WO2002031242A1 - Fluid flow tow spreading device, ultrasonic tow spreading device, and tow spreading system - Google Patents

Fluid flow tow spreading device, ultrasonic tow spreading device, and tow spreading system Download PDF

Info

Publication number
WO2002031242A1
WO2002031242A1 PCT/JP2001/009016 JP0109016W WO0231242A1 WO 2002031242 A1 WO2002031242 A1 WO 2002031242A1 JP 0109016 W JP0109016 W JP 0109016W WO 0231242 A1 WO0231242 A1 WO 0231242A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber bundle
spreading
liquid
fluid flow
Prior art date
Application number
PCT/JP2001/009016
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroji Oishibashi
Toshiyuki Okuda
Original Assignee
Obs Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000313093A external-priority patent/JP3398133B2/en
Priority claimed from JP2000367037A external-priority patent/JP3382603B2/en
Priority claimed from JP2001025497A external-priority patent/JP3382607B2/en
Application filed by Obs Inc. filed Critical Obs Inc.
Publication of WO2002031242A1 publication Critical patent/WO2002031242A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02JFINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
    • D02J1/00Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
    • D02J1/18Separating or spreading

Definitions

  • Fluid flow type fiber spreading device Ultrasonic fiber spreading device and fiber spreading system
  • the present invention relates to a fiber spreading device or a fiber spreading method for spreading a fiber bundle in which a plurality of filaments are gathered, and a flow spreading method or an ultrasonic method which is a typical fiber spreading method. ⁇ Related to fiber technology. Background art
  • the above-mentioned fluid-flow type fiber spreading method is as follows: PCT / JP / 0151 etc., a fiber bundle consisting of a plurality of filaments is fed to the fiber spreading section while controlling overfeed. And a blower (a type of fluid flow generating means) for generating an air flow for expanding the fiber bundle.
  • This technology overcomes the problems of electrostatic spreading, press spreading, jet spreading, ultrasonic spreading, etc.
  • An airflow is caused to flow in the direction (perpendicular to the direction perpendicular to the fiber bundle), and a fluid force acts on each filament of the fiber bundle by the airflow.
  • each filament can be stretched straight without any damage to each constituent filament of the fiber bundle, and the parallelism is high, and the filament density in the fiber bundle width direction is uniform. A good quality expanded fiber bundle can be obtained.
  • a fiber bundle feeding section for feeding a fiber bundle to be spread is provided in the liquid tank, and the fiber is spread by ultrasonic waves in the feeding section.
  • the expanded fiber bundle there is an expanded woven fabric in which a plurality of expanded fiber bundles are woven in a predetermined structure.
  • a plurality of expanded fiber bundles are used. (Or a plurality of expanded yarns if such a sheet is viewed as a single filament).
  • the airflow is generated in the spreading section. It was found that it was difficult to control the airflow in the spreading section and that excessive power was required to use the fiber.
  • the flow in the expansion section is time-dependent and spatial due to the large expansion and contraction rate of the gas and little viscosity. It was found that the flow was difficult to be uniform, and as a result, the flow was likely to be unstable due to the disturbance caused by the spreading, and precise control was required, and the control was relatively difficult.
  • the first object of the present application is to obtain an expanded fiber bundle that requires a small amount of power even when performing fiber expansion in multiple stages or a large number of fiber bundles, in addition to being excellent in fiber expansion ability.
  • a fiber spreading device or a fiber spreading method To obtain a fiber spreading device or a fiber spreading method.
  • it may be required to spread the fiber to a width of 16 to 60 mm, less than the original thickness, and about 0.01 to 0.037 mm. .
  • the fiber In such a highly spread state, the fiber is spread by the action of ultrasonic waves alone, or the fiber bundle is brought into contact with a roller surface whose surface is moderately roughened in a liquid tank in which ultrasonic waves are propagated.
  • a roller surface which can be included in the ultrasonic fiber spreading
  • a sufficient fiber spreading state is obtained in the liquid, but the fiber bundle is moved out of the liquid. It has been found that when it is derived, a case where a sufficient spread state cannot be maintained occurs.
  • a second object of the present application is to maintain a good spread state in a state in which a fiber bundle is led out of a liquid in an ultrasonic type fiber spreading device that spreads a fiber bundle by applying ultrasonic waves in a liquid.
  • An object of the present invention is to obtain an ultrasonic fiber spreading device.
  • fiber bundles to be expanded are related to the material type, number of filaments, filament diameter, number of twists, tensile strength, elongation, fiber bundle width, fiber bundle thickness, fiber bundle width / thickness ratio, etc.
  • degree of fiber expansion width and thickness required for products and the accuracy of fiber expansion (variation in the degree of fiber expansion in the length direction of the expanded fiber bundle), etc. It is various.
  • a third object of the present invention is to provide a fiber spreading system capable of stably performing relatively high fiber spreading on various fiber spreading targets. Disclosure of the invention
  • the fluid flow is a liquid flow, a liquid tank in which the liquid flow is formed is provided, and the fiber bundle feeding section and the fiber spreading section are provided in the liquid tank;
  • the passing part through which the liquid flow passes intersecting the fiber bundle in the flowing state is referred to as the spreading part.
  • a liquid flow is used instead of a gas flow as a fluid flow acting on the fiber bundle at the spread portion in comparison with the prior art.
  • the apparatus is provided with a liquid tank, a feeding section through which the fiber bundle is fed in the liquid in the liquid tank, and a fiber spreading section.
  • the fiber bundle is given a radius to the liquid flow downstream side by the action of the liquid flow in the over-feeding flow state, and the spread action is also performed.
  • the fiber is spread in the width direction.
  • the power is about 1/20 to 1/37.
  • the power required in this way is large Since the width can be reduced, the running cost such as the electricity cost required for spreading can be significantly reduced.
  • expanded fiber bundles are produced in large quantities, so even if the width is small, the effect is high, but the effect of the present invention is remarkable. As a result, when performing multi-stage spreading or multiple spreading, less power is required, and a practical fluid flow type manufacturing apparatus with a small power source can be obtained.
  • a liquid flow is used as a fluid flow, and a fiber bundle feeding section and the fiber spreading section are provided in the liquid, and the liquid flow intersects with the fiber bundle feeding section in the liquid.
  • the fiber bundle is separated by using the passing portion as the spreading portion.
  • the fluid flow generating means may be configured to include a suction flow path for sucking the liquid in the spread portion. preferable.
  • the suction flow path By providing the suction flow path, the liquid flow in the fiber spreading section is sucked toward the suction flow path, and as a result, a negative pressure is provided from the upstream side of the fiber spreading section. As a result, the fiber bundle in the converged state can be easily dragged to the spread side, and the motion state of the fiber can be stabilized and a good spread state can be quickly reached.
  • a rectification flow path forming body that rectifies a liquid flow reaching the fiber expansion section is provided above the fiber expansion section.
  • the flow in the fiber expanding section is as uniform as possible when viewed in the cross section of the liquid flow, and it is preferable that the flow is temporally stable, but a rectifying flow path is formed upstream of the fiber expanding section.
  • the body is arranged, and the liquid is poured into the spreading section through this rectifying flow path, whereby the flow is regulated. Further, a temporally stable liquid flow in the flow is obtained, and the spreading is excellent. Can be done.
  • a rectification flow path for rectifying a liquid flow reaching the fiber expansion part is provided upstream of the fiber expansion part, Fiber spreading is performed by the liquid flow in a rectified state.
  • a liquid storage unit is provided adjacent to a downstream side of the suction channel provided for the fiber spreading unit.
  • the flow of the fiber expansion section becomes a suction flow, but if a liquid storage section is provided downstream of the suction flow, this liquid storage section functions as a damper in the flow, and the downstream of the liquid storage section
  • the turbulence in the suction means provided on the side is absorbed in this portion, and stable suction can be performed in the suction flow path and, consequently, in the spreading portion.
  • a squeezing roller mechanism for squeezing in a gas the spread fiber bundle expanded by the spread section in the liquid. It is preferable that the expanded fiber bundle is led out of the liquid into the gas by contacting one of the rollers constituting the drawing roller mechanism.
  • the fluid flow type fiber spreading device of the present invention is characterized in that the fiber spreading is performed in a liquid, and the fiber expanded fiber bundle expanded in the fiber spreading section is directly transferred from the liquid into the gas. When it is derived, the spread state may be disrupted (constricted) due to the surface tension of the liquid.
  • a squeezing roller mechanism for squeezing the expanded fiber bundle immersed in liquid in a gas is provided, and the squeezing port mechanism is formed.
  • the expanded fiber bundle in the expanded state is brought out of the liquid into the gas by contacting one of the rollers.
  • the expanded fiber when a predetermined pressing force is applied to the expanded fiber bundle by generating tension in the expanded fiber bundle in a contact state with one of the rollers, the expanded fiber is The spread state of the bundle can be almost completely eliminated.
  • a plurality of the fiber spreading parts are provided, and the fiber spreading can be performed simultaneously by the plural fiber spreading parts. It is preferable to adopt such a configuration.
  • the liquid includes a liquid between the liquid and the filament. It is preferable to carry out fiber spreading by mixing a surface active material exhibiting surface activity.
  • the fiber bundle is a carbon fiber bundle and water is used as the liquid
  • alcohol or the like can be used as the surfactant material. Also in this case, the spreading ability is improved.
  • the liquid tank be of a substantially closed type and measures are taken to suppress the evaporation of alcohol.
  • the ultrasonic fiber spreading device is characterized in that, as described in claim 13, the spread fiber bundle is guided from the liquid to the outside of the liquid. It is provided with a spread state maintaining means for maintaining the spread state of the spread bundle when discharging, and a removing means for removing a liquid from the fiber bundle.
  • the drawing section where the fiber bundle is drawn out of the liquid to the outside of the liquid is provided with a fiber spreading state maintaining means, and a portion outside the liquid is provided with a removing means, and the fiber bundle is provided with a removing means. While maintaining the spread state, the liquid is removed from the fiber bundle.
  • the fiber bundle is introduced into the removing means in a state where the spread state is maintained by the spread state maintaining means, and the fiber bundle which is often a deterioration factor of the spread is formed. Since the adhered liquid is removed, a good spread state can be maintained, and the spread state can be prevented from being deteriorated by this liquid.
  • the expanded fiber bundle can be sent to the lower side in a state in which the expansion of the fiber is unlikely to occur, and the processing of the expanded fiber bundle on the lower side of the ultrasonic expansion device can be performed in a high expansion state. It can proceed smoothly while maintaining it.
  • the spread state maintaining means and the removing means include a first squeezing roller and a first squeezing roller contacting the first squeezing roller.
  • a squeezing roller mechanism having the first squeezing roller immersed in the liquid, and the expanded fiber bundle is drawn out of the liquid in contact with the first squeezing roller.
  • the fiber bundle is preferably configured to be squeezable by the first squeezing roller and the second squeezing roller.
  • the liquid can be reliably removed at a predetermined position, and the first squeezing roller provided in the squeezing roller mechanism is in a semi-immersed state.
  • the liquid immediately after the fiber bundle comes out of the liquid Fiber spreading deterioration can be suppressed, and by performing a squeezing operation in this state, the effect of the liquid can be reliably removed.
  • the plurality of rollers In the configuration of the ultrasonic type fiber spreading device described so far, as described in claim 15, to configure the fiber bundle feeding section, the plurality of rollers The fiber bundle is fed in a bent path while contacting each roller surface, and as the plurality of rollers, a plurality of types of spreading rollers having different surface undulations with respect to the roller surface contacting the fiber bundle. It is preferable to provide a configuration provided with such a configuration.
  • the fiber bundles when expanding a fiber bundle consisting of a large number of filaments, each of which is much thinner, the relationship between the surface undulation of the roller and the acting force by ultrasonic waves If not, the arrangement of the fiber bundles is likely to be disturbed, and at the same time, the fiber bundles may be fluffed, the filament may be cut, or the fiber may be insufficiently spread.
  • an ultrasonic spreading device that includes a plurality of rollers and performs spreading by the action of ultrasonic waves
  • the surface unevenness of the rollers is changed depending on the position of the rollers, for example, It is preferable that an appropriate spread state can be maintained in relation to the spreadability by sound waves. That is, it is possible to perform appropriate fiber spreading by selecting the surface undulation state of the roller in accordance with the roller position, the difference in fiber spreading force due to ultrasonic waves, and the like.
  • the undulation state of the roller surface is a large number of minute
  • a first-type spreading roller in which the protruding side of the protruding portion is sharpened, and a protruding portion of the protruding portion is preferable to provide a second-type spreading roller having a smooth side.
  • the first-type spreading roller has a sharpened protruding side of the protruding portion, so that this opening acts like a comb tooth, and the fiber bundle is drawn from the relationship with the tension applied to the fiber bundle. It can work by combing, separating each filament, and adjusting the direction.
  • each filament is allowed to freely move by the action of ultrasonic waves at the tip side of the protruding section, A further spread state can be realized.
  • the fiber bundle in contact with a plurality of rollers while being in contact with a surface of each roller and a bending path.
  • the undulating state of the roller surface is formed by a large number of minute projections, and It is preferable to provide a second type spreading roller having a smooth protruding side.
  • the roller used in this section is equivalent to the type 2 spreading roller described in claim 16, and has a high degree of freedom of movement of the fiber bundle as described above. Even if the fiber is spread with strong ultrasonic waves, it is unlikely to cause any problems. Therefore, this type of roller (second type spreading roller) is arranged at a position where the ultrasonic wave is relatively strong, and it is possible to perform appropriate spreading based on the relationship between the ultrasonic wave and the tension of the fiber bundle. Wear.
  • the fiber bundle is fed to a plurality of rollers in a bent path while being in contact with the surface of each roller,
  • the contact surface with which the fiber bundle comes into contact is a curved contact surface that is curved in the width direction of the fiber bundle in the flowing state.
  • Such a curve of the roller is a state of the contact surface in the width direction of the fiber bundle.
  • the roller has a curved shape in which the roller swells outward in the width direction of the fiber bundle, the fiber An acting force can be exerted in the spreading direction (direction in which the bundle is spread in the width direction).
  • the acting force can be exerted in the convergence direction (direction of converging in the width direction) of the fiber bundle.
  • a resonance that resonates with the ultrasonic waves for fiber expansion is performed in the liquid that performs fiber expansion using ultrasonic waves.
  • a mechanism is provided.
  • Ultrasonic waves for spreading are propagated in the liquid using an ultrasonic generator. If a resonance mechanism is provided in the liquid, less power is required by using the ultrasonic resonance. , Ultrasonic fiber spreading can be performed.
  • a flow path for a fiber bundle is provided between a pair of resonance plates forming a resonance mechanism.
  • a region where ultrasonic waves are strong can be formed between the resonance plates, and spreading can be effectively performed.
  • control of the ultrasonic wave is also facilitated.
  • the spreading roller of the present application is provided between the pair of resonance plates, the spreading by contact with the roller and the spreading by the resonated ultrasonic waves can be simultaneously performed at the specified position. The fiber spreading ability is enhanced, and its control is also facilitated.
  • a fiber bundle feeding section is formed in the liquid to be fed in a bent path while being in contact with the surface of each roller with respect to the plurality of rollers.
  • An ultrasonic fiber spreading device for spreading the fiber bundle of the fiber bundle feeding section by transmitting ultrasonic waves to the fiber bundle feeding device as a preliminary fiber spreading device;
  • a pre-expanded fiber bundle expanded by the pre-expanding device A pre-expanded fiber bundle expanded by the pre-expanding device
  • a fluid flow type fiber spreading device which bends the pre-expanded fiber bundle in the downstream direction of the fluid flow and separates the pre-expanded fiber bundle in the fiber bundle width direction by the fluid flow. is there.
  • a feeding unit that feeds and feeds the fiber bundle to the spreading unit that spreads the fiber bundle while performing overfeed control, and a fluid flow generating unit that generates a fluid flow that spreads the fiber bundle.
  • the fiber expanding section intersects with the fiber bundle to be fed and allows the fluid flow to pass therethrough, deflects the fiber bundle in a downstream direction of the fluid flow, and causes the fiber bundle to be bent by the fluid flow.
  • the flow spreading device that separates the fibers in the width direction of the fiber bundle is used as the preliminary spreading device. Be prepared
  • a pre-expanded fiber bundle expanded by the pre-expanding device A pre-expanded fiber bundle expanded by the pre-expanding device
  • the pre-expanded pre-expanded fiber bundle is tensioned, and the fiber bundle is fed while forming a bending path while contacting a plurality of rollers.
  • an ultrasonic type fiber spreading device for further expanding the pre-expanded fiber bundle of the fiber bundle feeding section by providing ultrasonic waves in the liquid while providing the fiber section in the liquid.
  • the ultrasonic type fiber spreading device referred to in the present application is designed to draw a bending path while contacting a fiber bundle to be spread with a plurality of roller surfaces in a tension-applied state, thereby providing a vibration effect applied by ultrasonic waves.
  • This expansion can be said to be forced and mechanical expansion.
  • Such spreading is suitable, for example, for initial spreading (relatively slow spreading) when a sizing agent having a relatively high adhesiveness is added.
  • a fluid flow type fiber spreading device supplies a fiber bundle to be spread in an over-feed state to a predetermined fiber spreading section by a flow-feeding means, and the fiber bundle in this state is supplied by a fluid generating means.
  • the generated fluid flow (gas flow or liquid flow) is applied in an intersecting state, and at the same time, the fluid flow is passed between the filaments to spread the fiber bundle.
  • a drag that can be obtained hydrodynamically Power based In this case, the tension is not applied to each filament in an aggressive sense because each filament is maintained in an overfeed state. Therefore, this fiber spreading method is based on the premise that the separation of each filament has progressed to some extent and that each filament can move freely. For example, the adhesion of the sizing agent is low, and the amount of adhesion is relatively small. It is suitable for very few.
  • the expansion is performed in the order described in claim 20 (expansion by ultrasonic wave, and then expansion by fluid flow).
  • the fiber spreading could be further advanced than the preliminary fiber spreading. This place
  • the desired degree of spreading could not be achieved for about half.
  • the inventors presume that in the case of performing the fiber spreading in this order, the fiber bundle required forcible fiber spreading with tension application in the preliminary fiber spreading stage. Furthermore, the reason that advanced spreading could not be performed by the ultrasonic method was that the filament was easily damaged by the application of tension due to relatively low elongation. I presume that the expression spreading method was preferred.
  • the remaining fiber bundles to be spread are subjected to spreading by a fluid flow from the pre-spreading stage, and after this pre-spreading, it is preferable to perform ultrasonic spreading as the main spread. there were.
  • the main spreading step is performed by using ultrasonic waves, it is possible to highly precisely control the spreading accuracy described above.
  • each of the constituent filaments of the fiber bundle is not damaged, each filament is straightened, and the parallelism is high, and the filament density in the fiber bundle width direction is uniform. It is possible to obtain high quality expanded fiber bundles (which can be called expanded fiber bundles).
  • the fluid flow used for spreading in the fluid flow spreading device is a liquid flow.
  • a fluid flow is used to apply a fiber spreading force to each filament.
  • the fiber spreading is performed.
  • the flow in the section is stabilized, and a uniform and strong fluid force can be applied.
  • the fiber spreading ability can be more powerful than before.
  • the power is significantly reduced.
  • the power is significantly reduced.
  • FIG. 1 is an elevation view showing the overall structure of the fiber spreading system of the present application
  • FIG. 2 is a diagram showing a main configuration of the fiber spreading system of the present application
  • FIG. 3 is a diagram showing a yarn feed adjustment detecting section
  • Fig. 4 is an illustration of the pre-spreading device
  • Fig. 5 is an explanatory diagram of the fiber spreading device
  • FIG. 6 is an explanatory diagram of the surface undulation state of the spreading roller
  • FIG. 7 is a diagram showing an external shape of the roller. BEST MODE FOR CARRYING OUT THE INVENTION
  • the fiber spreading system 1 of the present application is a system for simultaneously spreading a plurality of fiber bundles 2, so-called multifilaments F, individually and individually.
  • FIG. 1 is an elevational view of the fiber spreading system 1 of the present application, and shows a configuration for spreading three fiber bundles 2.
  • FIG. 2 shows a perspective view of the main part of the system of the present invention
  • Fig. 3 shows the outline of the yarn feeding adjustment detecting section 9
  • Fig. 4 shows the preliminary spreading in the present application system.
  • FIG. 5 shows an outline of the pre-expansion device 4 provided with the liquid tank 3 for use, and an outline of the main expansion device 6 provided with a liquid tank 5 for main expansion for performing the main expansion.
  • Such a fiber bundle is spread to a width of about 7 to 9 mm and a thickness of about 0.08 mm by preliminary spreading by the present fiber spreading system 1, and a width of about 25 mm by the main spreading. Thickness 0. It can be expanded to about 0 2 mm.
  • the sizing amount is about 0.2 to 3%.
  • 21 indicates a fiber bundle that has been subjected to the main fiber expansion.
  • the system 1 includes a yarn feeding section 7, a pre-expanding device 4, a drawing roller mechanism 10a, It comprises a driving roller mechanism 8, a yarn feeding adjustment detecting section 9, a main spreading device 6, a squeezing roller mechanism 10b, a heating section 12, a driven roller mechanism 11, and a winding section 13. .
  • the fiber bundle 2 is pulled out from the yarn supplying bobbin 70 provided in the yarn supplying section 7 and subjected to a predetermined fiber spreading process. 30 rolls.
  • the releasing operation on the yarn supplying side and the winding operation on the winding side are performed by providing a known releasing and winding device.
  • the feeding control of the fiber bundle 2 between the yarn supplying section 7 and the winding section 13 is mainly controlled by the operation of the driving roller mechanism 8 and the driven roller mechanism 11 described above. This control is based on detection information from the yarn feeding adjustment detecting section 9. With respect to the pair of rollers constituting the drive roller mechanism 8, one of the rollers 8a is configured to be driven by a servo motor 8b, and is adjusted according to output information of the detection unit 9 described below. Speed control is possible.
  • the yarn feeding adjustment detecting section 9 detects the weight 14 suspended from the fiber bundle 2 fed in and the suspended position of the weight 14 as shown in FIG. And a suspension position detecting mechanism 15.
  • the suspension position detection mechanism 15 includes a laser-type detection device 16 inside, and detects the weight 14 and thus the deflection amount h of the fiber bundle 2 at this position.
  • the bending amount h of the fiber bundle 2 at this position is interlocked with the radius H of the spreading portion 17 provided in the main spreading device 6 described later. By detecting the radius h, it is possible to detect the radius H in the fibrous portion 17 and, consequently, the overfeed state of the fiber bundle 2 in the fibrous portion 17.
  • the detection information of the suspension position detection mechanism 15 is transmitted to a controller 8 c for a servo motor 8 b provided in the drive roller mechanism 8, which is useful for the flow control of the fiber bundle 2.
  • the control by the controller 8c is to control the overfeed state of the fiber bundle 2 so that the radius H in the spreading portion 17 becomes a desired amount.
  • the role of the yarn feeding adjustment detecting section 9 is as follows: the fiber bundle 2 between the driving roller mechanism 8 and the driven roller mechanism 11 is operated in a state where a predetermined fiber bundle amount is interposed therebetween. The amount is adjusted, and the radius H of the fiber bundle 2 in the fiber spreading section 17 provided in the fiber spreading device 6 described in detail later is maintained in a desired state.
  • the suspension position of the weight 14 is detected according to the state of supply of the fiber bundle 2 into the system (between the drive roller mechanism 8 and the driven roller mechanism 11).
  • the feed rate in the mechanism 8 is controlled, and the amount of deflection H of the fiber spreading section 17 is adjusted.
  • the pre-spreading device 4 is configured as an ultrasonic type spreader using ultrasonic waves. As shown in FIG. 4, the pre-spreading device 4 is provided in a pre-spreading liquid tank 3 having an ultrasonic generator 18. While guiding the fiber bundle 2, the fiber bundle 2 is brought into contact with a plurality of fiber spreading rollers 19 provided in the tank, and the fiber bundle 2 is flown while being bent. At the same time, ultrasonic waves are applied via the liquid in the tank to pre-expand the fiber bundle.
  • an ultrasonic generator 18 for generating ultrasonic waves in the pre-spreading liquid tank is arranged at the bottom of the tank.
  • a resonance mechanism 30 for the ultrasonic waves generated by the generator 18 a pair of resonance plates 30 a and b whose lower end portions are immersed in the tank are provided.
  • the longitudinal directions of the resonance plates 30a and 30b are set so as to match the flow direction of the fiber bundle 2.
  • the separation distance between the plates is set appropriately in relation to the ultrasonic frequency. This makes it possible to enhance ultrasonic waves between the pair of resonance plates 30a and 30b.
  • a plurality of rollers 20a, 19a, b, c, d, and 20b are provided between the resonance plates 30a and 30b and between the resonance plates 30a and 30b and between the resonance plates 30a and 30b.
  • the fiber bundle comes in contact with these rollers.
  • the fiber bundle 2 is provided with an inlet guide 20a, four spreading outlets 19, and an outlet guide roller 20b in the flow direction of the fiber bundle 2.
  • the inlet guide roller 20a is for guiding the fiber bundle 2 into the liquid in the pre-expansion liquid tank.
  • the fiber spreading rollers 19 are arranged in a staggered manner in the tank, and the fiber bundle is flowed in a bent path while contacting a part of the surface of each of the rollers 19. It is configured to: The spreading of each fiber bundle 2 proceeds sequentially along this path.
  • the outlet guide roller 20b serves to guide the fiber bundle 2 to a throttle port roller mechanism 10a provided on the lower side of the roller.
  • the above-described fiber spreading roller 19 has a unique configuration.
  • the fiber spreading roller 19 in the present application employs two types of surface undulations. Further, some of the rollers have a surface in the axial direction of the roller (the fiber bundle in the flowing state). In the width direction).
  • the first spreading roller 19a, the second spreading roller 19b, the third spreading roller 19c, and the fourth spreading roller 19d are referred to in order from the upstream side with respect to the spreading roller 19. Regarding these rollers, the surface undulations of the first spreading roller 19a and the other spreading rollers 19b, c, d are different.
  • the first spreading roller 19a has a surface that has been treated by blasting an alumina sphere. As shown in FIG. 6 (a), the projection P protruding outward from the surface has a protruding side p that is sharp, and the projection bottom has a number of concave portions in which a smooth concave curved surface is formed. It has surface undulations.
  • the spreading roller 19 having such a surface state is referred to as a first-type spreading roller in the present application.
  • the second spreading roller 1 9b, the third spreading roller 19c, and the fourth spreading roller 19d have roller surfaces that have been chemically polished. By performing such a treatment, the roller surface becomes sharp cracks formed along the crystal grain boundaries.
  • the surface of the roller is such that, with respect to the protrusion P projecting outward from the surface, the projecting side p has a relatively large arc along the surface and has a smooth arcuate surface undulation.
  • the spreading roller 19 having such a surface state is referred to as a second type spreading roller in the present application.
  • the portion where the second type spreading roller is arranged is almost immediately above the ultrasonic generator 18 and is a portion where ultrasonic waves are relatively strong.
  • the ultrasonic wave is relatively weak, and the first-type spreading roller is positioned at a position where the spreading starts substantially.
  • the fiber is spread in the initial stage of spreading, so that the fiber bundle is not combed.
  • the sound waves allow each filament to freely move in the vicinity of the protruding end of the projection, thereby exhibiting a strong spreading ability.
  • each spreading roller 19 has the characteristic roller surface structure as described above, but at the same time, the following measures have been devised.
  • the roller surface over the entire width of the fiber bundle 2 in the width direction (axial direction of the roller) of the contact portion of the fiber bundle 2 of the roller is curved (in the case of the one shown in Fig. 4, it forms a drum shape with an upwardly convex curvature) (see Fig. 7). Also from this structure, the fiber bundle in contact with the roller 19b is subjected to a spreading operation.
  • the roller diameter is set to an average of 100 to 100 mm, and the degree of curvature is about 100 R to 100 R corresponding to the roller diameter. . In this case, it is preferable to be about 400 R to 600 R.
  • the first ⁇ ⁇ fourth fiber spreading rollers 19 a, b, c, d over the fiber By feeding the bundle, the fiber bundle can be sequentially expanded.
  • the expanded fiber bundle is introduced into the squeezing roller mechanism 10a by the exit guide roller 20.
  • the squeezing roller mechanism 100a includes a metal roller 100a partially immersed in liquid (this roller is referred to as a first squeezing roller in the present application) and a metal roller. It is composed of a rubber roller 100b (which is referred to as a second squeezing roller in the present application) that comes into contact with 100a from above, and a fiber bundle that has been pre-expanded between the two rollers. By passing, the adhering liquid is removed.
  • the pre-expanded fiber bundle 2 is guided from the liquid into the air while contacting the metal opening 100a with the metal opening 100a.
  • the squeezing roller mechanism 10a functions as the spread state maintaining means and the removing means referred to in the present application.
  • the fiber spreading device 6 also expands the fiber bundle 2 in a liquid, and as shown in FIG. 5, includes the main fiber spreading liquid tank 5 and guides the fiber bundle 2 in the flowing direction. 20 c, d, e, a fiber spreading section 17 for performing the main fiber spreading using a liquid flow, a fiber bundle 2 which has been spread and obtained in the fiber spreading section 17 A drawing roller mechanism 10b is provided to draw 1 from the liquid into the gas and to perform a drawing operation of the spread fiber bundle 21.
  • first, second, and third guide rollers 20c, 20d, and 20e are provided inside and outside the liquid tank 5 for fiber spreading.
  • the guide rollers 20 c serve to introduce the fiber bundle 2 into the liquid, and two pairs of second guides provided on both the upstream side and the downstream side of the spreading part 17.
  • the roller 20 d serves as a support for giving a radius to the fiber bundle 2 in the spread portion 17.
  • the third guide roller 200 e guides the spread fiber bundle 21 sent out from the spreading section 1 to one of the metal rollers 100 a forming the squeezing roller mechanism 10 b.
  • the fiber bundle 2 sent through a predetermined path undergoes the main spreading in the spreading section 17, and the structure of the spreading section 17 is as follows.
  • a circulation pump 22 for circulating the liquid in the tank for the fiber spreading liquid tank 5 through a predetermined circulation path is provided. That is, a suction flow path 23 is provided on the downstream side of the fiber spreading section 17 provided in the fiber spreading liquid tank 5, and a liquid storage section 24 is further provided on the downstream side thereof. The outlet side of 24 is connected to the fluid suction port 22 a of the circulation pump 22.
  • a fluid discharge port 22 b of the circulating pump 22 is connected to return the discharged fluid to the main fiber liquid tank 5.
  • a rectifying flow path forming body 25 is provided on the upstream side of the fiber spreading part 17, and a suction flow path forming body 26 is provided on the downstream side thereof. It is provided.
  • these formed bodies 25 and 26 retain the fluid cross-sectional shape (square shape) of the spreading portion 17 with respect to a single fiber bundle 2, It is configured to be maintained in the flow direction (actually, up and down direction), and the flow path is configured independently for each fiber bundle.
  • the inlet 25 a of the straightening channel forming body 25 is located at a position lower than the liquid level of the liquid tank 5 for fiber expansion. Liquid flows into channel 27. Further, the liquid that has flowed in this way is rectified in the rectification flow path 27, reaches the expansion section 17, further flows through the suction flow path 23, and then flows into the liquid storage section 24.
  • the liquid storage part 24 is configured to provide a common single liquid storage space for the plurality of expanding parts 17, and absorbs a flow rate difference between the plurality of expanding parts. And the effect from the circulation pump 22 can be reduced.
  • a fluid flow generating unit is configured with the above configuration.
  • the radius state described above occurs due to the relationship between the flow velocity of the liquid flow at this section and the overfeed state of the fiber bundle 2, Due to the hydrodynamic effect of the flow, the fiber bundle is spread well.
  • the fiber bundle expanded in the expansion unit 17 (which can be referred to as an expanded fiber bundle 21) is guided to the third guide roller 20e, and the squeezing roller mechanism 1 Introduced within 0 b.
  • the squeezing roller mechanism 10b is formed of gold partially immersed in liquid.
  • the spread fiber bundle 21 is guided out of the liquid into the air while contacting the metal roller 100a with the metal roller 100a.
  • the expanded fiber bundle 21 after the drawing operation is guided by a roller 28 that is appropriately disposed, guided to the heating unit 12, and guided to the winding unit 13.
  • the heating section 12 is attached to a drying section 12a for removing the liquid remaining in the expanded fiber bundle 21 by drying, and to a filament forming the expanded fiber bundle 21 to adhere the filaments. And a re-heat treatment section 12b for softening and re-dispersing a sizing agent and the like that may be formed.
  • Table 1 shows the average fiber diameter, the number of filaments, the thickness of the fiber bundle (shown as the original thickness t0), the fiber bundle for the fiber bundle before fiber expansion (though the preliminary fiber expansion has been completed). Of the fiber bundle (D0 / t0), fiber strength (MPa), and elastic modulus (GPa).
  • the fiber bundle thickness (shown as spread thickness tf), the number of filaments in the thickness direction, the fiber bundle width (shown as spread width Df), and the fiber bundle expansion
  • the fiber width / expanded thickness (D f / tf) is shown, as well as the fiber strength (MPa) and elastic modulus (GPa) of the fiber bundle after fiber expansion.
  • the woven fabric obtained using the fiber bundle the woven structure, the basis weight (g / m-) and the thickness (mm) are shown.
  • Example 2 no woven structure was formed, and the fiber bundles were used in a state where the fiber bundles were aligned in one direction (in Table 1, UD is shown at the site of the woven structure).
  • the basis weight (g / ms) s resin content (%), flexural strength (MPa), flexural elasticity (GPa), and fiber content weight (%) of the obtained pre-preda are shown.
  • Epoxy resin was used as the resin.
  • thermosetting resin any resin such as a thermosetting resin or a thermoplastic resin
  • thermoplastic resin examples include PP, PS, ABS, PE, and PC.
  • the obtained woven fabric and prepredder were lightweight and sufficiently satisfied practical strength conditions.
  • the expanded fiber bundle is guided from the liquid to the outside of the liquid while being in contact with the predetermined roller, and the expanded state of the expanded fiber bundle is maintained.
  • the spread state is maintained, but in the spread state, a structure in which the spread state is maintained by applying an air current or the like can be adopted.
  • the liquid is squeezed and removed by performing a squeezing operation on the fiber bundle.
  • the liquid is squeezed and removed by performing a squeezing operation on the fiber bundle.
  • a fiber spreading structure using different types of rollers is obtained.
  • the first type and the second type may be employed, or a fiber spreading roller having a flat surface may be employed.
  • a single-type spreading roller for example, only the first-type spreading roller
  • the height of the projections formed on the roller surface is increased.
  • a fiber spreading roller having a different surface undulation may be formed.
  • a so-called drum-shaped one (a part protruding at the center in the roller axis direction) is used to configure the curved contact surface.
  • the surface shape was used, but conversely, the width of the spread fiber bundle was adjusted as a conical shape (the center side in the roller axial direction was depressed) (for example, the spread of the fiber was more than sufficient by ultrasonic waves).
  • try to adjust the parallelism of each filament It may be adopted for the purpose of.
  • the multifilament is made of carbon fiber, but the multifilament is made of glass fiber, aramide fiber, PBO fiber, vinylon fiber, ceramic fiber, etc.
  • the present application is applicable.
  • the bending of the fiber bundle in the fiber spreading section is estimated by detecting the radius of the fiber bundle in the separately provided yarn feeding adjustment detecting section, although the amount of overfeed is adjusted, a structure for directly detecting the bending in the expanded portion may be employed.
  • the fiber spreading ability is excellent in a fluid flow, and the fiber spreading is performed in multiple stages or for a large number of fiber bundles. In addition, it is possible to obtain an expanded fiber bundle that requires less power,
  • An ultrasonic fiber spreading device that spreads fiber by applying ultrasonic waves to the fiber bundle in liquid, and obtains an ultrasonic fiber spreading device that easily maintains a good fiber spreading state with the fiber bundle led out of the liquid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A tow spreading system capable of stably performing a rather large tow spreading for a variety of tows to be spread, comprising a ultrasonic tow spreading device as a preliminary tow spreading device (4) and a fluid flow tow spreading device (6) as a main tow spreading device; the ultrasonic tow spreading device, wherein a tow bundle flow-fed part allowing a tow bundle in the tensed state to flow-fed thereto in the form of a bent route while being brought into contact with the surfaces of a plurality of rollers (19) is provided in fluid and ultrasonic wave is propagated in the fluid for tow spreading; the fluid flow tow spreading device (6), wherein the tow bundle spread by the preliminary tow spreading device is flow-fed to a tow spreading part for spreading the preliminarily spread tow bundle while performing over-feedback control, and a fluid flow is applied to the flow-fed preliminarily spread tow bundle to release the tow bundle.

Description

明 細 書 流体流式拡繊装置と超音波式拡繊装置及び拡繊システム 技術分野  Description Fluid flow type fiber spreading device, ultrasonic fiber spreading device and fiber spreading system
本発明は、 複数のフイラメントが集合されてなる繊維束を拡繊対象とする拡繊 装置、 あるいは拡繊方法に関するものであり、 代表的な拡繊手法である流体流式 拡繊あるいは超音波式摅繊技術に関する。 背景技術  TECHNICAL FIELD The present invention relates to a fiber spreading device or a fiber spreading method for spreading a fiber bundle in which a plurality of filaments are gathered, and a flow spreading method or an ultrasonic method which is a typical fiber spreading method.摅 Related to fiber technology. Background art
上述の流体流式拡繊手法としては、 P C T / J P / 0 1 4 5 1等に、 複数のフ イラメントが集合されてなる繊維束を拡繊部に、 オーバーフィ一ド制御しながら 流送供給する流送手段と、 前記繊維束を拡繊するための気流を発生させるブロワ ― (流体流発生手段の一種) とを備え、 前記拡繊部において、 流送されてくる繊 維束に対して交差して気流を通過させ、 繊維束を流体流の下流方向へ撓ませると 共に、この気流により繊維束を繊維束幅方向に解き分ける技術が開示されている。  The above-mentioned fluid-flow type fiber spreading method is as follows: PCT / JP / 0151 etc., a fiber bundle consisting of a plurality of filaments is fed to the fiber spreading section while controlling overfeed. And a blower (a type of fluid flow generating means) for generating an air flow for expanding the fiber bundle. There is disclosed a technique in which an air flow is crossed and a fiber bundle is bent in a downstream direction of a fluid flow, and the fiber bundle is separated in the fiber bundle width direction by the air flow.
この技術は、 静電拡繊法、 プレス拡繊法、 ジェット拡繊法、 超音波拡繊法等の 問題点を克服するものであり、 一定のオーバ一フィード状態にある繊維束を、 所 定の支持位置間で支持すると共に、 この支持位置間において繊維束の流送方向に 対して、 これとほぼ直交する方向 (繊維束の流送方向および偏平な繊維束の幅方 向の両方にほぼ直交する方向) に気流を流して、 気流により繊維束の各フィラメ ントに流体力が働くのを利用する。 この技術を採用することにより、 繊維束の 各構成フィラメントにダメージを与えること無く、 フィラメント 1本 1本が真つ 直ぐに伸びて、 しかも、 平行性が高く、 繊維束幅方向におけるフィラメント密度 がそろつた良質の拡繊済み繊維束を得ることができる。  This technology overcomes the problems of electrostatic spreading, press spreading, jet spreading, ultrasonic spreading, etc. Between the support positions, and between the support positions, in a direction substantially perpendicular to the fiber bundle flow direction (in both the fiber bundle flow direction and the flat fiber bundle width direction). An airflow is caused to flow in the direction (perpendicular to the direction perpendicular to the fiber bundle), and a fluid force acts on each filament of the fiber bundle by the airflow. By adopting this technology, each filament can be stretched straight without any damage to each constituent filament of the fiber bundle, and the parallelism is high, and the filament density in the fiber bundle width direction is uniform. A good quality expanded fiber bundle can be obtained.
一方、 超音波式拡繊と呼ばれる手法も存在する。  On the other hand, there is also a method called ultrasonic spreading.
超音波を利用するものは、 日本国特公平 4一 7 0 4 2 0号公報、 日本国特開平 7 - 1 4 5 5 5 6号公報に開示されるように、 超音波発生装置を所定の液槽内に 備え、 この液槽内に拡繊対象の繊維束が流送される繊維束流送部を設け、 流送部 において超音波による拡繊を行う。 As for those utilizing ultrasonic waves, as disclosed in Japanese Patent Publication No. Hei 4-71042 and Japanese Patent Laid-Open No. In the liquid tank A fiber bundle feeding section for feeding a fiber bundle to be spread is provided in the liquid tank, and the fiber is spread by ultrasonic waves in the feeding section.
[流体流式拡繊に関する課題]  [Issues on fluid flow type fiber spreading]
この手法により、比較的良質な拡繊済み繊維束を得ることができるのであるが、 発明者らによる検討によると、 例えば、 フィラメント数が 1 2 , 0 0 0本で、 拡 繊前、 繊維束幅が 5 . 6〜 6 . 0 m m、 厚み 0 . 1 3 ~ 0 · 1 6 m mの繊維束を 一段の拡繊操作で拡繊する場合、 その拡繊能 (どの程度まで繊維束幅を広げられ るかに関する能力) において、 改善の余地があることが判明した。  By this method, a relatively good expanded fiber bundle can be obtained. According to the studies by the inventors, for example, when the number of filaments is 12 When a fiber bundle with a width of 5.6 to 6.0 mm and a thickness of 0.13 to 0.16 mm is spread by a single-stage spreading operation, its spreading ability (how much the fiber bundle width can be expanded) Capacity), there was room for improvement.
更に、 所定幅の繊維束を厚みが薄く、 一定の幅を有する拡繊済み繊維束の状態 にまで拡繊しょうとすると、 一段の拡繊操作では充分な拡繊状態を得られない場 合が発生する。 従って、 このような場合は、 同一の繊維束に対して複数段の拡繊 操作を施し、 所望の状態までもっていく必要が生じる。  Furthermore, if a fiber bundle with a predetermined width is to be spread to a thin fiber bundle with a certain width, it may not be possible to obtain a sufficiently expanded state with a single-stage spreading operation. appear. Therefore, in such a case, it is necessary to perform a plurality of stages of spreading operations on the same fiber bundle to bring it to a desired state.
一方、 拡繊済み繊維束の用途として、 複数の拡繊済み繊維束を所定の構造で織 つた拡繊織物があるが、 このような織物を得ようとすると、 少なくとも複数の拡 繊済み繊維束(もしくはこのようなシートを単一の糸状体と見ると複数の拡繊糸) が必要となる。  On the other hand, as an application of the expanded fiber bundle, there is an expanded woven fabric in which a plurality of expanded fiber bundles are woven in a predetermined structure. However, in order to obtain such a woven fabric, at least a plurality of expanded fiber bundles are used. (Or a plurality of expanded yarns if such a sheet is viewed as a single filament).
この様に、 拡繊操作を多段で行ったり、 複数の繊維束に対して、 それぞれ拡繊 操作を行ったりする場合に、 上述の流体流式拡繊技術にあっては、 拡繊部で気流 を利用するために、 拡繊部における気流の制御が難しく過大な動力が必要となる ことが判明した。  As described above, in the case where the spreading operation is performed in multiple stages or the spreading operation is performed on a plurality of fiber bundles, respectively, in the above-described fluid flow type spreading technology, the airflow is generated in the spreading section. It was found that it was difficult to control the airflow in the spreading section and that excessive power was required to use the fiber.
さらに詳細に説明すると、 流体流式拡繊において気流を使用する場合は、 気体 の膨張 ·収縮率が大きいこと、 粘性がほとんどないこと等により、 拡繊部での流 れが経時的かつ空間的に均一となりにく く、 結果的に拡繊に伴う外乱の発生によ り、 流れが不安定となりやすく、 精密な制御が必要となり、 制御が比較的難しい ことが判明した。  More specifically, when airflow is used in fluid flow expansion, the flow in the expansion section is time-dependent and spatial due to the large expansion and contraction rate of the gas and little viscosity. It was found that the flow was difficult to be uniform, and as a result, the flow was likely to be unstable due to the disturbance caused by the spreading, and precise control was required, and the control was relatively difficult.
一方、 動力に関しては、 気流を形成するためのブロア一等を備えることになる が、 この場合も、 気体の特性に起因レて、 気体流路全体に充分な流れを形成しよ うとすると、 前記した 1本の繊維束に対して 3 . 7 5 K W程度が必要となる。 こ れは後述する本願の場合に必要となる動力と比較すると、 過大である。 従って、 発明者らは、 流体流式拡繊において、 この点においても改善の必要を見出した。 本願の第一の目的は、 拡繊能力において優れると共に、 拡繊を多段、 もしくは 多数の繊維束を対象として行う場合にあっても、 必要となる動力が少ない拡繊済 み繊維束を得ることができる拡繊装置もしくは拡繊方法を得ることにある。 On the other hand, with respect to power, a blower or the like for forming an air flow will be provided, but also in this case, due to the characteristics of the gas, if an attempt is made to form a sufficient flow in the entire gas flow path, About 3.75 KW is required for one fiber bundle. This is excessive compared to the power required in the case of the present application described later. Therefore, The inventors have found a need for improvement in this respect also in fluid flow type spreading. The first object of the present application is to obtain an expanded fiber bundle that requires a small amount of power even when performing fiber expansion in multiple stages or a large number of fiber bundles, in addition to being excellent in fiber expansion ability. To obtain a fiber spreading device or a fiber spreading method.
[超音波式拡繊の課題]  [Ultrasonic fiber expansion issues]
先に説明したように、 今日、 繊維束に要求される拡繊度合いは、 急速に高いも のとなつてきている。 例えば、 無撚炭素繊維: P A N系:繊度 0 . 8 g /m, 7 〃mフィラメントの 1 2, 0 0 0本束 =元幅約 6 m m、 元厚約 0 . 1 3から 0 . 1 6 m mのものを、 最終的な拡繊状態で、 幅 1 6 ~ 6 0 m m、 厚み元厚以下、 0 . 0 1〜0 . 0 3 7 m m程度まで拡繊することが要求されることがある。  As explained earlier, the degree of spreading required for fiber bundles is rapidly becoming higher today. For example, untwisted carbon fiber: PAN type: 0.8 g / m fineness, 1.2,000 bundles of 7 7m filaments = original width of about 6 mm, original thickness of about 0.13 to 0.16 In the final spread state, it may be required to spread the fiber to a width of 16 to 60 mm, less than the original thickness, and about 0.01 to 0.037 mm. .
このような要求は、 さらなる商品の品質向上、 高生産性とコストダウン、 樹脂 含浸性の向上等の要求からきている。 又、 繊維束に対する相手側樹脂として、 熱 可塑性樹脂を採用したいという要求からもきている。  These demands come from demands for further improvement in product quality, high productivity and cost reduction, and improvement in resin impregnation. Also, there is a demand for the use of a thermoplastic resin as the mating resin for the fiber bundle.
このような高度な拡繊状態にあって、 超音波単独の作用による拡繊、 或いは、 繊維束を超音波が伝播している液槽内で表面が適度に荒れたローラ表面に接触さ せて、 このローラ表面の作用により拡繊 (超音波式拡繊に含めることができる) を行おうとすると、 液内で充分な拡繊状態が得られているのに対して、 繊維束を 液外に導出した場合に、 充分な拡繊状態を維持できない場合が発生することが判 明した。  In such a highly spread state, the fiber is spread by the action of ultrasonic waves alone, or the fiber bundle is brought into contact with a roller surface whose surface is moderately roughened in a liquid tank in which ultrasonic waves are propagated. However, when the fiber is spread by the action of this roller surface (which can be included in the ultrasonic fiber spreading), a sufficient fiber spreading state is obtained in the liquid, but the fiber bundle is moved out of the liquid. It has been found that when it is derived, a case where a sufficient spread state cannot be maintained occurs.
このような拡繊の劣化は、 高度な拡繊状態が要求される今日的な状況において 著しく、 従来以上に適切な対応が迫られている。  Such deterioration of spreading is remarkable in today's situation where a high spreading state is required, and more appropriate countermeasures are required than before.
本願の第二の目的は、 液中で超音波を繊維束に当てて拡繊を行う超音波式拡繊 装置において、 繊維束を液外に導出した状態で良好な拡繊状態を維持しやすい超 音波式拡繊装置を得ることにある。  A second object of the present application is to maintain a good spread state in a state in which a fiber bundle is led out of a liquid in an ultrasonic type fiber spreading device that spreads a fiber bundle by applying ultrasonic waves in a liquid. An object of the present invention is to obtain an ultrasonic fiber spreading device.
[多種多様な拡繊対象に対する拡繊上の課題]  [Expansion issues for a wide variety of spreading targets]
現今、 拡繊の対象となる繊維束は、 その材料種、 フィラメント数、 フイラメン ト径、 撚り数、 引張強度、 伸度、 繊維束幅、 繊維束厚、 繊維束幅/厚比等との関 係から、 多種多様であると共に、 製品に求められる拡繊の程度 (幅、 厚) あるい は拡繊の精度 (拡繊済み繊維束の長さ方向における拡繊度合いのバラツキ) 等に おいて様々である。 At present, fiber bundles to be expanded are related to the material type, number of filaments, filament diameter, number of twists, tensile strength, elongation, fiber bundle width, fiber bundle thickness, fiber bundle width / thickness ratio, etc. As a result, the degree of fiber expansion (width and thickness) required for products and the accuracy of fiber expansion (variation in the degree of fiber expansion in the length direction of the expanded fiber bundle), etc. It is various.
拡繊対象となる炭素繊維を例に採った場合にあっても、 その仕上げ剤 (例えば サイジング剤) として、炭素繊維の製造メ一カーによって様々なものが使用され、 さらに、 その組成に関しては、 秘密状態に保たれるため、 市販の繊維束を拡繊し ようとすると、 最適な拡繊手法を探し出すのに困難を伴うことがある。  Even in the case where carbon fiber to be spread is taken as an example, various finishing agents (for example, sizing agents) are used depending on the manufacturer of the carbon fiber, and regarding the composition, Attempting to spread commercially available fiber bundles can be challenging to find the optimal spreading method because it is kept secret.
本願第三の目的は、 多様な拡繊対象に対して、 比較的高い拡繊を安定して行な うことができる拡繊システムを得ることにある。 発明の開示  A third object of the present invention is to provide a fiber spreading system capable of stably performing relatively high fiber spreading on various fiber spreading targets. Disclosure of the invention
上記第一の目的を達成するための本発明による流体流式拡繊装置の特徴構成は、 請求の範囲第 1項に記載されているように、  The characteristic configuration of the fluid flow type spreading device according to the present invention for achieving the first object is as described in claim 1,
前記流体流が液体流であり、内部に前記液体流が形成される液槽を備えると共 に、 前記液槽内に前記繊維束の流送部及び前記拡繊部を設け、 前記液槽内で流送 状態にある前記繊維束に対して交差して液体流が通過する通過部を、 前記拡繊部 とすることにある。  The fluid flow is a liquid flow, a liquid tank in which the liquid flow is formed is provided, and the fiber bundle feeding section and the fiber spreading section are provided in the liquid tank; The passing part through which the liquid flow passes intersecting the fiber bundle in the flowing state is referred to as the spreading part.
この装置にあっては、 従来技術との比較において、 拡繊部で繊維束に作用する 流体流として気体流の代わりに液体流を使用する。 この目的から、 装置には液槽 が設けられると共に、 この液槽内の液中を繊維束が流送される流送部と、 拡繊部 が設けられる。 さて、 この拡繊部にあっては、 繊維束が、 そのオーバ一フィード される流送状態で、 液体流の作用により、 液体流下流側への橈みを与えられると 共に、 拡繊作用をうけ、 その幅方向に拡繊される。  In this device, a liquid flow is used instead of a gas flow as a fluid flow acting on the fiber bundle at the spread portion in comparison with the prior art. For this purpose, the apparatus is provided with a liquid tank, a feeding section through which the fiber bundle is fed in the liquid in the liquid tank, and a fiber spreading section. By the way, in this spread portion, the fiber bundle is given a radius to the liquid flow downstream side by the action of the liquid flow in the over-feeding flow state, and the spread action is also performed. The fiber is spread in the width direction.
そして、 各フイラメントに対して拡繊カを付与するに、 気体より体膨張率が格 段に小さい液体を使用するために、 拡繊^における流れが安定すると共に、 均一 で強力な流体力を付与できる。 結果、 その拡繊能において従来より強力な拡繊能 を発揮することができる。  In order to apply a fiber expansion force to each filament, a liquid with a significantly smaller body expansion rate than gas is used, so that the flow in the fiber expansion is stabilized and a uniform and strong fluid force is applied. it can. As a result, the fiber spreading ability can be more powerful than before.
更に、 例えば、 同一の繊維束を対象として複数段に亘つて拡繊を行う多段拡繊、 もしくは複数の繊維束を対象としてこれらの全てを同時に拡繊する複数拡繊を行 う場合に、 例えば、 流体としてエアーを使用する場合と水を使用する場合とを比 較すると、 動力が 1 / 2 0 ~ 1 / 3 7程度になる。 この様に必要となる動力を大 幅に低減できることから、 拡繊に要する電気代等のランニングコストを大幅に低 «できる。 通常拡繊済み繊維束は大量に製産されるものであるため、 たとえ小幅 であっても効力は大となるが、 本願の場合の効果は、 著しい。 結果、 多段拡繊、 複数拡繊を行う場合に、 必要となる動力が少なく、 小型の動力源で実用的な流体 流式製造装置を得ることができる。 Further, for example, in the case of performing multi-stage expansion in which the same fiber bundle is expanded over a plurality of stages, or a plurality of fiber expansions in which all of these are simultaneously expanded for a plurality of fiber bundles, for example, However, when air is used as the fluid and water is used, the power is about 1/20 to 1/37. The power required in this way is large Since the width can be reduced, the running cost such as the electricity cost required for spreading can be significantly reduced. Usually, expanded fiber bundles are produced in large quantities, so even if the width is small, the effect is high, but the effect of the present invention is remarkable. As a result, when performing multi-stage spreading or multiple spreading, less power is required, and a practical fluid flow type manufacturing apparatus with a small power source can be obtained.
従って、 この流体流式拡繊装置では、 請求の範囲第 7項に記載されているよう に、  Therefore, in this fluid flow type spreading device, as described in claim 7,
流体流として液体流を使用し、繊維束の流送部及び前記拡繊部を液体内に設け ると共に、 前記液体内の前記繊維束の流送部に対して、 交差して前記液体流を通 過させ、 前記通過部を前記拡繊部として、 繊維束を解き分けることとなる。  A liquid flow is used as a fluid flow, and a fiber bundle feeding section and the fiber spreading section are provided in the liquid, and the liquid flow intersects with the fiber bundle feeding section in the liquid. The fiber bundle is separated by using the passing portion as the spreading portion.
さて、 この構造の場合も請求の範囲第 2項に記載されているように、 前記流体 流発生手段が、 前記拡繊部の液体を吸引する吸引流路を備えて構成されているこ とが好ましい。  Now, also in the case of this structure, as described in claim 2, the fluid flow generating means may be configured to include a suction flow path for sucking the liquid in the spread portion. preferable.
吸引流路を設けることにより、拡繊部における液体流は吸引流路側へ吸引され る状態となり、 結果的に拡繊部の上流側よりは負圧とされる。 結果、 収束状態に ある繊維束に対して拡繊側へのドラッグを働かせやすくなると共に、 繊維の運動 状態が安定して、 良好な拡繊状態に迅速に到達することができる。  By providing the suction flow path, the liquid flow in the fiber spreading section is sucked toward the suction flow path, and as a result, a negative pressure is provided from the upstream side of the fiber spreading section. As a result, the fiber bundle in the converged state can be easily dragged to the spread side, and the motion state of the fiber can be stabilized and a good spread state can be quickly reached.
また、 本願にあっては流体として体積膨張 ·収縮の少ない液体を使用すること により、 流れが所望の拡繊状態で安定しやすく、 繊維束の長手方向において、 安 定した拡繊状態を得ることが可能となる。  In addition, in the present application, by using a liquid having a small volume expansion and contraction as a fluid, the flow is easily stabilized in a desired spread state, and a stable spread state in the longitudinal direction of the fiber bundle is obtained. Becomes possible.
従って、 この装置にあっては、 請求の範囲第 8項に記載されているように、 前 記液体流を形成するに、 前記拡繊部の液体を吸引して、 前記拡繊部における前記 繊維束の拡繊を吸引流により行うこととなる。  Therefore, in this apparatus, as described in claim 8, in forming the liquid flow, the liquid in the fiber expanding section is sucked and the fibers in the fiber expanding section are sucked. Spreading of the bundle is performed by a suction flow.
さて、 請求の範囲第 3項に記載されているように、 前記拡繊部より上^側に、 前記拡繊部に至る液体流を整流する整流流路形成体を備えることが好ましい。  Now, as described in claim 3, it is preferable that a rectification flow path forming body that rectifies a liquid flow reaching the fiber expansion section is provided above the fiber expansion section.
拡繊部における流れは、 液体流の断面で見た場合に、 できるだけ均等であると 共に、 絰時的に見て安定していることが好ましいが、 拡繊部より上流側に整流流 路形成体を配置して、 この整流流路を介して拡繊部に液体を流し込むことで、 整 流され、 さらに、 その流れにあって絰時的に安定した液体流を得て、 拡繊を良好 に行うことができる。 It is preferable that the flow in the fiber expanding section is as uniform as possible when viewed in the cross section of the liquid flow, and it is preferable that the flow is temporally stable, but a rectifying flow path is formed upstream of the fiber expanding section. The body is arranged, and the liquid is poured into the spreading section through this rectifying flow path, whereby the flow is regulated. Further, a temporally stable liquid flow in the flow is obtained, and the spreading is excellent. Can be done.
従って、 この装置にあっては、 請求の範囲第 9項に記載されているように、 前 記拡繊部より上流側に、 前記拡繊部に至る液体流を整流する整流流路を設け、 整 流された状態の前記液体流で拡繊を行うこととなる。  Therefore, in this device, as described in claim 9, a rectification flow path for rectifying a liquid flow reaching the fiber expansion part is provided upstream of the fiber expansion part, Fiber spreading is performed by the liquid flow in a rectified state.
更に、 請求の範囲第 4項に記載されているように、 前記拡繊部に対して設けら れる前記吸引流路の下流側に隣接して、 貯液部を備えることが好ましい。  Further, as described in claim 4, it is preferable that a liquid storage unit is provided adjacent to a downstream side of the suction channel provided for the fiber spreading unit.
拡繊部の流れは吸引流となるのであるが、その吸引流の下流側に貯液部を設け ておくと、 この貯液部が流れにおけるダンパーとしての役割を果たし、 この貯液 部より下流側に設けられる吸引手段における乱れをこの部位で吸収して、 安定し た吸引を吸引流路ひいては拡繊部で行うことができる。  The flow of the fiber expansion section becomes a suction flow, but if a liquid storage section is provided downstream of the suction flow, this liquid storage section functions as a damper in the flow, and the downstream of the liquid storage section The turbulence in the suction means provided on the side is absorbed in this portion, and stable suction can be performed in the suction flow path and, consequently, in the spreading portion.
さて、 請求の範囲第 5項に記載されているように、 液中にある前記拡繊部で拡 繊された拡繊済み繊維束を、 気体中で絞る絞りローラ機構が設けられており、 前 記絞りローラ機構を成す一方のローラに接触して、 液中から気体中へ前記拡繊済 み繊維束が導出されることが、 好ましい。  Now, as described in claim 5, there is provided a squeezing roller mechanism for squeezing in a gas the spread fiber bundle expanded by the spread section in the liquid. It is preferable that the expanded fiber bundle is led out of the liquid into the gas by contacting one of the rollers constituting the drawing roller mechanism.
本願の流体流式拡繊装置は、 拡繊を液体中で行うことに特徴があるが、 拡繊部 で拡繊された拡繊済みの拡繊済み繊維束を、 液中から気体中へ直接導出すると、 液の有する表面張力により、 拡繊状態が崩れる (窄む) 場合も発生する。  The fluid flow type fiber spreading device of the present invention is characterized in that the fiber spreading is performed in a liquid, and the fiber expanded fiber bundle expanded in the fiber spreading section is directly transferred from the liquid into the gas. When it is derived, the spread state may be disrupted (constricted) due to the surface tension of the liquid.
このような問題を回避するために、 本願にあっては、 液に浸された状態にある 拡繊済み繊維束を、 気体中で絞る絞りローラ機構を設けると共に、 この絞り口一 ラ機構を成す一方のローラに接触して、 拡繊状態にある拡繊済み繊維束を、 液中 から気体中へ導出するようにする。 このようにすると、 一方のローラ表面に拡繊 済み繊維束が接触していることにより、 液体の表面張力が幾分緩和され、 拡繊状 態が大幅に崩れるのを抑制することができる。  In order to avoid such a problem, in the present application, a squeezing roller mechanism for squeezing the expanded fiber bundle immersed in liquid in a gas is provided, and the squeezing port mechanism is formed. The expanded fiber bundle in the expanded state is brought out of the liquid into the gas by contacting one of the rollers. With this configuration, since the expanded fiber bundle is in contact with the surface of one of the rollers, the surface tension of the liquid is somewhat reduced, and the expanded state of the liquid can be suppressed from being significantly collapsed.
この装置にあっては、 請求の範囲第 1 0項に記載されているように、 前記拡繊 部で拡繊された拡繊済み繊維束を、 液中から気体中へ導出するに、 前記拡繊済み 繊維束を固体表面に接触させたまま、 液中から気体中へ導出することとなる。  In this apparatus, as described in claim 10, when the expanded fiber bundle expanded by the expansion unit is led out from a liquid into a gas, the expansion is performed. The delicate fiber bundle is led out of the liquid into the gas while keeping it in contact with the solid surface.
この場合、 一方のローラへの接触状態にあって、 拡繊済み繊維束に張力を発生 されることで、 所定の押し付け力が拡繊済み繊維束に付与されていると、 拡繊済 み繊維束の拡繊状態を崩れを殆ど皆無とすることができる。 さて、 請求の範囲第 6項に記載されているように、 流体流式拡繊装置を構成す るに、 複数の前記拡繊部を備え、 前記複数の拡繊部で同時に拡繊を実行可能な構 成を採用することが好ましい。 In this case, when a predetermined pressing force is applied to the expanded fiber bundle by generating tension in the expanded fiber bundle in a contact state with one of the rollers, the expanded fiber is The spread state of the bundle can be almost completely eliminated. Now, as described in claim 6, when configuring the fluid-flow type fiber spreading device, a plurality of the fiber spreading parts are provided, and the fiber spreading can be performed simultaneously by the plural fiber spreading parts. It is preferable to adopt such a configuration.
本願にあっては、 拡繊用の流体として液体を利用するため、 その動力を大幅に 低減でき、 複数の拡繊部を備える場合にあっても、 低い動力で対応できる。 従つ て、 生産性の高い流体流式拡繊装置を得ることができる。  In the present application, since a liquid is used as a fluid for spreading, the power can be greatly reduced, and even when a plurality of spreading portions are provided, low power can be used. Therefore, a fluid flow type fiber spreading device with high productivity can be obtained.
この装置を採用する場合は、 請求の範囲第 1 2項に記載されているように、 複 数の前記拡繊部を設け、 前記複数の拡繊部で同時に拡繊を実行することとなる。 これまで説明してきたように拡繊済み繊維束を製造する場合にあっては、 請求 の範囲第 1 1項に記載されているように、 前記液体に、 前記液体と前記フィラメ ントとの間で界面活性を発揮する界面活性材料を混合して拡繊を行うことが、 好 ましい。  When this apparatus is employed, as described in claim 12, a plurality of the fiber spreading sections are provided, and the fiber spreading is performed simultaneously by the plurality of fiber spreading sections. In the case of producing a spread fiber bundle as described above, as described in Claim 11, the liquid includes a liquid between the liquid and the filament. It is preferable to carry out fiber spreading by mixing a surface active material exhibiting surface activity.
界面活性材料を液体内に混合しておくと、 界面活性材料の作用によって各フィ ラメントが分離しやすい状況を液中で実現することが可能となり、 結果的に、 拡 繊能をさらに高めることができる。  By mixing the surfactant material in the liquid, it becomes possible to realize a situation in which each filament is easily separated by the action of the surfactant material in the liquid, and as a result, the spreading ability can be further enhanced. it can.
例えば、 繊維束が炭素繊維束であり、 液体とし水を採用する場合には、 界面活 性材料としてアルコール等も採用できる。 この場合も、 拡繊能が向上する。  For example, when the fiber bundle is a carbon fiber bundle and water is used as the liquid, alcohol or the like can be used as the surfactant material. Also in this case, the spreading ability is improved.
ただし、 アルコールを使用する場合は、 液槽を略密閉型のものとして、 アルコ ールの蒸散を抑制する手段を講ずることが、 好ましい。  However, when alcohol is used, it is preferable that the liquid tank be of a substantially closed type and measures are taken to suppress the evaporation of alcohol.
[第二の目的を達成するための手段]  [Means for achieving the second purpose]
この目的を達成するための本発明による超音波式拡繊装置の特徴構成は、 請求 の範囲第 1 3項に記載されているように、 拡繊済みの繊維束が液中から液外へ導 出する際に、 前記拡繊束の拡繊状態を維持する拡繊状態維持手段を備え、 前記繊 維束から液を除去する除去手段を備えたことにある。  In order to achieve this object, the ultrasonic fiber spreading device according to the present invention is characterized in that, as described in claim 13, the spread fiber bundle is guided from the liquid to the outside of the liquid. It is provided with a spread state maintaining means for maintaining the spread state of the spread bundle when discharging, and a removing means for removing a liquid from the fiber bundle.
この超音波式拡繊装置にあっては、 繊維束が液中から液外に導出される導出部 に、 拡繊状態維持手段を備え、 その液外の部位に除去手段を備え、 繊維束の拡繊 状態を維持すると共に、 液を繊維束から除去する。  In this ultrasonic type fiber spreading device, the drawing section where the fiber bundle is drawn out of the liquid to the outside of the liquid is provided with a fiber spreading state maintaining means, and a portion outside the liquid is provided with a removing means, and the fiber bundle is provided with a removing means. While maintaining the spread state, the liquid is removed from the fiber bundle.
従って、 この構成にあっては、 拡繊状態維持手段により拡繊状態が維持された 状態で、 繊維束を除去手段に導入し、 往々にして拡繊の劣化要因となる繊維束に 付着した液を、 取り除くため、 良好な拡繊状態を維持できると共に、 この液によ り拡繊状態が劣化するのを避けることができる。 Therefore, in this configuration, the fiber bundle is introduced into the removing means in a state where the spread state is maintained by the spread state maintaining means, and the fiber bundle which is often a deterioration factor of the spread is formed. Since the adhered liquid is removed, a good spread state can be maintained, and the spread state can be prevented from being deteriorated by this liquid.
即ち、 拡繊済みの繊維束を拡繊劣化が発生しにくい状態で下手側へ流送でき、 超音波式拡繊装置の下手側での拡繊済み繊維束に対する処理を、 高い拡繊状態を 維持したままでスムーズに進めることができる。  In other words, the expanded fiber bundle can be sent to the lower side in a state in which the expansion of the fiber is unlikely to occur, and the processing of the expanded fiber bundle on the lower side of the ultrasonic expansion device can be performed in a high expansion state. It can proceed smoothly while maintaining it.
更に、 請求の範囲第 1 4項に記載されている様に、 前記拡繊状態維持手段及び 除去手段が、 第一絞りローラおよび、 この第一絞り.ローラに当接する第二絞り口 ーラを有する絞りローラ機構であり、 前記第一絞りローラが液中に浸漬されてお り、 前記拡繊済みの繊維束が前記第一絞りローラに接触した状態で、 液中より液 外に導出されると共に、 当該繊維束を前記第一絞りローラ及び第二絞りローラに よって絞り可能に構成してあることが好ましい。  Further, as described in claim 14, the spread state maintaining means and the removing means include a first squeezing roller and a first squeezing roller contacting the first squeezing roller. A squeezing roller mechanism having the first squeezing roller immersed in the liquid, and the expanded fiber bundle is drawn out of the liquid in contact with the first squeezing roller. In addition, the fiber bundle is preferably configured to be squeezable by the first squeezing roller and the second squeezing roller.
拡繊状態維持手段及び除去手段として絞り形式の絞りローラ機構を採用するこ とで、 所定位置で、 確実な液除去を行えると共に、 この絞りローラ機構に備えら れる第一絞りローラを半浸漬状態として、 この半浸漬状態にあるローラに接触し た状態で、 拡繊済みの繊維束を液中から液外に導くことで、 結果的に、 液外に繊 維束が出た直後の液による拡繊劣化を抑制することができ、 さらに、 この状態で 絞り操作を施すことで、 液の影響を確実に除去することができる。  By employing a squeezing type squeezing roller mechanism as the spread state maintaining means and removing means, the liquid can be reliably removed at a predetermined position, and the first squeezing roller provided in the squeezing roller mechanism is in a semi-immersed state. By guiding the expanded fiber bundle out of the liquid while in contact with the roller in the semi-immersed state, the liquid immediately after the fiber bundle comes out of the liquid Fiber spreading deterioration can be suppressed, and by performing a squeezing operation in this state, the effect of the liquid can be reliably removed.
さて、 これまで説明してきた超音波式拡繊装置の構成において、 請求の範囲第 1 5項に記載されているように、 前記繊維束流送部を構成するに、 複数のローラ に対して前記繊維束が、各ローラ表面に接触しながら屈曲経路を成して流送され、 前記複数のローラとして、 前記繊維束が接触するローラ表面に関して、 表面起 伏状態の異なる複数種の拡繊ローラを備えた構成とすることが好ましい。  Now, in the configuration of the ultrasonic type fiber spreading device described so far, as described in claim 15, to configure the fiber bundle feeding section, the plurality of rollers The fiber bundle is fed in a bent path while contacting each roller surface, and as the plurality of rollers, a plurality of types of spreading rollers having different surface undulations with respect to the roller surface contacting the fiber bundle. It is preferable to provide a configuration provided with such a configuration.
超音波を拡繊に利用し、 同時に、 繊維束の複数のローラへの接触状態を確保し て、 順次、 そのローラの作用により拡繊を効率的に進めようとするものにあって は、 拡繊は、 ローラとの接触に伴って順次進むこととなる。  In the case of using ultrasonic waves for spreading, while simultaneously ensuring the state of contact of the fiber bundle with a plurality of rollers, and sequentially trying to efficiently spread the fibers by the action of the rollers, The fibers are sequentially advanced with the contact with the rollers.
一方、 超音波をも利用するため、 この超音波の作用の強 ·弱が、 各ローラの接 触位置との関係からも発生しやすい。  On the other hand, since ultrasonic waves are also used, the strength and weakness of the ultrasonic waves are likely to occur due to the relationship with the contact position of each roller.
ここで、 対象とするような各フィラメントが格段に細く、 多数集合されてなる 繊維束を拡繊する場合、 ローラの表面起伏状態と超音波による作用力との関係が 不適当であると、 繊維束の配列に乱れを発生しやすいと共に、 毛羽立ち、 フイラ メント切れ等の原因となったり、 拡繊不足を発生したりする。 Here, when expanding a fiber bundle consisting of a large number of filaments, each of which is much thinner, the relationship between the surface undulation of the roller and the acting force by ultrasonic waves If not, the arrangement of the fiber bundles is likely to be disturbed, and at the same time, the fiber bundles may be fluffed, the filament may be cut, or the fiber may be insufficiently spread.
従って、 複数のローラを備え、 超音波の作用により拡繊を行う超音波式拡繊装 置にあっては、 ローラの位置等に関係して、 そのローラの表面起伏状態を変え、 例えば、 超音波による拡繊能との関係で適切な拡繊状態を維持できるようにする ことが好ましい。 即ち、 ローラ位置、 超音波による拡繊力の差等に対応して、 口 ーラの表面起伏状態を選択して適切な拡繊を行うことができる。  Therefore, in an ultrasonic spreading device that includes a plurality of rollers and performs spreading by the action of ultrasonic waves, the surface unevenness of the rollers is changed depending on the position of the rollers, for example, It is preferable that an appropriate spread state can be maintained in relation to the spreadability by sound waves. That is, it is possible to perform appropriate fiber spreading by selecting the surface undulation state of the roller in accordance with the roller position, the difference in fiber spreading force due to ultrasonic waves, and the like.
さて、 上記のように、 異なった表面起伏形状の複数種の拡繊ローラを使用する に、請求の範囲第 1 6項に記載されているように、前記ローラ表面の起伏状態が、 多数の微小な突起部によって形成されるものであり、 前記口一ラ表面の起伏状態 が異なる複数種のローラとして、 突起部の突出側が先鋭とされる第一種拡繊ロー ラと、 前記突起部の突出側が滑らかな第二種拡繊ローラとを備えることが好まし い。  Now, as described above, when a plurality of types of spreading rollers having different surface undulations are used, as described in claim 16, the undulation state of the roller surface is a large number of minute A plurality of types of rollers having different undulations on the surface of the mouth, a first-type spreading roller in which the protruding side of the protruding portion is sharpened, and a protruding portion of the protruding portion. It is preferable to provide a second-type spreading roller having a smooth side.
ここで、 第一種拡繊ローラは突起部の突出側が先鋭とされていることにより、 この口一ラは櫛歯様の働きをして、 繊維束に掛かる張力との関係から、 繊維束を 櫛解き、 各フィラメントを分離させると共に、 方向を合わせる働きをすることが できる。  Here, the first-type spreading roller has a sharpened protruding side of the protruding portion, so that this opening acts like a comb tooth, and the fiber bundle is drawn from the relationship with the tension applied to the fiber bundle. It can work by combing, separating each filament, and adjusting the direction.
—方、 第二種拡繊ローラは突起部の突出側が滑らかとされていることより、 こ の突起部の先端側で、 各フィラメントは、 超音波等の作用により自由な運動が許 容され、 更なる、 拡繊状態を実現することができる。  On the other hand, since the projecting side of the second type spreading roller has a smooth protruding side, each filament is allowed to freely move by the action of ultrasonic waves at the tip side of the protruding section, A further spread state can be realized.
このような特性、 作用の異なるローラを組み合わせて使用することで、 同じく 超音波を利用して拡繊を行う装置にあって、 拡繊を適切且つ拡繊能の高いものと することができる。  By using a combination of rollers having different properties and functions, it is possible to use a device for spreading the fibers using ultrasonic waves, and to make the spreading suitable and high in spreading ability.
更に、 請求の範囲第 1 7項に記載されている様に、 前記繊維束流送部を構成す るに、 複数のローラに対して前記繊維束が、 各ローラ表面に接触しながら屈曲経 路を成して流送される構成で、  Further, as described in claim 17, in forming the fiber bundle feeding section, the fiber bundle is in contact with a plurality of rollers while being in contact with a surface of each roller and a bending path. In a configuration that is flowed out
前記複数のローラの内、 前記超音波による拡繊作用が強い位置に配設される口 ーラとして、前記ローラ表面の起伏状態が多数の微小な突起部によって形成され、 且つ、前記突起部の突出側が滑らかな第二種拡繊ローラを備えることが好ましい。 この項において使用するローラは、 請求の範囲第 1 6項のおいて説明した第二 種拡繊ローラに相当するものであり、 先に説明したように、 繊維束の運動の自由 度を高いものとして、 強い超音波で拡繊をおこなっても、 問題を起こしにくい。 従って、 比較的超音波の強い位置には、 この種のローラ (第二種拡繊ローラ) を配置して、 超音波と繊維束に係る張力との関係から適切な拡繊を行うことがで きる。 Of the plurality of rollers, as a roller disposed at a position where the spreading action by the ultrasonic wave is strong, the undulating state of the roller surface is formed by a large number of minute projections, and It is preferable to provide a second type spreading roller having a smooth protruding side. The roller used in this section is equivalent to the type 2 spreading roller described in claim 16, and has a high degree of freedom of movement of the fiber bundle as described above. Even if the fiber is spread with strong ultrasonic waves, it is unlikely to cause any problems. Therefore, this type of roller (second type spreading roller) is arranged at a position where the ultrasonic wave is relatively strong, and it is possible to perform appropriate spreading based on the relationship between the ultrasonic wave and the tension of the fiber bundle. Wear.
さて、 これまで説明してきた超音波式拡繊装置の構造において、 請求の範囲第 1 8項に記載されている様に、  By the way, in the structure of the ultrasonic fiber spreading device described so far, as described in claim 18,
前記繊維束流送部を構成するに、 複数のローラに対して前記繊維束が、 各ロー ラ表面に接触しながら屈曲経路を成して流送される構成で、  In the configuration of the fiber bundle feeding section, the fiber bundle is fed to a plurality of rollers in a bent path while being in contact with the surface of each roller,
前記繊維束が接触する接触面が、 流送状態にある繊維束の幅方向で湾曲してい る湾曲状接触面であることが、 好ましい。  It is preferable that the contact surface with which the fiber bundle comes into contact is a curved contact surface that is curved in the width direction of the fiber bundle in the flowing state.
このようなローラの湾曲は、繊維束の幅方向における接触面の状態であるため、 例えば、 繊維束の幅方向で、 ローラが表面外方向に膨出する湾曲形状とされてい る場合は、 繊維束をその拡繊方向 (幅方向でばらっかせる方向) に、 作用力を働 かせることができる。 一方、 繊維束の幅方向で、 ローラが表面内方向に窪んでい る場合は、 繊維束をその収束方向 (幅方向で収束させる方向) に、 作用力を働か せることができる。  Such a curve of the roller is a state of the contact surface in the width direction of the fiber bundle. For example, in a case where the roller has a curved shape in which the roller swells outward in the width direction of the fiber bundle, the fiber An acting force can be exerted in the spreading direction (direction in which the bundle is spread in the width direction). On the other hand, when the roller is concave in the surface direction in the width direction of the fiber bundle, the acting force can be exerted in the convergence direction (direction of converging in the width direction) of the fiber bundle.
即ち、 ローラ表面を湾曲させることで、 ローラ表面の湾曲状態により繊維束の 拡繊状態を制御することが可能となり、超音波による拡繊、 ローラの表面状態(表 面荒れ状態) による拡繊等を考慮し、 これらの兼ね合いとの関係から、 適切に拡 繊を制御することが可能となる。  In other words, by bending the roller surface, it is possible to control the spread state of the fiber bundle by the curved state of the roller surface, and to spread the fiber by ultrasonic waves, the spread state by the roller surface state (rough surface state), and the like. In consideration of these factors, it is possible to appropriately control the spreading from the relationship with these balances.
さて、 これまで説明してきた構成において、 超音波を利用して拡繊を行う液中 に、 請求の範囲第 1 9項に記載されているように、 拡繊用の超音波に共振する共 振機構を備えることが好ましい。  Now, in the configuration described so far, as described in claim 19, a resonance that resonates with the ultrasonic waves for fiber expansion is performed in the liquid that performs fiber expansion using ultrasonic waves. Preferably, a mechanism is provided.
拡繊用の超音波は、 液中に超音波発生器を利用して伝播されるが、 この液中に 共振機構を設けておくと、 超音波の共振を利用することで、 より少ない動力で、 超音波による拡繊を実行できる。  Ultrasonic waves for spreading are propagated in the liquid using an ultrasonic generator. If a resonance mechanism is provided in the liquid, less power is required by using the ultrasonic resonance. , Ultrasonic fiber spreading can be performed.
さらに、 例えば、 繊維束の流送路を共振機構を成す一対の共振板の間に備えて おくと、 超音波発生器の設置位置に係わらず、 共振板間に超音波の強い部位を形 成して、 拡繊を有効に実行し得る。 また、 この場合、 超音波の制御も容易となる。 更に、 一対の共振板の間に、 本願の拡繊用のローラを設けておくと、 ローラと の接触による拡繊と共振した超音波による拡繊とを、 特定された位置で同時に作 用させることができ、 拡繊能を高めると共に、 その制御も容易となる。 Furthermore, for example, a flow path for a fiber bundle is provided between a pair of resonance plates forming a resonance mechanism. In other words, regardless of the installation position of the ultrasonic generator, a region where ultrasonic waves are strong can be formed between the resonance plates, and spreading can be effectively performed. In this case, control of the ultrasonic wave is also facilitated. Furthermore, if the spreading roller of the present application is provided between the pair of resonance plates, the spreading by contact with the roller and the spreading by the resonated ultrasonic waves can be simultaneously performed at the specified position. The fiber spreading ability is enhanced, and its control is also facilitated.
[本願第三の目的を達成するための手段]  [Means for achieving the third object of the present application]
この目的を達成するための本発明による拡繊システムの特徴構成は、 請求の範 囲第 2 0項に記載されているように、  The features of the fiber spreading system according to the present invention for achieving this object are as described in claim 20.
前記繊維束が張力を付与された状態で、 複数のローラに対して各ローラ表面に 接触しながら屈曲経路を成して流送される繊維束流送部を液中に備えると共に、 前記液中に超音波を伝播させて前記繊維束流送部の繊維束を拡繊する超音波式拡 繊装置を予備拡繊装置として備え、  In a state in which the fiber bundle is tensioned, a fiber bundle feeding section is formed in the liquid to be fed in a bent path while being in contact with the surface of each roller with respect to the plurality of rollers. An ultrasonic fiber spreading device for spreading the fiber bundle of the fiber bundle feeding section by transmitting ultrasonic waves to the fiber bundle feeding device as a preliminary fiber spreading device;
前記予備拡繊装置により拡繊された予備拡繊済み繊維束を、 さらに拡繊する本 拡繊装置を備え、  A pre-expanded fiber bundle expanded by the pre-expanding device;
前記本拡繊装置が、 前記予備拡繊済み繊維束を拡繊する拡繊部に、 前記予備拡 繊済み繊維束をオーバーフィード制御しながら流送供給する流送手段と、 前記予 備拡繊済み繊維束を拡繊する流体流を発生させる流体流発生手段とを備え、 前記拡繊部において、 流送されてくる前記予備拡繊済み繊維束に対して交差し て前記流体流を通過させ、 前記予備拡繊済み繊維束を流体流の下流方向へ撓ませ ると共に、 前記流体流により前記予備拡繊済み繊維束を繊維束幅方向に解き分け る流体流式拡繊装置であることにある。  Means for feeding the pre-expanded fiber bundle to the expanding section for expanding the pre-expanded fiber bundle while controlling the over-feeding of the pre-expanded fiber bundle; And a fluid flow generating means for generating a fluid flow for expanding the pre-expanded fiber bundle, wherein the expanding section intersects the pre-expanded fiber bundle to be fed and passes the fluid flow. A fluid flow type fiber spreading device which bends the pre-expanded fiber bundle in the downstream direction of the fluid flow and separates the pre-expanded fiber bundle in the fiber bundle width direction by the fluid flow. is there.
一方、 請求の範囲第 2 1項に記載の拡繊システムに関しては、 請求の範囲第 2 0項に記載の構成とは逆に、 以下のような構造を採用する。  On the other hand, regarding the fiber spreading system described in claim 21, the following structure is adopted, contrary to the configuration described in claim 20.
即ち、 前記繊維束を拡繊する拡繊部に、 前記繊維束をオーバーフィード制御し ながら流送供給する流送手段と、 前記繊維束を拡繊する流体流を発生させる流体 流発生手段とを備え、  That is, a feeding unit that feeds and feeds the fiber bundle to the spreading unit that spreads the fiber bundle while performing overfeed control, and a fluid flow generating unit that generates a fluid flow that spreads the fiber bundle. Prepared,
前記拡繊部において、 流送されてくる前記繊維束に対して交差して前記流体流 を通過させ、 前記繊維束を流体流の下流方向へ撓ませると共に、 前記流体流によ り前記繊維束を繊維束幅方向に解き分ける流体流式拡繊装置を予備拡繊装置とし てして備え、 The fiber expanding section intersects with the fiber bundle to be fed and allows the fluid flow to pass therethrough, deflects the fiber bundle in a downstream direction of the fluid flow, and causes the fiber bundle to be bent by the fluid flow. The flow spreading device that separates the fibers in the width direction of the fiber bundle is used as the preliminary spreading device. Be prepared
前記予備 繊装置により拡繊された予備拡繊済み繊維束を、 さらに拡繊する本 拡繊装置を備え、  A pre-expanded fiber bundle expanded by the pre-expanding device;
前記本拡繊装置が、 予備拡繊された予備拡繊済み繊維束が張力を付与された状. 態で、 複数のローラに接触しながら屈曲経路を成して流送される繊維束流送部を 液中に備えると共に、 前記液中に超音波を伝播させて前記繊維束流送部の予備拡 繊済み繊維束を、 さらに拡繊する超音波式拡繊装置であるものとするのである。 さて、 本願にいう超音波式拡繊装置は、 拡繊対象とする繊維束を張力付与状態 で、 複数のローラー表面に接触させながら屈曲経路を描かせて、 超音波により付 与される振動効果により拡繊するものであり、 この拡繊は、 強制的且つ機械的な 拡繊と言える。 このような拡繊は、 例えば、 比較的付着性の強いサイジング剤が 添加されている場合に、 初期的な拡繊 (比較的緩い拡繊) をおこなうのに適して いる。  In the fiber spreading device, the pre-expanded pre-expanded fiber bundle is tensioned, and the fiber bundle is fed while forming a bending path while contacting a plurality of rollers. And an ultrasonic type fiber spreading device for further expanding the pre-expanded fiber bundle of the fiber bundle feeding section by providing ultrasonic waves in the liquid while providing the fiber section in the liquid. . By the way, the ultrasonic type fiber spreading device referred to in the present application is designed to draw a bending path while contacting a fiber bundle to be spread with a plurality of roller surfaces in a tension-applied state, thereby providing a vibration effect applied by ultrasonic waves. This expansion can be said to be forced and mechanical expansion. Such spreading is suitable, for example, for initial spreading (relatively slow spreading) when a sizing agent having a relatively high adhesiveness is added.
一方、 流体流式拡繊装置は、 所定の拡繊部に、 流送手段により拡繊対象の繊維 束をオーバ一フィード状態で供給し、 この状態にある繊維束に対して、 流体発生 手段により発生された流体流(気体流あるいは液体流)を交差状態で当てる共に、 流体流を各フィラメント間を通過させて、 繊維束の拡繊を行うものであり、 流体 力学的に得ることができるドラッグ力を基礎とする。 この場合、 各フィラメント はオーバーフィード状態を保たれるため、 各フィラメントに張力は、 積極的な意 味で掛かっていない。 従って、 この拡繊方法は、 ある程度、 各フィラメントの分 離が進んでおり、 各フィラメントが自由に運動し得ることを前提とするため、 例 えば、 サイジング剤の付着性が低く、 付着量が比較的少ないものに対して好適で ある。  On the other hand, a fluid flow type fiber spreading device supplies a fiber bundle to be spread in an over-feed state to a predetermined fiber spreading section by a flow-feeding means, and the fiber bundle in this state is supplied by a fluid generating means. The generated fluid flow (gas flow or liquid flow) is applied in an intersecting state, and at the same time, the fluid flow is passed between the filaments to spread the fiber bundle. A drag that can be obtained hydrodynamically Power based. In this case, the tension is not applied to each filament in an aggressive sense because each filament is maintained in an overfeed state. Therefore, this fiber spreading method is based on the premise that the separation of each filament has progressed to some extent and that each filament can move freely. For example, the adhesion of the sizing agent is low, and the amount of adhesion is relatively small. It is suitable for very few.
以上が、 本願の拡繊システムが採用する各拡繊装置の特徴であるが、 発明者ら は、 多数の繊維束に対して、 所定の拡繊を行なった。 この拡繊は、 先に説明した 現状の技術水準において、 ほぼ限界に近い拡繊を行なうものであった。  The above is the feature of each fiber spreading device employed in the fiber spreading system of the present application. The inventors performed predetermined fiber spreading on a large number of fiber bundles. This spread was almost the limit at the current technical level described above.
その結果、過半の拡繊対象繊維束に対して、請求の範囲第 2 0項に記載の順(超 音波による拡繊を行なった後、 流体流による拡繊を行なう) で拡繊を行なうこと で、 本拡繊操作において予備摅繊よりさらに拡繊を進めることができた。 この場 合、 約半数は、 拡繊順を逆にすると、 目的とする高度の拡繊状態を得ることがで きなかった。 この順の拡繊を行なう場合は、 予備拡繊段階で、 張力付与を伴った 強制的な拡繊が必要とされる繊維束であつたものと発明者らは推測している。 さらに、 高度の拡繊が超音波方式でできなかった理由は、 比較的伸度が無いた めに、張力の付与により、 フィラメントに損傷を受けやすいものであったために、 本拡繊段階で流体式の拡繊手法が、 好ましかったものと推測している。 As a result, for the majority of the fiber bundles to be expanded, the expansion is performed in the order described in claim 20 (expansion by ultrasonic wave, and then expansion by fluid flow). Thus, in the present fiber spreading operation, the fiber spreading could be further advanced than the preliminary fiber spreading. This place In most cases, if the spreading order was reversed, the desired degree of spreading could not be achieved for about half. The inventors presume that in the case of performing the fiber spreading in this order, the fiber bundle required forcible fiber spreading with tension application in the preliminary fiber spreading stage. Furthermore, the reason that advanced spreading could not be performed by the ultrasonic method was that the filament was easily damaged by the application of tension due to relatively low elongation. I presume that the expression spreading method was preferred.
一方、 残余の拡繊対象繊維束に対しては、 予備拡繊段階から流体流による拡繊 を施し、 この予備拡繊の後、 本拡繊として超音波による拡繊を施すのが好ましい ものであった。  On the other hand, it is preferable that the remaining fiber bundles to be spread are subjected to spreading by a fluid flow from the pre-spreading stage, and after this pre-spreading, it is preferable to perform ultrasonic spreading as the main spread. there were.
この割合は比較的低いが、 サイジング量が比較的少なく、 さらにフィラメント が比較的強いものにあっては、 この手法を採用するのが好ましい。  Although this ratio is relatively low, it is preferable to use this method when the sizing amount is relatively small and the filament is relatively strong.
さらに、 本拡繊段階を超音波によるものとするため、 先に説明した拡繊精度を 高度に揃えることが可能となっていた。  Furthermore, since the main spreading step is performed by using ultrasonic waves, it is possible to highly precisely control the spreading accuracy described above.
従って、 請求の範囲第 2 0項もしくは第 2 1項に記載のように、 両者の拡繊手 法を実施できるシステムを構築することが高度な拡繊を行なうのに好ましい。 本願で対象とする拡繊の程度は、 従来、 行われてきた拡繊に比べて、 その程度 が高いものである。  Therefore, as described in Claim 20 or 21, it is preferable to construct a system capable of performing both of the fiber spreading methods in order to perform advanced fiber spreading. The degree of fiber expansion targeted in the present application is higher than the degree of fiber expansion conventionally performed.
結果、 本願システムを採用することにより、 繊維束の各構成フィラメントにダ メージを与えず、 フィラメント 1本 1本が真っ直ぐに伸びて、 しかも、 平行性が 高く、 繊維束幅方向におけるフィラメント密度がそろった良質の拡繊済み繊維束 (拡繊済み繊維束と呼べる) を得ることができる。  As a result, by adopting the system of the present invention, each of the constituent filaments of the fiber bundle is not damaged, each filament is straightened, and the parallelism is high, and the filament density in the fiber bundle width direction is uniform. It is possible to obtain high quality expanded fiber bundles (which can be called expanded fiber bundles).
従来型の拡繊装置 (超音波拡繊方式、 流体流式拡繊方式) にあっては、 一段の 拡繊操作で行なうには困難を伴う場合もあり、 生産性の向上効果は大きい。  With conventional fiber spreading devices (ultrasonic fiber spreading method, fluid flow type fiber spreading method), there are cases where it is difficult to perform with one stage of fiber spreading operation, and the effect of improving productivity is large.
さらに、 請求の範囲第 2 2項に記載されているように、 流体流式拡繊装置にお いて拡繊に使用される流体流が液体流であることが好ましい。  Further, as described in claim 22, it is preferable that the fluid flow used for spreading in the fluid flow spreading device is a liquid flow.
この場合、 流体流式拡繊装置において、 流体流を利用して、 各フィラメントに 対して拡繊カを付与するに、 気体より体膨張率が格段に小さい液体を使用するた めに、拡繊部における流れが安定すると共に、均一で強力な流体力を付与できる。 結果、 その拡繊能において従来より強力な拡繊能を発揮することができる。 更に、例えば、 同一の繊維束を対象として複数段に亘つて拡繊を行う多段拡繊、 もしくは複数の繊維束を対象としてこれをの全てを同時に拡繊する複数拡繊を行 う場合に、 例えば、 流体としてエアーを使用する場合と水を使用する場合を比較 すると、 動力が格段に低下する。 結果、 多段拡繊、 多数拡繊を行う場合に、 必要 となる動力が少なく、 小型の動力源で実用的な製造装置を得ることができる。 図面の簡単な説明 In this case, in the fluid-flow-type fiber spreading device, a fluid flow is used to apply a fiber spreading force to each filament. In order to use a liquid whose body expansion coefficient is much smaller than gas, the fiber spreading is performed. The flow in the section is stabilized, and a uniform and strong fluid force can be applied. As a result, the fiber spreading ability can be more powerful than before. Further, for example, in the case of performing multi-stage expansion in which the same fiber bundle is expanded over a plurality of stages, or multiple expansion in which all of the fiber bundles are simultaneously expanded, For example, when air is used as the fluid and water is used, the power is significantly reduced. As a result, when performing multi-stage spreading or multi-stage spreading, less power is required, and a practical manufacturing apparatus can be obtained with a small power source. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願の拡繊システムの全体構造を示す立面図、  FIG. 1 is an elevation view showing the overall structure of the fiber spreading system of the present application,
第 2図は、 本願の拡繊システムの要部構成を示す図、  FIG. 2 is a diagram showing a main configuration of the fiber spreading system of the present application,
第 3図は、 給糸調整用検出部を示す図、  FIG. 3 is a diagram showing a yarn feed adjustment detecting section,
第 4図は、 予備拡繊装置の説明図、  Fig. 4 is an illustration of the pre-spreading device,
第 5図は、 本拡繊装置の説明図、  Fig. 5 is an explanatory diagram of the fiber spreading device,
第 6図は、 拡繊ローラの表面起伏状態の説明図、  FIG. 6 is an explanatory diagram of the surface undulation state of the spreading roller,
第 7図は、 ローラの外観形状を示す図である。 発明を実施するための最良の形態  FIG. 7 is a diagram showing an external shape of the roller. BEST MODE FOR CARRYING OUT THE INVENTION
本願の拡繊システム 1は、 所謂、 マルチフィラメント Fと呼ばれる繊維束 2の 複数を、 それそれ個別に、 一時に拡繊するためのシステムである。  The fiber spreading system 1 of the present application is a system for simultaneously spreading a plurality of fiber bundles 2, so-called multifilaments F, individually and individually.
第 1図は、 本願の拡繊システム 1の立面図であり、 3本の繊維束 2の拡繊を目 的とした構成を示している。  FIG. 1 is an elevational view of the fiber spreading system 1 of the present application, and shows a configuration for spreading three fiber bundles 2.
第 2図は、 本願のシステムの要部の斜視図を示すと共に、 第 3図に給糸調整用 検出部 9の概要を、 第 4図に本願システムにあって予備拡繊を行う予備拡繊用液 槽 3を備えた予備拡繊装置 4の概要を、 本拡繊を行う本拡繊用液槽 5を備えた本 拡繊装置 6の概要を第 5図に示している。  Fig. 2 shows a perspective view of the main part of the system of the present invention, Fig. 3 shows the outline of the yarn feeding adjustment detecting section 9, and Fig. 4 shows the preliminary spreading in the present application system. FIG. 5 shows an outline of the pre-expansion device 4 provided with the liquid tank 3 for use, and an outline of the main expansion device 6 provided with a liquid tank 5 for main expansion for performing the main expansion.
本願が対象とするマルチフイラメント Fの一例を挙げると、このような繊維束 2として、 マルチフィラメント F (無燃炭素繊維: 7〃mフィラメントの 1 2, 0 0 0本束 =元幅約 6 m m、 元厚約 0 . 1 6 m m) を挙げることができる。 この ような繊維束を本願拡繊システム 1によって、予備拡繊により、幅約 7 ~ 9 m m, 厚 0 . 0 8 m m程度に拡繊すると共に、 本拡繊により、 幅約 2 5 m m程度、 厚 0 . 0 2 m m程度まで拡繊することができる。 サイジング量は、 0 . 2〜3 %程度と される。 図上、 2 1は本拡繊済みの繊維束を示している。 To give an example of the multifilament F to which the present invention is applied, as such a fiber bundle 2, a multifilament F (non-combustible carbon fiber: 1,200 bundles of 7〃m filaments = original width of about 6 mm) , Original thickness of about 0.16 mm). Such a fiber bundle is spread to a width of about 7 to 9 mm and a thickness of about 0.08 mm by preliminary spreading by the present fiber spreading system 1, and a width of about 25 mm by the main spreading. Thickness 0. It can be expanded to about 0 2 mm. The sizing amount is about 0.2 to 3%. In the figure, 21 indicates a fiber bundle that has been subjected to the main fiber expansion.
本願システムの概略構成を説明すると、 第 1図に示すように、 システム 1は、 繊維束 2の流送方向に沿って、 給糸部 7、 予備拡繊装置 4、 絞りローラ機構 1 0 a、 駆動ローラ機構 8、 給糸調整用検出部 9、 本拡繊装置 6、 絞りローラ機構 1 0 b、 加熱部 1 2、 従動ローラ機構 1 1、 および卷取部 1 3を備えて構成されて いる。  The schematic configuration of the system of the present invention will be described. As shown in FIG. 1, the system 1 includes a yarn feeding section 7, a pre-expanding device 4, a drawing roller mechanism 10a, It comprises a driving roller mechanism 8, a yarn feeding adjustment detecting section 9, a main spreading device 6, a squeezing roller mechanism 10b, a heating section 12, a driven roller mechanism 11, and a winding section 13. .
この構成より、 給糸部 7に配設されている給糸ボビン 7 0より、 繊維束 2を引 き出して、 所定の拡繊処理を行った後、 卷取部 1 3で卷取ボビン 1 3 0に巻き取 ることができる。 ここで、 給糸側の解除操作及び卷取側の卷取り操作は、 公知の 解除、 卷取り装置を備えることで実行される。  With this configuration, the fiber bundle 2 is pulled out from the yarn supplying bobbin 70 provided in the yarn supplying section 7 and subjected to a predetermined fiber spreading process. 30 rolls. Here, the releasing operation on the yarn supplying side and the winding operation on the winding side are performed by providing a known releasing and winding device.
給糸部 7と卷取部 1 3との間における繊維束 2の流送制御は、 前述の駆動ロー ラ機構 8と従動ローラ機構 1 1 との働きにより主に制御されるように構成されて おり、 この制御は給糸調整用検出部 9からの検出情報によるものとされている。 前記駆動ローラ機構 8を構成する一対のローラに関して、 その一方のローラ 8 aは、 サーボモ一夕 8 bにより駆動されるように構成されており、 下記する検出 部 9の出力情報に応じて、 調速制御可能となっている。  The feeding control of the fiber bundle 2 between the yarn supplying section 7 and the winding section 13 is mainly controlled by the operation of the driving roller mechanism 8 and the driven roller mechanism 11 described above. This control is based on detection information from the yarn feeding adjustment detecting section 9. With respect to the pair of rollers constituting the drive roller mechanism 8, one of the rollers 8a is configured to be driven by a servo motor 8b, and is adjusted according to output information of the detection unit 9 described below. Speed control is possible.
給糸調整用検出部 9は、 第 3図に図示するように、 流送されてくる繊維束 2に 対して、 これに懸垂される重り 1 4と、 この重り 1 4の懸垂位置を検出するため の懸垂位置検出機構 1 5を備えて構成されている。  As shown in FIG. 3, the yarn feeding adjustment detecting section 9 detects the weight 14 suspended from the fiber bundle 2 fed in and the suspended position of the weight 14 as shown in FIG. And a suspension position detecting mechanism 15.
この懸垂位置検出機構 1 5は、内部にレーザー式の検出装置 1 6を備えており、 前記重り 1 4、 ひいては、 この位置における繊維束 2の撓み量 hを検出する。 本願構造にあっては、 この位置における繊維束 2の撓み量 hは、 後述する本拡 繊装置 6に設けられている拡繊部 1 7における橈み量 Hに連動するため、 この位 置において、 橈み量 hを検出することで、 挞繊部 1 7における橈み量 H、 ひいて は、 摅繊部 1 7における繊維束 2のオーバーフィード状態を検出することができ る。  The suspension position detection mechanism 15 includes a laser-type detection device 16 inside, and detects the weight 14 and thus the deflection amount h of the fiber bundle 2 at this position. In the structure of the present invention, the bending amount h of the fiber bundle 2 at this position is interlocked with the radius H of the spreading portion 17 provided in the main spreading device 6 described later. By detecting the radius h, it is possible to detect the radius H in the fibrous portion 17 and, consequently, the overfeed state of the fiber bundle 2 in the fibrous portion 17.
この懸垂位置検出機構 1 5の検出情報は、 前記駆動ローラ機構 8に備えられる サーポモーター 8 bに対する制御器 8 cに伝達され、 繊維束 2の流送制御に役立 てられる。 ここで、 制御器 8 cにおける制御は、 繊維束 2のオーバーフィード状 態を、拡繊部 1 7における橈み量 Hが所望の量となるように制御するものである。 従って、 給糸調整用検出部 9の役割は、 駆動ローラ機構 8と従動ローラ機構 1 1 との間にある繊維束 2に関して、所定の繊維束量が両者間に介在される状態で、 繊維束量を調節すると共に、 後に詳細に説明する本拡繊装置 6に備えられる拡繊 部 1 7における繊維束 2の橈み量 Hを所望の状態に保つものである。 The detection information of the suspension position detection mechanism 15 is transmitted to a controller 8 c for a servo motor 8 b provided in the drive roller mechanism 8, which is useful for the flow control of the fiber bundle 2. I can Here, the control by the controller 8c is to control the overfeed state of the fiber bundle 2 so that the radius H in the spreading portion 17 becomes a desired amount. Accordingly, the role of the yarn feeding adjustment detecting section 9 is as follows: the fiber bundle 2 between the driving roller mechanism 8 and the driven roller mechanism 11 is operated in a state where a predetermined fiber bundle amount is interposed therebetween. The amount is adjusted, and the radius H of the fiber bundle 2 in the fiber spreading section 17 provided in the fiber spreading device 6 described in detail later is maintained in a desired state.
従って、繊維束 2の系内(駆動ローラ機構 8から従動ローラ機構 1 1までの間) への供給状態に従って、 重り 1 4の懸垂位置が検出され、 この懸垂位置に関連し て、 前記駆動ローラ機構 8における送り速度が制御されて、 拡繊部 1 7の撓み量 Hが調整される。 以上の構成により、 本願システムに、 本願でいう流送手段を備 えることとなつている。  Therefore, the suspension position of the weight 14 is detected according to the state of supply of the fiber bundle 2 into the system (between the drive roller mechanism 8 and the driven roller mechanism 11). The feed rate in the mechanism 8 is controlled, and the amount of deflection H of the fiber spreading section 17 is adjusted. With the configuration described above, the system of the present application is provided with the transportation means referred to in the present application.
良好な制御が行われており、 安定状態にあっては、 両機構間にある繊維束量は 一定に保たれると共に、 前記拡繊部 1 7における繊維束 2の撓み量 Hが一定に保 たれる。  Good control is performed, and in a stable state, the amount of fiber bundle between the two mechanisms is kept constant, and the amount of deflection H of the fiber bundle 2 in the fiber spreading section 17 is kept constant. Dripping.
以上が、 本願の拡繊システム 1における繊維束流送に関する記載であるが、 以 下に、 拡繊操作に関して説明する。  The above is the description of the fiber bundle feeding in the fiber spreading system 1 of the present application. The fiber spreading operation will be described below.
前記予備拡繊装置 4は、 超音波を利用した超音波式拡繊装置として構成されて おり、 第 4図に示すように超音波発生器 1 8を備えた予備拡繊用液槽 3内に繊維 束 2を導くと共に、 槽内に設けられている複数の拡繊 D—ラ 1 9に接触させて、 繊維束 2を屈曲させながら流送すると共に、 流送状態にある繊維束 2に、 同時に 槽内の液体を介して超音波を作用させ、 繊維束を予備拡繊する。  The pre-spreading device 4 is configured as an ultrasonic type spreader using ultrasonic waves. As shown in FIG. 4, the pre-spreading device 4 is provided in a pre-spreading liquid tank 3 having an ultrasonic generator 18. While guiding the fiber bundle 2, the fiber bundle 2 is brought into contact with a plurality of fiber spreading rollers 19 provided in the tank, and the fiber bundle 2 is flown while being bent. At the same time, ultrasonic waves are applied via the liquid in the tank to pre-expand the fiber bundle.
この機構の構成を、 第 4図に基づいてさらに詳細に説明する。  The configuration of this mechanism will be described in more detail with reference to FIG.
まず、 予備拡繊用液槽内に超音波を発生されるための超音波発生器 1 8が槽の 底に配設されている。 この発生器 1 8により発生される超音波に対する共振機構 3 0として、 この槽内に下端側部位が浸潰された一対の共振板 3 0 a, bが設け られている。  First, an ultrasonic generator 18 for generating ultrasonic waves in the pre-spreading liquid tank is arranged at the bottom of the tank. As a resonance mechanism 30 for the ultrasonic waves generated by the generator 18, a pair of resonance plates 30 a and b whose lower end portions are immersed in the tank are provided.
この共振板 3 0 a, bは、 その長手方向が、 繊維束 2の流送方向に合わさった 配置とされており、 板間の離間距離を超音波の周波数との関係で、 適切に設定す ることで、一対の共振板 3 0 a , b間における超音波の増強が可能となっている。 図示するように、 この共振板 3 0 a , b間および、 その導入部、 導出部に Sつ て、 複数のローラ 2 0 a, 1 9 a , b, c , d, 2 0 bが設けられており、 これ らのローラに接触して、 繊維束が流送されるようになっている。 The longitudinal directions of the resonance plates 30a and 30b are set so as to match the flow direction of the fiber bundle 2. The separation distance between the plates is set appropriately in relation to the ultrasonic frequency. This makes it possible to enhance ultrasonic waves between the pair of resonance plates 30a and 30b. As shown in the figure, a plurality of rollers 20a, 19a, b, c, d, and 20b are provided between the resonance plates 30a and 30b and between the resonance plates 30a and 30b and between the resonance plates 30a and 30b. The fiber bundle comes in contact with these rollers.
この流送構造について説明すると、 繊維束 2の流送方向に、 入口ガイロド一ラ 2 0 a、 4本の拡繊口一ラ 1 9、 出口ガイ ドローラ 2 0 bを備えて構成されてい る。  To explain this flow-in structure, the fiber bundle 2 is provided with an inlet guide 20a, four spreading outlets 19, and an outlet guide roller 20b in the flow direction of the fiber bundle 2.
前記入口ガイ ドロ一ラ 2 0 aは、 繊維束 2を予備拡繊用液槽内の液中に案内す るためのものである。  The inlet guide roller 20a is for guiding the fiber bundle 2 into the liquid in the pre-expansion liquid tank.
前記拡繊ローラ 1 9は、 槽内に 4本千鳥状に配列されて設けられており、 繊維 束はこれらのローラ 1 9の一部表面にそれぞれ接触しながら、 屈曲経路を描いて 流送されるように構成されている。 各繊維束 2の拡繊は、 この経路に沿って順次 進むこととなる。  The fiber spreading rollers 19 are arranged in a staggered manner in the tank, and the fiber bundle is flowed in a bent path while contacting a part of the surface of each of the rollers 19. It is configured to: The spreading of each fiber bundle 2 proceeds sequentially along this path.
前記出口ガイ ドローラ 2 0 bは、 このローラの下手側に設けられている絞り口 ーラ機構 1 0 aへの繊維束 2の案内の用を果たす。  The outlet guide roller 20b serves to guide the fiber bundle 2 to a throttle port roller mechanism 10a provided on the lower side of the roller.
さて、 本願にあっては、 前述の拡繊ローラ 1 9が独特の構成を採用している。 本願における拡繊ローラ 1 9は、 その表面起伏状態として、 2種のものが採用 されており、 さらに、 その一部のローラに関しては、 表面がローラの軸方向 (流 送状態にある繊維束の幅方向) で、 湾曲した構造を有している。  By the way, in the present application, the above-described fiber spreading roller 19 has a unique configuration. The fiber spreading roller 19 in the present application employs two types of surface undulations. Further, some of the rollers have a surface in the axial direction of the roller (the fiber bundle in the flowing state). In the width direction).
以下、 夫々に特徴に関して説明する。  Hereinafter, each of the features will be described.
拡繊ローラ 1 9に関して、 その上流側から順に、 第一拡繊ローラ 1 9 a、 第二 拡繊ローラ 1 9 b、 第三拡繊ローラ 1 9 c、 第四拡繊ローラ 1 9 dと呼ぶと、 こ れらのローラに関して、第一拡繊ローラ 1 9 aと、 それ以外の拡繊ローラ 1 9 b , c , dとの表面起伏状態が、 異ならせてある。  The first spreading roller 19a, the second spreading roller 19b, the third spreading roller 19c, and the fourth spreading roller 19d are referred to in order from the upstream side with respect to the spreading roller 19. Regarding these rollers, the surface undulations of the first spreading roller 19a and the other spreading rollers 19b, c, d are different.
さらに具体的には、 第一拡繊ローラ 1 9 aは、 表面がアルミナ球体のブラスト を行って処理されたものであり、 この処理の後、 適度な電解研磨処理を施して、 ローラの表面は、 第 6図 (a ) に示すように、 表面外方に突出する突起部 Pに関 して、 突出側 pが先鋭とされ、 突起底部側が滑らかな凹状曲面となる凹部が多数 形成された凹状表面起伏を有するものとされている。 この様な表面状態の拡繊ロ ーラ 1 9を、 本願にあっては第一種拡繊ローラと呼ぶ。 一方、 第二拡繊ローラ 1 9 b、 第三拡繊ローラ 1 9 c、 第四拡繊ローラ 1 9 dとしては、 ローラ表面を化 学研磨処理したものとしている。 このような処理を施すことにより、 ローラ表面 は結晶粒界に沿って、 鋭い亀裂が形成されたものとなり、 その表面にメツキ処理 等を施すことで、 第 6図 (b ) に示すように、 ローラの表面は、 表面外方に突出 する突起部 Pに関して、 突出側 pが表面に沿って比較的大きな弧状を描き滑らか とされた弧状表面起伏を有するものとされている。 この様な表面状態の拡繊ロー ラ 1 9を、 本願にあっては第二種拡繊ローラと呼ぶ。 More specifically, the first spreading roller 19a has a surface that has been treated by blasting an alumina sphere. As shown in FIG. 6 (a), the projection P protruding outward from the surface has a protruding side p that is sharp, and the projection bottom has a number of concave portions in which a smooth concave curved surface is formed. It has surface undulations. The spreading roller 19 having such a surface state is referred to as a first-type spreading roller in the present application. Meanwhile, the second spreading roller 1 9b, the third spreading roller 19c, and the fourth spreading roller 19d have roller surfaces that have been chemically polished. By performing such a treatment, the roller surface becomes sharp cracks formed along the crystal grain boundaries. The surface of the roller is such that, with respect to the protrusion P projecting outward from the surface, the projecting side p has a relatively large arc along the surface and has a smooth arcuate surface undulation. The spreading roller 19 having such a surface state is referred to as a second type spreading roller in the present application.
ここで、 図示するように、 第二種拡繊ローラが配置されている部位は、 超音波 発生器 1 8のほぼ直上にあり、 超音波の比較的強い部位である。  Here, as shown in the figure, the portion where the second type spreading roller is arranged is almost immediately above the ultrasonic generator 18 and is a portion where ultrasonic waves are relatively strong.
上記のように、 拡繊の進行度合いと、 超音波の強度との関係にあって、 超音波 が比較的弱く、 拡繊が実質的に始まる位置に第一種拡繊ローラを、 超音波による 拡繊力が強い位置に第二種拡繊ローラを配置することで、 拡繊の初期には、 繊維 束を櫛けずるようにして、 拡繊を行ない、 拡繊がある程度進んだ状態では、 超音 波によって、突起の凸端近傍で、各フィラメントを自由に運動できるようにして、 強い拡繊能を発揮することができる。  As described above, due to the relationship between the degree of spreading and the intensity of the ultrasonic wave, the ultrasonic wave is relatively weak, and the first-type spreading roller is positioned at a position where the spreading starts substantially. By arranging a second-class spreading roller at a position where the spreading power is strong, the fiber is spread in the initial stage of spreading, so that the fiber bundle is not combed. The sound waves allow each filament to freely move in the vicinity of the protruding end of the projection, thereby exhibiting a strong spreading ability.
さて、 各拡繊ローラ 1 9は以上のような特徴的なローラ表面構造を有している が、 同時に、 以下のような工夫もされている。  Now, each spreading roller 19 has the characteristic roller surface structure as described above, but at the same time, the following measures have been devised.
即ち、 本願の第二拡繊ローラ 1 9 bにあっては、 このローラの繊維束 2の接触 部に関して、 繊維束の幅方向 (ローラの軸方向) で、 その全幅に亘つてローラ表 面が湾曲する (第 4図に示すものにあっては、 上に凸状の湾曲で太鼓状を成す) 湾曲面とされている (第 7図参照)。 この構造からも、 このローラ 1 9 bに接触す る繊維束は拡繊操作を受けるようにされている。  That is, in the second fiber spreading roller 19b of the present application, the roller surface over the entire width of the fiber bundle 2 in the width direction (axial direction of the roller) of the contact portion of the fiber bundle 2 of the roller. It is curved (in the case of the one shown in Fig. 4, it forms a drum shape with an upwardly convex curvature) (see Fig. 7). Also from this structure, the fiber bundle in contact with the roller 19b is subjected to a spreading operation.
さらに具体的に説明すると、 ローラ径は、 平均 1 0 ~ 1 0 0 m mに設定されてお り、 この湾曲度は、 ローラ径に対応して 1 0 0 Rから 1 0 0 0 R程度とする。 こ の場合、 4 0 0 Rから 6 0 0 R程度とすることが好ましい。 More specifically, the roller diameter is set to an average of 100 to 100 mm, and the degree of curvature is about 100 R to 100 R corresponding to the roller diameter. . In this case, it is preferable to be about 400 R to 600 R.
これまで説明してきた種別の拡繊ローラの組合せ、 又、 表面が全体として湾曲 している、 例えばつづみ条ローラの組合せは、 糸種等の応じて選択採用されるこ とは当然である。  It is natural that the combination of the spreading rollers of the types described above and the combination of the strip rollers having the surface curved as a whole, for example, are selected and adopted according to the yarn type and the like.
以上のようにして、 第一^ ^第四の拡繊ローラ 1 9 a, b , c , dに亘つて繊維 束を流送することにより、 順次、 繊維束を拡繊することができる。 As described above, the first ^ ^ fourth fiber spreading rollers 19 a, b, c, d over the fiber By feeding the bundle, the fiber bundle can be sequentially expanded.
拡繊された繊維束は、 出口ガイ ドローラ 2 0 により、 絞りローラ機構 1 0 a に導入される。  The expanded fiber bundle is introduced into the squeezing roller mechanism 10a by the exit guide roller 20.
この絞りローラ機構 1 0 aは、 一部が液中に浸潰されている金属口一ラ 1 0 0 a (このローラを、 本願にあっては第一絞りローラと呼ぶ) と、 この金属ローラ 1 0 0 aに上側から当接するゴムローラ 1 0 0 b (このローラを、 本願にあって は第二絞りローラと呼ぶ) から構成されており、 両ローラ間を予備拡繊済みの繊 維束が通過することで、 付着した液が除去される。  The squeezing roller mechanism 100a includes a metal roller 100a partially immersed in liquid (this roller is referred to as a first squeezing roller in the present application) and a metal roller. It is composed of a rubber roller 100b (which is referred to as a second squeezing roller in the present application) that comes into contact with 100a from above, and a fiber bundle that has been pre-expanded between the two rollers. By passing, the adhering liquid is removed.
この絞りローラ機構 1 0 aにおいて、 予備拡繊済みの繊維束 2が金属口一ラ 1 0 0 aに対して、 これに接触しながら、 液中から空気中へ導き出され、 さらに、 導出後、 比較的短時間で絞り操作が施されることにより、 液の表面張力による拡 繊不良を起こすことはない。 前記絞りローラ機構 1 0 aが、 本願にいう拡繊状態 維持手段及び除去手段の役割をする。  In the squeezing roller mechanism 100a, the pre-expanded fiber bundle 2 is guided from the liquid into the air while contacting the metal opening 100a with the metal opening 100a. By performing the squeezing operation in a relatively short time, poor spreading due to the surface tension of the liquid does not occur. The squeezing roller mechanism 10a functions as the spread state maintaining means and the removing means referred to in the present application.
次に本拡繊装置 6に関して説明する。  Next, the present fiber spreading device 6 will be described.
本拡繊装置 6も繊維束 2の拡繊を液体内で行うものであり、 第 5図に示すよう に、 本拡繊用液槽 5を備えると共に、 繊維束 2を流送方向に導くためのガイ ド口 ーラ 2 0 c、 d、 e、 本拡繊を液体流を利用しておこなう拡繊部 1 7、 前記拡繊 部 1 7において拡繊されて得られる拡繊済み繊維束 2 1を液中から気体中へ引き 出すと共に、 拡繊済み繊維束 2 1の絞り操作を行う絞りローラ機構 1 0 bを備え ている。  The fiber spreading device 6 also expands the fiber bundle 2 in a liquid, and as shown in FIG. 5, includes the main fiber spreading liquid tank 5 and guides the fiber bundle 2 in the flowing direction. 20 c, d, e, a fiber spreading section 17 for performing the main fiber spreading using a liquid flow, a fiber bundle 2 which has been spread and obtained in the fiber spreading section 17 A drawing roller mechanism 10b is provided to draw 1 from the liquid into the gas and to perform a drawing operation of the spread fiber bundle 21.
本拡繊装置 6にあっては、 本拡繊用液槽 5内外において、 第一、 第二、 第三ガ イ ドローラ 2 0 c , 2 0 d , 2 0 eが設けられており、 第一ガイ ドロ一ラ 2 0 c は、 繊維束 2を液体内に導入するための役割を果たすと共に、 拡繊部 1 7の上流 側と下流側との両側に亘つて設けられる二対の第二ガイ ドローラ 2 0 dは、 拡繊 部 1 7において繊維束 2に橈みを付与するための支持用としての役割を果たす。 第三ガイ ドロ一ラ 2 0 eは、 拡繊部 1 Ίより送出されてくる挞繊済み繊維束 2 1を絞りローラ機構 1 0 bを成す一方の金属ローラ 1 0 0 aに導く。  In the fiber spreading device 6, first, second, and third guide rollers 20c, 20d, and 20e are provided inside and outside the liquid tank 5 for fiber spreading. The guide rollers 20 c serve to introduce the fiber bundle 2 into the liquid, and two pairs of second guides provided on both the upstream side and the downstream side of the spreading part 17. The roller 20 d serves as a support for giving a radius to the fiber bundle 2 in the spread portion 17. The third guide roller 200 e guides the spread fiber bundle 21 sent out from the spreading section 1 to one of the metal rollers 100 a forming the squeezing roller mechanism 10 b.
所定の経路を経て送流される繊維束 2は、 拡繊部 1 7において本拡繊を受ける のであるが、 この拡繊部 1 7の構造は以下の通りである。 第 1図、 5図に示すように、 本拡繊用液槽 5に対して、 その槽内の液体を所定 の循環路を介して循環させる循環ポンプ 2 2が備えられている。 即ち、 本拡繊用 液槽 5内に設けられた拡繊部 1 7の下流側には、 吸引流路 2 3、 さらにその下手 側に貯液部 2 4が設けられると共に、 この貯液部 2 4の流出側が、 前記循環ポン プ 2 2の流体吸引口 2 2 aに接続されている。 The fiber bundle 2 sent through a predetermined path undergoes the main spreading in the spreading section 17, and the structure of the spreading section 17 is as follows. As shown in FIG. 1 and FIG. 5, a circulation pump 22 for circulating the liquid in the tank for the fiber spreading liquid tank 5 through a predetermined circulation path is provided. That is, a suction flow path 23 is provided on the downstream side of the fiber spreading section 17 provided in the fiber spreading liquid tank 5, and a liquid storage section 24 is further provided on the downstream side thereof. The outlet side of 24 is connected to the fluid suction port 22 a of the circulation pump 22.
一方、 この循環ポンプ 2 2の流体吐出口 2 2 bは、 前記本拡繊用液槽 5に吐出 流体を戻すように接続されている。  On the other hand, a fluid discharge port 22 b of the circulating pump 22 is connected to return the discharged fluid to the main fiber liquid tank 5.
さて、 前記拡繊部 1 7の近傍の構造に関して説明すると、 この拡繊部 1 7の上 流側には整流流路形成体 2 5が、 その下流側には吸引流路形成体 2 6が備えられ ている。  Now, the structure in the vicinity of the fiber spreading part 17 will be described. A rectifying flow path forming body 25 is provided on the upstream side of the fiber spreading part 17, and a suction flow path forming body 26 is provided on the downstream side thereof. It is provided.
これらの形成体 2 5、 2 6は、 第 2図、 5図に示すように、 それぞれ、 単一の 繊維束 2に対する拡繊部 1 7の流路断面形状 (方形形状) をそのまま、 流体の流 れ方向 (実際は上下方向) に維持して構成されるものであり、 各繊維束毎に、 流 路を独立に構成するものとされている。  As shown in FIGS. 2 and 5, these formed bodies 25 and 26 retain the fluid cross-sectional shape (square shape) of the spreading portion 17 with respect to a single fiber bundle 2, It is configured to be maintained in the flow direction (actually, up and down direction), and the flow path is configured independently for each fiber bundle.
図示するように、 整流流路形成体 2 5の流入口 2 5 aは、 本拡繊用液槽 5の液 面よりも低い位置とされており、 流入口 2 5 aの周部より、 整流流路 2 7に液が 流れ込む。 さらに、 このようにして流入した液は、 整流流路 2 7で整流されて拡 繊部 1 7に至り、 さらに吸引流路 2 3を流れた後、 貯液部 2 4に流入する。 貯液部 2 4は、 複数設けられている拡繊部 1 7の対して共通の単一貯液空間を 提供するように構成されており、 複数の拡繊部間における流量差を吸収すること ができると共に、 循環ポンプ 2 2からの影響を低減することができる。  As shown in the figure, the inlet 25 a of the straightening channel forming body 25 is located at a position lower than the liquid level of the liquid tank 5 for fiber expansion. Liquid flows into channel 27. Further, the liquid that has flowed in this way is rectified in the rectification flow path 27, reaches the expansion section 17, further flows through the suction flow path 23, and then flows into the liquid storage section 24. The liquid storage part 24 is configured to provide a common single liquid storage space for the plurality of expanding parts 17, and absorbs a flow rate difference between the plurality of expanding parts. And the effect from the circulation pump 22 can be reduced.
よって、 以上の構成で、 流体流発生手段が構成されている。  Therefore, a fluid flow generating unit is configured with the above configuration.
前述の拡繊部 1 7にあっては、 この部位での液体流の流速と、 繊維束 2のォー バーフィード状態との関係で、 これまで説明してきた、 橈み状態が発生し、 液体 流による流体力学的作用で、 繊維束の拡繊が良好に行われる。  In the spreading section 17 described above, the radius state described above occurs due to the relationship between the flow velocity of the liquid flow at this section and the overfeed state of the fiber bundle 2, Due to the hydrodynamic effect of the flow, the fiber bundle is spread well.
このようにして、 拡繊部 1 7において拡繊された繊維束 (拡繊済み繊維束 2 1 と呼べる状態となっている) は、 第三ガイ ドローラ 2 0 eに導かれ、 絞りローラ 機構 1 0 b内に導入される。  In this way, the fiber bundle expanded in the expansion unit 17 (which can be referred to as an expanded fiber bundle 21) is guided to the third guide roller 20e, and the squeezing roller mechanism 1 Introduced within 0 b.
この絞りローラ機構 1 0 bは、 前述のように、 一部が液中に浸潰されている金 属ローラ 1 00 aと、 この金属ローラ 1 00 aに上側から当接するゴムローラ 1 00 bから構成されており、 両ローラ間を拡繊済みのシートが通過することで、 拡繊済み繊維束 2 1に付着した液を除去する。 As described above, the squeezing roller mechanism 10b is formed of gold partially immersed in liquid. A metal roller 100a and a rubber roller 100b that comes into contact with the metal roller 100a from above, and the spread fiber sheet passes between the rollers to form a spread fiber bundle 2 1 The liquid adhering to is removed.
この絞りローラ機構 1 0 bにおいても、 拡繊済み繊維束 2 1が金属ローラ 1 0 0 aに対して、 これに接触しながら、 '液中から空気中へ導き出され、 さらに、 導 出後、 比較的短時間で絞り操作が施されることにより、 液の表面張力による拡繊 不良を起こすことはない。  Also in this squeezing roller mechanism 10b, the spread fiber bundle 21 is guided out of the liquid into the air while contacting the metal roller 100a with the metal roller 100a. By performing the squeezing operation in a relatively short time, there is no possibility of fiber spreading failure due to the surface tension of the liquid.
さて、 絞り操作後の拡繊済み繊維束 2 1は、 適宜配設置されるローラ 28に案 内されて加熱部 12に導かれると共に、 卷取部 13に導かれる。  The expanded fiber bundle 21 after the drawing operation is guided by a roller 28 that is appropriately disposed, guided to the heating unit 12, and guided to the winding unit 13.
加熱部 12は、 拡繊済み繊維束 2 1に残存する液体分を乾燥により除去するた めの乾燥部 12 aと、拡繊済み繊維束 2 1を成すフイラメントに付着されており、 フィラメントを接着させることがあるサイジング剤等を軟化、 再分散させるため の再熱処理部 1 2 bとからなっている。  The heating section 12 is attached to a drying section 12a for removing the liquid remaining in the expanded fiber bundle 21 by drying, and to a filament forming the expanded fiber bundle 21 to adhere the filaments. And a re-heat treatment section 12b for softening and re-dispersing a sizing agent and the like that may be formed.
以上の構成により、 加熱部 1 2において、 乾燥および再熱処理を行って、 卷取 部 1 3で、 拡繊済み繊維束 2 1を卷き取ることで、 卷取ボビン 130に巻き取ら れた拡繊済み繊維束 2 1を得ることができる。  With the above configuration, drying and re-heat treatment are performed in the heating unit 12, and the expanded fiber bundle 21 is wound up in the winding unit 13, so that the expanded fiber wound on the winding bobbin 130 is wound. A fine fiber bundle 21 can be obtained.
[実施例]  [Example]
上記の拡繊システムを使用して、 予備拡繊を行なった後、 本拡繊を行なうと共 に、 得られた拡繊済み繊維束を利用して織物を製織し、 その織物を利用してプリ プレダを作製した結果を表 1に示した。  After preliminarily expanding using the above-described fiber spreading system, the main fiber spreading is performed, and a woven fabric is woven using the obtained expanded fiber bundle, and the woven fabric is then used. Table 1 shows the results of the preparation of the prepredder.
実施例は 3例とした。  There were three examples.
表 1には、 拡繊前 (但し予備拡繊を終了しているもの) の繊維束に対して、 フ イラメント平均径、 フイラメント数、 繊維束の厚み (元厚 t 0として示す)、 繊維 束の幅 (元幅 D 0として示す) 及び繊維束の元幅 Z元厚 (D 0/t 0 )、 繊維強度 (MP a)、 弾性率 (GP a) を示した。  Table 1 shows the average fiber diameter, the number of filaments, the thickness of the fiber bundle (shown as the original thickness t0), the fiber bundle for the fiber bundle before fiber expansion (though the preliminary fiber expansion has been completed). Of the fiber bundle (D0 / t0), fiber strength (MPa), and elastic modulus (GPa).
さらに、 拡繊後の繊維束に対して、 繊維束の厚み (拡繊厚 t f として示す)、 厚 み方向のフィラメントの段数、 繊維束の幅 (拡繊幅 Df として示す) 及び繊維束 の拡繊幅/拡繊厚 (D f/t f) を示すと共に、 拡繊後の繊維束の繊維強度 (M Pa)、 弾性率 (GPa) を示した。 さらに、繊維束を使用して得られた織物に関して、それらの織組織、 目付け(g /m- ) 厚み (mm) を示した。 但し、 実施例 2に関しては、 織組織を形成せ ず、 繊維束を一方向に引き揃えた状態での使用とした (表 1にあっては織組織の 部位に UDとして示している)。 In addition, the fiber bundle thickness (shown as spread thickness tf), the number of filaments in the thickness direction, the fiber bundle width (shown as spread width Df), and the fiber bundle expansion The fiber width / expanded thickness (D f / tf) is shown, as well as the fiber strength (MPa) and elastic modulus (GPa) of the fiber bundle after fiber expansion. Further, with respect to the woven fabric obtained using the fiber bundle, the woven structure, the basis weight (g / m-) and the thickness (mm) are shown. However, in Example 2, no woven structure was formed, and the fiber bundles were used in a state where the fiber bundles were aligned in one direction (in Table 1, UD is shown at the site of the woven structure).
また、 得られたプリプレダに関して、 目付け (g/ms )s 樹脂含有率 (%)、 曲げ強度 (MPa)、 曲げ弾性 (GPa)、 繊維含有重量 (%) を示した。 樹脂は エポキシ樹脂を用いた。 The basis weight (g / ms) s resin content (%), flexural strength (MPa), flexural elasticity (GPa), and fiber content weight (%) of the obtained pre-preda are shown. Epoxy resin was used as the resin.
樹脂としては、 熱硬化性樹脂、 熱可塑性樹脂等、 任意のものを使用でき、 熱硬 化性樹脂の例としては、 エポキシ樹脂の他、 ビニルエステル、 フヱノール、 シリ コーン、 ァクリル等を挙げることができる。 一方、 熱可塑性樹脂としては、 PP、 P S、 AB S、 PE、 P C等を挙げることができる。 As the resin, any resin such as a thermosetting resin or a thermoplastic resin can be used.Examples of the thermosetting resin include epoxy resin, vinyl ester, phenol, silicone, and acryl. it can. On the other hand, examples of the thermoplastic resin include PP, PS, ABS, PE, and PC.
表 1 table 1
1 2 3 繊維束 (拡繊前) 1 2 3 Fiber bundle (before spreading)
フィラメント平均径 5 6.4 / l フィラメント数 24K 12K 12K 元厚 tO (mm) 0.086 0.07 0.084 元幅 DO (mm) 7 7 7 幅/厚 (DO/ tO) 81.4 100 83.3 繊維強度 (MP a) 5560 4760 4350 弾性率 ( G P 290 295 235 繊維束 (ίέ繊後) Average filament diameter 5 6.4 / l Number of filaments 24K 12K 12K Original thickness tO (mm) 0.086 0.07 0.084 Original width DO (mm) 7 7 7 Width / thickness (DO / tO) 81.4 100 83.3 Fiber strength (MPa) 5560 4760 4350 Elastic modulus (GP 290 295 235 Fiber bundle (after fiber)
拡繊厚 tf (mm) 0.02 0.019 0.024 フィラメント段数 4(3 5) 5(3 6) 5(3 7) 拡繊巾 Df (mm) 30 25 25 幅/厚 (D f /t f ) 1500 1316 1042 繊維強度 (MP a) 5730 4900 4850 弾性率 (GPa) 290 290 235 織物 Spread thickness tf (mm) 0.02 0.019 0.024 Number of filaments 4 (3 5) 5 (3 6) 5 (3 7) Spread width Df (mm) 30 25 25 Width / thickness (D f / tf) 1500 1316 1042 Fiber Strength (MPa) 5730 4900 4850 Modulus (GPa) 290 290 235 Textile
織組織 平 UD 平 目付 (g/m2) 54 27 64 厚み (mm) 0.07 0.019 0.07 プリプレグ Woven texture Flat UD Weight (g / m 2 ) 54 27 64 Thickness (mm) 0.07 0.019 0.07 Pre-preg
目付 (g/m2) 90 47 107 樹脂含有率 (%) 42 43 42 曲げ強度 (MP a) 1200 1570 1430 曲げ弾性 (GPa) 65 150 70 厚み (mm) 0.1 0.035 0.09 繊維含有重量 (%) 58 57 58 表からも判明するように、 実施例 1、 2、 3に関して、 拡繊前、 拡繊後の繊維 強度について、 強度の向上が見られ、 フィラメント個々の配向性がさらに上がつ ているものと考えられる。 Weight (g / m 2 ) 90 47 107 Resin content (%) 42 43 42 Flexural strength (MPa) 1200 1570 1430 Flexural elasticity (GPa) 65 150 70 Thickness (mm) 0.1 0.035 0.09 Fiber content weight (%) 58 57 58 As can be seen from the table, in Examples 1, 2 and 3, the fiber strength before and after spreading was improved, and the orientation of each filament was further improved. Conceivable.
さらに、 得られた織物、 プリプレダは、 軽量で、 実用上の強度条件を充分に満 たすものであった。  Furthermore, the obtained woven fabric and prepredder were lightweight and sufficiently satisfied practical strength conditions.
〔別実施の形態〕  [Another embodiment]
( 1 ) 上記の実施の形態においては、 拡繊用の液体として水を使用する例を示 したが、 拡繊効果を上げるためには、 水にアルコール、 あるいは界面活性剤を混 ぜて、 拡繊を行ってもよい。  (1) In the above embodiment, an example was described in which water was used as the liquid for spreading, but in order to increase the spreading effect, an alcohol or surfactant was mixed with water to expand the spread. You may do fine.
( 2 ) 前記の実施の形態にあっては、 所定のローラに接触させながら、 拡繊済 みの繊維束を液中から液外へ導いて、 拡繊済みの繊維束の拡繊状態を維持するよ うにして、 拡繊状態維持を図る構成としたが、 拡繊状態の維持にあっては、 気流 等を当てることにより拡繊状態を維持する構造を採用することができる。  (2) In the above-described embodiment, the expanded fiber bundle is guided from the liquid to the outside of the liquid while being in contact with the predetermined roller, and the expanded state of the expanded fiber bundle is maintained. Thus, the spread state is maintained, but in the spread state, a structure in which the spread state is maintained by applying an air current or the like can be adopted.
( 3 ) さらに、 前記の実施の形態にあっては、 繊維束に対して絞り操作をする ことにより、液を絞り除去するものとしたが、繊維束からの液の除去に際しては、 任意の構造が採用でき、先に示したと同様に気流等を利用することも可能である。 (3) Furthermore, in the above embodiment, the liquid is squeezed and removed by performing a squeezing operation on the fiber bundle. , And it is also possible to use an airflow or the like as described above.
( 4 ) 前記拡繊ローラとして、 その表面起伏状態を異ならせるに、 本願にいう 第一種拡繊ローラと第二種拡繊ローラとの組み合わせにおいて、 異なった種類の ローラによる拡繊構造を得るものとしたが、 例えば、 異なった種類として、 前記 第一種、 第二種を採用するほか、 単に表面がフラッ トな拡繊ローラを採用しても よく、 さらに、 第一種、 第二種の拡繊ローラを組み合わせて使用する場合のみな らず、 単一種拡繊ローラ (例えぱ第一種拡繊ローラのみ) を使用する場合にあつ ても、 そのローラ表面に形成される突起の高さ、 大きさ等を変化させて異なった 表面起伏状態の拡繊ローラを構成してもよい。 (4) In order to make the surface unevenness of the fiber spreading roller different, in the combination of the first type fiber spreading roller and the second type fiber spreading roller referred to in the present application, a fiber spreading structure using different types of rollers is obtained. However, for example, in addition to the different types, the first type and the second type may be employed, or a fiber spreading roller having a flat surface may be employed. When using a single-type spreading roller (for example, only the first-type spreading roller) as well as when using a combination of these spreading rollers, the height of the projections formed on the roller surface is increased. By changing the size or the like, a fiber spreading roller having a different surface undulation may be formed.
( 5 ) 上記の実施の形態にあって、 湾曲状接触面を構成するに、 所謂、 太鼓状 (ローラ軸方向の中央側が張り出したもの) のものを採用して、 拡繊を高める側 に、 その表面形状を利用したが、 逆に、 つづみ状 (ローラ軸方向の中央側が窪ん だもの) として、 拡繊済みの繊維束の幅の調整 (例えば、 超音波により充分すぎ るほどの拡繊状態にある場合に、 各フイラメントの平行性を整えるようにする) を目的として、 採用してもよい。 (5) In the above-described embodiment, a so-called drum-shaped one (a part protruding at the center in the roller axis direction) is used to configure the curved contact surface. The surface shape was used, but conversely, the width of the spread fiber bundle was adjusted as a conical shape (the center side in the roller axial direction was depressed) (for example, the spread of the fiber was more than sufficient by ultrasonic waves). When in the state, try to adjust the parallelism of each filament) It may be adopted for the purpose of.
( 6 ) 上記の実施の形態にあっては、 マルチフィラメントが炭素繊維からなる ものを示したが、 ガラス繊維、 ァラミ ド繊維、 P B O繊維、 ビニロン繊維、 セラ ミック繊維等からなるものにあっても、 本願は適応できる。  (6) In the above embodiment, the multifilament is made of carbon fiber, but the multifilament is made of glass fiber, aramide fiber, PBO fiber, vinylon fiber, ceramic fiber, etc. The present application is applicable.
( 7 ) 上記の実施の形態にあっては、 超音波式拡繊装置の後段に流体流式拡繊 装置を備える構成を示したが、 繊維束によっては、 先に示したように、 この順番 を逆としてもよい。  (7) In the above embodiment, the configuration in which the fluid flow type spreading device is provided at the subsequent stage of the ultrasonic type spreading device has been described. However, depending on the fiber bundle, as described above, this order may be used. May be reversed.
( 8 ) 上記の実施の形態においては、 拡繊部における繊維束の撓みを、 別途設 けられている給糸調整用検出部における繊維束の橈み量を検出することにより推 定して、 オーバーフィード量を調整するものとしたが、 拡繊部における撓みを直 接検出する構造を採用してもよい。  (8) In the above-described embodiment, the bending of the fiber bundle in the fiber spreading section is estimated by detecting the radius of the fiber bundle in the separately provided yarn feeding adjustment detecting section, Although the amount of overfeed is adjusted, a structure for directly detecting the bending in the expanded portion may be employed.
産業上の利用可能性 Industrial applicability
複数のフィラメントが集合されてなる繊維束を拡繊対象とする拡繊技術として、 流体流において、 拡繊能力において優れると共に、 拡繊を多段、 もしくは多数の 繊維束を対象として行う場合にあっても、 必要となる動力が少ない拡繊済み繊維 束を得ることができ、  As a fiber spreading technology for expanding a fiber bundle composed of a plurality of filaments, the fiber spreading ability is excellent in a fluid flow, and the fiber spreading is performed in multiple stages or for a large number of fiber bundles. In addition, it is possible to obtain an expanded fiber bundle that requires less power,
液中で超音波を繊維束に当てて拡繊を行う超音波式拡繊装置において、 繊維束 を液外に導出した状態で良好な拡繊状態を維持しやすい超音波式拡繊装置を得、 多様な拡繊対象に対して、 比較的高い拡繊を安定して行なうことができる拡繊 システムを得ることができた。  An ultrasonic fiber spreading device that spreads fiber by applying ultrasonic waves to the fiber bundle in liquid, and obtains an ultrasonic fiber spreading device that easily maintains a good fiber spreading state with the fiber bundle led out of the liquid. However, it was possible to obtain a fiber spreading system capable of stably performing relatively high fiber spreading for various fiber spreading targets.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数のフィラメントが集合されてなる繊維束を拡繊する拡繊部に、 前記繊維 束をオーバーフィード制御しながら流送供給する流送手段と、 前記繊維束を拡繊 する流体流を発生させる流体流発生手段とを備え、 1. A feeding means for feeding and feeding the fiber bundle while controlling the overfeed to a fiber expanding section for expanding a fiber bundle formed by gathering a plurality of filaments, and generating a fluid flow for expanding the fiber bundle. Fluid flow generating means for causing
前記拡繊部において、流送されてくる前記繊維束に対して交差して前記流体流 を通過させ、 前記繊維束を流体流の下流方向へ撓ませると共に、 前記流体流によ り前記繊維束を繊維束幅方向に解き分ける流体流式拡繊装置であって、  In the fiber spreading section, the fluid flow is passed through the fiber bundle crossing the flowed fiber bundle, and the fiber bundle is bent in a downstream direction of the fluid flow. Is a fluid flow type fiber spreading device for separating the fibers in the width direction of the fiber bundle,
前記流体流が液体流であり、内部に前記液体流が形成される液槽を備えると共 に、 前記液槽内に前記繊維束の流送部及び前記拡繊部を設け、 前記液槽内で流送 状態にある前記繊維束に対して交差して液体流が通過する通過部を、 前記拡繊部 とする流体流式拡繊装置。  The fluid flow is a liquid flow, a liquid tank in which the liquid flow is formed is provided, and the fiber bundle feeding section and the fiber spreading section are provided in the liquid tank; A fluid flow type spreading device, wherein a passing portion through which a liquid flow passes while intersecting the fiber bundle in a flowing state is used as the spreading portion.
2 . 前記流体流発生手段が、 前記拡繊部の液体を吸引する吸引流路を備えた請求 の範囲第 1項記載の流体流式拡繊装置。  2. The fluid flow spreading device according to claim 1, wherein the fluid flow generating means includes a suction flow path for sucking the liquid in the spreading portion.
3 . 前記拡繊部より上流側に、 前記拡繊部に至る液体流を整流する整流流路形成 体を備える請求の範囲第 1または 2項記載の流体流式拡繊装置。 3. The fluid flow spreading device according to claim 1 or 2, further comprising a rectifying flow path forming body that rectifies a liquid flow reaching the spreading portion, upstream of the spreading portion.
4 . 前記拡繊部に対して設けられる前記吸引流路の下流側に隣接して、 貯液部を 備えた請求の範囲第 2項記載の流体流式拡繊装置。  3. The fluid flow type fiber spreading device according to claim 2, further comprising a liquid storage part adjacent to a downstream side of the suction flow path provided for the fiber spreading part.
5 . 液中にある前記拡繊部で拡繊された拡繊済み繊維束を、 気体中で絞る絞り口 —ラ機構が設けられており、前記絞りローラ機構を成す一方のローラに接触して、 液中から気体中へ前記拡繊済み繊維束が導出される請求の範囲第 1 ~ 4の何れか 1項記載の流体流式拡繊装置。  5. A squeezing port mechanism for squeezing the expanded fiber bundle expanded by the expanding section in the liquid in a gas is provided, and is contacted with one of the rollers constituting the squeezing roller mechanism. 5. The fluid flow type spreading device according to claim 1, wherein the expanded fiber bundle is led out of a liquid into a gas.
6 . 複数の前記拡繊部を備え、 前記複数の拡繊部で同時に拡繊を実行可能な請求 の範囲第 1 ~ 5の何れか 1項記載の流体流式拡繊装置。  6. The fluid flow type fiber spreading device according to any one of claims 1 to 5, further comprising a plurality of the fiber spreading portions, wherein the fiber spreading can be performed simultaneously by the plurality of fiber spreading portions.
7 . 複数のフィラメントが集合されてなる繊維束を拡繊する拡繊部に、 前記繊維 束をオーバーフィード制御しながら流送供給すると共に、 流送されてくる前記繊 維束に対して交差方向に流体を通過させ、 前記拡繊部において、 前記繊維束を流 体流の下流側へ橈ませると共に、 前記流体流の作用により前記繊維束を繊維束幅 方向に解き分ける流体流式拡繊方法であって、 前記流体流として液体流を使用し、前記繊維束の流送部及び前記拡繊部を液体 内に設けると共に、 前記液体内の前記繊維束の流送部に対して、 交差して前記液 体流を通過させ、 前記通過部を前記拡繊部として、 繊維束を解き分ける流体流式 拡繊方法。 7. The fiber bundle is flow-supplied to the fiber-expanding portion that spreads the fiber bundle formed by gathering a plurality of filaments while controlling the fiber bundle in an overfeeding manner, and the fiber bundle is fed in a direction crossing the fiber bundle. A fluid flow type fiber spreading method in which a fluid is passed through the fiber spreading section, and the fiber bundle is deflected downstream of the fluid flow in the fiber spreading portion, and the fiber bundle is separated in the fiber bundle width direction by the action of the fluid flow. And A liquid flow is used as the fluid flow, and the fiber bundle feeding section and the fiber spreading section are provided in the liquid, and the liquid body intersects with the fiber bundle feeding section in the liquid. A fluid flow type fiber spreading method in which a flow is passed and the fiber bundle is separated by using the passing part as the fiber spreading part.
8 . 前記液体流を形成するに、 前記拡繊部の液体を吸引して、 前記拡繊部におけ る前記繊維束の拡繊を吸引流により行う請求の範囲第 7項記載の流体流式拡繊方 法。 8. The fluid flow method according to claim 7, wherein, in forming the liquid flow, the liquid in the expansion unit is sucked, and the fiber bundle is expanded in the expansion unit by a suction flow. Spreading method.
9 . 前記拡繊部より上流側に、 前記拡繊部に至る液体流を整流する整流流路を設 け、 整流された状態の前記液体流で拡繊を行う請求の範囲第 7または 8項記載の 流体流式拡繊方法。  9. A rectification flow path for rectifying a liquid flow reaching the fiber expansion part is provided upstream of the fiber expansion part, and fiber expansion is performed with the liquid flow in a rectified state. The fluid flow type spreading method as described in the above.
1 0 .前記拡繊部で拡繊された拡繊済み繊維束を、液中から気体中へ導出するに、 前記拡繊済み繊維束を固体表面に接触させたまま、 液中から気体中へ導出する請 求の範囲第 7〜 9の何れか 1項記載の流体流式拡繊方法。  10 .In order to guide the expanded fiber bundle expanded in the expansion unit from the liquid to the gas, the expanded fiber bundle is moved from the liquid to the gas while keeping the expanded fiber bundle in contact with the solid surface. 10. The fluid flow spreading method according to any one of claims 7 to 9, wherein the request is derived.
1 1 . 前記液体に、 前記液体と前記フィラメントとの間で界面活性を発揮する界 面活性材料を混合して拡繊を行う請求の範囲第 7〜 1 0の何れか 1項記載の流体 流式拡繊方法。  11. The fluid flow according to any one of claims 7 to 10, wherein fiber spreading is performed by mixing a surface active material that exhibits surface activity between the liquid and the filament with the liquid. Formula spreading method.
1 2 . 複数の前記拡繊部を設け、 前記複数の拡繊部で同時に拡繊を実行する請求 の範囲第 7 ~ 1 1の何れか 1項記載の流体流式拡繊方法。  12. The fluid flow type fiber spreading method according to any one of claims 7 to 11, wherein a plurality of the fiber spreading sections are provided, and the fiber spreading is performed simultaneously by the plurality of fiber spreading sections.
1 3 . 複数のフィラメントが集合されてなる繊維束を拡繊対象とし、 前記繊維束 が張力を付与された状態で流送される繊維束流送部を液中に備えると共に、 前記 液中に超音波を伝播させて前記繊維束流送部の繊維束を拡繊する超音波式拡繊装 置であって、  1 3. A fiber bundle in which a plurality of filaments are gathered is targeted for spreading, and the fiber bundle is provided in a liquid with a fiber bundle feeding section for flowing the fiber bundle in tension. An ultrasonic spreading device that propagates an ultrasonic wave to spread a fiber bundle of the fiber bundle feeding section,
拡繊済みの繊維束を前記液中から液外へ導出する際に、前記繊維束の拡繊状態 を維持する拡繊状態維持手段を備え、 前記繊維束から液を除去する除去手段を備 えた超音波式拡繊装置。  When the expanded fiber bundle is led out of the liquid out of the liquid, an expanded state maintaining means for maintaining the expanded state of the fiber bundle is provided, and a removing means for removing the liquid from the fiber bundle is provided. Ultrasonic type fiber spreading device.
1 4 . 前記拡繊状態維持手段及び前記除去手段が、 第一絞りローラおよび、 前記 第一絞りローラに当接する第二絞りローラを有する絞りローラ機構であり、 前記 第一絞りローラが前記液中に浸潰されており、 前記拡繊済みの繊維束が前記第一 絞りローラに接触した状態で液中より液外に導出されると共に、 当該繊維束を前 記第一絞り口一ラ及び第二絞りローラによって絞り可能に構成してある請求の範 囲第 1 3項記載の超音波式拡繊装置。 14. The spread state maintaining means and the removing means are a squeezing roller mechanism having a first squeezing roller and a second squeezing roller abutting on the first squeezing roller, wherein the first squeezing roller is in the liquid. The expanded fiber bundle is drawn out of the liquid in contact with the first squeezing roller, and the fiber bundle is moved forward. 14. The ultrasonic fiber spreading device according to claim 13, wherein the ultrasonic fiber spreading device is configured to be capable of being drawn by the first drawing port and the second drawing roller.
1 5 . 前記繊維束流送部を構成するに、 複数のローラに対して前記繊維束が、 各 ローラ表面に接触しながら屈曲経路を成して流送され、  15. In configuring the fiber bundle feeding section, the fiber bundle is fed to a plurality of rollers while forming a bending path while contacting the surface of each roller,
前記複数のローラとして、前記繊維束が接触するローラ表面の起伏状態が異な る複数種の拡繊ローラを備えた請求の範囲第 1 3または 1 4項に記載の超音波式 拡繊装置。  15. The ultrasonic fiber spreading device according to claim 13, wherein the plurality of rollers include a plurality of types of fiber spreading rollers having different undulations on the roller surface with which the fiber bundle contacts.
1 6 . 前記ローラ表面の起伏状態が、 多数の微小な突起部によって形成されるも のであり、 前記ローラ表面の起伏状態が異なる複数種の拡繊ローラとして、 前記 突起部の突出側が先鋭とされる第一種拡繊ローラと、 前記突起部の突出側が滑ら かな第二種拡繊ローラとを備えた請求の範囲第 1 5項記載の超音波式拡繊装置。 16. The undulating state of the roller surface is formed by a large number of minute projections, and as a plurality of types of spreading rollers having different undulating states of the roller surface, the projecting side of the projection is sharpened. 16. The ultrasonic fiber spreading device according to claim 15, comprising a first-type spreading roller, and a second-type spreading roller in which the protruding side of the protrusion is smooth.
1 7 . 前記繊維束流送部を構成するに、 複数のローラに対して前記繊維束が、 各 ローラ表面に接触しながら屈曲経路を成して流送される構成で、 17. The fiber bundle feeding section is configured such that the fiber bundle is fed to a plurality of rollers in a bent path while being in contact with the surface of each roller.
前記複数のローラの内、前記超音波による拡繊作用が強い位置に配設される口 —ラとして、 前記ローラ表面の起伏状態が、 多数の微小な突起部によって形成さ れ、 且つ、 前記突起部の突出側が滑らかな第二種拡繊ローラを備えた請求の範囲 第 1 3または 1 4項に記載の超音波式拡繊装置。  Among the plurality of rollers, as an opening arranged at a position where the spreading action by the ultrasonic wave is strong, the undulating state of the roller surface is formed by a large number of minute projections, and the projections The ultrasonic fiber spreading device according to claim 13 or 14, further comprising a second-type fiber spreading roller having a smooth projecting side.
1 8 . 前記繊維束流送部を構成するに、 複数のローラに対して前記繊維束が、 各 ローラ表面に接触しながら屈曲経路を成して流送され、  18. To configure the fiber bundle feeding section, the fiber bundle is fed to a plurality of rollers in a bent path while contacting the surface of each roller,
前記繊維束が接触する接触面が、流送状態にある繊維束の幅方向で湾曲してい る湾曲状接触面である請求の範囲第 1 3から 1 7の何れか 1項記載の超音波式拡 繊装置。  The ultrasonic type according to any one of claims 13 to 17, wherein the contact surface with which the fiber bundle contacts is a curved contact surface that is curved in the width direction of the fiber bundle in the flowing state. Spreading device.
1 9 . 前記液中に、 拡繊用の超音波に共振する共振機構を備えた請求の範囲第 1 3 - 1 8の何れか 1項記載の超音波式拡繊装置。  19. The ultrasonic fiber spreading device according to any one of claims 13 to 18, further comprising a resonance mechanism that resonates with the ultrasonic waves for fiber spreading in the liquid.
2 0 . 複数のフィラメントが集合されてなる繊維束を拡繊対象とする拡繊システ ムであって、 20. This is a fiber spreading system for expanding a fiber bundle composed of a plurality of filaments,
前記繊維束が張力を付与された状態で、 複数のローラに対して各ローラ表面に 接触しながら屈曲経路を成して流送される繊維束流送部を液中に備えると共に、 前記液中に超音波を伝播させて前記繊維束流送部の繊維束を拡繊する超音波式拡 繊装置を予備拡繊装置として備え、 In a state in which the fiber bundle is tensioned, a fiber bundle feeding section is formed in the liquid to be fed in a bent path while being in contact with the surface of each roller with respect to the plurality of rollers. Ultrasonic wave type which spreads the fiber bundle of the fiber bundle feeding part by transmitting ultrasonic waves to the fiber bundle A fiber device is provided as a preliminary fiber spreading device,
前記予備拡繊装置により拡繊された予備拡繊済み繊維束を、 さらに拡繊する本 拡繊装置を備え、  A pre-expanded fiber bundle expanded by the pre-expanding device;
前記本拡繊装置が、 前記予備拡繊済み繊維束を拡繊する拡繊部に、 前記予備拡 繊済み繊維束をオーバーフィード制御しながら流送供給する流送手段と、 前記予 備拡繊済み繊維束を拡繊する流体流を発生させる流体流発生手段とを備え、 前記拡繊部において、 流送されてくる前記予備拡繊済み繊維束に対して交差し て前記流体流を通過させ、 前記予備拡繊済み繊維束を流体流の下流方向へ撓ませ ると共に、 前記流体流により前記予備拡繊済み繊維束を繊維束幅方向に解き分け る流体流式拡繊装置である拡繊システム。  Means for feeding the pre-expanded fiber bundle to the expanding section for expanding the pre-expanded fiber bundle while controlling the over-feeding of the pre-expanded fiber bundle; And a fluid flow generating means for generating a fluid flow for expanding the pre-expanded fiber bundle, wherein the expanding section intersects the pre-expanded fiber bundle to be fed and passes the fluid flow. A fiber flow expansion device that deflects the pre-expanded fiber bundle in the downstream direction of the fluid flow and separates the pre-expanded fiber bundle in the fiber bundle width direction by the fluid flow. system.
2 1 . 複数のフィラメントが集合されてなる繊維束を拡繊対象とする拡繊システ ムであって、  2 1. A fiber spreading system for expanding a fiber bundle composed of a plurality of filaments,
前記繊維束を拡繊する拡繊部に、 前記繊維束をオーバ一フィ一ド制御しながら 流送供給する流送手段と、 前記繊維束を拡繊する流体流を発生させる流体流発生 手段とを備え、  A feeding unit that feeds and feeds the fiber bundle to the spreading unit that spreads the fiber bundle while controlling the fiber bundle over-feed; and a fluid flow generating unit that generates a fluid flow that spreads the fiber bundle. With
前記拡繊部において、 流送されてくる前記繊維束に対して交差して前記流体流 を通過させ、 前記繊維束を流体流の下流方向へ撓ませると共に、 前記流体流によ り前記繊維束を繊維束幅方向に解き分ける流体流式拡繊装置を予備拡繊装置とし てして備え、  The fiber expanding section intersects with the fiber bundle to be fed and allows the fluid flow to pass therethrough, deflects the fiber bundle in a downstream direction of the fluid flow, and causes the fiber bundle to be bent by the fluid flow. As a pre-spreading device, a fluid flow spreading device that separates the fibers in the width direction of the fiber bundle.
前記予備拡繊装置により拡繊された予備拡繊済み繊維束を、 さらに拡繊する本 拡繊装置を備え、  A pre-expanded fiber bundle expanded by the pre-expanding device;
前記本拡繊装置が、 予備拡繊された予備拡繊済み繊維束が張力を付与された状 態で、 複数のローラに接触しながら屈曲経路を成して流送される繊維束流送部を 液中に備えると共に、 前記液中に超音波を伝播させて前記繊維束流送部の予備拡 繊済み繊維束を、 さらに拡繊する超音波式拡繊装置である拡繊システム。  A fiber bundle feeding unit configured to feed the pre-expanded pre-expanded fiber bundle in tension while applying tension to the pre-expanded fiber bundle; A fiber-spreading system, which is an ultrasonic fiber-spreading device, further comprising: a pre-spread fiber bundle of the fiber bundle feeding unit by transmitting ultrasonic waves into the liquid while providing the fiber bundle in the liquid.
2 2 . 前記流体流式拡繊装置において拡繊に使用される前記流体流が液体流であ る請求の範囲第 2 0または 2 1項記載の拡繊システム。  22. The fiber spreading system according to claim 20 or 21, wherein the fluid flow used for spreading in the fluid flow type fiber spreading device is a liquid flow.
PCT/JP2001/009016 2000-10-13 2001-10-12 Fluid flow tow spreading device, ultrasonic tow spreading device, and tow spreading system WO2002031242A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000313093A JP3398133B2 (en) 2000-10-13 2000-10-13 Opening sheet manufacturing apparatus and method
JP2000-313093 2000-10-13
JP2000-367037 2000-12-01
JP2000367037A JP3382603B2 (en) 2000-12-01 2000-12-01 Fiber expansion equipment
JP2001025497A JP3382607B2 (en) 2001-02-01 2001-02-01 Fiber expansion system
JP2001-25497 2001-02-01

Publications (1)

Publication Number Publication Date
WO2002031242A1 true WO2002031242A1 (en) 2002-04-18

Family

ID=27344929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/009016 WO2002031242A1 (en) 2000-10-13 2001-10-12 Fluid flow tow spreading device, ultrasonic tow spreading device, and tow spreading system

Country Status (1)

Country Link
WO (1) WO2002031242A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409833A (en) * 2013-07-18 2013-11-27 江南大学 Widening device for carbon fiber strands
CN103757784A (en) * 2014-01-22 2014-04-30 东华大学 Device for spreading large-tow carbon fibers through combination of sound wave method and mechanical multi-roller method
CN104862796A (en) * 2015-05-14 2015-08-26 威海宝威新材料科技有限公司 Air-flow fiber spreading device
CN108411483A (en) * 2018-05-19 2018-08-17 丹阳市益讯机械有限公司 Carbon fiber identical tension unwinds weft rack
RU2687648C1 (en) * 2018-07-02 2019-05-15 Акционерное общество "Холдинговая компания "Композит" (АО "ХК "Композит") Method of carbon fiber separation and installation for its implementation
US20190275705A1 (en) * 2018-03-06 2019-09-12 Aerlyte, Inc. Fiber-reinforced composites and methods of forming and using same
EP4206373A1 (en) * 2021-12-20 2023-07-05 Raytheon Technologies Corporation Method and device for spreading fiber tows using an ultrasonic probe

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061336A1 (en) * 1981-03-20 1982-09-29 Ashland Oil, Inc. Process for the oxidation of hydrocarbons
JPS5881645A (en) * 1981-11-11 1983-05-17 三菱レイヨン株式会社 Method and apparatus for widening and sheeting continuous fiber bundle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0061336A1 (en) * 1981-03-20 1982-09-29 Ashland Oil, Inc. Process for the oxidation of hydrocarbons
JPS5881645A (en) * 1981-11-11 1983-05-17 三菱レイヨン株式会社 Method and apparatus for widening and sheeting continuous fiber bundle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103409833A (en) * 2013-07-18 2013-11-27 江南大学 Widening device for carbon fiber strands
CN103757784A (en) * 2014-01-22 2014-04-30 东华大学 Device for spreading large-tow carbon fibers through combination of sound wave method and mechanical multi-roller method
CN104862796A (en) * 2015-05-14 2015-08-26 威海宝威新材料科技有限公司 Air-flow fiber spreading device
US20190275705A1 (en) * 2018-03-06 2019-09-12 Aerlyte, Inc. Fiber-reinforced composites and methods of forming and using same
US10518442B2 (en) * 2018-03-06 2019-12-31 Aerlyte, Inc. Fiber-reinforced composites and methods of forming and using same
US11220025B2 (en) 2018-03-06 2022-01-11 Aerlyte, Inc. Methods of separating carbon fiber tows
CN108411483A (en) * 2018-05-19 2018-08-17 丹阳市益讯机械有限公司 Carbon fiber identical tension unwinds weft rack
RU2687648C1 (en) * 2018-07-02 2019-05-15 Акционерное общество "Холдинговая компания "Композит" (АО "ХК "Композит") Method of carbon fiber separation and installation for its implementation
EP4206373A1 (en) * 2021-12-20 2023-07-05 Raytheon Technologies Corporation Method and device for spreading fiber tows using an ultrasonic probe

Similar Documents

Publication Publication Date Title
JP3064019B2 (en) Method for producing multifilament spread sheet and apparatus for producing the same
JP5326170B2 (en) Fiber bundle opening method, spread yarn sheet, and fiber reinforced sheet manufacturing method
JP4005313B2 (en) Method and apparatus for treating filament yarn and method of using said apparatus
US20060137156A1 (en) Method of producing a spread multi-filament bundle and an apparatus used in the same
US20160083873A1 (en) Method and device for opening fiber bundle
JPH09310241A (en) Use of texture nozzle and method for textured processing by aerodynamical means
WO2002031242A1 (en) Fluid flow tow spreading device, ultrasonic tow spreading device, and tow spreading system
US4241574A (en) Spinning process and apparatus
JP3382607B2 (en) Fiber expansion system
JP4412543B2 (en) Weaving apparatus and weaving method for belt-shaped fiber bundle fabric
EP3132074A1 (en) Method and device for spreading fiber strands
JP2004100132A (en) Precursor fiber bundle for carbon fiber, method for producing the same, apparatus for producing the same, and method for producing the carbon fiber from the fiber bundle
RU2760972C2 (en) Method for flattening bundle of textile non-woven threads, preferably chemical or inorganic threads
JP3382603B2 (en) Fiber expansion equipment
JP5553074B2 (en) Fiber bundle opening method and apparatus
KR20190068523A (en) RANDOM MAT, METHOD FOR MANUFACTURING THE SAME,
JP2003268636A (en) Fiber-treating machine equipped with yarn-conveying passage and yarn-guiding surface
JP3398133B2 (en) Opening sheet manufacturing apparatus and method
JPS60104545A (en) Bundled spun yarn and its production
US20230287606A1 (en) Interlacing nozzle for the production of yarns with knots and method for interlacing yarns
CN101314875A (en) Lacertus bunching apparatus for spinning machine
RU2471900C1 (en) Method of straightening untwisted fibre and plant for its implementation
JP2005200790A (en) Fine-spun twisted union yarn and method for producing the same
JP3281863B2 (en) Interlace nozzle
JP3104145U (en) Textured nozzles for texturing endless yarns

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase