WO2002027816A1 - Ensemble batterie monobloc a refroidissement a flux transversal - Google Patents

Ensemble batterie monobloc a refroidissement a flux transversal Download PDF

Info

Publication number
WO2002027816A1
WO2002027816A1 PCT/US2001/030070 US0130070W WO0227816A1 WO 2002027816 A1 WO2002027816 A1 WO 2002027816A1 US 0130070 W US0130070 W US 0130070W WO 0227816 A1 WO0227816 A1 WO 0227816A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
coolant
partitions
cell
case
Prior art date
Application number
PCT/US2001/030070
Other languages
English (en)
Inventor
Philippe Gow
Anthony Osgood
Dennis A. Corrigan
Lin R. Higley
Marshall D. Muller
Stanford R. Ovshinsky
Rajeev Puttaiah
Original Assignee
Ovonic Battery Company, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/670,155 external-priority patent/US6689510B1/en
Application filed by Ovonic Battery Company, Inc. filed Critical Ovonic Battery Company, Inc.
Priority to AU2001291250A priority Critical patent/AU2001291250A1/en
Publication of WO2002027816A1 publication Critical patent/WO2002027816A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/112Monobloc comprising multiple compartments
    • H01M50/114Monobloc comprising multiple compartments specially adapted for lead-acid cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • H01M10/6557Solid parts with flow channel passages or pipes for heat exchange arranged between the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6563Gases with forced flow, e.g. by blowers
    • H01M10/6565Gases with forced flow, e.g. by blowers with recirculation or U-turn in the flow path, i.e. back and forth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the instant invention relates generally to improvements in rechargeable high performance batteries, modules and packs. Specifically, the invention relates to multi-cell, monoblock batteries.
  • Rechargeable batteries are used in a variety of industrial and commercial applications such as fork lifts, golf carts, uninterruptable power supplies, and electric vehicles.
  • Rechargeable lead-acid batteries are a useful power source for starter motors for internal combustion engines.
  • Electric vehicles using lead-acid batteries have a short range before requiring recharge, require about 6 to 12 hours to recharge and " contain toxic materials.
  • electric vehicles using lead-acid batteries have sluggish acceleration, poor tolerance to deep discharge, and a battery lifetime of only about 20,000 miles .
  • Ni-MH batteries Nickel-metal hydride batteries
  • lead-acid batteries are far superior to lead-acid batteries
  • Ni-MH batteries are the ideal battery available for electric vehicles, hybrid vehicles and other forms of vehicular propulsion.
  • Ni-MH batteries such as those described in U.S. Patent No. 5,277,999, the disclosure of which is incorporated herein by reference, have a much higher energy density than lead-acid batteries, can power an electric vehicle over 250 miles before requiring recharge, can be recharged in 15 minutes, and contain no toxic materials.
  • Electric vehicle and hybrid vehicle applications introduce a critical requirement for thermal management. Individual electrochemical cells are placed together in close proximity and many cells are electrically coupled together. Therefore, since there is an inherent tendency to generate significant heat during charge and discharge, a workable battery design for electric and hybrid vehicles is judged by whether or not the generated heat is sufficiently controlled. Sources of heat are primarily threefold. First, ambient heat due to the operation of the vehicle in hot climates. Second, resistive or I 2 R heating on charge and discharge, where I represents the current flowing into or out of the battery and R is the resistance of the battery. Third, a tremendous amount of heat is generated during overcharge due to gas recombination.
  • a battery design which reduces the overall weight thereof and incorporates the necessary thermal management needed for successful operation in electric and hybrid vehicles, without reducing its energy storage capacity or power output.
  • One such battery design is a monoblock battery. Examples of a monoblock batteries of the background art are provided in U.S. Patent No. 5,356,735 to Meadows et al, the disclosure of which is incorporated by reference herein. Another example is provided in commonly assigned U.S. Patent Application Serial Number 09/139,384, the disclosure of which is incorporated by reference herein.
  • the present invention is directed to a monoblock battery design having improved thermal management and improved structural integrity.
  • An object of the invention is a monoblock battery having improved thermal management capabilities. Another object of the invention is a monoblock battery with improved structural integrity. Still another object of the present invention is a monoblock battery with improved manufacturability.
  • a multi-cell monoblock battery comprising: a battery case including one or more cell partitions dividing the interior of the case into a plurality of cell compartments; at least one coolant channel integrally formed with at least one of the partitions, the coolant channel having an inlet and an outlet formed in one or more walls of the case; and a plurality of electrochemical cells disposed within the battery case.
  • a multi-cell monoblock battery comprising: a battery case comprising: walls, a bottom, and a lid, one or more cell partitions dividing the interior of the case into a plurality of cell compartments, and one or more coolant channels integrally formed with at least one of the cell partitions to form one or more coolant partitions, at least one of the coolant partitions integrally formed with at least one of the walls and/or the bottom and/or the lid as a one-piece construction; and a plurality of electrochemical cell disposed in the battery case.
  • a multi-cell monoblock battery comprising: a battery case including a plurality of cell partitions dividing the case into cell compartments, the cell partitions including at least a first cell partition having a draft angle and a second cell partition tapering opposite the draft angle; and a plurality of electrochemical cells disposed in the case.
  • a multi-cell monoblock battery comprising: a battery case including one or more cell partitions dividing the interior of the case into a plurality of cell compartments; one or more coolant partitions disposed within at least one of the cell compartments, each of the coolant partitions having at least one coolant channel; and a plurality of electrochemical cells disposed in the case.
  • a multi-cell monoblock battery comprising: a battery case including one or more cell partitions dividing the interior of the case into a plurality of cell compartments; and a plurality of electrochemical cells disposed within the battery case, the case being a common pressure vessel for the electrochemical cells.
  • Figure IA is a three-dimensional view of an embodiment of a monoblock battery case of the present invention showing both the container and the lid;
  • Figure IB is a three-dimensional view of the a container for a monoblock battery case;
  • Figure 2A is a top view of an embodiment of a monoblock battery of the present invention having cell partitions substantially parallel to the side walls of the container;
  • Figure 2B is a top view of an embodiment of a monoblock battery of the present invention having a set of cell partitions substantially parallel to the end walls of the container and a set of cell partitions substantially parallel to the side walls of the container;
  • Figure 3 is a top view of a fixed partition integrally formed with the container side walls as a one-piece construction
  • Figure 4 is a side view of a fixed partition integrally formed with the container bottom as a one-piece construction
  • Figure 5A is a side view of a monoblock container showing an arrangement of fixed and insertable partitions
  • Figure 5B is a side view of a monoblock container showing an alternate arrangement of fixed and insertable partitions
  • Figure 5C is an embodiment of the monoblock container showing an arrangement of fixed divider partitions and insertable coolant partitions
  • Figure 5D is an embodiment of the monoblock container showing an alternate arrangement of fixed divider partitions and insertable coolant partitions
  • Figure 6 is a planar view of a monoblock container bottom which includes inlets and outlets for coolant channels;
  • Figure 7 is a view of a coolant partition showing the path of coolant flow through the coolant partition
  • Figure 8A is an exploded view of an embodiment of the monoblock battery case of the present invention showing the container, the lid and side wall cover plates;
  • Figure 8B is a three-dimensional view of the monoblock container from Figure 8A showing the partitions
  • Figure 8C is a three-dimensional view of the monblock container from Figure 8A showing the container bottom;
  • Figure 8D is a cross-sectional view of the monoblock container shown in Figure 8A, showing the flow of coolant through a cooling partition;
  • Figure 8E is a cross-sectional view of the monoblock container shown in Figure 8A, showing the cooling channels within the cooling partitions;
  • Figure 9A is a top view of the monoblock container showing the flow of coolant through the container in a series flow configuration
  • Figure 9B is a top view of the monoblock container showing the flow of coolant through the container is a parallel flow configuration
  • Figure 10 is a cross-sectional view of an embodiment of the monoblock battery of the present invention showing the electrical interconnections between the partitions as well as the common gas region;
  • Figure 11 is a top view of a an embodiment of the monoblock battery of the present invention showing serial electrical coupling between the electrochemical cells;
  • Figure 12 is a side cross-sectional view of a portion of monoblock container showing electrical interconnects with protrusions;
  • Figure 13 is a top view of an embodiment of a monoblock battery of the present invention showing parallel electrical coupling between the electrochemical cells;
  • Figure 14 is a side view of an embodiment of a monoblock battery of the present invention, showing a specially designed lid that includes a common gas region;
  • Figure 15A is a three-dimensional view of the lid shown in Figure 14 that shows the common gas compartment on the top of the lid; and Figure 15B is a three-dimensional view of the lid shown in Figure 14 that shows the gas channels on the bottom of the lid.
  • the present invention is directed to a multi-cell monoblock battery.
  • the monoblock battery comprises a plurality of electrochemical cells that are disposed in a specially designed battery case referred to herein as a "monoblock case".
  • the monoblock case of the present invention is formed of a non-conductive material. Examples of materials which may be used include a plastic material and a ceramic material. Specific materials that could be used are presented in U.S. Patent No. 5,800,945, the disclosure of which is incorporated by reference herein .
  • Figure IA is an embodiment of a monoblock case of the present invention.
  • the monoblock case 100 includes a monoblock container 102 and a lid 104 for the container.
  • One or more end plates 103 may be used to provide additional structural support.
  • the monoblock container includes a plurality of walls and a container bottom.
  • the embodiment of the monoblock container 102 has four walls. Two opposite walls of the container are referred to as “side walls” 113 and two are referred to as “end walls” 115.
  • the end walls are the walls of the container that are substantially parallel to the electrode plates of the electrochemical cells positioned inside the container.
  • the end walls 115 of the container 102 may be specially designed to minimize bulging of the end walls and to insure that the electrochemical cells are held within the cell compartments under a uniform compression.
  • the end walls 115 may be formed as a rectangular honeycomb to provide additional structural support.
  • the monoblock container of the present invention includes one or more cell partitions which divide the interior of the container into a plurality of cell compartments .
  • the monoblock container includes a plurality of cell partitions 107, 109 which divide the interior of the container (and hence, the interior of the case 100) into cell compartments 105.
  • a cell compartment 105 may be defined by the region between two of the cell partitions, or by the region between a cell partition and an end wall.
  • the cell partitions may be substantially planar and plate-like in form.
  • the cell partitions 107, 109 are oriented substantially parallel to the end walls 115.
  • the cell partitions it is possible that the cell partitions be positioned so that they are substantially parallel to the side walls of the container.
  • Figure 2A shows a monoblock container 202A with electrode plate stack 280 (substantially parallel to the end walls 215)' and cell partitions 207' , 209' substantially parallel to the side walls 215.
  • the container is divided into an array of cell compartments.
  • Figure 2B shows a monoblock container 202B having a first set of partitions 207 and 209 substantially parallel to the end walls 215 and second set of cell partitions 207' and 209' substantially parallel to the side walls 213.
  • the electrode plate stack 280 is substantially parallel to the end walls 215.
  • the monoblock container of the present invention may include one or more coolant channels.
  • the coolant channels are integrally formed with at least one of the cell partitions .
  • the coolant channels may be formed on the surface of the cell partitions or they may be formed within (in the interior of) the cell partitions.
  • a cell partition which includes one or more coolant channels is referred to herein as a "coolant partition”.
  • the monoblock battery of the present invention includes at least one coolant partition.
  • a coolant partition may be formed in different ways.
  • It may be formed from a plurality of pieces.
  • it may be formed from two separate plates, referred to as "clamshell" plates, that are affixed together.
  • the inside surface of one or both of the clamshell plates may be ribbed to define baffles for flow purposes. (The ribs may be molded into the plates) .
  • the inside surface of one of the plates co-operates with the inside surface of the other clamshell plate to define the coolant channels.
  • the coolant partition may also be formed by first forming the coolant channels separate pieces (for example, as fluid tubules) and then affixing the coolant channels (for example, by using a sealant, heat sealing, ultrasonic welding, etc.) to one or both faces of a cell partition (or even to an inside surface of one or both of the clamshell plates) .
  • the coolant partition with its coolant channels may be integrally formed as a one-piece construction. This may be done in different ways, such as by using a molding process.
  • the coolant channel may be molded into the interior of the coolant partition or onto the outside surface of the coolant partition. It is also possible that the coolant partition (with its one or more coolant channels) be formed by an extrusion process or even be machined as a one-piece construction.
  • the coolant partitions provide a thermal management function.
  • the thermal management function is preferably a cooling function to cool the battery and transfer heat away from the electrochemical cells.
  • the coolant channels house a coolant which flows through the coolant channels.
  • the coolant may be a fluid such as a liquid or a gas.
  • liquid coolants are water or a water/glycol mixture.
  • gaseous coolant is air.
  • the coolant is a liquid.
  • a coolant may be circulated through the coolant channels to either extract heat from the electrochemical cells or to supply heat to the electrochemical cells.
  • a cell partition which does not include any coolant channels is referred to herein as a "divider partition".
  • a cell partition may be a coolant partition (if it includes one or more coolant channels) or a divider partition (if it does not include any coolant channels) .
  • the cell partitions may be either “fixed partitions” or “insertable partitions".
  • a cell partition is a "fixed partition” if it is integrally formed with at least one of the walls of the container and/or with the container bottom as a one-piece construction.
  • the fixed partition (s) are integrally formed with two opposing walls (such as two side walls) as a one-piece construction.
  • the fixed partition (s) are integrally formed with the container bottom as a one-piece construction.
  • the fixed partition (s) are integrally formed with two opposing walls (such as two sidewalls) and with the container bottom as a one-piece construction.
  • FIG. 3 is a top view of a portion of an embodiment of a monoblock container of the present invention showing a fixed partition 318, a portion of a first side wall 313A and a portion of a second side wall 313B which is opposite the first sidewall.
  • the fixed partition 318, ' the first side wall portion 313A and the second side wall portion 313B are all integrally formed as a one-piece construction. (Of course, the side wall portions may be replaced with end wall portions) .
  • Figure 4 is cross-sectional view of a portion of an embodiment of a monoblock container of the present invention, parallel to the side walls, showing a fixed partition 418 that is formed integral with a bottom portion 417 of the container as a one-piece construction.
  • a cell partition may also be formed integral with at least a portion of the case lid as a one piece construction.
  • Cell partitions that are insertable are first manufactured separate from the walls and the container bottom, and are then inserted into the container. Preferably, they are affixed to the walls and bottom. They may be affixed to the walls and to the bottom of the container in different ways. For example, they may be sealed to the walls and/or bottom with the use of a sealant or with ultrasonic welding (or other means) so that they cannot be removed. Alternately, insertable partitions may be affixed to the walls and/or to the bottom so that they can be removed. For example, they may be inserted in place and sealed at their side and bottom edges with gaskets and/or molding. Preferably, the insertable partitions are sealed into the container so as to form a substantially liquid-tight seal between adjacent cell compartments.
  • the container includes at least one fixed partition. Having at least one fixed partition provides for increased structural integrity of the monoblock container.
  • fixed partitions that are formed with the side walls and/or the container bottom as a one-piece construction may prevent the bulging of the side walls and/or the bulging of the container bottom. This is especially important at the operating pressures of certain batteries such as sealed nickel-metal hydride batteries.
  • the one or more fixed partitions may include only coolant partitions, they may include only divider partitions, or they may include a combination of at least one coolant partition and at least one divider partition.
  • the monoblock container of the present invention may include all fixed partitions, all insertable partitions, or at least one fixed partition and at least one insertable partition.
  • Figure 5A is a cross-sectional view of an embodiment of a monoblock container showing a specific arrangement of alternating fixed partitions 518 and insertable partitions 519. The cross-section is parallel to the side walls of the container.
  • the fixed partitions 518 may be manufactured with a "draft angle". That is, they may be made to taper so that the thickness (dimension parallel to the side walls) of each fixed partition 518 progressively gets smaller from its bottom end (the end adjacent to the container bottom 517) toward its top end (the end remote to the container bottom 117) .
  • the thickness Tl at the bottom end is preferably greater than the thickness T2 at the top end.
  • the draft angle may also be included in the end walls and/or the side walls of the container. The draft angle is used to facilitate the injection molding process of the container. The draft angle in the fixed partitions and/or end walls and/or side walls may facilitate manufacturability by allowing the container to be more easily separated from the mold.
  • the embodiment of the monoblock container 502 shown in Figure 5A includes insertable partitions 519 that are manufactured separately from the walls and bottom of the container.
  • the insertable partitions 519 may be manufactured so as to taper in a direction opposite to the fixed partitions and/or end walls. As seen in Figure 5A, they are made to taper so the thickness of each insertable partition gets progressively larger from its bottom end to its top end. Hence, the thickness T2 at the top end is preferably greater than the thickness Tl at the bottom end.
  • each insertable partition (as well as each fixed partition) separates one cell compartment 505 from an adjacent cell compartment. Hence, the insertable partitions are sealed into the container so as to form a substantially liquid-tight seal between adjacent cell compartments.
  • Each of the fixed partitions 518 may be either a coolant or a divider partition.
  • each insertable partition 519 may be either a coolant or a divider partition.
  • Figure 5B is another embodiment of the monoblock container of the present invention "showing an alternate arrangement of fixed partitions 518 and insertable partitions 519.
  • an insertable partition 519 is positioned adjacent to each of the fixed partitions 518 as well as adjacent to one of the end walls 515.
  • the "reverse" draft angle of the insertable partitions is sufficient to compensate of the draft angle of the fixed partitions and end walls such that the width "D" of the cell compartments is substantially uniform.
  • the embodiment shown in Figure 5B also shows how fixed partitions 518 and insertable partitions 519 can be used in combination to provide both structural integrity of a monoblock container as well as uniform compression of the electrochemical cells held within the container.
  • each of the cell compartments 505 is separated from an adjacent cell compartment by a fixed partition 518 which prevent the electrolyte from one cell compartment from entering another cell compartment.
  • the insertable partitions do not have to be sealed to either the side walls or the bottom of the container.
  • the monoblock battery of the present invention preferably includes at least one coolant partition.
  • the coolant partitions may be fixed and/or insertable.
  • all of coolant partitions in a monoblock container may be fixed, all of the coolant partitions may be insertable, or at. least one coolant partition may be fixed and at least one coolant partition may be insertable.
  • the divider partitions may be fixed partitions and/or insertable partitions.
  • all of the divider partitions may be fixed, all of the divider partitions may be insertable, or at least one divider partition may be fixed and at least one divider partition may be insertable.
  • all of the coolant partitions are insertable while all of the divider partitions are formed as fixed partitions.
  • Making the coolant partitions insertable provides greater flexibility in the dimensions of the walls of the coolant partitions. Not only can they be formed so that the coolant partitions taper opposite to the fixed partitions (as discussed above) , but they can also be formed with thinner walls, thereby providing for increased cooling capability.
  • Figure 5C shows an embodiment where all of the coolant partitions 509 are insertable while all of the divider partitions 507 are fixed. (Figure 5C is similar to Figure 5A - the fixed partitions 518 from Figure 5A have become divider partitions 507 in Figure 5C, and the insertable partitions 519 from Figure 5A have become coolant partitions 519 in Figure 5C) . Likewise, Figure 5D shows an alternate embodiment where all of the coolant partitions 509 are insertable while all of the divider partitions 507 are fixed.
  • Figure 5D is similar to Figure 5B - all of the fixed partitions 518 of Figure 5B are divider partitions 507 in Figure 5D, and all of the insertable partitions 519 in Figure 5B are coolant partitions 509 in Figure 5D) .
  • the divider partitions 507 divide the interior of the container into a plurality of cell compartments 505. Hence, each of the cell compartments 505 is separated from an adjacent cell compartment by a divider partition 507.
  • Each of the divider partition is a fixed partition and is integrally formed with either the side walls (or possibly the end walls) of the container and/or with the container bottom as a one-piece construction.
  • the divider partition is integrally formed with the side walls and with the bottom as a one-piece construction.
  • there is a substantially liquid-tight seal between adjacent cell compartments so that the electrolyte from one cell compartment cannot enter an adjacent compartment.
  • the fixed divider partitions are preferably all formed with a draft angle in order to facilitate the manufacturing process.
  • the coolant partitions 509 are insertable and are thus first formed separate from the walls and the bottom of the container, and are then inserted into the container. Generally one or more of the coolant partitions 509 are inserted into at least one of the cell compartments 5050. Preferably, a coolant partition is inserted into each of the cell compartments 505. The coolant partition may be placed adjacent to a divider partition or adjacent to an end wall.
  • the coolant partitions 509 are preferably made with a "reverse" draft angle. That is, they are preferably made to taper opposite to the draft angle of the divider partitions 507. As noted above, this provides for a substantially uniform compression of the electrochemical cells placed within the cell compartments 505.
  • at least one external face of each of the coolant partitions 509 confronts at least one plate of the electrode stack placed within the corresponding cell compartment.
  • Coolant partitions separately from the remainder of the container reduces the complexity of the mold operation for making the container. It also makes the assembly of the coolant partitions more amenable to high volume manufacturing techniques such as heat sealing, friction welding, vibration welding, and the like (for example, they can be formed from two clamshell haves that can be heat sealed together) .
  • the cell compartments 505 are separated from each other by the fixed divider partitions 507 which form a substantially liquid-tight seal between the cell compartments 505.
  • the container does not depend upon the coolant partitions 509 to isolate the electrolyte of one compartment from the electrolyte of another compartment.
  • the coolant partitions 509 need not be sealed to either the side walls or to the bottom of the container to prevent the electrolyte from one cell compartment from entering another (since this is already being done by the fixed divider partitions 507) .
  • the coolant partitions 509 still perform a heat exchange function.
  • the openings to the coolant channels that are integral with the coolant partitions 509 may be placed on the top edges of the partitions. This further eliminates the need to seal the coolant partitions to either the side walls or bottom of the container.
  • the coolant partitions may instead be affixed and sealed to the lid.
  • the lid may include flow channels which serve to interconnect the coolant channels of one of the coolant partitions with the coolant channels of another of the partitions.
  • the coolant partitions and the lid may even be integrally formed as a one-piece construction.
  • one or more of the coolant partitions may be formed as fixed partitions .
  • Making the coolant partitions as fixed has certain advantages. There is a less possibility that electrolyte may leak from one cell compartment to an adjacent cell compartment around the periphery of the coolant partitions. Also there is less possibility that the coolant can leak out from the interior of the coolant partition (from the coolant channel openings) and into the cell compartment where it may make contact with the electrolyte. Also, in the case where the coolant partition itself is formed from two clamshell halves, there is also a possibility of coolant leakage from the seam formed when the clamshells are affixed together.
  • At least one of the coolant partitions may be formed as a fixed partition. Forming all of the coolant partitions as fixed partitions may prevent coolant leakage into the cell compartments and may also provide for improved structural support for the monoblock container.
  • At least one of the divider partitions may be formed as an insertable partition.
  • the divider partitions By making all of the divider partitions insertable, they can be manufactured so as to compensate for the draft angle that is manufactured into the fixed coolant partitions. As explained above, this can provide for substantially uniform compression of the electrochemical cells placed within the cell compartments.
  • all of the coolant partitions and all of the divider partitions may be formed as fixed partitions. That is, all of the partitions of the monoblock container may be formed as fixed partitions.
  • the monoblock container includes at least one coolant partition which is formed as a fixed partition. That is, one or more of the coolant partitions (and preferably all of the coolant partitions) are integrally formed with at least one wall and/or the container bottom as a one-piece construction.
  • the fixed partitions can in integrally formed with the other parts of the battery container. These embodiments are applicable to coolant partitions that formed as fixed partition.
  • One or more of the coolant partitions may be integrally formed with two opposite walls (such as the two side walls or two end walls) and/or with the container bottom as a one-piece construction.
  • one or more of the coolant partitions (and preferably all of the coolant partitions) , the side walls, and the end walls are all integrally formed as a one-piece construction.
  • one or more of the coolant partitions (and preferably all of the coolant partitions) , the side walls, the end walls, and the container bottom are all integrally formed as a one-piece construction.
  • a one-piece construction may be formed using an injection molding process. However, it may also be possible to form the side and end walls as well as the cell partitions by an extrusion process.
  • at least one of the divider partitions and at least one of the coolant partitions are formed as fixed partitions.
  • At least one coolant partition (and preferably all of the coolant partitions) and at least one divider partition (preferably all of the divider partitions) are integrally formed with at least one wall and/or the container bottom as a one-piece construction.
  • at least one coolant partition (and preferably all of the coolant partitions), at least one divider partition (and preferably all of the divider partitions) , the side walls, and the end walls are all integrally formed as a one-piece construction.
  • At least one coolant partition (and preferably all of the coolant partitions) , at least one divider partition (and preferably all of the divider partitions) , the side walls, the end walls, and the container bottom are all integrally formed as a one-piece construction.
  • the battery container all of the walls, the bottom, and all of the cell partitions
  • the coolant enters and exits the coolant channels of each of the coolant partitions though a channel inlet and a corresponding channel outlet located on specially designed bottom of the monoblock container.
  • Figure 6 shows an embodiment of such a specially designed container bottom 617.
  • the container bottom 617 includes ribs 643 which protrude from the surface of the bottom 617.
  • the ribs 643 define baffles for fluid flow purpose.
  • the ribs 643 define fluid pathways 645 (the regions between the ribs) on the outer surface of the bottom.
  • the ribs 643 and the fluid pathways 645 co- operate with the bottom cover plate to define bottom flow channels that interconnect the openings of the coolant channels of different coolant partitions.
  • the coolant channels of each of the partitions are interconnected with the coolant channels of other partitions. This creates an interconnected network of coolant ' channels that ' can circulate the coolant throughout the battery case.
  • the coolant may enter the monoblock container 202 via the inlet tube entrance 222 and be carried to the container bottom via the inlet tube 220.
  • the coolant is transported via the inlet tube 220 to the inlet tube exit opening 660A of the container bottom 617 shown in Figure 6.
  • the coolant enters the set of bottom flow channels 630 where it is directed by the flow channels to the first partition inlet 620A.
  • the coolant enters the first coolant partition, flows through the coolant channels within the first coolant partition and then exits the first coolant partition through a first partition outlet 620B. After exiting the first partition outlet 620B, the coolant is channeled to the second partition inlet 620C via the bottom flow channels 631.
  • the coolant circulates through the second coolant partition and exits the second coolant partition through the outlet 620D. After exiting the second coolant partition outlet 620D, the coolant is channeled to the third coolant partition inlet 620E via the bottom flow channel 632, circulate through the third partition and exits the third coolant partition through the outlet 620F.
  • Figure 7 shows a coolant partition 709 of that has partition openings in the bottom edge of the coolant partition that are aligned with the channel inlet 620A and channel outlet 620B of the container bottom 617.
  • the arrows show the general path of the coolant that flows in the coolant channel 730 that is inside the coolant partition 709.
  • the coolant after entering a coolant partition via the inlet 620A, goes vertically up one half of the coolant partition, horizontally across the partition, and then vertically down the other half of the coolant partition (where it then exits via an channel outlet 620B) .
  • This is an example of a "closed loop" scheme. Closed loop intercell cooling may be used between every cell or at regular intervals, such as between every second or every third cell.
  • the inlets and outlets of the coolant partition 709 are in the bottom edge of the coolant partitions 709.
  • the coolant may be routed either horizontally in a serpentine method between and around cells, or vertically, in a "semi-corkscrew" path, up and down the cells through the hollow wall of the coolant partitions, and then through passages under or above the cells.
  • air flow paths may be molded into the walls between the cells in a vertical or horizontal orientation.
  • the coolant channel outlet of one coolant partition is fluidly connected to the coolant channel inlet of another coolant partition.
  • the bottom coolant channels are routing the coolant so that it must enter and exit the first coolant partition before entering the second, as so on. This is a "serial" connection.
  • Other routing schemes are also possible.
  • the coolant may be channeled so that it enters all of the coolant partitions at essentially the same time. This is a "parallel" connection.
  • FIG. 8A shows the monoblock battery case 800.
  • the case includes the container 802, the lid for the container 804.
  • the case also includes the side wall covers 810.
  • each of the side wall covers when affixed over the side walls 813 of the container 810 co-operate with the respective side wall to define flow channels that interconnect the coolant channels in the coolant partitions.
  • a three-dimensional view of the monoblock container 802 is shown in Figure 8B.
  • the container 802 includes two side walls 813, two end walls 815 and a bottom (not shown) .
  • Figure 8B is a three-dimensional view of the monoblock container 802 which shows the container bottom 817.
  • the monoblock container 802 further includes one or more cell partitions which divide the interior of the case into a plurality of cell compartments.
  • each of the cell partitions may be either a divider partition or a coolant partition.
  • the divider partitions 807 do not include coolant channels while the coolant partitions 809 include coolant channels.
  • the monoblock container 802 includes at least one coolant partition.
  • the coolant channels are formed integral with the coolant partitions. More preferably, the coolant channels are preferably formed in the interior of the coolant partitions.
  • the coolant partition may be formed as a one-piece construction.
  • the inlets and outlets of the coolant channels are formed in the side walls 813 of the container.
  • Each opening 820 may be either an inlet or an outlet of a coolant channel depending upon the direction of the coolant flow within the coolant channel. Placing the inlets and outlets of the coolant channels in the side walls provides for increased reliability since it separates coolant channel seals from the bottom electrolyte seals.
  • Figure 8D shows a cross-sectional view of a coolant partition 809 along the width of the monoblock case (i.e., in a direction parallel to the endplates 815) .
  • the arrows indicate the direction of the coolant flow through the coolant channels 830 inside the coolant partition.
  • the inlet and outlet openings of the coolant partition 809 are on the vertical edges of the periphery of the partition.
  • the coolant channels 830 guide the coolant from one side wall 813 to the opposite side wall 813. This is an example of a "cross-flow design".
  • the coolant channels are substantially horizontally disposed and the direction of the coolant flow is substantially parallel to the external faces of the coolant partition.
  • Figure 8E shows a cross-sectional view of the monoblock container 802, through the cell partitions, along the length of the container (that is, parallel to the side walls 813) .
  • Figure 8E shows substantially horizontally disposed coolant channels 830 that are integrally formed within the interior of the coolant partitions 809.
  • the coolant channels may be slanted such that they are neither horizontal or vertical. Alternately, the coolant channels may take a circuitous route through the partitions.
  • the inlet and the outlet of the same coolant channel are on opposite side walls. It is also possible that the inlet and the outlet of the same coolant channel are on the same side wall.
  • the coolant channels within one of the coolant partitions are in communication with the coolant channels in the other coolant partitions. This creates a completely integrated cooling system which permits the coolant to flow through all of the coolant partitions.
  • the coolant channels of different coolant partitions can be fluidly connected together in many different ways. In the embodiment of the battery case 800 shown in Figure 8A, this is done with the use of a pair of wall covers 810.
  • the wall covers 810 are in the form of rigid plates (that is, they are side wall cover plates) .
  • the outer surfaces of the side walls 813 of the container 802 includes ribs 843.
  • the ribs 843 define baffles for fluid flow purpose.
  • the ribs 843 define fluid pathways 845 on the outer surface of the side walls 813.
  • side wall flow channels or more simply as “wall channels”.
  • the wall channels interconnect the openings 820 of the coolant channels of different coolant partitions.
  • the coolant channels of each of the coolant partitions are interconnected with the coolant channels of other coolant partitions. This, creates an interconnected network of coolant channels that can circulate the coolant throughout the battery case.
  • FIG. 9A is a top view of the monoblock container 802 which more clearly shows the path of the coolant through the coolant channels.
  • Figure 9A shows the divider partitions 807 and the coolant partitions 809.
  • Figure 9A also shows the wall channels 845 which are defined by the first side wall 813A and its corresponding wall cover 810A, and the side wall channels 845 defined by the second side wall 813B and its corresponding side wall cover 810B.
  • the arrows shown within the flow channels 845 shows the direction of flow of the coolant within the coolant channels.
  • the coolant enters the monoblock container 802 through the container inlet 850 and is directed to the opening 820A (a channel inlet) in the first side wall 813A.
  • the coolant is directed by the coolant channel in the coolant partition 809 to the opening 820B (a channel outlet) in the second side wall 813B (which is opposite the first side wall 813A) .
  • the side wall flow channel 845 in the second side wall 813B then directs the coolant to the opening 820C (a channel inlet) where it is carried by the coolant partition 809 back to the first side wall 813A and exits the opening 820D (a channel outlet) .
  • This process repeats for the other cooling channel openings 820E through 820L where the coolant is then directed to the container outlet 870.
  • the coolant is carried back and forth between the first and second side walls by the coolant channels in the coolant partitions.
  • this type of flow is referred to as a "serial" connection, since the coolant is routed from one partition to another.
  • Figure 9B shows a top view of a monoblock container 802' of the present invention with side walls 813A' and 813B' .
  • the coolant is directed from the first side wall 813A' to the second side wall 813B' by each of the coolant partitions 809.
  • the coolant enters the coolant partitions 809 through the openings 820A, 820D, 820E, 820H, 8201 .and 820L that are disposed in the first side wall 813A' and exits the coolant partition through the openings 820B, 820C, 820F, 820G, 820J, and 820K that are disposed in the second side wall 813B' .
  • the coolant is thus directed so that it enters all of the coolant partitions at substantially the same time.
  • this configuration is referred to as a "parallel" flow configuration.
  • the coolant partitions and the divider partitions may either be fixed or insertable.
  • one or more of the coolant partitions are fixed. It is more preferable that all of the coolant partitions are fixed. In one embodiment all of the coolant partitions are fixed while all of the divider partitions are insertable. In another embodiment, all of the coolant partitions and all of the divider partitions are fixed.
  • the invention is not limited to these embodiments and other embodiments are also possible.
  • the coolant partitions are substantially parallel to the end walls and the openings of the coolant channels are formed in the side walls of the container.
  • FIG 2A it is seen that it is possible to position coolant partitions so that they are substantially parallel to the side walls of the container.
  • the inlets and the outlets of the coolant channels are formed in the end walls of the container.
  • Figure 2B it is seen that it is also possible that that one of the openings to a coolant channel be formed in an end wall and the other opening be formed in a side wall.
  • the inlets and outlets to the coolant channels are preferably formed in a portion of the lid.
  • the inlets and outlets be formed in the walls or in the bottom of the container.
  • the container includes walls and a bottom. The lid is shown as a separate piece. The electrochemical cells may thus be placed into the container from the top before the lid is placed on (and preferably sealed) to the top of the container.
  • the lid and the walls are formed as a one-piece construction while the "case bottom" is formed as a separate piece.
  • the electrochemical cells may be placed into the case from the bottom of the container before the "case bottom" is actually placed onto the container.
  • the monoblock battery case of the present invention accommodates a plurality of electrochemical cells to form a monoblock battery.
  • each of the electrochemical cells is disposed into a unique one of the cell compartments.
  • Some or all of the electrochemical cells may be electrically coupled together in a serial electrical connection and/or, a parallel electrical connection. It is also possible that one or more of the cells are not electrically connected to any of the other cells.
  • all of the electrochemical cells are electrically coupled in series.
  • all of the electrochemical cells are electrically coupled in parallel.
  • a portion of the electrochemical cells are electrically coupled in series while a portion are electrically coupled in parallel.
  • FIG. 10 shows a cross-sectional view of a monoblock battery 1000 of the present invention.
  • the cross-sectional view is parallel to the side walls .
  • the monoblock battery 1000 includes a monoblock container 1002 and a lid 1004.
  • the battery container includes coolant partitions 1009 as well as divider partitions 1007.
  • the divider and coolant partitions form the battery compartments 1005.
  • Housed within each of the cell compartments 1005 is a single electrochemical cell 1080 including a stack of positive electrodes, negative electrodes, separators and electrolyte.
  • the plurality of electrochemical cells 1080 are electrically coupled in series.
  • the electrical coupling between adjacent cells may be accomplished in different ways .
  • the positive and negative electrodes include current collection tabs attached to the electrodes for transporting electrical energy into and out of the electrodes .
  • the current collection tabs of the positive electrodes are all welded together into a positive interconnect 1086A.
  • the current collection tabs of the negative electrodes are all welded together into a negative interconnect 1086B.
  • the positive interconnect 1086A of one electrochemical cell is electrical coupled to the negative interconnect 1086B of an adjacent electrochemical cell that is on the opposite side of the partition. This may be done in different ways.
  • connection spacer 1088 is placed through an opening in the partition and welding the ends of the connection spacer 1088 to the positive interconnect 1086A and the negative interconnect 1086B that are on the opposite sides of the partition.
  • Connection spacers 1088 may also placed through openings in the end walls to electrically connect a positive interconnect to the positive battery terminal 1090A and a negative interconnect to the negative battery terminal 1090B.
  • connection spacer may be formed from many different conductive materials.
  • the connection spacer 1088 may comprise nickel, copper, a nickel alloy, a copper alloy, a nickel-copper alloy, a copper-nickel alloy. Further the connection spacer may comprise both copper and nickel.
  • the connection spacer may comprise nickel-plated copper, or the connection spacer may comprise a copper control portion surrounded by nickel.
  • the connector may comprise a copper cylinder and a nickel wire which is spirally wrapped along the length of the copper cylinder .
  • the opening in the cell partition through which the interconnection spacer is placed may be sealed to prevent electrolyte communication from one of the cell compartments to the adjacent cell compartment on the other side of the cell partition.
  • the sealing may be accomplished by using a polymer gasket such as a rubber or a plastic gasket. Sealing may also be accomplished by a hot melt adhesive or an epoxy adhesive. Sealing may also be accomplished by melting the plastic material of the partition around the connection spacer 1088.
  • FIG 11 shows how the positive interconnects 1086A and the negative interconnects 1086B may be electrically coupled with the connection spacers 1088 through the walls of the cell partitions to serially connect all of the electrochemical cells.
  • Figure 11 shows the divider partitions 1007 and the coolant partitions 1009 that form the cell compartments 1005.
  • Figure 11 also shows the electrochemical cells 1080 that are placed in the compartments 1005.
  • Figure 12 shows side view of a portion of a monoblock battery of the present invention. Shown are a modified positive interconnect 1286A and a modified negative interconnect 1286B.
  • the modified positive interconnect 1286A and the modified negative interconnect 1286B are each formed to have protrusions 1287A and 1287B that extend through the opening 1011 in the wall of a divider partition 1007 and a coolant partition 1009.
  • the positive interconnect protrusion 1287A makes physical and electrical contact with the negative interconnect protrusion 1287B.
  • the corresponding positive and negative electrodes are electrically coupled.
  • the positive interconnect protrusion 1287A is welded to the negative interconnect protrusion 1287B.
  • the positive and negative electrodes may be interconnected over the cell partitions rather than through the cell partitions. This may be done in different ways, such as by extending the positive interconnects and/or the negative interconnects over the cell partitions. It may also be done by positioning an interconnect spacer over the cell partitions .
  • Two of more of the electrochemical cells in the monoblock battery may be electrically coupled in parallel.
  • Figure 13 shows a top view of an embodiment of the monoblock battery 1000' of the present invention wherein all of the electrochemical cells are electrically coupled in parallel.
  • positive interconnects 1086A are all electrically coupled together and to the positive battery terminal 1090A.
  • the electrically coupling is done by a first electrical contact strip 1395A that preferably goes through the cell partitions.
  • negative interconnects 386B are all electrically coupled together and to the negative battery terminal 1090B.
  • the electrically coupling is done by a second electrical contact strip 1395B that preferably goes through (or over) the cell partitions.
  • the monoblock battery 1000 comprises a battery case including a battery container 1002 and a lid 1004 for the container.
  • the case is preferably designed so that the electrolyte within each of the cell compartments is isolated from the electrolyte of any other of the cell compartments. This is done to avoid self-discharge electrical shorting paths between the cells.
  • the gasses from each of the individual cells are all shared within a common region of the battery case.
  • each of the openings in the top of the cell compartments 1005 is covered with a gas- permeable, hydrophobic membrane 1060.
  • the membrane coverings 1060 will prevent the escape of the electrolyte from each compartment. However, since they are gas- permeable, they will permit the gases from each of the cell compartments to enter the common region 1020 within the batter case.
  • the battery case thus serves as a common pressure vessel for all of the electrochemical cells.
  • the battery case is preferably sealed; however, it may include one or more pressure relief vents 1030.
  • FIG 14 shows a cross-sectional view of an embodiment of a monoblock battery 1400 of the present invention.
  • the monoblock battery 1400 includes the container 1002 that was shown in Figure 10.
  • the battery 1400 includes a specially designed lid 1404 which is sealingly fitted to the top of the monoblock container 1002.
  • the lid 1404 includes a plurality of gas channels 1410 which provide gaseous communication between each of the cell compartments 1005 and a common gas region 1420 which is within the lid.
  • the gas channels are designed to prevent electrolyte communication from compartment to another. This is done by sandwiching the gas-permeable, hydrophobic membrane 1060 between the gas channel 1410 and the opening of the cell compartment 1005.
  • the hydrophobic membrane 1060 shown in Figure 10 and Figure 14 may be formed of a material that has a gas diffusion surface area sufficient to compensate for the overcharge gas evolution rate. The may be from about 5 cm 2 to about 50 cm 2 per 12 Ah cell.
  • the hydrophobic material is any material which allows passage of the battery gases but not the battery electrolyte. Examples of materials are materials comprising polyethylene with calcium carbonate filler. Other examples include many types of diaper material.
  • a material which may be used is the breathable type XBF-100W EXXAIRE film that is supplied by Tridegar products.
  • This film is a polyethylene film that has been mixed with fine calcium carbonate particles and then further stretched to make it porous.
  • the layer is chosen to have a thickness of about 0.25 gauge (0.25 g per square meters), which corresponds to about 0.001 inch.
  • the Gurley porosity of the material is chosen to be about 360 (360 seconds for 100 cc of gas to pass per square inch with a gas pressure of 4.9 inches of water).
  • the hydrophobic nature of this film is demonstrated by a very high contact angle in 30% KOH electrolyte of about 120 degrees.
  • the lid 1404 also includes a pair of pressure relief vents 1430 for the common pressure region 1420.
  • Figures 15A and 15B are three-dimensional top and bottom perspectives of the lid 1404, showing the gas channels 1410, the hydrophobic membranes 1460 and the common gas compartment 1420.
  • the electrolyte used in the monoblock battery of the present invention may be any aqueous or nonaqueous electrolyte .
  • a nonaqueous electrochemical cell is a lithium-ion cell which uses intercalation compounds for both anode and cathode and a liquid organic or polymer electrolyte.
  • Aqueous electrochemical cells may be classified as either "acidic" or "alkaline”.
  • An example of an acidic electrochemical cell is a lead-acid cell which uses lead dioxide as the active material of the positive electrode and metallic lead, in a high-surface area porous structure, as the negative active material.
  • the electrochemical cell of the present invention is an alkaline electrochemical cell.
  • the alkaline electrolyte may be an aqueous solution of an alkali hydroxide.
  • the alkaline electrolyte includes an aqueous solution of potassium hydroxide, sodium hydroxide, lithium hydroxide or mixtures thereof.
  • the alkaline electrolyte may be a mixed hydroxide of potassium and lithium hydroxide.
  • the positive and negative active materials used in the monoblock battery of the present invention may be any type of active battery materials used in the art.
  • positive electrode materials are powders of lead oxide, lithium cobalt dioxide, lithium nickel dioxide, lithium nickel dioxide, lithium manganese oxide compounds, lithium vanadium oxide compounds, lithium iron oxide, lithium compounds, i.e., complex oxides of these compounds and transition metal oxides, manganese dioxide, zinc oxide, nickel oxide, nickel hydroxide, manganese hydroxide, copper oxide, molybdenum oxide, carbon fluoride, ' etc.
  • the positive active material is a nickel hydroxide material.
  • each electrochemical cell is a nickel- metal hydride cell comprising negative electrodes including hydrogen storage materials as the active material, and positive electrodes including nickel hydroxide active material.
  • the monoblock battery is a nickel-metal hydride monoblock battery.
  • an embodiment of the monoblock battery of the present invention may thus operate at pressures of at least the standard operating pressures of a sealed nickel- metal hydride battery. This may vary depending upon the actual hydrogen storage alloys, nickel hydroxide materials used as the active materials.
  • the monoblock battery may operate at a peak pressure of at least 10 psi, preferably at a peak pressure of at least 25 psi and more preferably at a peak pressure of at least 50 psi.
  • the monoblock battery may operate at peak pressures up to about 140 psi.
  • it is preferable that an embodiment of the monoblock case should be able to withstand peak operating pressures from about 10 psi to about 140 psi.
  • the monoblock battery and monoblock case of the present invention are not limited to such operating pressures.
  • the monoblock case of the present invention (for example the container, the lid and the partitions) is preferably formed of a non-conductive material.
  • materials which may be used include, but not limited to plastics as well as certain ceramic materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

L'invention concerne une batterie monobloc multicellulaire (102), dans laquelle une pluralité de cellules électrochimiques sont disposées dans un boîtier de batterie (100). Ce boîtier de batterie (100) comprend une ou plusieurs séparations de cellules (107, 109), qui divisent l'intérieur du boîtier (100) en une pluralité de compartiments cellulaires (105) contenant les cellules électrochimiques. Un ou plusieurs canaux de réfrigérant (730) sont de préférence intégrés dans au moins une des séparations (709). Ces canaux de réfrigérant ont des entrées (620A) et des sorties (620B) situées dans les parois (813) du boîtier de batterie (800), constituant ainsi un refroidissement à écoulement transversal.
PCT/US2001/030070 2000-09-26 2001-09-25 Ensemble batterie monobloc a refroidissement a flux transversal WO2002027816A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001291250A AU2001291250A1 (en) 2000-09-26 2001-09-25 Monoblock battery assembly with cross-flow cooling

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/670,155 2000-09-26
US09/670,155 US6689510B1 (en) 1998-08-23 2000-09-26 Monoblock battery assembly with cross-flow cooling

Publications (1)

Publication Number Publication Date
WO2002027816A1 true WO2002027816A1 (fr) 2002-04-04

Family

ID=24689209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/030070 WO2002027816A1 (fr) 2000-09-26 2001-09-25 Ensemble batterie monobloc a refroidissement a flux transversal

Country Status (3)

Country Link
AU (1) AU2001291250A1 (fr)
TW (1) TW523949B (fr)
WO (1) WO2002027816A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071616A2 (fr) * 2002-02-19 2003-08-28 3M Innovative Properties Company Procede et appareil de regulation de temperature destine a des cellules electrochimiques a energie elevee
EP1701404A1 (fr) * 2005-03-11 2006-09-13 Samsung SDI Co., Ltd. Module de batterie
WO2007047317A2 (fr) * 2005-10-18 2007-04-26 Cobasys, Llc Système de batterie modulaire
FR2929760A1 (fr) * 2008-04-08 2009-10-09 Vehicules Electr Societe Par A Batterie electrique comprenant des elements generateurs souples et un systeme de conditionnement mecanique et thermique desdits elements
WO2009146876A1 (fr) * 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Dispositif de refroidissement d'une batterie de véhicule
WO2010109293A1 (fr) 2009-03-23 2010-09-30 Toyota Jidosha Kabushiki Kaisha Structure de régulation thermique d'un appareil de stockage d'électricité
EP2337143A2 (fr) * 2008-10-14 2011-06-22 LG Chem, Ltd. Ensemble module de batterie à efficacité de refroidissement améliorée
EP2355204A1 (fr) * 2010-02-02 2011-08-10 Dana Canada Corporation Échangeur thermique conforme pour un empilement batterie
EP2388852A1 (fr) * 2010-05-18 2011-11-23 Behr GmbH & Co. KG Dispositif de refroidissement et procédé de fabrication d'un dispositif de refroidissement
EP2617081A1 (fr) * 2011-01-24 2013-07-24 Guoan Feng Appareil de refroidissement pour blocs-batteries
US20130196184A1 (en) * 2012-01-27 2013-08-01 Tesla Motors, Inc. Battery module with integrated thermal management system
US9780421B2 (en) 2010-02-02 2017-10-03 Dana Canada Corporation Conformal heat exchanger for battery cell stack
EP3273526A4 (fr) * 2015-03-19 2018-01-24 AutoNetworks Technologies, Ltd. Module de stockage électrique

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217546A1 (de) * 2014-09-03 2016-03-03 Robert Bosch Gmbh Kühl- und/oder Heizvorrichtung eines Batteriemoduls
US10761577B1 (en) * 2019-08-29 2020-09-01 Google Llc Liquid soluble gas sealed cooling system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356735A (en) * 1993-05-10 1994-10-18 General Motors Corporation Heated/cooled battery
US5492779A (en) * 1994-10-24 1996-02-20 General Motors Corporation Heat dissipating battery
US5756227A (en) * 1994-11-18 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Battery assembly with temperature control mechanism
US6296968B1 (en) * 1998-06-11 2001-10-02 Alcatel One-piece battery incorporating a circulating fluid type heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5356735A (en) * 1993-05-10 1994-10-18 General Motors Corporation Heated/cooled battery
US5492779A (en) * 1994-10-24 1996-02-20 General Motors Corporation Heat dissipating battery
US5756227A (en) * 1994-11-18 1998-05-26 Honda Giken Kogyo Kabushiki Kaisha Battery assembly with temperature control mechanism
US6296968B1 (en) * 1998-06-11 2001-10-02 Alcatel One-piece battery incorporating a circulating fluid type heat exchanger

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003071616A3 (fr) * 2002-02-19 2004-02-26 3M Innovative Properties Co Procede et appareil de regulation de temperature destine a des cellules electrochimiques a energie elevee
CN100355145C (zh) * 2002-02-19 2007-12-12 3M创新有限公司 高能电化学电池用的温度控制装置和方法
WO2003071616A2 (fr) * 2002-02-19 2003-08-28 3M Innovative Properties Company Procede et appareil de regulation de temperature destine a des cellules electrochimiques a energie elevee
US8039141B2 (en) 2005-03-11 2011-10-18 Samsung Sdi Co., Ltd. Battery module
EP1701404A1 (fr) * 2005-03-11 2006-09-13 Samsung SDI Co., Ltd. Module de batterie
WO2007047317A2 (fr) * 2005-10-18 2007-04-26 Cobasys, Llc Système de batterie modulaire
WO2007047317A3 (fr) * 2005-10-18 2007-07-19 Cobasys Llc Système de batterie modulaire
FR2929760A1 (fr) * 2008-04-08 2009-10-09 Vehicules Electr Societe Par A Batterie electrique comprenant des elements generateurs souples et un systeme de conditionnement mecanique et thermique desdits elements
EP2109165A1 (fr) * 2008-04-08 2009-10-14 Societe De Vehicules Electriques Batterie électrique comprenant des éléments générateurs souples et un système de conditionnement mécanique et thermique desdits éléments
US8404375B2 (en) 2008-04-08 2013-03-26 Dow Kokam France Sas Electrical battery comprising flexible generating elements and a system for the mechanical and thermal conditioning of said elements
US8790808B2 (en) 2008-06-06 2014-07-29 Behr Gmbh & Co. Kg Device for cooling a vehicle battery
WO2009146876A1 (fr) * 2008-06-06 2009-12-10 Behr Gmbh & Co. Kg Dispositif de refroidissement d'une batterie de véhicule
EP2337143A2 (fr) * 2008-10-14 2011-06-22 LG Chem, Ltd. Ensemble module de batterie à efficacité de refroidissement améliorée
EP2337143B1 (fr) * 2008-10-14 2015-08-05 LG Chem, Ltd. Ensemble module de batterie à efficacité de refroidissement améliorée
CN102362389A (zh) * 2009-03-23 2012-02-22 丰田自动车株式会社 蓄电装置的温度调节结构
WO2010109293A1 (fr) 2009-03-23 2010-09-30 Toyota Jidosha Kabushiki Kaisha Structure de régulation thermique d'un appareil de stockage d'électricité
KR101417238B1 (ko) * 2009-03-23 2014-07-09 도요타지도샤가부시키가이샤 축전 장치의 온도 조절 구조체
EP2355204A1 (fr) * 2010-02-02 2011-08-10 Dana Canada Corporation Échangeur thermique conforme pour un empilement batterie
US9780421B2 (en) 2010-02-02 2017-10-03 Dana Canada Corporation Conformal heat exchanger for battery cell stack
EP2388852A1 (fr) * 2010-05-18 2011-11-23 Behr GmbH & Co. KG Dispositif de refroidissement et procédé de fabrication d'un dispositif de refroidissement
EP2617081A1 (fr) * 2011-01-24 2013-07-24 Guoan Feng Appareil de refroidissement pour blocs-batteries
EP2617081A4 (fr) * 2011-01-24 2013-10-23 Guoan Feng Appareil de refroidissement pour blocs-batteries
US8974943B2 (en) 2011-01-24 2015-03-10 Guoan Feng Power battery pack cooling apparatus
US20130196184A1 (en) * 2012-01-27 2013-08-01 Tesla Motors, Inc. Battery module with integrated thermal management system
US8906541B2 (en) * 2012-01-27 2014-12-09 Tesla Motors, Inc. Battery module with integrated thermal management system
EP3273526A4 (fr) * 2015-03-19 2018-01-24 AutoNetworks Technologies, Ltd. Module de stockage électrique

Also Published As

Publication number Publication date
TW523949B (en) 2003-03-11
AU2001291250A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US6864013B2 (en) Monoblock battery assembly with cross-flow cooling
EP1751808B1 (fr) Ensemble batterie a cellules multiples
EP1397841B1 (fr) Batterie monobloc
CA2619220C (fr) Boitier de batterie a conductivite thermique amelioree
KR101106111B1 (ko) 효율적인 냉각 및 배기 구조의 중대형 전지팩
US7294431B2 (en) Battery employing thermally conductive polymer case
US20050255379A1 (en) Battery assembly with heat sink
WO2002027816A1 (fr) Ensemble batterie monobloc a refroidissement a flux transversal
KR20120048937A (ko) 전지모듈 및 이를 포함하는 리튬이차 전지팩

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN IN JP KR MX NO RU SG UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP