method such as directly measuring the temperature.
  • HC in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by making the ignition timing advanced.
  • HC is further reduced by setting the injection timing to the intake stroke.
  • the system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since there is a difference in the drive mechanism of the intake valve, this point will be described later with reference to FIGS. 16 and 17. Further, the configuration of the control unit 25 in the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG.
  • FIG. 16 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 17 is an explanatory diagram of the operation of the intake valve of the engine using the control method of the spark ignition engine according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 2 indicate the same parts.
  • the intake valve 5 is provided with a variable valve mechanism 50.
  • the variable valve mechanism 50 is a so-called phase difference type variable valve mechanism, and is realized by providing a torsion mechanism (not shown) on a rotating shaft (not shown) of a cam for lifting the intake valve 5.
  • a similar variable valve mechanism can be realized by using an electromagnetic valve or a hydraulic valve.
  • the variable valve mechanism 50 can change the opening timing of the intake valve 5 by a control signal input from the control unit 25.
  • valve opening timing As shown in Fig. 17, there are two patterns of valve opening timing: normal mode and advanced angle mode. In the advance mode, the valve opening timing is advanced compared to the normal mode. is there.
  • FIG. 18 is a flowchart showing the processing content of the engine start-up processing by the control method of the spark ignition engine according to the second embodiment of the present invention. Note that the same step numbers as those in FIG. 5 indicate the same processing contents.
  • an intake valve heating mode and a catalyst activation mode are provided similarly to the processing shown in FIG. 5, as an intake valve heating mode and a catalyst activation mode are provided. However, the process in step s122 in the intake valve heating mode is different from the process shown in FIG.
  • the engine activation process is started by the ON of the ignition key in step s100.
  • the control unit 25 sets the internal timer time to 0 in the process of step s110.
  • the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to the normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
  • step s120 the control unit 25 calculates the amount of injected fuel.
  • step s122 the control unit 25 sets the intake valve lift to the advance mode as shown in FIG. 17 and sets the variable valve mechanism 50 as shown in FIG. Outputs a control signal for setting the advance mode.
  • FIG. 19 is an explanatory diagram of the gas behavior immediately before the end of the exhaust stroke in the intake valve heating mode in the control method of the spark ignition engine according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 16 indicate the same parts.
  • the intake valve 5 since the opening timing of the intake valve 5 is advanced with respect to the normal operation, the intake valve 5 opens with the pressure in the combustion chamber 11 higher than the intake passage 2. Therefore, the combustion gas C in the combustion chamber 11 flows into the intake passage 2. Flows into the intake channel 2 The convection and radiant heat transfer from the hot combustion gas C to the intake valve 5 heats the umbrella portion 5 'of the intake valve 5 early.
  • step s 1 25 in FIG. 18 the control unit 25 sets the fuel injection timing to the intake stroke, and in the intake stroke of each cylinder, a predetermined amount of fuel is injected into the intake pipe by the fuel injection valve. Inject.
  • FIG. 20 is an explanatory diagram of the behavior of gas and fuel spray at the initial stage of the intake stroke in the intake valve heating mode in the control method for the spark ignition engine according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 16 indicate the same parts.
  • the fuel spray S injected during the intake stroke is vaporized by the heat transfer from the combustion gas C drawn into the combustion chamber 7 from the intake passage 2. Further, the mist that collides with the umbrella portion 5 ′ of the intake valve 5 is vaporized by receiving heat from the intake valve 5 that has become hot. For this reason, most of the fuel injected in the intake stroke enters the combustion chamber 7 in a vaporized state, and forms a mixture in the combustion chamber 7. As a result, combustion with less generation of a fuel liquid film in the intake valve and the combustion chamber and less HC is realized. In addition, since a uniform mixture is formed by promoting vaporization, stable combustion is realized, and the ignition timing can be greatly retarded. As a result, the exhaust gas temperature becomes higher and the catalyst can be activated in a short time.
  • step s135 of FIG. 18 when the elapsed time t from the start of the start exceeds the predetermined time t1, the control unit 25 shifts to the catalyst activation mode.
  • the details of the processing in the catalyst activation mode are the same as those described with reference to FIG. 5.
  • the exhaust stroke injection and the ignition retard control are performed, and the catalyst is activated early.
  • the intake valve lift at this time is returned to the normal lift mode without advance.
  • HC in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by advancing the lift timing of the intake valve. it can.
  • many recent spark ignition engines have been equipped with a variable valve mechanism, and such engines can be adopted without adding hardware.
  • the lift timing of the intake valve Since the surface of the intake valve is directly heated by the combustion gas, the surface temperature of the intake valve can quickly rise to a temperature at which fuel can be evaporated.
  • HC is further reduced by setting the injection timing to the intake stroke.
  • emissions at the time of starting the engine can be reduced.
  • reliability and durability can be improved.
  • the system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since there is a difference between the drive mechanisms of the intake valve and the exhaust valve, this point will be described later with reference to FIGS. 21 and 22. Further, the configuration of the control unit 25 in the engine control system using the method for controlling the spark ignition engine according to the present embodiment is the same as that shown in FIG.
  • FIG. 21 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the third embodiment of the present invention.
  • FIG. 22 is an explanatory diagram of the operation of the exhaust valve of the engine using the control method of the spark ignition engine according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 2 indicate the same parts.
  • the intake valve 5 is provided with a variable valve mechanism 50
  • the exhaust valve 6 is provided with a variable valve mechanism 60.
  • the variable valve mechanism 50 is the same as that described in FIG.
  • the variable valve mechanism 60 is similar to the variable valve mechanism 60.
  • the variable valve mechanism 50 can change the opening timing of the intake valve 5 by a control signal input from the control unit 25. Further, the variable valve mechanism 60 can change the opening timing of the exhaust valve 6 according to a control signal input from the control unit 25.
  • the opening timing of the intake valve 5 has two patterns, a normal mode and an advanced mode.
  • the valve opening timing is advanced compared to the normal mode.
  • the opening timing of the exhaust valve 6 has two patterns, a normal mode and an advanced angle mode, as shown in FIG.
  • the advance mode the valve opening timing is advanced compared to the normal mode.
  • FIG. 23 is a flowchart showing the processing content of the engine start processing by the control method of the spark ignition engine according to the third embodiment of the present invention. Note that the same step numbers as those in FIGS. 5 and 18 indicate the same processing contents.
  • step s142 in the catalyst activation mode is different from the process shown in FIG.
  • the engine activation process is started by the ON of the ignition key in step s100.
  • the control unit 25 sets the internal timer one time to 0 in the process of step s110.
  • the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
  • step s120 the control unit 25 calculates the amount of injected fuel.
  • step s120 the control unit 25 sets the intake valve lift to the advance mode as shown in FIG. 17 and advances the variable valve mechanism 50 as shown in FIG. Output control signal to switch to angular mode You.
  • step s125 the control unit 25 sets the fuel injection timing to the intake stroke, and injects a predetermined amount of fuel into the intake pipe by the fuel injection valve during the intake stroke of each cylinder.
  • step s135 the control unit 25 shifts to the catalyst activation mode when the elapsed time t from the start of the start exceeds the predetermined time t1.
  • step s140 the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
  • step s142 the control unit 25 sets the exhaust valve lift to the advance mode as shown in FIG. 22 and sets the variable valve mechanism 60 as shown in FIG. Outputs a control signal for setting the advance mode.
  • the catalyst activation mode by advancing the opening timing of the exhaust valve, in the catalyst activation mode, the combustion gas before complete combustion in the combustion chamber is led to the exhaust pipe. As a result, combustion continues in the exhaust pipe, and the temperature of the combustion gas supplied to the catalyst rises.
  • the unburned fuel causes a combustion reaction in the catalyst, enabling early activation of the catalyst.
  • step s145 the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
  • step s155 the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2, and if t ⁇ t2, the control unit 25 Then, in the next cycle, the procedure of the catalyst activation mode for injecting fuel in the exhaust stroke and retarding the ignition timing is repeated. On the other hand, if t> t2, it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
  • HC in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by advancing the lift timing of the intake valve. it can.
  • HC is further reduced by setting the injection timing to the intake stroke.
  • the activation time of the hornworm medium can be reduced by advancing the opening timing of the exhaust valve.
  • emissions at the time of starting the engine can be reduced.
  • reliability and durability can be improved.
  • the system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since the intake pipe is provided with a swirl control valve, this point will be described later with reference to FIGS. 24 to 26. Further, the configuration of the control unit 25 in the engine control system using the method for controlling a spark ignition engine according to the present embodiment is the same as that shown in FIG.
  • FIG. 24 is a transparent perspective view showing the configuration of an engine using the method for controlling a spark ignition engine according to the fourth embodiment of the present invention.
  • FIG. 25 is a front view showing a configuration of a swirl control valve attached to an engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 26 is an explanatory diagram of the operation of a swirl control valve attached to an engine using the control method for a spark ignition engine according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 2 indicate the same parts.
  • a swirl control valve 30 is provided upstream of the intake passage 2.
  • the swirl control valve 30 has a structure in which a plate-shaped valve element 33 is attached to a swirl control valve shaft 31 rotated by a motor 32.
  • the valve element 33 has a configuration having an opening 3 3 ′ at the upper right part thereof.
  • a rotation instruction is given to the motor 32 by a control signal from the control unit 25, and as shown in FIG. 21, the swirl control valve 30 can be switched between fully closed and fully opened.
  • the swirl control valve 30 is fully opened.
  • the swirl control valve 30 is fully closed for stable combustion at low and medium loads.
  • FIG. 27 a swirl control valve having another configuration will be described with reference to FIGS. 27 and 28.
  • FIG. 27 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • FIG. 28 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention.
  • the same reference numerals as those in FIG. 25 indicate the same parts.
  • the flat valve body 33 A constituting the steel control valve 3 OA has a shape capable of blocking the left half of the passage, and has an opening 33 A ′ on the right side thereof. have.
  • a high directivity airflow F with high directivity is generated from the opening 33A 'of the valve body 33A by the throttle effect.
  • This airflow F generates a strong vortex in the combustion chamber.
  • the scale control valve 3OA generates a lateral vortex in the combustion chamber.
  • the plate-shaped valve element 33 B constituting the swirl control valve 30 B has a shape capable of blocking the lower half of the passage, and an opening 33 B ′ have.
  • a high-directivity high-speed airflow F is generated from the opening 33B 'of the valve body 33B by the throttle effect. This air flow F generates a strong vortex in the combustion chamber.
  • the swirl control valve 30B generates a vertical vortex in the combustion chamber.
  • FIG. 29 is an end view of the spark ignition engine control method according to the fourth embodiment of the present invention. It is a flowchart which shows the processing content of a gin activation process. Note that the same step numbers as those in FIG. 5 indicate the same processing contents.
  • an intake valve heating mode and a catalyst activation mode are provided similarly to the processing shown in FIG. 5, as an intake valve heating mode and a catalyst activation mode are provided. However, the processing in step s124 in the intake valve heating mode and the processing in step s144 in the catalyst activation mode are different from the processing shown in FIG.
  • the engine activation process is started by the ON of the ignition key in step s100.
  • the control unit 25 sets the internal timer one time to 0 in the process of step s110.
  • the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to the normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
  • Twl normal temperature
  • step s120 the control unit 25 calculates the amount of injected fuel.
  • step s124 the control unit 25 sends a control signal for opening the swirl control valve 30 to the swirl control valve 30 so that the swirl control valve 30 is opened.
  • swirl control valves 3 OA and 30 B shown in FIGS. 27 and 28 may be used instead of the swirl control valve 30. .
  • FIG. 30 is an explanatory diagram of the fuel and gas behavior in the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the fourth embodiment of the present invention.
  • the same reference numerals as those in FIG. 24 indicate the same parts.
  • Figure 31 is an explanatory diagram of the fuel and gas behavior during the intake stroke as a reference example.
  • the same reference numerals as those in FIG. 24 indicate the same parts.
  • swirl control valve 30 When swirl control valve 30 is closed during intake stroke injection, air F accelerated by swirl control valve 30 deflects fuel spray S and forms liquid film L on the wall of intake pipe 18. . Due to the formation of the liquid film L, HC discharged from the engine increases. In contrast, as shown in FIG. 30, in the present embodiment, in the intake valve heating mode, the swirl control valve 30 is opened during the intake stroke injection to suppress the deflection and dispersion of the spray, HC can be reduced.
  • step s125 of FIG. 29 the control unit 25 sets the fuel injection timing to the intake stroke, and sets a predetermined amount of fuel into the intake pipe by the fuel injection valve during the intake stroke of each cylinder. Inject.
  • step s135 the control unit 25 shifts to the catalyst activation mode when the elapsed time t from the start has exceeded the predetermined time t1.
  • the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
  • step s144 the control unit 25 sends a control signal for closing the swirl control valve 30 to the swirl control valve 30, and the swirl control valve closes.
  • step s145 the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
  • FIG. 32 is an explanatory diagram of the fuel and gas behavior during the intake stroke in the catalyst activation mode in the spark ignition engine control method according to the fourth embodiment of the present invention.
  • the same reference numerals as those in FIG. 24 indicate the same parts.
  • the swirl control valve 30 is closed, and a vertical vortex TF is formed in the combustion chamber 11.
  • the fuel injected during the exhaust stroke receives heat from the umbrella section 5 ′ of the exhaust valve 5, which is heated by the operation in the intake valve heating mode performed before the catalyst activation mode, and is vaporized and burned Room 1 is led to 1.
  • mixing of the vaporized fuel and air is promoted by the vertical vortex TF, and strong turbulence is generated in the gas by the vertical vortex TF.
  • This promotion of mixing and enhanced turbulence stabilizes combustion in the catalyst activation mode. This makes it possible to operate with a large ignition retard, which tends to cause unstable combustion, and to activate the catalyst in a shorter period of time.
  • the combustion stabilization effect enables operation with a leaner air-fuel mixture, so it is possible to reduce the amount of fuel increase at startup and reduce HC.
  • step s150 of FIG. 29 the control unit 25 ignites the ignition timing on the retard side with respect to the ignition timing at which the fuel efficiency is the best. As shown in FIG. 10, when the ignition timing is retarded from the best fuel consumption timing, the gas temperature in the exhaust stroke increases.
  • step s155 the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2, and if t ⁇ t2, the control unit 25 Then, in the next cycle, the procedure of the catalyst activation mode for injecting fuel in the exhaust stroke and retarding the ignition timing is repeated. On the other hand, if t> t2, it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
  • the operation of the swirl control valve is fully opened in the intake valve heating mode and fully closed in the catalyst activation mode.
  • the opening of the swirl control valve in the intake valve heating mode is determined by the catalyst activation. It may be set to an intermediate opening between full open and fully closed, as long as it is larger than the opening of the swirl control valve in the normalization mode.
  • HC in the intake valve heating mode, HC can be reduced by closing the swirl control valve.
  • HC is further reduced by setting the injection timing to the intake stroke.
  • emissions at the time of starting the engine can be reduced.
  • reliability and durability can be improved.
  • INDUSTRIAL APPLICABILITY According to the present invention, emissions at the time of starting can be reduced, and reliability and durability can be improved.

Abstract

A control method for spark ignition engine capable of reducing emissions at the start of the engine and increasing the reliability and durability thereof, wherein a control unit (25) is formed so that, when the temperature of the engine is lower than a specified temperature, an ignition timing is advanced ahead of one at which a fuel efficiency is best.

Description

明 細 書 火花点火機関の制御方法 技術分野 本発明は、 火花点火機関の制御方法に係り、 特に、 火花点火機関の始動時の制 御として好適な排気エミッション低減に有効な火花点火機関の制御方法に関する。 背景技術 火花点火機関を始動する際に、 機関温度が低い場合には、 噴射された燃料は低 温の吸気弁や吸気ポートに衝突し、 壁面上に燃料の液膜が生成される。 低温壁面 上の液膜は気化が悪いため燃焼が悪化し、 排気中に大量の未燃炭化水素 (H C ) が排出される。 また、 始動時の燃焼を改善するために、 始動時に理論空燃比より 燃料リッチとなるような多くの燃料を噴射する (始動時燃料増量) ことが一般的 に行われるが、 この場合には、 低温壁面に付着して気化できなかった余剰燃料が 排気中に混入し、 H Cが増加する。  TECHNICAL FIELD The present invention relates to a method for controlling a spark ignition engine, and more particularly, to a method for controlling a spark ignition engine which is effective for controlling exhaust emission suitable for control at the time of starting the spark ignition engine. About. BACKGROUND ART When a spark ignition engine is started, if the engine temperature is low, the injected fuel collides with a low-temperature intake valve or an intake port, and a liquid film of fuel is formed on a wall surface. The liquid film on the low-temperature wall is poorly vaporized and deteriorates in combustion, so that a large amount of unburned hydrocarbons (H C) is emitted in the exhaust gas. In addition, in order to improve the combustion at the start, it is common practice to inject a large amount of fuel at the start to make the fuel richer than the stoichiometric air-fuel ratio (fuel increase at the start). In this case, Excess fuel that could not be vaporized by adhering to the low-temperature wall enters the exhaust gas and increases HC.
そこで、 従来の火花点火機関においては、 例えば、 特開平 1 1— 8 2 0 0 3号 公報に記載されているように、 アイドル状態のときに、 点火時期を通常の点火時 期に対して遅角させることにより、 排気ガス温度を上昇させ、 排気管に取り付け られた三元触媒を早期に昇温 ·活性化することで、 始動時のエミッションを低減 することを知られている。 しかしながら、 この方法では、 吸気弁等に付着する燃 料による H Cの増加を低減することはできないものである。  Therefore, in a conventional spark ignition engine, for example, as described in Japanese Patent Application Laid-Open No. H11-8203, the ignition timing is delayed with respect to the normal ignition time in an idle state. It has been known that by squaring, the exhaust gas temperature is raised, and the three-way catalyst attached to the exhaust pipe is heated and activated at an early stage, thereby reducing startup emissions. However, this method cannot reduce the increase in HC due to fuel adhering to the intake valve and the like.
そこで、 例えば、 特開平 5— 2 6 0 1 3号公報ゃ特開平 6— 2 2 1 1 2 1号公 報に記載されているように、 吸気弁を電気ヒータによって加熱することにより、 H Cを低減することも知られている。 発明の開示 · しかしながら、 特開平 5— 2 6 0 1 3号公報ゃ特開平 6— 2 2 1 1 2 1号公報 に記載されている方式では、 高速で開閉動作を繰り返す吸気弁に直接ヒー夕を設 けるため、 信頼性, 耐久性が低いという問題があった。 Therefore, for example, as described in Japanese Patent Application Laid-Open No. 5-26013 and Japanese Patent Application Laid-Open No. Hei 6-221121, the intake valve is heated by an electric heater to reduce HC. It is also known to reduce. Disclosure of Invention · However, in the method described in Japanese Patent Application Laid-Open No. Hei 5-26013 and Japanese Patent Application Laid-Open No. Hei 6-221121, a heater is directly provided at an intake valve that repeats opening and closing operations at high speed. However, there was a problem that reliability and durability were low.
本発明の目的は、 始動時のェミッションを低減できるとともに、 信頼性, 耐久 性が向上した火花点火機関の制御方法を提供することにある。  It is an object of the present invention to provide a control method for a spark ignition engine that can reduce emissions at the time of starting and has improved reliability and durability.
上記目的を達成するために、 本発明は、 燃料噴射弁を有する火花点火機関にお いて、 機関温度が所定の温度より低い場合に、 点火時期を燃費が最も良くなる点 火時期より進角させるようにしたものである。  In order to achieve the above object, the present invention provides a spark ignition engine having a fuel injection valve, in which, when the engine temperature is lower than a predetermined temperature, the ignition timing is advanced from the ignition timing at which the fuel efficiency becomes best. It is like that.
かかる方法により、 燃焼室内の燃焼ガス温度をより高温とすることができ、 こ の高温ガスからの伝熱によって吸気弁が早期に昇温されるので、 吸気弁に付着衝 突した燃料を、 吸気弁からの伝熱によって、 付着した燃料を速やかに気化するこ とができ、 機関始動時の壁流が減少し、 H Cが低減できる。  With this method, the temperature of the combustion gas in the combustion chamber can be raised to a higher temperature, and heat transfer from this high-temperature gas causes the intake valve to heat up quickly. The heat transfer from the valve allows the adhering fuel to be quickly vaporized, reducing wall flow when starting the engine and reducing HC.
また、 上記目的を達成するために、 本発明は、 燃料噴射弁を有する火花点火機 関において、 吸気弁の開弁時期を変更する手段を備え、 機関温度が所定の温度よ り低い場合に、 上記吸気弁の開弁時期を通常の開弁時期より進角させるようにし たものである。  Further, in order to achieve the above object, the present invention provides a spark igniter having a fuel injection valve, comprising: means for changing an opening timing of an intake valve, wherein when an engine temperature is lower than a predetermined temperature, The opening timing of the intake valve is advanced from the normal opening timing.
かかる方法により、 吸気弁の開弁直後に高温の燃焼ガスが吸気管に導入され、 吸気弁が昇温されるので、 吸気管に導入された高温ガスによって燃料の気化が進 み、 H Cの低減ができる。  With this method, high-temperature combustion gas is introduced into the intake pipe immediately after the intake valve opens, and the temperature of the intake valve rises, so the high-temperature gas introduced into the intake pipe promotes fuel vaporization and reduces HC. Can be.
さらに、 上記目的を達成するために、 本発明は、 燃料噴射弁を有する火花点火 機関において、 吸気管の流路段面積を変えてスワールを発生させるスワール制御 弁を備え、 機関温度が所定の温度よりも低い場合に、 上記スワール制御弁によつ て生成されるスワール強さを、 機関温度が所定の温度よりも高い場合より弱くす るようにしたものである。  Further, in order to achieve the above object, the present invention provides a spark ignition engine having a fuel injection valve, further comprising a swirl control valve for generating a swirl by changing a flow passage step area of an intake pipe, wherein an engine temperature is lower than a predetermined temperature. When the engine temperature is lower than the predetermined temperature, the swirl intensity generated by the swirl control valve is made lower than when the engine temperature is higher than a predetermined temperature.
かかる方法により、 吸気管内の空気流速が低くなり、 空気流による燃料噴霧の 軌道の偏向を防ぐことができるので、 吸気行程で噴射された燃料の壁面付着が低 減し、 H Cが低減できる。 図面の簡単な説明 図 1は、 本発明の第 1の実施形態本実施形態による火花点火機関の制御方法を 用いるエンジン制御システムの構成を示すシステム構成図である。 With this method, the air flow velocity in the intake pipe is reduced, and the trajectory of the fuel spray due to the air flow can be prevented from being deflected. Therefore, the adhesion of the fuel injected in the intake stroke to the wall surface is reduced, and HC can be reduced. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a system configuration diagram showing a configuration of an engine control system using a spark ignition engine control method according to a first embodiment of the present invention.
図 2は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジンの構成を示す透過斜視図である。  FIG. 2 is a transparent perspective view showing a configuration of an engine using the control method of the spark ignition engine according to the first embodiment of the present invention.
図 3は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジンの構成を示す透過平面図である。  FIG. 3 is a transparent plan view showing a configuration of an engine using the spark ignition engine control method according to the first embodiment of the present invention.
図 4は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジン制御システムの中のコントロールュニットの構成を示すブロック図である。 図 5は、 本発明の第 1の実施形態による火花点火機関の制御方法によるェンジ ン起動処理の処理内容を示すフローチャートである。  FIG. 4 is a block diagram showing a configuration of a control unit in an engine control system using the spark ignition engine control method according to the first embodiment of the present invention. FIG. 5 is a flowchart showing the content of the engine start-up process by the control method of the spark ignition engine according to the first embodiment of the present invention.
図 6は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジン制御システムにおける燃料噴射弁の噴射パルス幅と燃料噴射量の関係の説明 図である。  FIG. 6 is an explanatory diagram illustrating the relationship between the injection pulse width of the fuel injection valve and the fuel injection amount in the engine control system using the spark ignition engine control method according to the first embodiment of the present invention.
図 7は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 を吸気行程に噴射した場合と、 排気行程に噴射した場合の吸気弁への燃料の付着 割合の説明図である。  FIG. 7 is an explanatory diagram of the ratio of fuel adhesion to the intake valve when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention. .
図 8は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 噴射時期に対する未燃炭化水素 (H C ) のエンジンからの排出量の変化の説明図 である。  FIG. 8 is an explanatory diagram of a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing in the control method for the spark ignition engine according to the first embodiment of the present invention.
図 9は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 噴射時期を吸気行程にしたときの燃焼室での燃料の挙動の説明図である。  FIG. 9 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the intake stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention.
図 1 0は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃 焼室内ガス温度の時間履歴の説明図である。  FIG. 10 is an explanatory diagram of the time history of the gas temperature in the combustion chamber in the control method of the spark ignition engine according to the first embodiment of the present invention.
図 1 1は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気行程噴射で形成された混合気を、 点火時期を通常より進角させて燃焼させたと きの、 爆発行程 (膨張行程) の様子の説明図である。  FIG. 11 shows an explosion stroke when the air-fuel mixture formed by the intake stroke injection in the control method of the spark ignition engine according to the first embodiment of the present invention is burned with the ignition timing advanced from normal, (Expansion stroke) It is explanatory drawing of a state.
図 1 2は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気弁暧機所要時間 t 1の決め方の説明図である。 FIG. 12 is a diagram illustrating a suction method in the control method of the spark ignition engine according to the first embodiment of the present invention. FIG. 4 is an explanatory diagram of how to determine a valve operating time t 1.
図 1 3は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃 料噴射時期を排気行程にしたときの燃焼室での燃料の挙動の説明図である。 図 1 4は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気行程における混合気の挙動の説明図である。  FIG. 13 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the exhaust stroke in the control method of the spark ignition engine according to the first embodiment of the present invention. FIG. 14 is an explanatory diagram of the behavior of the air-fuel mixture during the intake stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
図 1 5は、 本発明の第 1の実施形態による火花点火機関の制御方法における排 気行程にでの混合気の挙動の説明図である。  FIG. 15 is an explanatory diagram of the behavior of the air-fuel mixture during the exhaust stroke in the control method for the spark ignition engine according to the first embodiment of the present invention.
図 1 6は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。  FIG. 16 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the second embodiment of the present invention.
図 1 7は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンの吸気弁の動作説明図である。  FIG. 17 is an explanatory diagram of the operation of an intake valve of an engine using the method for controlling a spark ignition engine according to the second embodiment of the present invention.
図 1 8は、 本発明の第 2の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチャートである。  FIG. 18 is a flowchart showing the processing content of the engine start-up processing by the control method of the spark ignition engine according to the second embodiment of the present invention.
図 1 9は、 本発明の第 2の実施形態による火花点火機関の制御方法における吸 気弁昇温モ一ドにおける排気行程終了直前でのガス挙動の説明図である。  FIG. 19 is an explanatory diagram of the gas behavior immediately before the end of the exhaust stroke in the intake valve heating mode in the control method of the spark ignition engine according to the second embodiment of the present invention.
図 2 0は、 本発明の第 2の実施形態による火花点火機関の制御方法における吸 気弁昇温モ一ドにおける吸気行程初期段階でのガス, 燃料噴霧の挙動の説明図で める。  FIG. 20 is an explanatory diagram of the behavior of gas and fuel spray at the initial stage of the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the second embodiment of the present invention.
図 2 1は、 本発明の第 3の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。  FIG. 21 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the third embodiment of the present invention.
図 2 2は、 本発明の第 3の実施形態による火花点火機関の制御方法を用いるェ ンジンの排気弁の動作説明図である。  FIG. 22 is an explanatory diagram of the operation of an exhaust valve of an engine using the control method for a spark ignition engine according to the third embodiment of the present invention.
図 2 3は、 本発明の第 3の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチヤ一トである。  FIG. 23 is a flowchart showing the processing content of the engine startup processing by the control method of the spark ignition engine according to the third embodiment of the present invention.
図 2 4は、 本発明の第 4の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。  FIG. 24 is a transparent perspective view showing the configuration of an engine using the method for controlling a spark ignition engine according to the fourth embodiment of the present invention.
図 2 5は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンに取り付けられたスワール制御弁の構成を示す正面図である。  FIG. 25 is a front view showing a configuration of a swirl control valve attached to an engine using the method for controlling a spark ignition engine according to the second embodiment of the present invention.
図 2 6は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンに取り付けられたスワール制御弁の動作説明図である。 FIG. 26 is a flowchart showing a method for controlling a spark ignition engine according to the second embodiment of the present invention. FIG. 5 is an explanatory view of the operation of the swirl control valve attached to the engine.
図 2 7は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンに取り付けられたスワール制御弁の他の構成を示す正面図である。  FIG. 27 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention.
■図 2 8は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンに取り付けられたスワール制御弁のその他の構成を示す正面図である。 図 2 9は、 本発明の第 4の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチャートである。  FIG. 28 is a front view showing another configuration of the swirl control valve attached to the engine using the control method of the spark ignition engine according to the second embodiment of the present invention. FIG. 29 is a flowchart showing the processing content of the engine startup processing by the control method of the spark ignition engine according to the fourth embodiment of the present invention.
図 3 0は、 本発明の第 4の実施形態による火花点火機関の制御方法における吸 気弁昇温モードにおける吸気行程での燃料, ガス挙動の説明図である。  FIG. 30 is an explanatory diagram of the fuel and gas behavior in the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the fourth embodiment of the present invention.
図 3 1は、 参考例としての吸気行程での燃料, ガス挙動の説明図である。 図 3 2は、 本発明の第 4の実施形態による火花点火機関の制御方法における触 媒活性化モードにおける吸気行程での燃料, ガス挙動の説明図である。 発明を実施するための最良の形態 以下、 図 1〜図 1 5を用いて、 本発明の第 1の実施形態による火花点火機関の 制御方法について説明する。  Figure 31 is an explanatory diagram of the fuel and gas behavior during the intake stroke as a reference example. FIG. 32 is an explanatory diagram of the fuel and gas behavior during the intake stroke in the catalyst activation mode in the spark ignition engine control method according to the fourth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a control method for a spark ignition engine according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 15.
最初に、 図 1を用いて、 本実施形態による火花点火機関の制御方法を用いるェ ンジン制御システムのシステム構成について説明する。  First, a system configuration of an engine control system using the control method for a spark ignition engine according to the present embodiment will be described with reference to FIG.
図 1は、 本発明の第 1の実施形態本実施形態による火花点火機関の制御方法を 用いるエンジン制御システムの構成を示すシステム構成図である。  FIG. 1 is a system configuration diagram showing a configuration of an engine control system using a control method for a spark ignition engine according to a first embodiment of the present invention.
エアクリーナ 1 1の入口部 1 2より導入された空気は、 エアフィル夕 1 1 ' を 通過後、 その下流のダクト 1 4, スロットルポディ 1 5を通って、 コレクタ 1 6 に入る。 コレクタ 1 6内の空気は、 吸気管 1 8を通ってエンジン 1のシリンダに 充填される。 エアクリーナ 1 1からダクト 1 4に吸入される空気量は、 熱線式空 気流量計 1 3によって検出される。  The air introduced from the inlet 12 of the air cleaner 11 passes through the air filter 11 ′ and then enters the collector 16 through the downstream duct 14 and the throttle pod 15. The air in the collector 16 is charged into the cylinder of the engine 1 through the intake pipe 18. The amount of air drawn into the duct 14 from the air cleaner 11 is detected by a hot wire air flow meter 13.
一方、 燃料タンク 1 9から燃料ポンプ 2 0によって加圧された燃料は、 燃料ダ ンパ 2 1, 燃料フィル夕 2 2を通って、 燃料噴射弁 4に導かれる。 また、 燃料噴 射弁 4へ導かれる燃料の一部は、 燃圧レギユレ一夕 2 4に導かれ、 燃料タンク 1 9へ戻される。 燃圧レギユレ一夕 2 4は、 燃料噴射弁 4に供給される燃料の圧力 は一定に調圧する。 燃料噴射弁 4は、 微粒化された燃料を、 吸気管 1 8内に噴射 する。 本例では、 燃料噴射弁 4は、 各シリンダの吸気管に取り付けられており、 多気筒エンジンの場合には、 各気筒毎に供給燃料量を制御する, いわゆる、 M P I (マルチポート ·インジェクション) システムを構成している。 On the other hand, the fuel pressurized by the fuel pump 20 from the fuel tank 19 passes through the fuel damper 21 and the fuel filter 22 and is guided to the fuel injection valve 4. Part of the fuel guided to the fuel injection valve 4 is guided to the fuel pressure regulator 24, and the fuel tank 1 Returned to 9. In the fuel pressure regulation 24, the pressure of the fuel supplied to the fuel injection valve 4 is regulated to a constant value. The fuel injection valve 4 injects atomized fuel into the intake pipe 18. In this example, the fuel injection valve 4 is attached to the intake pipe of each cylinder, and in the case of a multi-cylinder engine, controls the amount of fuel supplied to each cylinder. A so-called MPI (multi-port injection) system Is composed.
ここで、 図 2及び図 3を用いて、 本実施形態による火花点火機関の制御方法を 用いるエンジンの構成について説明する。  Here, a configuration of an engine using the control method of the spark ignition engine according to the present embodiment will be described with reference to FIGS.
図 2は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジンの構成を示す透過斜視図である。 図 3は、 本発明の第 1の実施形態による火 花点火機関の制御方法を用いるエンジンの構成を示す透過平面図である。 なお、 図 1と同一符号は、 同一部分を示している。  FIG. 2 is a transparent perspective view showing a configuration of an engine using the control method of the spark ignition engine according to the first embodiment of the present invention. FIG. 3 is a transparent plan view showing the configuration of an engine using the control method for a spark ignition engine according to the first embodiment of the present invention. The same reference numerals as those in FIG. 1 indicate the same parts.
図 2及び図 3に示すように、 エンジン 1は、 燃焼室 1 1が 2つの吸気弁 5と 2 つの排気弁 6を持つ, いわゆる、 4バルブエンジンの構成となっている。 燃焼室 1 1の上部には、 点火プラグ 4 5が設けられている。  As shown in FIGS. 2 and 3, the engine 1 has a so-called 4-valve engine configuration in which the combustion chamber 11 has two intake valves 5 and two exhaust valves 6. An ignition plug 45 is provided above the combustion chamber 11.
吸気弁 5の上流の吸気管 1 8には、 燃料噴射弁 4が取り付けられている。 燃料 は、 燃料噴射弁 4から、 吸気弁 5の傘部 5 ' に向けて、 燃料噴霧 Sを噴射するこ とで行われる。  A fuel injection valve 4 is attached to an intake pipe 18 upstream of the intake valve 5. Fuel is injected by injecting fuel spray S from the fuel injection valve 4 toward the head 5 ′ of the intake valve 5.
燃料の噴射時期は、 一般に、 吸気弁 5が閉じ、 シリンダ 8内のピストン 7が上 昇過程にある排気行程か、 吸気弁 5が開き、 ピストン 7が下降過程にある吸気行 程のいずれかで行われる。  In general, the fuel injection timing is determined in either the exhaust stroke in which the intake valve 5 is closed and the piston 7 in the cylinder 8 is in the upward movement, or the intake stroke in which the intake valve 5 is opened and the piston 7 is in the downward movement. Done.
図 3に示すように、 燃料噴射弁 4から噴射される噴霧は、 各々の吸気流路 2に 向けて噴射される、 2方向噴霧の形態となっている。 噴霧方向や噴霧幅は、 吸気 管 1 8の壁面に衝突せず、 かつ、 吸気弁 5が閉弁状態のときに吸気弁 5の傘部 5 ' に衝突するよう定められている。 また、 噴霧 Sのザウタ平均粒径は約 5 0 m 以下になるよう、 燃料噴射弁 4で微粒化される。  As shown in FIG. 3, the spray injected from the fuel injection valve 4 is in the form of a two-way spray which is injected toward each intake passage 2. The spray direction and spray width are determined so as not to collide with the wall surface of the intake pipe 18 and to collide with the head 5 ′ of the intake valve 5 when the intake valve 5 is closed. Further, the spray S is atomized by the fuel injection valve 4 so that the Sauter average particle diameter becomes about 50 m or less.
図 1に戻り、 吸気管 1 8内に噴射された燃料は m気化し、 燃焼室 1 1に充填さ れた空気と混合した後、 図示しない点火プラグによって点火され、 燃焼する。 燃 焼室 1 1の燃焼ガスは、 排気管 3 1を通って、 触媒 3 2によって浄化された後、 大気中に放出される。 ここで、 触媒 3 2は、 いわゆる三元触媒であり、 排気ガス 中の C O、 H Cの酸化と N Oの還元を同時に行う。 ただし、 エンジン始動時には 触媒 3 2の温度が低く活性化していないため、 排気ガス中の有害成分は浄化しに くいものである。 Returning to FIG. 1, the fuel injected into the intake pipe 18 evaporates, mixes with the air filled in the combustion chamber 11, and is ignited by a spark plug (not shown) and burns. The combustion gas in the combustion chamber 11 passes through the exhaust pipe 31, is purified by the catalyst 32, and is released into the atmosphere. Here, the catalyst 32 is a so-called three-way catalyst, and the exhaust gas Simultaneous oxidation of CO and HC and reduction of NO. However, when the engine is started, the temperature of the catalyst 32 is low and not activated, so that harmful components in the exhaust gas are difficult to purify.
空気流量計 1 3によって検出された吸入空気量を表す電気的な出力信号は、 コ ントロールユニット 2 5に入力する。 また、 スロットルボディ 1 5には、 その絞 り弁の開度を検出するスロットルセンサ 2 6が取り付けられている。 スロットル センサ 2 6の出力信号も、 コントロールュニット 2 5に入力する。  An electrical output signal representing the amount of intake air detected by the air flow meter 13 is input to the control unit 25. The throttle body 15 is provided with a throttle sensor 26 for detecting the opening of the throttle valve. The output signal of the throttle sensor 26 is also input to the control unit 25.
また、 エンジン 1の近くにはディストリビュ一タ 2 8が設けられている。 ディ ストリビュー夕 2 8の内部には、 エンジンのクランク角度を検出する図示しない クランク角センサが内臓されている。 クランク角センサの出力信号も、 コント口 ールユニット 2 5に入力する。 また、 コントロールユニット 2 5には、 これら以 外にも、 エンジンの冷却水温度を検出する水温センサ 2 9、 排気ガス中の酸素濃 度を検出する O 2センサ 3 0からの出力信号も入力する。  A distributor 28 is provided near the engine 1. A crank angle sensor (not shown) for detecting the crank angle of the engine is built in the interior of the distributor 28. The output signal of the crank angle sensor is also input to the control unit 25. In addition, the control unit 25 also receives output signals from a water temperature sensor 29 for detecting the temperature of the engine cooling water and an O2 sensor 30 for detecting the oxygen concentration in the exhaust gas. .
コントロールユニット 2 5は、 上記の種々のセンサからの信号を基に、 所定の 演算処理行い、 エンジン運転状態に最適な制御を行うべく、 各種ァクチユエ一夕 を駆動する。 例えば、 イダニッシヨンコイル 2 7に印加する電圧制御により、 点 火時期を制御したり、 燃料噴射弁 4の開弁制御により燃料噴射時期, 噴射量を制 御する。  The control unit 25 performs predetermined arithmetic processing based on the signals from the various sensors described above, and drives various actuators in order to perform optimal control according to the engine operating state. For example, the ignition timing is controlled by controlling the voltage applied to the induction coil 27, and the fuel injection timing and the injection amount are controlled by controlling the opening of the fuel injection valve 4.
ここで、 図 4を用いて、 本実施形態による火花点火機関の制御方法を用いるェ ンジン制御システムの中のコントロールュニット 2 5の構成について説明する。 図 4は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジン制御システムの中のコント口一ルュ二ットの構成を示すブロック図である。 コントロールユニット 2 5は、 演算装置 (M P U) 2 5 1と、 書き換え可能な 不揮発メモリ (E P— R OM) 2 5 2と、 ランダムアクセスメモリ 2 5 3と、 入 力ポート 2 5 4と、 出力ポート 2 5 5から構成される。  Here, the configuration of the control unit 25 in the engine control system using the control method of the spark ignition engine according to the present embodiment will be described with reference to FIG. FIG. 4 is a block diagram showing a configuration of a control port in an engine control system using the control method of the spark ignition engine according to the first embodiment of the present invention. The control unit 25 consists of an arithmetic unit (MPU) 251, a rewritable nonvolatile memory (EP-ROM) 252, a random access memory 253, an input port 2524, and an output port. It consists of 2 5 5.
演算装置 1 5 1は、 図示しない水晶発振器によって生成される一定周波数のク ロックに同期して作動し、 このクロックに基づき、 任意点からの経過時間を計測 できるタイマ一を内蔵している。 入力ポート 2 5 4には、 水温センサ 2 9, 空気 量センサ 1 3, クランク角センサ, スロットルセンサ 2 6 , スタータスイッチ, バッテリ電圧センサ, アイドルスィッチ, 〇2センサ 3 0 , 機関温度センサ等の 各種センサやスィッチによって検出されたエンジン運転状態を表す信号が入力す る。 出力ポート 2 5 5からは、 燃料噴射弁 4, 点火コイル 2 8, 燃料ポンプ 2 0 等の各種ァクチユエ一夕を制御する信号が出力する。 The arithmetic unit 151 operates in synchronization with a fixed frequency clock generated by a crystal oscillator (not shown), and has a built-in timer that can measure the elapsed time from an arbitrary point based on the clock. The input ports 254 include a water temperature sensor 29, an air flow sensor 13, a crank angle sensor, a throttle sensor 26, a starter switch, Inputs signals indicating the operating state of the engine detected by various sensors and switches, such as a battery voltage sensor, idle switch, # 2 sensor 30 and engine temperature sensor. From the output port 255, a signal for controlling various factories such as the fuel injection valve 4, the ignition coil 28, and the fuel pump 20 is output.
次に、 図 5を用いて、 本実施形態による火花点火機関の制御方法によるェンジ ン起動処理の処理内容について説明する。  Next, the processing content of the engine start processing by the control method of the spark ignition engine according to the present embodiment will be described with reference to FIG.
図 5は、 本発明の第 1の実施形態による火花点火機関の制御方法によるェンジ ン起動処理の処理内容を示すフローチヤ一トである。  FIG. 5 is a flowchart showing the processing content of the engine start processing by the control method of the spark ignition engine according to the first embodiment of the present invention.
ステップ s 1 0 0において、 コントロールユニット 2 5は、 ィグニッシヨンキ —の O Nを検出すると、 本実施形態によるエンジンの始動処理をスタートする。 次に、 ステップ s 1 0 5において、 コントロールユニット 2 5は、 セルモータ を起動する。  In step s100, when detecting the ON of the ignition key, the control unit 25 starts the engine start processing according to the present embodiment. Next, in step s105, the control unit 25 starts the cell motor.
次に、 ステップ s 1 1 0において、 コントロールユニット 2 5は、 内部のタイ マー時刻 tを 0に設定する。  Next, in step s110, the control unit 25 sets the internal timer time t to 0.
次に、 ステップ s 1 1 5において、 コントロールユニット 2 5は、 水温センサ 2 9によって検出された水温 Tを読み込み、 予め定めた所定温度 Tw lより低い か否かを判断する。 ここで、 例えば、 所定温度 Tw lを、 通常 5 0〜8 0 °C程度 とする。 所定温度 Tw lよりも、 検出された水温 Tが高い場合には、 通常運転モ —ドに移行する。 一方、 水温 Tが所定温度 Tw lよりも低い場合には、 ステップ s 1 2 0以降の処理に進んで、 吸気弁昇温モードの運転制御に移る。  Next, in step s115, the control unit 25 reads the water temperature T detected by the water temperature sensor 29, and determines whether the temperature is lower than a predetermined temperature Twl. Here, for example, the predetermined temperature Twl is usually about 50 to 80 ° C. If the detected water temperature T is higher than the predetermined temperature Twl, the mode shifts to the normal operation mode. On the other hand, if the water temperature T is lower than the predetermined temperature Twl, the process proceeds to the process after step s120, and shifts to the operation control of the intake valve heating mode.
次に、 ステップ s 1 2 0〜s 1 3 5を用いて、 吸気弁昇温モードの処理内容に ついて説明する。  Next, the processing content of the intake valve heating mode will be described using steps s120 to s135.
ステップ s 1 2 0において、 コントロールユニット 2 5は、 水温センサ, 空気 量センサの信号などを基に、 噴射燃料量を演算する。 このとき、 水温が低い場合 に燃料の気化遅れによつて燃焼が悪化するのを防ぐため、 水温に応じて燃料噴射 量が適切に補正される。 すなわち、 水温が低い場合には、 気化遅れを想定し、 理 論混合比 (ガソリンの場合には、 空燃比が約 1 5 ) よりもリッチとなるように、 燃料噴射量が増量される。  In step s120, the control unit 25 calculates the amount of injected fuel based on signals from the water temperature sensor, the air amount sensor, and the like. At this time, when the water temperature is low, the fuel injection amount is appropriately corrected according to the water temperature in order to prevent the combustion from being deteriorated due to fuel vaporization delay. That is, when the water temperature is low, the fuel injection amount is increased so as to be richer than the stoichiometric mixture ratio (in the case of gasoline, the air-fuel ratio is about 15), assuming a delay in vaporization.
ここで、 図 6を用いて、 燃料噴射弁の噴射パルス幅と燃料噴射量の関係につい て説明する。 Here, referring to FIG. 6, the relationship between the injection pulse width of the fuel injection valve and the fuel injection amount will be described. Will be explained.
図 6は、 本発明の第 1の実施形態による火花点火機関の制御方法を用いるェン ジン制御システムにおける燃料噴射弁の噴射パルス幅と燃料噴射量の関係の説明 図である。  FIG. 6 is an explanatory diagram illustrating the relationship between the injection pulse width of the fuel injection valve and the fuel injection amount in the engine control system using the spark ignition engine control method according to the first embodiment of the present invention.
図 6に示すように、 燃料噴射弁の噴射パルス幅と噴射量の間には、 ほぼ比例関 係が成立する。 図 6に示す関係は、 予め求められ、 コントロールユニット内に記 憶されている。 コントロールユニット 2 5は、 要求される燃料量から、 燃料噴射 弁の開弁時間 (噴射パルス幅) を求める。 コントロールユニット 2 5は、 求めら れた開弁時間の間だけ、 燃料噴射弁に開弁信号 (噴射パルス) を印加することに より、 所定量の燃料が噴射される。  As shown in FIG. 6, an almost proportional relationship is established between the injection pulse width of the fuel injection valve and the injection amount. The relationship shown in FIG. 6 is obtained in advance and stored in the control unit. The control unit 25 determines the valve opening time (injection pulse width) of the fuel injection valve from the required fuel amount. The control unit 25 applies a valve opening signal (injection pulse) to the fuel injection valve only during the determined valve opening time to inject a predetermined amount of fuel.
次に、 図 5のステップ s 1 2 5において、 コントロールユニット 2 5は、 クラ ンク角センサの信号によりエンジンのクランク角を検出し、 各気筒の吸気行程に 燃料噴射弁により吸気管内に、 演算によって求めた量の燃料を噴射する。 本実施 形態による吸気弁昇温モードにおいては、 吸気行程で燃料噴射する点に特徴があ る。  Next, in step s1 25 of FIG. 5, the control unit 25 detects the crank angle of the engine based on the signal of the crank angle sensor, and calculates the crank angle of the engine in the intake pipe by the fuel injection valve during the intake stroke of each cylinder. Inject the required amount of fuel. The feature of the intake valve heating mode according to the present embodiment is that fuel is injected during the intake stroke.
ここで、 図 7を用いて、 燃料を吸気行程に噴射した場合と、 排気行程に噴射し た場合の吸気弁への燃料の付着割合 (全噴射量に対する付着した燃料の割合) に ついて説明する。  Here, a description will be given of the fuel attachment ratio to the intake valve (the ratio of the fuel attachment to the total injection amount) when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke, with reference to FIG. .
図 7は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 を吸気行程に噴射した場合と、 排気行程に噴射した場合の吸気弁への燃料の付着 割合の説明図である。  FIG. 7 is an explanatory diagram of the ratio of fuel adhesion to the intake valve when fuel is injected during the intake stroke and when fuel is injected during the exhaust stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention. .
図 7において、 横軸はクランク角度 (° ATDC) を示し、 縦軸は燃料付着割合 (%) を示している。  In FIG. 7, the horizontal axis shows the crank angle (° ATDC), and the vertical axis shows the fuel adhesion ratio (%).
点線 Aは、 排気行程において燃料噴射した場合の燃料付着割合を示している。 排気行程噴射では、 吸気弁が閉じている状態で燃料が噴射されるため、 噴射した 燃料の約半分が吸気弁に付着する。  Dotted line A indicates the fuel adhesion ratio when fuel is injected during the exhaust stroke. In exhaust stroke injection, fuel is injected with the intake valve closed, so about half of the injected fuel adheres to the intake valve.
一方、 実線 Bは、 吸気行程において燃料噴射した場合の燃料付着割合を示して いる。 吸気行程噴射では、 吸気弁が開いている状態で燃料が噴射されるため、 多 くの燃料が吸気弁に衝突しないで直接燃焼室内部に供給される。 このため、 吸気 弁への燃料付着は、 排気行程噴射に比べて大幅に少なくなる。 On the other hand, the solid line B shows the fuel adhesion ratio when fuel is injected during the intake stroke. In the intake stroke injection, fuel is injected with the intake valve open, so much fuel is supplied directly into the combustion chamber without colliding with the intake valve. Because of this, intake Fuel adhesion to the valve is significantly reduced compared to exhaust stroke injection.
次に、 図 8を用いて、 燃料噴射時期に対する未燃炭化水素 (H C ) のエンジン からの排出量の変化について説明する。  Next, the change in the amount of unburned hydrocarbons (H C) from the engine with respect to the fuel injection timing will be described with reference to FIG.
図 8は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 噴射時期に対する未燃炭化水素 (H C ) のエンジンからの排出量の変化の説明図 である。 図中、 横軸は燃料噴射時期 (° ATDC) を示し、 縦軸は未燃炭化水素 (H C ) のエンジンからの排出量を示している。  FIG. 8 is an explanatory diagram of a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing in the control method for the spark ignition engine according to the first embodiment of the present invention. In the figure, the horizontal axis shows the fuel injection timing (° ATDC), and the vertical axis shows the unburned hydrocarbon (H C) emission from the engine.
点線 Cは、 'ェンジンが暖気されている状態における燃料噴射時期に対する未燃 炭化水素 (H C ) のエンジンからの排出量の変化について示している。 エンジン が暖機されている状態では、 排気行程で燃料を噴射した方が吸気行程噴射の場合 より H Cは少ない。 これは、 排気行程噴射では上述のように燃料の吸気弁への付 着が増えるが、 暧機時には吸気弁の温度が高温になっているため、 吸気弁の熱に よって付着燃料の気化が進み、 燃料と空気との混合がよくなるためである。 一方、 実線 Dは、 エンジンが冷機状態における燃料噴射時期に対する未燃炭化 水素 (H C ) のエンジンからの排出量の変化について示している。 エンジンが冷 機時には、 吸気行程噴射の方が排気行程噴射より H Cは少なくなる。 冷機時には 吸気弁の温度も低いため、 吸気弁に付着した燃料の気化が悪いためである。 この ため、 燃料と空気との混合が充分になされず、 付着した燃料の多くは、 燃焼室内 で完全燃焼することなく、 エンジンから排出される。 このため、 吸気弁への燃料 付着が少ない吸気行程噴射の方が H C排出を抑制できる。  Dotted line C shows the change in unburned hydrocarbon (H C) emission from the engine with respect to the fuel injection timing when the engine is warmed up. With the engine warmed up, H C is lower during fuel injection during the exhaust stroke than during injection during the intake stroke. This is because during the exhaust stroke injection, the amount of fuel attached to the intake valve increases as described above.However, since the temperature of the intake valve is high at the time of the engine, the attached fuel evaporates due to the heat of the intake valve. This is because the fuel and air are better mixed. On the other hand, the solid line D shows a change in the amount of unburned hydrocarbons (H C) emitted from the engine with respect to the fuel injection timing when the engine is cold. When the engine is cold, the intake stroke injection has less HC than the exhaust stroke injection. This is because the temperature of the intake valve is low when the engine is cold, and the fuel adhering to the intake valve is poorly vaporized. As a result, the fuel and air are not sufficiently mixed, and most of the adhered fuel is discharged from the engine without completely burning in the combustion chamber. For this reason, the intake stroke injection with less fuel adhesion to the intake valve can suppress HC emissions.
従って、 冷機時にはできるだけ吸気弁への燃料付着を減らすこと、 及び、 吸気 弁をできるだけ早く昇温し、 吸気弁の熱を燃料気化に使うことで、 機関始動時の H Cを低減できる。  Therefore, HC can be reduced when the engine is started by reducing the amount of fuel adhering to the intake valve as much as possible during cold periods, and by raising the temperature of the intake valve as soon as possible and using the heat of the intake valve for fuel vaporization.
ここで、 図 9を用いて、 エンジン始動直後の吸気弁昇温モードにおいて、 燃料 噴射時期を吸気行程にしたときの燃焼室での燃料の挙動について説明する。 図 9は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃料 噴射時期を吸気行程にしたときの燃焼室での燃料の挙動の説明図である。 なお、 図 3 , 図 4と同一符号は、 同一部分を示している。  Here, the behavior of the fuel in the combustion chamber when the fuel injection timing is in the intake stroke in the intake valve heating mode immediately after the start of the engine will be described with reference to FIG. FIG. 9 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the intake stroke in the method for controlling the spark ignition engine according to the first embodiment of the present invention. The same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
燃料噴射弁 4から噴射された燃料噴霧 Sは、 吸気弁 5の傘部 5 'に向かって噴 射される。 ここで、 吸気行程では、 吸気弁 5は燃焼室 1 1に向かって開いており、 燃料噴霧 Sの一部は傘部 5 ' に衝突することなく、 燃焼室 1 1に入り、 気化して 混合気を形成する。 残りの燃料噴霧は、 傘部 5 'に衝突するが、 吸気に伴って、 吸気弁 5の表面では吸気流路 2から燃焼室 1 1に向かう高速の空気流れが生じる ため、 燃料噴霧は速やかに微粒化、 気化して燃焼室 1 1に入り、 混合気を形成す る。 The fuel spray S injected from the fuel injection valve 4 is injected toward the head 5 ′ of the intake valve 5. Fired. Here, in the intake stroke, the intake valve 5 is opened toward the combustion chamber 11, and a part of the fuel spray S enters the combustion chamber 11 without colliding with the umbrella section 5 ′, and is vaporized and mixed. Forming Qi. The remaining fuel spray collides with the umbrella section 5 ′, but a high-speed air flow from the intake passage 2 toward the combustion chamber 11 occurs on the surface of the intake valve 5 with the intake, so that the fuel spray quickly It is atomized and vaporized and enters the combustion chamber 11 to form an air-fuel mixture.
従って、 吸気行程噴射では、 傘部 5 'の上に形成される燃料液膜は僅かであり、 当該サイクルで噴射した燃料のほとんどが、 当該サイクルで燃焼室内 1 1に入り 混合気を形成する。  Therefore, in the intake stroke injection, the fuel liquid film formed on the umbrella portion 5 'is small, and most of the fuel injected in the cycle enters the combustion chamber 11 in the cycle to form an air-fuel mixture.
次に、 図 5のステップ s 1 3 0において、 コントロールユニット 2 5は、 点火 時期を通常の点火時期に対して所定量 Δ Θ a dだけ進角した点火時期を設定する。 そして、 クランク角が設定された角度になったときに、 点火コイルに点火信号を 出力する。 点火コイルで発生した高圧電流は、 ディストリビュー夕により各気筒 の点火プラグに分配され、 気筒内のガスが燃焼し、 エンジンの出力が得られる。 なお、 通常の点火時期はエンジンの燃費が最も良くなる点火時期であり、 通常は テストベンチでの予備試験によって予め求められ、 エンジン負荷、 回転数、 水温 などの関数としてコントロールユニット内に記憶されている。 また、 点火時期の 進角幅 Δ 0 a dは、 燃焼ガスの最高到達温度が最も高くなるように設定される。 ここで、 図 1 0を用いて、 燃焼室内ガス温度の時間履歴について説明する。 図 1 0は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃 焼室内ガス温度の時間履歴の説明図である。  Next, in step s130 of FIG. 5, the control unit 25 sets the ignition timing by advancing the ignition timing by a predetermined amount ΔΘad with respect to the normal ignition timing. Then, when the crank angle reaches the set angle, an ignition signal is output to the ignition coil. The high-voltage current generated by the ignition coil is distributed to the ignition plug of each cylinder by the distributor, and the gas in the cylinder burns to obtain the engine output. The normal ignition timing is the ignition timing at which the fuel efficiency of the engine is the best, and is usually obtained in advance by a preliminary test on a test bench and stored in the control unit as a function of the engine load, rotation speed, water temperature, etc. I have. Further, the ignition timing advance angle width Δ 0 ad is set so that the maximum temperature of the combustion gas is the highest. Here, the time history of the gas temperature in the combustion chamber will be described with reference to FIG. FIG. 10 is an explanatory diagram of the time history of the gas temperature in the combustion chamber in the control method of the spark ignition engine according to the first embodiment of the present invention.
図中、 横軸はクランク角度を示し、 縦軸は燃焼室内ガス温度を示している。 ま た、 星印 Nは、 通常の燃費が最良となる点火時期を示し、 星印 A l, A 2は、 点 火進角時の点火時期を示し、 星印 D 1は、 点火遅角時の点火時期を示している。 点線 Eで示すように、 燃費が最良となる点火時期 (点火時期が N) の場合の燃 焼室内ガス温度を基準として、 点火時期を進角側 (点火時期 A 1左方向) に移動 させると、 実線 Fで示すように、 燃焼ガスの最高到達温度が高くなる。 これは、 圧縮行程で燃焼させることによって、 ピストンの上昇に伴う圧縮仕事を受けなが ら燃焼することになり、 本来運動エネルギーとしてエンジンのクランク軸から取 り出される燃焼エネルギーの一部が、 熱エネルギーとなるからである。 In the figure, the horizontal axis indicates the crank angle, and the vertical axis indicates the gas temperature in the combustion chamber. Also, the star N indicates the ignition timing at which the usual fuel economy is best, the stars A l and A 2 indicate the ignition timing at the time of ignition advance, and the star D 1 indicates the ignition timing at the time of ignition retard Shows the ignition timing. As shown by the dotted line E, when the ignition timing is shifted to the advanced side (ignition timing A1 leftward) based on the combustion chamber gas temperature at the ignition timing (ignition timing N) at which the best fuel consumption is obtained. As shown by the solid line F, the maximum temperature of the combustion gas increases. This means that by burning in the compression stroke, the fuel is burned while receiving the compression work accompanying the rise of the piston, and is originally taken from the crankshaft of the engine as kinetic energy. This is because part of the combustion energy that is released becomes heat energy.
しかし、 さらに点火時期を進角させる (点火時期 A 2 ) と、 ガスがピストンに よって充分に圧縮されずに点火されるため、 燃焼が不完全となり、 一点鎖線 Gで 示すように、 ガスの最高到達温度は下がってくる。 一方、 点火時期を遅角させる (点火時期 D 1 ) と、 二点鎖線 Hで示すように、 ガスの最高到達温度は下がって くる。  However, when the ignition timing is further advanced (ignition timing A 2), the gas is ignited without being sufficiently compressed by the piston, and the combustion becomes incomplete. The temperature reached decreases. On the other hand, when the ignition timing is retarded (ignition timing D 1), the maximum temperature of the gas decreases as shown by the two-dot chain line H.
そこで、 本実施形態では、 点火進角幅 Δ 0 a dをガスの最高到達温度が最も高 くなるように設定する。 点火進角幅 a dは、 テストベンチ等による予備試験 によって求められるが、 通常 5〜2 0 ° クランク角度程度である。  Therefore, in the present embodiment, the ignition advance width Δ 0 ad is set such that the maximum temperature of the gas reaches the highest. The spark advance width ad is obtained by a preliminary test using a test bench or the like, and is usually about 5 to 20 ° crank angle.
ここで、 図 1 1を用いて、 吸気行程噴射で形成された混合気を、 点火時期を通 常より進角させて燃焼させたときの、 爆発行程 (膨張行程) の様子について説明 する。  Here, the state of the explosion stroke (expansion stroke) when the air-fuel mixture formed by the intake stroke injection is burned with the ignition timing advanced from normal will be described with reference to FIG.
図 1 1は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気行程噴射で形成された混合気を、 点火時期を通常より進角させて燃焼させたと きの、 爆発行程 (膨張行程) の様子の説明図である。 なお、 図 3 , 図 4と同一符 号は、 同一部分を示している。  FIG. 11 shows an explosion stroke when the air-fuel mixture formed by the intake stroke injection in the control method of the spark ignition engine according to the first embodiment of the present invention is burned with the ignition timing advanced from normal, (Expansion stroke) It is explanatory drawing of a state. The same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
点火時期を通常より進角させることで、 燃焼ガス Cの最高到達温度は、 通常燃 焼時に比べ高くなつており、 この高温燃焼ガスの対流熱伝達、 輻射熱伝達によつ て、 吸気弁 5が早期に昇温される。 これによつて、 吸気弁 5に衝突した噴霧の微 粒化や付着した液滴の気化が促進される。 すなわち、 本運転モードにおいては、 吸気行程に燃料を噴射することで、 吸気弁への燃料付着を抑えつつ、 点火時期の 進角で生成された高温の燃焼ガスで吸気弁を早期に昇温し、 付着液滴の気化を促 進することで、 エンジン始動時に排出される H Cを低減する。 また、 吸気行程噴 射によって液膜の生成を抑えられるために、 機関温度が低いときの始動時燃料増 量を少なくでき、 余剰燃料による H C増加を防ぐことができる。  By advancing the ignition timing more than usual, the maximum attained temperature of the combustion gas C is higher than that during normal combustion, and the convective heat transfer and radiant heat transfer of the high-temperature combustion gas cause the intake valve 5 to operate. The temperature is raised early. This promotes atomization of the spray colliding with the intake valve 5 and vaporization of the attached droplets. In other words, in this operation mode, by injecting fuel during the intake stroke, fuel adhesion to the intake valve is suppressed, and the temperature of the intake valve is quickly raised with the high-temperature combustion gas generated at the advanced ignition timing. By promoting the vaporization of the adhering liquid droplets, the amount of HC discharged when the engine is started is reduced. In addition, since the formation of a liquid film is suppressed by the intake stroke injection, the amount of fuel increase at startup when the engine temperature is low can be reduced, and the increase in HC due to excess fuel can be prevented.
次に、 図 5のステップ s 1 3 5において、 コントロールユニット 2 5は、 タイ マー時刻 tと予め定められた吸気弁暖機所要時間 t 1を比較し、 t < t 1の場合 には、 ステップ s i 2 0に戻り、 次のサイクルでも吸気行程に燃料を噴射し、 点 火時期を進角させる吸気弁昇温モードの手順を繰り返す。 一方、 t > t 1の場合 には、 吸気弁が充分に昇温したと判断し、 ステップ s 1 4 0以降の触媒活性化の ための運転モードに移行する。 Next, in step s1 35 in FIG. 5, the control unit 25 compares the timer time t with a predetermined intake valve warm-up time t1, and if t <t1, Returning to si 20, the procedure of the intake valve heating mode in which fuel is injected during the intake stroke in the next cycle and the ignition timing is advanced is repeated. On the other hand, if t> t 1 First, it is determined that the temperature of the intake valve has been sufficiently raised, and the operation mode is shifted to the operation mode for activating the catalyst after step s140.
ここで、 図 1 2を用いて、 本発明の第 1の実施形態による火花点火機関の制御 方法における吸気弁暧機所要時間 t 1の決め方について説明する。  Here, how to determine the intake valve operating time t1 in the method for controlling the spark ignition engine according to the first embodiment of the present invention will be described with reference to FIGS.
図 1 2は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気弁暖機所要時間 t 1の決め方の説明図である。  FIG. 12 is an explanatory diagram of how to determine the required intake valve warm-up time t1 in the control method for the spark ignition engine according to the first embodiment of the present invention.
図 1 2において、 横軸はエンジン始動後の経過時間を示し、 縦軸は吸気弁の表 面温度を示している。 即ち、 図中の実線は、 エンジン始動後からの経過時間に対 する吸気弁表面温度の変化を示している。  In FIG. 12, the horizontal axis represents the elapsed time after the engine started, and the vertical axis represents the surface temperature of the intake valve. That is, the solid line in the figure shows the change of the intake valve surface temperature with respect to the elapsed time after the engine start.
吸気弁表面温度は、 燃焼ガスからの伝熱を受け時間と共に上昇し、 エンジン負 荷が定常であれば、 やがて一定温度で安定する。 吸気弁暖機所要時間 t 1は、 吸 気弁が所定の温度 t cとなる時間として決められる。 温度 t cは、 吸気弁に付着 した燃料が速やかに気化できるための温度であり、 例えば、 5 0〜1 0 0 °C程度 とすることが望ましいものである。 予めテストベンチ等で図示するような吸気弁 昇温特性を測ることで、 吸気弁暖機所要時間 t 1を決めることができる。  The intake valve surface temperature rises with time due to heat transfer from the combustion gas, and eventually stabilizes at a constant temperature if the engine load is steady. The intake valve warm-up required time t1 is determined as the time when the intake valve reaches a predetermined temperature tc. The temperature t c is a temperature at which the fuel attached to the intake valve can be quickly vaporized, and is desirably, for example, about 50 to 100 ° C. By measuring the temperature rise characteristic of the intake valve as shown in the drawing on a test bench or the like, the intake valve warm-up time t1 can be determined.
なお、 温度 t 1を一定値としても効果を得ることができる。 しかし、 吸気弁の 昇温特性は、 機関の初期温度や外気温度で変わるため、 たとえば、 冷却水温セン ザの検出値によって、 冷却水温が低い場合は時間 t 1を長く、 冷却水温が高い場 合は時間 t 1を短く補正することが望ましいものである。  Note that the effect can be obtained even when the temperature t1 is set to a constant value. However, the temperature rise characteristics of the intake valve vary depending on the initial temperature of the engine and the outside air temperature.For example, when the cooling water temperature is low, the time t1 is longer when the cooling water temperature is low, and Is desirably corrected to shorten the time t1.
次に、 図 5のステップ s 1 4 0〜s 1 5 5を用いて、 触媒活性化モードの制御 内容について説明する。  Next, control contents of the catalyst activation mode will be described using steps s140 to s155 in FIG.
図 5のステップ s 1 3 5の判定で、 始動開始からの経過時間 tが t 1を超えた 場合、 すなわち、 吸気弁の温度が所定温度より高くなつた場合には、 コント口一 ルュニット 2 5は、 エンジンの運転モードを触媒活性化モードへと移行する。 図 5のステップ s 1 4 0において、 コントロールユニット 2 5は、 水温センサ, 空気量センサの信号などを基に、 噴射燃料量を演算する。 このとき、 水温が低い 場合に燃料の気化遅れによって燃焼が悪化するのを防ぐため、 水温に応じて燃料 噴射量が適切に補正される。 すなわち、 水温が低い場合には、 気化遅れを想定し、 理論混合比 (ガソリンの場合には、 空燃比が約 1 5 ) よりもリッチとなるように、 燃料噴射量が増量される。 一 In the judgment of step s 1 35 in FIG. 5, if the elapsed time t from the start of starting exceeds t 1, that is, if the temperature of the intake valve becomes higher than the predetermined temperature, the control unit unit 25 Shifts the operation mode of the engine to the catalyst activation mode. In step s140 of FIG. 5, the control unit 25 calculates the amount of injected fuel based on the signals of the water temperature sensor, the air amount sensor, and the like. At this time, when the water temperature is low, the fuel injection amount is appropriately corrected according to the water temperature in order to prevent the combustion from being deteriorated due to the fuel vaporization delay. In other words, when the water temperature is low, evaporation delay is assumed, and the mixture becomes richer than the stoichiometric mixture ratio (in the case of gasoline, the air-fuel ratio is about 15). The fuel injection amount is increased. one
次に、 ステップ s 1 4 5において、 コント口一ルユニット 2 5は、 クランク角 センサの検出値に基づき所定量の燃料を排気行程で噴射する。 ·  Next, in step s145, the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor. ·
ここで、 図 1 3及び図 1 4を用いて、 触媒活性化モ一ドにおける燃焼室での燃 料, 混合気の挙動について説明する。  Here, the behavior of the fuel and the air-fuel mixture in the combustion chamber in the catalyst activation mode will be described with reference to FIGS. 13 and 14.
図 1 3は、 本発明の第 1の実施形態による火花点火機関の制御方法における燃 料噴射時期を排気行程にしたときの燃焼室での燃料の挙動の説明図である。 なお、 図 3, 図 4と同一符号は、 同一部分を示している。  FIG. 13 is an explanatory diagram of the behavior of the fuel in the combustion chamber when the fuel injection timing is set to the exhaust stroke in the control method of the spark ignition engine according to the first embodiment of the present invention. The same reference numerals as in FIGS. 3 and 4 indicate the same parts.
排気行程では、 吸気流路 2内での空気流動が弱く、 燃料噴射弁 4によって噴射 された燃料噴霧 Sは、 その軌道をほとんど変えることなく、 吸気弁 5の傘部 5 ' に衝突する。 吸気弁の傘部 5 ' は、 本触媒活性化モードの前に行われた吸気弁昇 温モードによって、 その温度は 6 0〜1 0 0 °C程度に昇温されている。 このため 吸気弁傘部 5 ' に衝突した噴霧 S ' は、 吸気弁 5 ' から熱を受け速やかに気化し、 吸気流路 2内に混合気 Mを形成する。  In the exhaust stroke, the air flow in the intake passage 2 is weak, and the fuel spray S injected by the fuel injection valve 4 collides with the head 5 ′ of the intake valve 5 without changing its trajectory. The temperature of the head 5 ′ of the intake valve is raised to about 60 to 100 ° C. by the intake valve heating mode performed before the present catalyst activation mode. Therefore, the spray S ′ that has collided with the intake valve head 5 ′ receives heat from the intake valve 5 ′ and quickly evaporates to form a mixture M in the intake passage 2.
図 1 4は、 本発明の第 1の実施形態による火花点火機関の制御方法における吸 気行程における混合気の挙動の説明図である。 なお、 図 3 , 図 4と同一符号は、 同一部分を示している。  FIG. 14 is an explanatory diagram of the behavior of the air-fuel mixture during the intake stroke in the control method for the spark ignition engine according to the first embodiment of the present invention. The same reference numerals as those in FIGS. 3 and 4 indicate the same parts.
吸気流路 2内で生成された混合気 Mは、 空気と共に燃焼室 1 1内に吸入され、 吸入の際に生じる空気流動によって混合され、 燃焼室 1 1内に燃料と空気がよく 混ざった均一な混合気を形成する。 混合気が均一化することにより燃焼が安定と なり、 本触媒活性化モードでの点火時期を大幅に遅角化できる。  The air-fuel mixture M generated in the intake passage 2 is sucked into the combustion chamber 11 together with the air, mixed by the air flow generated at the time of suction, and the fuel and air are well mixed in the combustion chamber 11 To form an air-fuel mixture. Combustion becomes stable by homogenizing the air-fuel mixture, and the ignition timing in this catalyst activation mode can be greatly retarded.
次に、 図 5のステップ s 1 5 0において、 コントロールユニット 2 5は、 燃費 が最良となる点火時期に対して、 遅角側で点火する。 図 1 0に示したように、 点 火時期を燃費最良時期より遅角させると排気行程でのガス温度が高くなる。 これ は点火遅角により熱発生が主に膨張行程で起こるためであり、 本来エンジンの出 力として取り出されるエネルギーの一部が熱エネルギーとなるためである。 これ によって、 触媒に供給されるガス温度が高くなり、 触媒が早期に活性化される。 なお、 点火遅角幅 Δ 0 r eは通常 1 0〜3 0 ° クランク角度程度であるが、 燃焼 が悪化しない, すなわち、 エンジンのトルクサイクル変動が極端に大きくならな い範囲で、 できるだけ大きな値が採ることが望ましいものである。 Next, in step s150 of FIG. 5, the control unit 25 ignites the ignition timing on the retard side with respect to the ignition timing at which the fuel efficiency is the best. As shown in FIG. 10, when the ignition timing is retarded from the best fuel consumption timing, the gas temperature in the exhaust stroke increases. This is because heat is mainly generated during the expansion stroke due to ignition retardation, and part of the energy originally extracted as engine output is thermal energy. This increases the temperature of the gas supplied to the catalyst and activates the catalyst early. Although the ignition retard width Δ 0 re is usually about 10 to 30 ° crank angle, the combustion does not deteriorate, that is, the torque cycle fluctuation of the engine does not become extremely large. It is desirable to take as large a value as possible within the optimal range.
ここで、 図 1 5を用いて、 触媒活性化モードにおける燃焼室での排気行程にお ける混合気の挙動について説明する。  Here, the behavior of the air-fuel mixture in the exhaust stroke in the combustion chamber in the catalyst activation mode will be described with reference to FIG.
図 1 5は、 本発明の第 1の実施形態による火花点火機関の制御方法における排 気行程にでの混合気の挙動の説明図である。 なお、 図 3 , 図 4と同一符号は、 同 一部分を示している。  FIG. 15 is an explanatory diagram of the behavior of the air-fuel mixture during the exhaust stroke in the control method for the spark ignition engine according to the first embodiment of the present invention. The same reference numerals as in FIGS. 3 and 4 denote the same parts.
触媒活性化モードでは、 点火時期が遅角化され、 図 1 0に示したように、 排気 行程での燃焼ガス温度は、 点火遅角しない場合に比べて高くなつている。 したが つて、 図 1 5に示すように、 この高温の燃焼ガスは、 排気流路 9に排出され、 排 気流路 9の下流側に設置された三元触媒 (図示しない) に導かれる。 これによつ て、 触媒が急速に昇温され活性化する。  In the catalyst activation mode, the ignition timing is retarded, and as shown in FIG. 10, the combustion gas temperature during the exhaust stroke is higher than when the ignition is not retarded. Therefore, as shown in FIG. 15, the high-temperature combustion gas is discharged to the exhaust passage 9 and guided to a three-way catalyst (not shown) provided downstream of the exhaust passage 9. As a result, the temperature of the catalyst is rapidly raised and activated.
次に、 図 5のステップ s 1 5 5において、 コントロールユニット 2 5は、 タイ マー時刻 tと予め定められた触媒活性化所要時間 t 2を比較し、 t < t 2の場合 には、 ステップ s i 4 0に戻り、 次のサイクルでも排気行程に燃料を噴射し、 点 火時期を遅角させる触媒活性化モードの手順を繰り返す。 一方、 t〉t 2の場合 には、 触媒が充分に活性化したと判断し、 通常運転モードに進む。  Next, in step s155 of FIG. 5, the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2. Returning to 40, the procedure of the catalyst activation mode in which fuel is injected in the exhaust stroke in the next cycle and the ignition timing is retarded is repeated. On the other hand, if t> t2, it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
触媒活性化所用期間 t 2は、 触媒が活性化する (ライトオフ) までの所要時間 であり、 通常、 触媒温度が 2 0 0〜3 0 0 °Cに昇温するまでの所要時間となる。 時間 t 2は、 予めテストベンチ等を使った予備実験で決められる。  The catalyst activation period t2 is the time required until the catalyst is activated (light-off), and is usually the time required for the catalyst temperature to rise to 200 to 300 ° C. The time t 2 is determined in advance by a preliminary experiment using a test bench or the like.
通常の運転モードでは、 エンジン負荷の急激な変化があるとき以外は、 燃料は 排気行程で噴射され、 燃費が最良となる点火時期が選択される。  In the normal operation mode, except when there is a sudden change in the engine load, fuel is injected in the exhaust stroke, and the ignition timing that maximizes fuel efficiency is selected.
なお、 以上の説明では、 吸気弁昇温モードにおいて、 点火時期を進角させると ともに、 燃料噴射時期は吸気行程としているが、 燃料噴射時期は、 排気行程をし てもよいものである。 すなわち、 本実施形態の吸気弁昇温モードでは、 点火時期 の進角化によって吸気弁を早期に昇温することにより、 その後の触媒活性化モー ド、 通常運転モードでの燃料の気化が促進され、 始動時の H C低減が図れる。 ち なみに、 点火時期を進角し、 さらに、 燃料噴射時期を吸気行程とすることにより、 従来より、 約 5 0 %程度ェミッションを低減することができる。 また、 点火時期 を進角し、 さらに、 燃料噴射時期を排気行程とした場合でも、 従来より、 約 3 0 %程度エミッシヨンを低減することができる。 In the above description, in the intake valve heating mode, the ignition timing is advanced and the fuel injection timing is set to the intake stroke. However, the fuel injection timing may be set to the exhaust stroke. In other words, in the intake valve heating mode of the present embodiment, by elevating the temperature of the intake valve early by advancing the ignition timing, the fuel vaporization in the subsequent catalyst activation mode and the normal operation mode is promoted. The HC can be reduced at the time of starting. Incidentally, by advancing the ignition timing and setting the fuel injection timing to the intake stroke, the emission can be reduced by about 50% compared to the past. In addition, even if the ignition timing is advanced and the fuel injection timing is set to the exhaust stroke, it is about 30 % Emission can be reduced.
また、 以上の説明では、 吸気弁昇温モードの後、 触媒活性化モードを経て、 通 常運転モードへと移行するものとしているが、 触媒活性化モードを省き、 吸気弁 昇温モードの後、 通常運転モードへ移行してもよいものである。 この場合にも、 吸気弁昇温モードによって吸気弁を早期に昇温することにより、 その後の通常運 転モードでの H C低減を図ることが可能である。  Further, in the above description, it is assumed that after the intake valve heating mode, the operation shifts to the normal operation mode via the catalyst activation mode.However, the catalyst activation mode is omitted, and after the intake valve heating mode, The operation may shift to the normal operation mode. In this case, too, by increasing the temperature of the intake valve early in the intake valve heating mode, it is possible to reduce HC in the subsequent normal operation mode.
また、 以上の説明では、 各吸気管毎に燃料噴射弁が設けられたマルチポートイ ンジェクシヨン (M P I ) 機関での例を示したが、 燃料噴射弁が燃焼室に取り付 けられた直接噴射 (D I ) 機関にも適用できるものである。 すなわち、 吸気弁昇 温モードでは、 高温の燃焼ガスによって吸気弁だけでなく、 排気弁, 燃焼室壁面, ピストン冠面等も同時に早期昇温されるため、 D I機関において燃焼室内に向け て噴射した燃料が、 吸気弁, 排気弁, 燃焼室壁面及びピストン冠面に衝突した場 合に、 これらの燃料を早期に気化させることができ、 始動時の H C低減が図れる ものである。  In the above description, an example of a multi-port injection (MPI) engine in which a fuel injection valve is provided for each intake pipe has been described. DI) can be applied to institutions. In other words, in the intake valve heating mode, not only the intake valve but also the exhaust valve, the combustion chamber wall surface, the piston crown surface, etc. are quickly heated by the high-temperature combustion gas at the same time, so the DI engine injected fuel into the combustion chamber. When the fuel collides with the intake valve, exhaust valve, combustion chamber wall, and piston crown, these fuels can be vaporized at an early stage, and HC at startup can be reduced.
また、 以上の説明では、 吸気弁昇温モードから触媒活性化モ一ドへの切り替え 時期を始動開始からの経過時間により決定したが、 水温センサによって検出され た冷却水温度が所定温度に達した時点で切り替えてもよいものである。 または、 吸気弁もしくは燃焼室壁面, 触媒温度を検出するセンサなどによる検出温度を用 いて、 これらの温度が所定温度に達した時点で切り替えてもよいものである。 す なわち、 吸気弁の温度が所定の温度以上になったことを、 図 6に示したように予 めテストベンチで測定した上で経過時間によって検出する以外に、 吸気弁や燃焼 室壁面の温度を直接測定する等の方法によって、 機関の温度から検出することが できるものである。  In the above description, the timing of switching from the intake valve heating mode to the catalyst activation mode is determined based on the elapsed time from the start of the start, but the cooling water temperature detected by the water temperature sensor has reached the predetermined temperature. It may be switched at the time. Alternatively, the temperature may be switched when the temperature reaches a predetermined temperature by using a temperature detected by an intake valve, a combustion chamber wall surface, a sensor for detecting a catalyst temperature, or the like. That is, as shown in Fig. 6, in addition to detecting the temperature of the intake valve at or above the predetermined temperature in advance by measuring it on a test bench and detecting the elapsed time, the intake valve and the combustion chamber wall It can be detected from the engine temperature by a method such as directly measuring the temperature.
以上説明したように、 本実施形態によれば、 吸気弁昇温モードでは、 点火時期 を進角化することによって、 吸気弁を早期に昇温することによって、 H Cを低減 することができる。  As described above, according to the present embodiment, in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by making the ignition timing advanced.
また、 この際、 噴射時期を吸気行程とすることによって、 さらに、 H Cを低減 する。  At this time, HC is further reduced by setting the injection timing to the intake stroke.
一方、 触媒活性化モードでは、 昇温した吸気弁の熱によって燃料の気化を促進 することで壁流を低減し、 均一な混合気を形成する。 これによつて触媒活性化モ ードでの H Cを減少し、 より大きな点火遅角化によって触媒の活性化時間の短縮 を図る。 On the other hand, in the catalyst activation mode, fuel vaporization is promoted by the heat of the heated intake valve. This reduces wall flow and creates a uniform mixture. As a result, HC in the catalyst activation mode is reduced, and the activation time of the catalyst is shortened by a larger ignition retard.
以上のように、 本実施形態によって、 エンジン始動時のェミッションを低減で きる。 'しかも、 吸気弁にヒー夕等を設ける必要もないため、 信頼性, 耐久性を向 上できるものとなる。  As described above, according to the present embodiment, emissions at the time of starting the engine can be reduced. 'Moreover, since there is no need to provide a heater or the like for the intake valve, reliability and durability can be improved.
次に、 図 1 6〜図 2 0を用いて、 本発明の第 2の実施形態による火花点火機関 の制御方法について説明する。  Next, a control method for a spark ignition engine according to the second embodiment of the present invention will be described with reference to FIGS.
本実施形態による火花点火機関の制御方法を用いるエンジン制御システムのシ ステム構成は、 図 1に示したものと同様である。 また、 本実施形態による火花点 火機関の制御方法を用いるエンジンの構成は、 図 2及び図 3に示したものと同様 である。 但し、 吸気弁の駆動機構に相違があるため、 この点については、 図 1 6 及び図 1 7を用いて後述する。 さらに、 本実施形態による火花点火機関の制御方 法を用いるエンジン制御システムの中のコントロールユニット 2 5の構成は、 図 4に示したものと同様である。  The system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since there is a difference in the drive mechanism of the intake valve, this point will be described later with reference to FIGS. 16 and 17. Further, the configuration of the control unit 25 in the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG.
ここで、 図 1 6及び図 1 7を用いて、 本実施形態による火花点火機関の制御方 法を用いるエンジンの吸気弁の構成及び動作について説明する。  Here, the configuration and operation of the intake valve of the engine using the method for controlling the spark ignition engine according to the present embodiment will be described with reference to FIG. 16 and FIG.
図 1 6は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。 図 1 7は、 本発明の第 2の実施形態によ る火花点火機関の制御方法を用いるエンジンの吸気弁の動作説明図である。 なお、 図 1 6において、 図 2と同一符号は、 同一部分を示している。  FIG. 16 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the second embodiment of the present invention. FIG. 17 is an explanatory diagram of the operation of the intake valve of the engine using the control method of the spark ignition engine according to the second embodiment of the present invention. In FIG. 16, the same reference numerals as those in FIG. 2 indicate the same parts.
図 1 6に示すように、 吸気弁 5に可変弁機構 5 0が設けられている。 可変弁機 構 5 0は、 いわゆる位相差式の可変弁機構であり、 吸気弁 5をリフトするカムの 回転軸 (図示しない) にねじり機構 (図示しない) を設けることなどにより実現 される。 または、 電磁弁や油圧弁などによっても同様の可変弁機構は実現できる。 コントロールュニット 2 5から入力される制御信号によって、 可変弁機構 5 0は 吸気弁 5の開弁時期を変えることができる。  As shown in FIG. 16, the intake valve 5 is provided with a variable valve mechanism 50. The variable valve mechanism 50 is a so-called phase difference type variable valve mechanism, and is realized by providing a torsion mechanism (not shown) on a rotating shaft (not shown) of a cam for lifting the intake valve 5. Alternatively, a similar variable valve mechanism can be realized by using an electromagnetic valve or a hydraulic valve. The variable valve mechanism 50 can change the opening timing of the intake valve 5 by a control signal input from the control unit 25.
図 1 7に示すように、 開弁時期は、 通常モードと、 進角モードの 2つのパター ンがある。 進角モードは、 通常モードに対して、 開弁時期が進角しているもので ある。 As shown in Fig. 17, there are two patterns of valve opening timing: normal mode and advanced angle mode. In the advance mode, the valve opening timing is advanced compared to the normal mode. is there.
次に、 図 1 8を用いて、 本実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容について説明する。  Next, the processing content of the engine start processing by the control method of the spark ignition engine according to the present embodiment will be described with reference to FIG.
図 1 8は、 本発明の第 2の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチャートである。 なお、 図 5と同一のステ ップ番号は、 同一の処理内容を示している。  FIG. 18 is a flowchart showing the processing content of the engine start-up processing by the control method of the spark ignition engine according to the second embodiment of the present invention. Note that the same step numbers as those in FIG. 5 indicate the same processing contents.
本実施形態においては、 図 5に示した処理と同様に、 吸気弁昇温モードと、 触 媒活性化モードを備えている。 しかし、 吸気弁昇温モードにおけるステップ s 1 2 2の処理が、 図 5に示した処理とは異なる点である。  In the present embodiment, similarly to the processing shown in FIG. 5, an intake valve heating mode and a catalyst activation mode are provided. However, the process in step s122 in the intake valve heating mode is different from the process shown in FIG.
ステップ s 1 0 0のイグニッションキーの O Nによって、 本実施形態によるェ ンジン起動処理がスタートする。 コントロールユニット 2 5は、 ステップ s 1 1 0の処理で、 内部のタイマー時刻を 0に設定する。 次に、 ステップ s 1 1 5にお いて、 コントロールユニット 2 5は、 水温センサによって検出された水温を読み 込み、 水温が予め定めた所定温度 Tw l (通常 5 0〜 8 0 °C程度) よりも高い場 合には、 通常運転モードに移行する。 一方、 水温が Tw lよりも低い場合には、 コントロールュニット 2 5は、 吸気弁昇温モードの運転制御に移る。  The engine activation process according to the present embodiment is started by the ON of the ignition key in step s100. The control unit 25 sets the internal timer time to 0 in the process of step s110. Next, in step s115, the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to the normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
吸気弁昇温モードでは、 ステップ s 1 2 0において、 コントロールユニット 2 5は、 噴射燃料量を演算する。  In the intake valve heating mode, in step s120, the control unit 25 calculates the amount of injected fuel.
次に、 ステップ s 1 2 2において、 コントロールユニット 2 5は、 図 1 7に示 したように、 吸気弁リフトを進角モードにし、 図 1 6に示したように、 可変弁機 構 5 0を進角モードにするための制御信号を出力する。  Next, in step s122, the control unit 25 sets the intake valve lift to the advance mode as shown in FIG. 17 and sets the variable valve mechanism 50 as shown in FIG. Outputs a control signal for setting the advance mode.
ここで、 図 1 9を用いて、 吸気弁昇温モードにおける排気行程終了直前でのガ ス挙動について説明する。  Here, the gas behavior immediately before the end of the exhaust stroke in the intake valve heating mode will be described with reference to FIG.
図 1 9は、 本発明の第 2の実施形態による火花点火機関の制御方法における吸 気弁昇温モードにおける排気行程終了直前でのガス挙動の説明図である。 なお、 図 1 6と同一符号は、 同一部分を示している。  FIG. 19 is an explanatory diagram of the gas behavior immediately before the end of the exhaust stroke in the intake valve heating mode in the control method of the spark ignition engine according to the second embodiment of the present invention. The same reference numerals as those in FIG. 16 indicate the same parts.
本モードでは、 吸気弁 5の開弁時期が通常運転時に対して進角しているため、 燃焼室 1 1内の圧力が吸気流路 2より高い状態で吸気弁 5が開弁する。 このため、 燃焼室 1 1内の燃焼ガス Cが吸気流路 2内に流れ込む。 吸気流路 2内に流れ込ん だ高温の燃焼ガス Cから吸気弁 5への対流伝熱, 輻射伝熱によって、 吸気弁 5の 傘部 5 ' が早期に昇温される。 In this mode, since the opening timing of the intake valve 5 is advanced with respect to the normal operation, the intake valve 5 opens with the pressure in the combustion chamber 11 higher than the intake passage 2. Therefore, the combustion gas C in the combustion chamber 11 flows into the intake passage 2. Flows into the intake channel 2 The convection and radiant heat transfer from the hot combustion gas C to the intake valve 5 heats the umbrella portion 5 'of the intake valve 5 early.
次に、 図 1 8のステップ s 1 2 5において、 コントロールユニット 2 5は、 燃 料の噴射時期を吸気行程に設定し、 各気筒の吸気行程に燃料噴射弁により吸気管 内に所定量の燃料を噴射する。  Next, in step s 1 25 in FIG. 18, the control unit 25 sets the fuel injection timing to the intake stroke, and in the intake stroke of each cylinder, a predetermined amount of fuel is injected into the intake pipe by the fuel injection valve. Inject.
ここで、 図 2 0を用いて、 .吸気弁昇温モードにおける吸気行程初期段階でのガ ス, 燃料噴霧の挙動について説明する。  Here, the behavior of gas and fuel spray at the initial stage of the intake stroke in the intake valve heating mode will be described with reference to FIG.
図 2 0は、 本発明の第 2の実施形態による火花点火機関の制御方法における吸 気弁昇温モードにおける吸気行程初期段階でのガス, 燃料噴霧の挙動の説明図で ある。 なお、 図 1 6と同一符号は、 同一部分を示している。  FIG. 20 is an explanatory diagram of the behavior of gas and fuel spray at the initial stage of the intake stroke in the intake valve heating mode in the control method for the spark ignition engine according to the second embodiment of the present invention. The same reference numerals as those in FIG. 16 indicate the same parts.
吸気行程に噴射された燃料噴霧 Sは、 吸気流路 2から燃焼室 7に吸入される燃 焼ガス Cからの伝熱によって気化する。 また、 吸気弁 5の傘部 5 ' に衝突した噴 霧は、 高温となった吸気弁 5からの伝熱を受けて気化する。 このため、 吸気行程 に噴射された燃料の大部分は気化した状態で燃焼室 7に入り、 燃焼室 7内で混合 気を形成する。 これによつて、 吸気弁や燃焼室内での燃料液膜の生成が少なく H Cの少ない燃焼が実現される。 また、 気化の促進によって均一な混合気が形成さ れることで、 安定な燃焼が実現され、 点火時期を大幅に遅角化できる。 これによ つて排気温度がより高くなり、 触媒を短時間で活性化できる。  The fuel spray S injected during the intake stroke is vaporized by the heat transfer from the combustion gas C drawn into the combustion chamber 7 from the intake passage 2. Further, the mist that collides with the umbrella portion 5 ′ of the intake valve 5 is vaporized by receiving heat from the intake valve 5 that has become hot. For this reason, most of the fuel injected in the intake stroke enters the combustion chamber 7 in a vaporized state, and forms a mixture in the combustion chamber 7. As a result, combustion with less generation of a fuel liquid film in the intake valve and the combustion chamber and less HC is realized. In addition, since a uniform mixture is formed by promoting vaporization, stable combustion is realized, and the ignition timing can be greatly retarded. As a result, the exhaust gas temperature becomes higher and the catalyst can be activated in a short time.
次に、 図 1 8のステップ s 1 3 5において、 コントロールユニット 2 5は、 始 動開始からの経過時間 tが所定時間 t 1を超えた場合には、 触媒活性化モードに 移行する。 触媒活性化モードにおける処理内容は、 図 5において説明したものと 同様であり、 排気行程噴射と、 点火遅角化の制御を行い、 触媒が早期に活性化さ れる。 なお、 このときの吸気弁リフトは進角しない通常のリフトモードに戻され る。  Next, in step s135 of FIG. 18, when the elapsed time t from the start of the start exceeds the predetermined time t1, the control unit 25 shifts to the catalyst activation mode. The details of the processing in the catalyst activation mode are the same as those described with reference to FIG. 5. The exhaust stroke injection and the ignition retard control are performed, and the catalyst is activated early. In addition, the intake valve lift at this time is returned to the normal lift mode without advance.
以上説明したように、 本実施形態によれば、 吸気弁昇温モードでは、 吸気弁の リフト時期を進角化することによって、 吸気弁を早期に昇温することによって、 H Cを低減することができる。 特に、 最近の火花点火機関では、 可変弁機構を備 えているものも多くなつてきており、 かかる機関ではハード面の付加を行うこと なく、 採用できるものである。 吸気弁のリフト時期を進角化することによって、 吸気弁の表面は燃焼ガスによって直接加熱されるため、 吸気弁の表面温度は速や かに燃料を蒸発可能な温度まで昇温することができる。 As described above, according to the present embodiment, in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by advancing the lift timing of the intake valve. it can. In particular, many recent spark ignition engines have been equipped with a variable valve mechanism, and such engines can be adopted without adding hardware. By advancing the lift timing of the intake valve, Since the surface of the intake valve is directly heated by the combustion gas, the surface temperature of the intake valve can quickly rise to a temperature at which fuel can be evaporated.
また、 この際、 噴射時期を吸気行程とすることによって、 さらに、 H Cを低減 する。  At this time, HC is further reduced by setting the injection timing to the intake stroke.
一方、 触媒活性化モードでは、 昇温した吸気弁の熱によって燃料の気化を促進 することで壁流を低減し、 均一な混合気を形成する。 これによつて触媒活性化モ —ドでの H Cを減少し、 より大きな点火遅角化によつて触媒の活性化時間の短縮 を図る。  On the other hand, in the catalyst activation mode, wall heat is reduced by promoting the vaporization of fuel by the heat of the heated intake valve, and a uniform air-fuel mixture is formed. As a result, HC in the catalyst activation mode is reduced, and the activation time of the catalyst is shortened by increasing the ignition retard.
以上のように、 本実施形態によって、 エンジン始動時のェミッションを低減で きる。 しかも、 吸気弁にヒータ等を設ける必要もないため、 信頼性, 耐久性を向 上できるものとなる。  As described above, according to the present embodiment, emissions at the time of starting the engine can be reduced. In addition, since there is no need to provide a heater or the like for the intake valve, reliability and durability can be improved.
次に、 図 2 1〜図 2 3を用いて、 本発明の第 3の実施形態による火花点火機関 の制御方法について説明する。  Next, a control method for a spark ignition engine according to the third embodiment of the present invention will be described with reference to FIGS.
本実施形態による火花点火機関の制御方法を用いるェンジン制御システムのシ ステム構成は、 図 1に示したものと同様である。 また、 本実施形態による火花点 火機関の制御方法を用いるエンジンの構成は、 図 2及び図 3に示したものと同様 である。 但し、 吸気弁及び排気弁の駆動機構に相違があるため、 この点について は、 図 2 1及び図 2 2を用いて後述する。 さらに、 本実施形態による火花点火機 関の制御方法を用いるエンジン制御システムの中のコントロールュニット 2 5の 構成は、 図 4に示したものと同様である。  The system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since there is a difference between the drive mechanisms of the intake valve and the exhaust valve, this point will be described later with reference to FIGS. 21 and 22. Further, the configuration of the control unit 25 in the engine control system using the method for controlling the spark ignition engine according to the present embodiment is the same as that shown in FIG.
ここで、 図 2 1及び図 2 2を用いて、 本実施形態による火花点火機関の制御方 法を用いるエンジンの吸気弁及び排気弁の構成及び動作について説明する。  Here, the configuration and operation of the intake and exhaust valves of the engine using the control method of the spark ignition engine according to the present embodiment will be described with reference to FIGS.
図 2 1は、 本発明の第 3の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。 図 2 2は、 本発明の第 3の実施形態によ る火花点火機関の制御方法を用いるエンジンの排気弁の動作説明図である。 なお、 図 1 6において、 図 2と同一符号は、 同一部分を示している。  FIG. 21 is a transparent perspective view showing a configuration of an engine using the spark ignition engine control method according to the third embodiment of the present invention. FIG. 22 is an explanatory diagram of the operation of the exhaust valve of the engine using the control method of the spark ignition engine according to the third embodiment of the present invention. In FIG. 16, the same reference numerals as those in FIG. 2 indicate the same parts.
図 2 1に示すように、 吸気弁 5に可変弁機構 5 0が設けられ、 排気弁 6には、 可変弁機構 6 0が設けられている。 可変弁機構 5 0は、 図 1 6において説明した ものと同様である。 また、 可変弁機構 6 0は、 可変弁機構 6 0と同様なものであ る。 コントロールユニット 2 5から入力される制御信号によって、 可変弁機構 5 0は吸気弁 5の開弁時期を変えることができる。 また、 コントロールユニット 2 5から入力される制御信号によって、 可変弁機構 6 0は排気弁 6の開弁時期を変 えることができる。 As shown in FIG. 21, the intake valve 5 is provided with a variable valve mechanism 50, and the exhaust valve 6 is provided with a variable valve mechanism 60. The variable valve mechanism 50 is the same as that described in FIG. The variable valve mechanism 60 is similar to the variable valve mechanism 60. You. The variable valve mechanism 50 can change the opening timing of the intake valve 5 by a control signal input from the control unit 25. Further, the variable valve mechanism 60 can change the opening timing of the exhaust valve 6 according to a control signal input from the control unit 25.
吸気弁 5の開弁時期は、 図 1 7に示したように、 通常モードと、 進角モードの 2つのパターンがある。 進角モードは、 通常モードに対して、 開弁時期が進角し ているものである。  As shown in FIG. 17, the opening timing of the intake valve 5 has two patterns, a normal mode and an advanced mode. In the advance mode, the valve opening timing is advanced compared to the normal mode.
また、 排気弁 6の開弁時期は、 図 2 2に示すように、 通常モードと、 進角モー ドの 2つのパターンがある。 進角モードは、 通常モードに対して、 開弁時期が進 角しているものである。  The opening timing of the exhaust valve 6 has two patterns, a normal mode and an advanced angle mode, as shown in FIG. In the advance mode, the valve opening timing is advanced compared to the normal mode.
次に、 図 2 3を用いて、 本実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容について説明する。  Next, the processing content of the engine start processing by the control method of the spark ignition engine according to the present embodiment will be described using FIG.
図 2 3は、 本発明の第 3の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチャートである。 なお、 図 5及び図 1 8と 同一のステップ番号は、 同一の処理内容を示している。  FIG. 23 is a flowchart showing the processing content of the engine start processing by the control method of the spark ignition engine according to the third embodiment of the present invention. Note that the same step numbers as those in FIGS. 5 and 18 indicate the same processing contents.
本実施形態においては、 図 1 8に示した処理と同様に、 吸気弁昇温モードと、 触媒活性化モードを備えている。 しかし、 触媒活性化モードにおけるステップ s 1 4 2の処理が、 図 1 8に示した処理とは異なる点である。  In the present embodiment, similarly to the processing shown in FIG. 18, an intake valve heating mode and a catalyst activation mode are provided. However, the process of step s142 in the catalyst activation mode is different from the process shown in FIG.
ステップ s 1 0 0のイグニッションキーの O Nによって、 本実施形態によるェ ンジン起動処理がスタートする。 コントロールユニット 2 5は、 ステップ s 1 1 0の処理で、 内部のタイマ一時刻を 0に設定する。 次に、 ステップ s 1 1 5にお いて、 コントロールユニット 2 5は、 水温センサによって検出された水温を読み 込み、 水温が予め定めた所定温度 Tw l (通常 5 0〜 8 0 °C程度) よりも高い場 合には、 通常運転モードに移行する。 一方、 水温が Tw lよりも低い場合には、 コン卜ロールュニット 2 5は、 吸気弁昇温モードの運転制御に移る。  The engine activation process according to the present embodiment is started by the ON of the ignition key in step s100. The control unit 25 sets the internal timer one time to 0 in the process of step s110. Next, in step s115, the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
吸気弁昇温モードでは、 ステップ s 1 2 0において、 コントロールユニット 2 5は、 噴射燃料量を演算する。 次に、 ステップ s 1 2 0において、 コントロール ユニット 2 5は、 図 1 7に示したように、 吸気弁リフトを進角モードにし、 図 1 6に示したように、 可変弁機構 5 0を進角モードにするための制御信号を出力す る。 In the intake valve heating mode, in step s120, the control unit 25 calculates the amount of injected fuel. Next, in step s120, the control unit 25 sets the intake valve lift to the advance mode as shown in FIG. 17 and advances the variable valve mechanism 50 as shown in FIG. Output control signal to switch to angular mode You.
次に、 ステップ s 1 2 5において、 コントロールユニット 2 5は、 燃料の噴射 時期を吸気行程に設定し、 各気筒の吸気行程に燃料噴射弁により吸気管内に所定 量の燃料を噴射する。 次に、 ステップ s 1 3 5において、 コントロールユニット 2 5は、 始動開始からの経過時間 tが所定時間 t 1を超えた場合には、 触媒活性 化モードに移行する。  Next, in step s125, the control unit 25 sets the fuel injection timing to the intake stroke, and injects a predetermined amount of fuel into the intake pipe by the fuel injection valve during the intake stroke of each cylinder. Next, in step s135, the control unit 25 shifts to the catalyst activation mode when the elapsed time t from the start of the start exceeds the predetermined time t1.
触媒活性化モードでは、 ステップ s 1 4 0において、 コントロールユニット 2 5は、 クランク角センサの検出値に基づき所定量の燃料を排気行程で噴射する。 次に、 ステップ s 1 4 2において、 コントロールユニット 2 5は、 図 2 2に示 したように、 排気弁リフトを進角モードにし、 図 2 1に示したように、 可変弁機 構 6 0を進角モードにするための制御信号を出力する。 触媒活性化モードでは、 排気弁の開弁時期を進角させることによって、 触媒活性化モードでは燃焼室内で 完全燃焼する前の燃焼ガスが排気管に導かれる。 これによつて排気管内で燃焼が 継続し、 触媒に供給される燃焼ガス温度が上昇する。 また、 未燃燃料が触媒内で 燃焼反応を起こし、 触媒の早期活性化が可能となる。  In the catalyst activation mode, in step s140, the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor. Next, in step s142, the control unit 25 sets the exhaust valve lift to the advance mode as shown in FIG. 22 and sets the variable valve mechanism 60 as shown in FIG. Outputs a control signal for setting the advance mode. In the catalyst activation mode, by advancing the opening timing of the exhaust valve, in the catalyst activation mode, the combustion gas before complete combustion in the combustion chamber is led to the exhaust pipe. As a result, combustion continues in the exhaust pipe, and the temperature of the combustion gas supplied to the catalyst rises. In addition, the unburned fuel causes a combustion reaction in the catalyst, enabling early activation of the catalyst.
次に、 ステップ s 1 4 5において、 コントロールユニット 2 5は、 クランク角 センサの検出値に基づき所定量の燃料を排気行程で噴射する。  Next, in step s145, the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
次に、 ステップ s 1 5 5において、 コントロールユニット 2 5は、 タイマー時 刻 tと予め定められた触媒活性化所要時間 t 2を比較し、 t < t 2の場合には、 ステップ s 1 4 0に戻り、 次のサイクルでも排気行程に燃料を噴射し、 点火時期 を遅角させる触媒活性化モードの手順を繰り返す。 一方、 t > t 2の場合には、 触媒が充分に活性化したと判断し、 通常運転モードに進む。  Next, in step s155, the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2, and if t <t2, the control unit 25 Then, in the next cycle, the procedure of the catalyst activation mode for injecting fuel in the exhaust stroke and retarding the ignition timing is repeated. On the other hand, if t> t2, it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
通常の運転モードでは、 エンジン負荷の急激な変化があるとき以外は、 燃料は 排気行程で噴射され、 燃費が最良となる点火時期が選択される。  In the normal operation mode, except when there is a sudden change in the engine load, fuel is injected in the exhaust stroke, and the ignition timing that maximizes fuel efficiency is selected.
以上説明したように、 本実施形態によれば、 吸気弁昇温モードでは、 吸気弁の リフト時期を進角化することによって、 吸気弁を早期に昇温することによって、 H Cを低減することができる。  As described above, according to the present embodiment, in the intake valve heating mode, HC can be reduced by increasing the temperature of the intake valve early by advancing the lift timing of the intake valve. it can.
また、 この際、 噴射時期を吸気行程とすることによって、 さらに、 H Cを低減 する。 一方、 触媒活性化モードでは、 排気弁の開弁時期を進角化することにより、 角虫 媒の活性化時間の短縮を図ることができる。 At this time, HC is further reduced by setting the injection timing to the intake stroke. On the other hand, in the catalyst activation mode, the activation time of the hornworm medium can be reduced by advancing the opening timing of the exhaust valve.
以上のように、 本実施形態によって、 エンジン始動時のェミッションを低減で きる。 しかも、 吸気弁にヒ一夕等を設ける必要もないため、 信頼性, 耐久性を向 上できるものとなる。  As described above, according to the present embodiment, emissions at the time of starting the engine can be reduced. In addition, since there is no need to provide the intake valve with a light source, reliability and durability can be improved.
次に、 図 2 4〜図 3 2を用いて、 本発明の第 4の実施形態による火花点火機関 の制御方法について説明する。  Next, a control method for a spark ignition engine according to a fourth embodiment of the present invention will be described with reference to FIGS.
本実施形態による火花点火機関の制御方法を用いるェンジン制御システムのシ ステム構成は、 図 1に示したものと同様である。 また、 本実施形態による火花点 火機関の制御方法を用いるエンジンの構成は、 図 2及び図 3に示したものと同様 である。 但し、 吸気管にスワール制御弁を備えているものであるため、 この点に ついては、 図 2 4〜図 2 6を用いて後述する。 さらに、 本実施形態による火花点 火機関の制御方法を用いるエンジン制御システムの中のコントロールュニット 2 5の構成は、 図 4に示したものと同様である。  The system configuration of the engine control system using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIG. Further, the configuration of the engine using the control method of the spark ignition engine according to the present embodiment is the same as that shown in FIGS. 2 and 3. However, since the intake pipe is provided with a swirl control valve, this point will be described later with reference to FIGS. 24 to 26. Further, the configuration of the control unit 25 in the engine control system using the method for controlling a spark ignition engine according to the present embodiment is the same as that shown in FIG.
ここで、 図 2 4〜図 2 6を用いて、 本実施形態による火花点火機関の制御方法 を用いるエンジンのスワール制御弁の構成及び動作について説明する。  Here, the configuration and operation of the swirl control valve of the engine using the control method of the spark ignition engine according to the present embodiment will be described with reference to FIGS.
図 2 4は、 本発明の第 4の実施形態による火花点火機関の制御方法を用いるェ ンジンの構成を示す透過斜視図である。 図 2 5は、 本発明の第 2の実施形態によ る火花点火機関の制御方法を用いるエンジンに取り付けられたスワール制御弁の 構成を示す正面図である。 図 2 6は、 本発明の第 2の実施形態による火花点火機 関の制御方法を用いるエンジンに取り付けられたスワール制御弁の動作説明図で ある。 なお、 図 2 4において、 図 2と同一符号は、 同一部分を示している。  FIG. 24 is a transparent perspective view showing the configuration of an engine using the method for controlling a spark ignition engine according to the fourth embodiment of the present invention. FIG. 25 is a front view showing a configuration of a swirl control valve attached to an engine using the spark ignition engine control method according to the second embodiment of the present invention. FIG. 26 is an explanatory diagram of the operation of a swirl control valve attached to an engine using the control method for a spark ignition engine according to the second embodiment of the present invention. In FIG. 24, the same reference numerals as those in FIG. 2 indicate the same parts.
図 2 4に示すように、 吸気流路 2の上流部には、 スワール制御弁 3 0が設けら れている。 スワール制御弁 3 0は、 図 2 5に示すように、 モータ 3 2によって回 転するスワール制御弁軸 3 1に、 平板状の弁体 3 3が取付けらた構造となってい る。 弁体 3 3は、 その右上部分に開口部 3 3 ' を有する構成である。 コントロー ルユニット 2 5からの制御信号によって、 モータ 3 2に回転指示が与えられ、 図 2 1に示すように、 スワール制御弁 3 0は、 全閉または全開に切り替えることが できる。 機関の負荷が大きく、 大量の空気を燃焼室内に導入する必要があるときは、 ス ワール制御弁 3 0は全開となる。 一方、 低中負荷で、 安定に燃焼させたい場合に はスワール制御弁 3 0は全閉となる。 このときには、 弁体 3 3の開口部 3 3 ' か ら空気が流れるが、 開口部 3 3 ' の断面積は吸気流路の断面積よりも小さいため、 絞り効果により指向性の高い高速の空気流 Fが生成される。 この空気流 Fによつ て燃焼室内に強い渦が生成される。 図 2 5及び図 2 6に示したスワール制御弁 3 0は、 燃焼室内に横渦を生成する。 As shown in FIG. 24, a swirl control valve 30 is provided upstream of the intake passage 2. As shown in FIG. 25, the swirl control valve 30 has a structure in which a plate-shaped valve element 33 is attached to a swirl control valve shaft 31 rotated by a motor 32. The valve element 33 has a configuration having an opening 3 3 ′ at the upper right part thereof. A rotation instruction is given to the motor 32 by a control signal from the control unit 25, and as shown in FIG. 21, the swirl control valve 30 can be switched between fully closed and fully opened. When the load on the engine is large and a large amount of air needs to be introduced into the combustion chamber, the swirl control valve 30 is fully opened. On the other hand, the swirl control valve 30 is fully closed for stable combustion at low and medium loads. At this time, air flows from the opening 3 3 ′ of the valve element 33, but since the cross-sectional area of the opening 3 3 ′ is smaller than the cross-sectional area of the intake passage, high-speed air with high directivity due to the throttle effect is provided. Stream F is generated. This air flow F generates a strong vortex in the combustion chamber. The swirl control valve 30 shown in FIGS. 25 and 26 generates a lateral vortex in the combustion chamber.
ここで、 図 2 7及び図 2 8を用いて、 他の構成のスワール制御弁について説明 する。  Here, a swirl control valve having another configuration will be described with reference to FIGS. 27 and 28. FIG.
図 2 7は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるェ ンジンに取り付けられたスワール制御弁の他の構成を示す正面図である。 図 2 8 は、 本発明の第 2の実施形態による火花点火機関の制御方法を用いるエンジンに 取り付けられたスワール制御弁のその他の構成を示す正面図である。 なお、 図 2 5と同一符号は、 同一部分を示している。  FIG. 27 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention. FIG. 28 is a front view showing another configuration of the swirl control valve attached to the engine using the spark ignition engine control method according to the second embodiment of the present invention. The same reference numerals as those in FIG. 25 indicate the same parts.
図 2 7に示すように、 スヮ一ル制御弁 3 O Aを構成する平板状の弁体 3 3 Aは、 通路の左半分を遮断できる形状であり、 その右側部分に開口部 3 3 A ' を有して いる。 スワール制御弁 3 O Aは全閉の状態では、 弁体 3 3 Aの開口部 3 3 A ' か ら、 絞り効果により指向性の高い高速の空気流 Fが生成される。 この空気流 Fに よって燃焼室内に強い渦が生成される。 スヮ一ル制御弁 3 O Aは、 燃焼室内に横 渦を生成する。  As shown in FIG. 27, the flat valve body 33 A constituting the steel control valve 3 OA has a shape capable of blocking the left half of the passage, and has an opening 33 A ′ on the right side thereof. have. When the swirl control valve 3OA is fully closed, a high directivity airflow F with high directivity is generated from the opening 33A 'of the valve body 33A by the throttle effect. This airflow F generates a strong vortex in the combustion chamber. The scale control valve 3OA generates a lateral vortex in the combustion chamber.
また、 図 2 8に示すように、 スワール制御弁 3 0 Bを構成する平板状の弁体 3 3 Bは、 通路の下半分を遮断できる形状であり、 その上側部分に開口部 3 3 B ' を有している。 スワール制御弁 3 0 Bは全閉の状態では、 弁体 3 3 Bの開口部 3 3 B ' から、 絞り効果により指向性の高い高速の空気流 Fが生成される。 この空 気流 Fによって燃焼室内に強い渦が生成される。 スワール制御弁 3 0 Bは、 燃焼 室内に縦渦を生成する。  As shown in FIG. 28, the plate-shaped valve element 33 B constituting the swirl control valve 30 B has a shape capable of blocking the lower half of the passage, and an opening 33 B ′ have. When the swirl control valve 30B is fully closed, a high-directivity high-speed airflow F is generated from the opening 33B 'of the valve body 33B by the throttle effect. This air flow F generates a strong vortex in the combustion chamber. The swirl control valve 30B generates a vertical vortex in the combustion chamber.
次に、 図 2 9を用いて、 本実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容について説明する。  Next, the processing content of the engine start processing by the control method of the spark ignition engine according to the present embodiment will be described with reference to FIG.
図 2 9は、 本発明の第 4の実施形態による火花点火機関の制御方法によるェン ジン起動処理の処理内容を示すフローチャートである。 なお、 図 5と同一のステ ップ番号は、 同一の処理内容を示している。 FIG. 29 is an end view of the spark ignition engine control method according to the fourth embodiment of the present invention. It is a flowchart which shows the processing content of a gin activation process. Note that the same step numbers as those in FIG. 5 indicate the same processing contents.
本実施形態においては、 図 5に示した処理と同様に、 吸気弁昇温モードと、 触 媒活性化モードを備えている。 しかし、 吸気弁昇温モードにおけるステップ s 1 2 4の処理及び触媒活性化モードにおけるステップ s 1 4 4の処理が、 図 5に示 した処理とは異なる点である。  In the present embodiment, similarly to the processing shown in FIG. 5, an intake valve heating mode and a catalyst activation mode are provided. However, the processing in step s124 in the intake valve heating mode and the processing in step s144 in the catalyst activation mode are different from the processing shown in FIG.
ステップ s 1 0 0のイグニッションキーの O Nによって、 本実施形態によるェ ンジン起動処理がスタートする。 コントロールユニット 2 5は、 ステップ s 1 1 0の処理で、 内部のタイマ一時刻を 0に設定する。 次に、 ステップ s 1 1 5にお いて、 コントロールユニット 2 5は、 水温センサによって検出された水温を読み 込み、 水温が予め定めた所定温度 Tw l (通常 5 0〜8 0 °C程度) よりも高い場 合には、 通常運転モードに移行する。 一方、 水温が Tw lよりも低い場合には、 コントロールュニット 2 5は、 吸気弁昇温モードの運転制御に移る。  The engine activation process according to the present embodiment is started by the ON of the ignition key in step s100. The control unit 25 sets the internal timer one time to 0 in the process of step s110. Next, in step s115, the control unit 25 reads the water temperature detected by the water temperature sensor, and adjusts the water temperature from a predetermined temperature Twl (normally about 50 to 80 ° C). If the value is also high, the mode shifts to the normal operation mode. On the other hand, if the water temperature is lower than Twl, the control unit 25 shifts to the operation control of the intake valve heating mode.
吸気弁昇温モードでは、 ステップ s 1 2 0において、 コントロールユニット 2 5は、 噴射燃料量を演算する。  In the intake valve heating mode, in step s120, the control unit 25 calculates the amount of injected fuel.
次に、 ステップ s 1 2 4において、 コントロールユニット 2 5は、 スワール制 御弁 3 0を開くための制御信号を、 スヮール制御弁 3 0に送り、 スワール制御弁 3 0を開いた状態とする。 なお、 ここで、 制御対象のスワール制御弁は、 スヮー ル制御弁 3 0の代わりに、 図 2 7や図 2 8に示したスワール制御弁 3 O A, 3 0 Bを用いてもよいものである。  Next, in step s124, the control unit 25 sends a control signal for opening the swirl control valve 30 to the swirl control valve 30 so that the swirl control valve 30 is opened. Here, as the swirl control valve to be controlled, swirl control valves 3 OA and 30 B shown in FIGS. 27 and 28 may be used instead of the swirl control valve 30. .
ここで、 図 3 0を用いて、 吸気弁昇温モードにおける吸気行程での燃料, ガス 挙動について説明する。  Here, the fuel and gas behavior during the intake stroke in the intake valve heating mode will be described with reference to FIG.
図 3 0は、 本発明の第 4の実施形態による火花点火機関の制御方法における吸 気弁昇温モードにおける吸気行程での燃料, ガス挙動の説明図である。 なお、 図 2 4と同一符号は、 同一部分を示している。  FIG. 30 is an explanatory diagram of the fuel and gas behavior in the intake stroke in the intake valve heating mode in the spark ignition engine control method according to the fourth embodiment of the present invention. The same reference numerals as those in FIG. 24 indicate the same parts.
吸気弁昇温モードでは、 スワール制御弁 3 0が開いているため、 吸気流路 2の 斬面全体を空気が流れる。 このため、 吸気流路 2での空気の速度は比較的遅くな つている。 従って、 吸気行程に吸気流路 2内に噴射された燃料噴霧 Sは、 空気の 流れ Fによって影響を受けることが少ないものである。 具体的には、 吸気流路 2 内の空気流動 Fによって、 燃料噴霧 Sが偏向したり、 分散することがなく、 燃料 噴霧 Sは吸気弁 5の開口部を通って、 燃焼室 1 1内に導入される。 In the intake valve heating mode, since the swirl control valve 30 is open, air flows through the entire cutting surface of the intake passage 2. Therefore, the speed of the air in the intake passage 2 is relatively low. Therefore, the fuel spray S injected into the intake passage 2 during the intake stroke is less affected by the air flow F. Specifically, intake channel 2 The fuel spray S does not deflect or disperse due to the air flow F inside, and the fuel spray S is introduced into the combustion chamber 11 through the opening of the intake valve 5.
ここで、 図 3 1を用いて、 参考までに、 吸気行程でスワール制御弁を閉じた時 の燃料, ガス挙動について説明する。  Here, the behavior of fuel and gas when the swirl control valve is closed during the intake stroke will be described for reference with reference to FIG.
図 3 1は、 参考例としての吸気行程での燃料, ガス挙動の説明図である。 なお、 図 2 4と同一符号は、 同一部分を示している。  Figure 31 is an explanatory diagram of the fuel and gas behavior during the intake stroke as a reference example. The same reference numerals as those in FIG. 24 indicate the same parts.
吸気行程噴射時にスワール制御弁 3 0を閉じると、 スワール制御弁 3 0によつ て加速された空気 Fが、 燃料噴霧 Sを偏向させ、 吸気管 1 8の壁面に液膜 Lを形 成する。 この液膜 Lの形成によってエンジンから排出される H Cが増大する。 それに対して、 図 3 0に示したように、 本実施形態では、 吸気弁昇温モード時 には、 吸気行程噴射時にスワール制御弁 3 0を開くことによって、 噴霧の偏向, 分散を抑制し、 H Cの低減が可能となる。  When swirl control valve 30 is closed during intake stroke injection, air F accelerated by swirl control valve 30 deflects fuel spray S and forms liquid film L on the wall of intake pipe 18. . Due to the formation of the liquid film L, HC discharged from the engine increases. In contrast, as shown in FIG. 30, in the present embodiment, in the intake valve heating mode, the swirl control valve 30 is opened during the intake stroke injection to suppress the deflection and dispersion of the spray, HC can be reduced.
次に、 図 2 9のステップ s 1 2 5において、 コントロールユニット 2 5は、 燃 料の噴射時期を吸気行程に設定し、 各気筒の吸気行程に燃料噴射弁により吸気管 内に所定量の燃料を噴射する。  Next, in step s125 of FIG. 29, the control unit 25 sets the fuel injection timing to the intake stroke, and sets a predetermined amount of fuel into the intake pipe by the fuel injection valve during the intake stroke of each cylinder. Inject.
次に、 ステップ s 1 3 5において、 コントロールユニット 2 5は、 始動開始か らの経過時間 tが所定時間 t 1を超えた場合には、 触媒活性化モードに移行する 触媒活性化モードでは、 ステップ s 1 4 0において、 コントロールュニット 2 5は、 クランク角センサの検出値に基づき所定量の燃料を排気行程で噴射する。 次に、 ステップ s 1 4 4において、 コントロールユニット 2 5は、 スワール制 御弁 3 0を閉じるための制御信号を、 スワール制御弁 3 0に送り、 スワール制御 弁が閉じる。  Next, in step s135, the control unit 25 shifts to the catalyst activation mode when the elapsed time t from the start has exceeded the predetermined time t1. At s140, the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor. Next, in step s144, the control unit 25 sends a control signal for closing the swirl control valve 30 to the swirl control valve 30, and the swirl control valve closes.
次に、 ステップ s 1 4 5において、 コントロールユニット 2 5は、 クランク角 センサの検出値に基づき所定量の燃料を排気行程で噴射する。  Next, in step s145, the control unit 25 injects a predetermined amount of fuel in the exhaust stroke based on the value detected by the crank angle sensor.
ここで、 図 3 2を用いて、 触媒活性化モードにおける吸気行程での燃料, ガス 挙動について説明する。  Here, the fuel and gas behavior during the intake stroke in the catalyst activation mode will be described with reference to FIG.
図 3 2は、 本発明の第 4の実施形態による火花点火機関の制御方法における触 媒活性化モードにおける吸気行程での燃料, ガス挙動の説明図である。 なお、 図 2 4と同一符号は、 同一部分を示している。 触媒活性化モードでは、 スワール制御弁 3 0が閉じられ、 燃焼室 1 1に縦渦 T Fが形成される。 排気行程に噴射された燃料は、 触媒活性化モードの前に行われ た吸気弁昇温モードでの運転によって暖められた咴気弁 5の傘部 5 'から熱を受 け、 気化して燃焼室 1 1に導かれる。 燃焼室 1 1は、 縦渦 T Fによって、 気化燃 料と空気との混合が促進され、 また、 また縦渦 T Fによってガスに強い乱れが生 成される。 この混合促進と乱れ強化によって、 触媒活性化モードでの燃焼が安定 化される。 これにより、 燃焼が不安定となり易い、 大幅な点火遅角での運転が可 能となり、 より短期間での触媒活性化が可能となる。 また、 燃焼の安定化効果に より、 より希薄な混合気での運転が可能となるため、 始動時の燃料増量を減らし、 H Cの低減を図ることも可能である。 FIG. 32 is an explanatory diagram of the fuel and gas behavior during the intake stroke in the catalyst activation mode in the spark ignition engine control method according to the fourth embodiment of the present invention. The same reference numerals as those in FIG. 24 indicate the same parts. In the catalyst activation mode, the swirl control valve 30 is closed, and a vertical vortex TF is formed in the combustion chamber 11. The fuel injected during the exhaust stroke receives heat from the umbrella section 5 ′ of the exhaust valve 5, which is heated by the operation in the intake valve heating mode performed before the catalyst activation mode, and is vaporized and burned Room 1 is led to 1. In the combustion chamber 11, mixing of the vaporized fuel and air is promoted by the vertical vortex TF, and strong turbulence is generated in the gas by the vertical vortex TF. This promotion of mixing and enhanced turbulence stabilizes combustion in the catalyst activation mode. This makes it possible to operate with a large ignition retard, which tends to cause unstable combustion, and to activate the catalyst in a shorter period of time. In addition, the combustion stabilization effect enables operation with a leaner air-fuel mixture, so it is possible to reduce the amount of fuel increase at startup and reduce HC.
次に、 図 2 9のステップ s 1 5 0において、 コントロールユニット 2 5は、 燃 費が最良となる点火時期に対して、 遅角側で点火する。 図 1 0に示したように、 点火時期を燃費最良時期より遅角させると排気行程でのガス温度が高くなる。 次に、 ステップ s 1 5 5において、 コントロールユニット 2 5は、 タイマー時 刻 tと予め定められた触媒活性化所要時間 t 2を比較し、 t < t 2の場合には、 ステップ s 1 4 0に戻り、 次のサイクルでも排気行程に燃料を噴射し、 点火時期 を遅角させる触媒活性化モードの手順を繰り返す。 一方、 t〉 t 2の場合には、 触媒が充分に活性化したと判断し、 通常運転モ一ドに進む。  Next, in step s150 of FIG. 29, the control unit 25 ignites the ignition timing on the retard side with respect to the ignition timing at which the fuel efficiency is the best. As shown in FIG. 10, when the ignition timing is retarded from the best fuel consumption timing, the gas temperature in the exhaust stroke increases. Next, in step s155, the control unit 25 compares the timer time t with a predetermined catalyst activation required time t2, and if t <t2, the control unit 25 Then, in the next cycle, the procedure of the catalyst activation mode for injecting fuel in the exhaust stroke and retarding the ignition timing is repeated. On the other hand, if t> t2, it is determined that the catalyst has been sufficiently activated, and the operation proceeds to the normal operation mode.
通常の運転モードでは、 エンジン負荷の急激な変化があるとき以外は、 燃料は 排気行程で噴射され、 燃費が最良となる点火時期が選択される。  In the normal operation mode, except when there is a sudden change in the engine load, fuel is injected in the exhaust stroke, and the ignition timing that maximizes fuel efficiency is selected.
なお、 以上の説明では、 スワール制御弁の動作は、 吸気弁昇温モードで全開、 触媒活性化モードで全閉としたが、 吸気弁昇温モードでのスワール制御弁の開度 が、 触媒活性化モードでのスワール制御弁の開度よりも大きくなる範囲で、 全開 と全閉の間の中間開度に設定してもよいものである。  In the above description, the operation of the swirl control valve is fully opened in the intake valve heating mode and fully closed in the catalyst activation mode.However, the opening of the swirl control valve in the intake valve heating mode is determined by the catalyst activation. It may be set to an intermediate opening between full open and fully closed, as long as it is larger than the opening of the swirl control valve in the normalization mode.
以上説明したように、 本実施形態によれば、 吸気弁昇温モードでは、 スワール 制御弁を閉じることによって、 H Cを低減することができる。  As described above, according to the present embodiment, in the intake valve heating mode, HC can be reduced by closing the swirl control valve.
また、 この際、 噴射時期を吸気行程とすることによって、 さらに、 H Cを低減 する。  At this time, HC is further reduced by setting the injection timing to the intake stroke.
一方、 触媒活性化モードでは、 昇温した吸気弁の熱によって燃料の気化を促進 することで壁流を低減し、 均一な混合気を形成する。 これによつて触媒活性化モ ードでの H Cを減少し、 より大きな点火遅角化によって触媒の活性化時間の短縮 を図る。 On the other hand, in the catalyst activation mode, fuel vaporization is promoted by the heat of the heated intake valve. This reduces wall flow and creates a uniform mixture. As a result, HC in the catalyst activation mode is reduced, and the activation time of the catalyst is shortened by a larger ignition retard.
以上のように、 本実施形態によって、 エンジン始動時のェミッションを低減で きる。 しかも、 吸気弁にヒータ等を設ける必要もないため、 信頼性, 耐久性を向 上できるものとなる。 産業上の利用の可能性 本発明によれば、 始動時のェミッションを低減できるとともに、 信頼性, 耐久 性が向上することができる。  As described above, according to the present embodiment, emissions at the time of starting the engine can be reduced. In addition, since there is no need to provide a heater or the like for the intake valve, reliability and durability can be improved. INDUSTRIAL APPLICABILITY According to the present invention, emissions at the time of starting can be reduced, and reliability and durability can be improved.

Claims

請求の範囲 The scope of the claims
1 . 燃料噴射弁 (4)を有する火花点火機関において、 1. In a spark ignition engine having a fuel injection valve (4),
機関温度が所定の温度より低い場合に、 点火時期を燃費が最も良くなる点火時 期より進角させることを特徴とした火花点火機関の制御方法。  A method for controlling a spark ignition engine, characterized in that, when the engine temperature is lower than a predetermined temperature, the ignition timing is advanced from an ignition timing at which fuel efficiency is best.
2 . 請求項 1記載の火花点火機関の制御方法において、 2. The method for controlling a spark ignition engine according to claim 1,
機関温度が所定の温度より低い場合に燃料を吸気行程で噴射することを特徴と する火花点火機関の制御方法。  A method for controlling a spark ignition engine, characterized in that fuel is injected in an intake stroke when the engine temperature is lower than a predetermined temperature.
3 . 請求項 1記載の火花点火機関の制御方法において、 3. The method for controlling a spark ignition engine according to claim 1,
機関温度が所定の温度よりも高く、 かつ触媒が未活性時に、 燃料噴射時期を排 気行程とするとともに、 点火時期を燃費が最も良くなる点火時期より遅角させる ことを特徴とする火花点火機関の制御方法。  When the engine temperature is higher than a predetermined temperature and the catalyst is not activated, the fuel injection timing is set to an exhaust stroke, and the ignition timing is retarded from the ignition timing at which fuel efficiency is best. Control method.
4 . 燃料噴射弁を有する火花点火機関において、 4. In a spark ignition engine having a fuel injection valve,
吸気弁の開弁時期を変更する手段 (50)を備え、  A means (50) for changing the opening timing of the intake valve is provided,
機関温度が所定の温度より低い場合に、 上記吸気弁の開弁時期を通常の開弁時 期より進角させることを特徴とする火花点火機関の制御方法。  A method for controlling a spark ignition engine, characterized in that when the engine temperature is lower than a predetermined temperature, the valve opening timing of the intake valve is advanced from a normal valve opening time.
5 . 請求項 4記載の火花点火機関の制御方法において、 5. The method for controlling a spark ignition engine according to claim 4,
機関温度が所定の温度より低い場合に燃料を吸気行程で噴射することを特徴と する火花点火機関の制御方法。  A method for controlling a spark ignition engine, characterized in that fuel is injected in an intake stroke when the engine temperature is lower than a predetermined temperature.
6 . 請求項 4記載の火花点火機関の制御方法において、 6. The control method for a spark ignition engine according to claim 4,
機関温度が所定の温度よりも高く、 かつ触媒が未活性時に、 燃料噴射時期を排 気行程とするとともに、 点火時期を燃費が最も良くなる点火時期より遅角させる ことを特徴とする火花点火機関の制御方法。 When the engine temperature is higher than a predetermined temperature and the catalyst is not activated, the fuel injection timing is set to an exhaust stroke, and the ignition timing is retarded from the ignition timing at which fuel efficiency is best. Control method.
7 . 請求項 4記載の火花点火機関の制御方法において、 7. The method for controlling a spark ignition engine according to claim 4,
排気弁の開弁時期を変更する手段(60)を備え、  Means (60) for changing the opening timing of the exhaust valve;
機関温度が所定の温度よりも高く、 かつ触媒が未活性時に、 排気弁の開弁時期 を通常よりも遅角させることを特徴とする火花点火機関の制御方法。  A control method for a spark ignition engine, characterized in that when an engine temperature is higher than a predetermined temperature and a catalyst is inactive, the opening timing of an exhaust valve is retarded more than usual.
8 . 燃料噴射弁を有する火花点火機関において、 8. In a spark ignition engine having a fuel injection valve,
吸気管の流路段面積を変えてスワールを発生させるスワール制御弁(30)を備え、 機関温度が所定の温度よりも低い場合に、 上記スワール制御弁(30)によって生 成されるスワール強さを、 機関温度が所定の温度よりも高い場合より弱くするこ とを特徴とする火花点火機関の制御方法。  A swirl control valve (30) that generates swirl by changing the flow path step area of the intake pipe is provided. When the engine temperature is lower than a predetermined temperature, the swirl strength generated by the swirl control valve (30) is reduced. A method for controlling a spark ignition engine, characterized in that the engine temperature is weakened when the engine temperature is higher than a predetermined temperature.
9 . 請求項 8記載の火花点火機関の制御方法において、 9. The method for controlling a spark ignition engine according to claim 8,
機関温度が所定の温度より低い場合に燃料を吸気行程で噴射することを特徴と する火花点火機関の制御方法。  A method for controlling a spark ignition engine, characterized in that fuel is injected in an intake stroke when the engine temperature is lower than a predetermined temperature.
1 0 . 請求項 8記載の火花点火機関の制御方法において、 10. The method for controlling a spark ignition engine according to claim 8,
機関温度が所定の温度よりも高く、 かつ触媒が未活性時に、 燃料噴射時期を排 気行程とするとともに、 点火時期を燃費が最も良くなる点火時期より遅角させる ことを特徴とする火花点火機関の制御方法。  When the engine temperature is higher than a predetermined temperature and the catalyst is not activated, the fuel injection timing is set to an exhaust stroke, and the ignition timing is retarded from the ignition timing at which fuel efficiency is best. Control method.
PCT/JP2000/007025 2000-10-10 2000-10-10 Control method for spark ignition engine WO2002031355A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002534701A JPWO2002031355A1 (en) 2000-10-10 2000-10-10 Control method of spark ignition engine
PCT/JP2000/007025 WO2002031355A1 (en) 2000-10-10 2000-10-10 Control method for spark ignition engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/007025 WO2002031355A1 (en) 2000-10-10 2000-10-10 Control method for spark ignition engine

Publications (1)

Publication Number Publication Date
WO2002031355A1 true WO2002031355A1 (en) 2002-04-18

Family

ID=11736574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/007025 WO2002031355A1 (en) 2000-10-10 2000-10-10 Control method for spark ignition engine

Country Status (2)

Country Link
JP (1) JPWO2002031355A1 (en)
WO (1) WO2002031355A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006077683A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Alcohol concentration estimating device for engine
JP2008202570A (en) * 2007-02-22 2008-09-04 Toyota Motor Corp Control system for internal combustion engine
JP2008215211A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Control system of internal-combustion engine
JP2008255898A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Ignition control system of internal combustion engine
JP2009013997A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP2009013998A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP2010537110A (en) * 2008-03-07 2010-12-02 フオルクスワーゲン・アクチエンゲゼルシヤフト How to activate the lambda sensor during the warm-up phase
US8297256B2 (en) 2006-11-29 2012-10-30 Toyota Jidosha Kabushiki Kaisha Ignition control system for internal combustion engines
JP2013096233A (en) * 2011-10-28 2013-05-20 Hitachi Automotive Systems Ltd Fuel injection device for internal combustion engine
JP2015121183A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Control device of engine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165929A (en) * 1994-12-13 1996-06-25 Yamaha Motor Co Ltd Intake control device of engine
EP0943793A2 (en) * 1998-03-17 1999-09-22 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08165929A (en) * 1994-12-13 1996-06-25 Yamaha Motor Co Ltd Intake control device of engine
EP0943793A2 (en) * 1998-03-17 1999-09-22 Nissan Motor Company, Limited Control for direct fuel injection spark ignition internal combustion engine

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4506366B2 (en) * 2004-09-10 2010-07-21 日産自動車株式会社 Engine alcohol concentration estimation device
JP2006077683A (en) * 2004-09-10 2006-03-23 Nissan Motor Co Ltd Alcohol concentration estimating device for engine
US8297256B2 (en) 2006-11-29 2012-10-30 Toyota Jidosha Kabushiki Kaisha Ignition control system for internal combustion engines
JP2008202570A (en) * 2007-02-22 2008-09-04 Toyota Motor Corp Control system for internal combustion engine
JP2008215211A (en) * 2007-03-05 2008-09-18 Toyota Motor Corp Control system of internal-combustion engine
JP2008255898A (en) * 2007-04-05 2008-10-23 Toyota Motor Corp Ignition control system of internal combustion engine
JP2010537110A (en) * 2008-03-07 2010-12-02 フオルクスワーゲン・アクチエンゲゼルシヤフト How to activate the lambda sensor during the warm-up phase
JP4684369B2 (en) * 2008-03-07 2011-05-18 フオルクスワーゲン・アクチエンゲゼルシヤフト How to activate the lambda sensor during the warm-up phase
US8407986B2 (en) 2008-03-07 2013-04-02 Volkswagen Ag Method for operating a lambda sensor during the heating phase
JP2009013998A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP4609566B2 (en) * 2008-10-20 2011-01-12 トヨタ自動車株式会社 Ignition control system for internal combustion engine
JP4656222B2 (en) * 2008-10-20 2011-03-23 トヨタ自動車株式会社 Ignition control system for internal combustion engine
JP2009013997A (en) * 2008-10-20 2009-01-22 Toyota Motor Corp Ignition control system of internal combustion engine
JP2013096233A (en) * 2011-10-28 2013-05-20 Hitachi Automotive Systems Ltd Fuel injection device for internal combustion engine
JP2015121183A (en) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 Control device of engine

Also Published As

Publication number Publication date
JPWO2002031355A1 (en) 2004-02-19

Similar Documents

Publication Publication Date Title
US5207058A (en) Internal combustion engine
JP3414303B2 (en) Control device for direct injection spark ignition type internal combustion engine
JP3257423B2 (en) Exhaust heating device
JP3052856B2 (en) Exhaust heating device
JP3965703B2 (en) Engine exhaust gas purification device and exhaust gas purification method
US7370629B2 (en) Method for operating an internal combustion engine with direct fuel injection during a post-start phase
US9932916B2 (en) Combustion control apparatus for internal combustion engine
US7343902B2 (en) Dual combustion mode engine
US20100077990A1 (en) Control of spark ignited internal combustion engine
EP2075449B1 (en) Fuel Pressure Controlling Device of Engine
JP2001003800A (en) Engine control system and control method
JP2002206446A (en) Internal combustion engine and fuel injection control device for the internal combustion engine
GB2435306A (en) Dual combustion mode i.c. engine having groups of cylinders with different compression ratios
CN105264191A (en) Internal combustion engine
WO2002031355A1 (en) Control method for spark ignition engine
JP3812292B2 (en) Internal combustion engine
JP2000145511A (en) Exhaust gas temperature raising device
JP3257430B2 (en) Exhaust heating device
JP2003214235A (en) Control device of spark ignition direct injection engine
JP3678042B2 (en) Diesel engine combustion control system
JP4161796B2 (en) Warm-up control method for in-cylinder injection spark ignition engine
JP3743499B2 (en) Exhaust temperature raising device
CN107429619B (en) Fuel injection control device for direct injection engine
JP2002221037A (en) Cylinder injection type gas fuel internal combustion engine
JP4525509B2 (en) In-cylinder direct injection spark ignition internal combustion engine controller

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002534701

Country of ref document: JP

122 Ep: pct application non-entry in european phase