WO2002027377A1 - Imaging lens, imaging unit, and electronic camera - Google Patents

Imaging lens, imaging unit, and electronic camera Download PDF

Info

Publication number
WO2002027377A1
WO2002027377A1 PCT/JP2001/008642 JP0108642W WO0227377A1 WO 2002027377 A1 WO2002027377 A1 WO 2002027377A1 JP 0108642 W JP0108642 W JP 0108642W WO 0227377 A1 WO0227377 A1 WO 0227377A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging lens
imaging
convex
image
Prior art date
Application number
PCT/JP2001/008642
Other languages
French (fr)
Japanese (ja)
Inventor
Keizo Ishiguro
Kazutake Boku
Syuusuke Ono
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2002027377A1 publication Critical patent/WO2002027377A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation

Definitions

  • Imaging lens Description Imaging lens, imaging unit, and electronic camera
  • the present invention relates to an imaging lens, an imaging unit, and an electronic camera, and in particular, to reduce the size and cost of an imaging lens for an electronic camera using an imaging element that is an image input unit of an information device such as a mobile phone or a PD. It's about what you're trying to do. Background art
  • imaging devices such as the CCD and CMOS sensors described above sample images in two dimensions, so high frequencies that are more than half the sampling frequency are false signals.
  • a quartz optical low-pass filter was required between the lens element and the image sensor.
  • the above-mentioned imaging device has sensitivity not only in the visible region but also in the long wavelength side, it is necessary to block the long wavelength infrared region. It needed to be incorporated.
  • Japanese Patent Application Laid-Open No. Hei 8-210729 discloses that a flat infrared shielding plate has a lens made of a plastic material and a phase grating serving as an optical aperture filter. And a method of integrally forming the two by bonding together.
  • the conventional imaging lens is configured as described above, and the optical element disclosed in Japanese Patent Application Laid-Open No. H08-201729 is miniaturized because the functional elements are bonded and integrated.
  • the thickness required for each functional element does not change, and there is a problem that further miniaturization and cost reduction are difficult.
  • the present invention has been made in order to solve the above problems, and has been made to use an imaging lens capable of realizing a small and thin lens as a whole and at a low cost, and using the imaging lens. It is an object to provide an imaging unit and an electronic force camera. Disclosure of the invention
  • An imaging lens according to claim 1 of the present invention is an imaging lens that forms a subject image on an imaging device, wherein the imaging lens is formed by using a material that blocks light in an infrared region. It is composed of a convex lens.
  • the imaging lens according to claim 2 of the present invention is the imaging lens according to claim 1, further comprising a stop closer to the object than the convex lens forming the imaging lens, It satisfies the condition of focal length f, radius of curvature rl of the convex lens on the object side, and force of 2.0 to fZr1 to 0.
  • the imaging lens according to claim 3 of the present invention is the same as the imaging lens according to claim 1 or 2, wherein the convex lens constituting the imaging lens is
  • the lens surface on the lens side is an aspheric surface, the local radius of curvature R 10 near the optical axis of the lens surface on the object side of the convex lens, the local radius of curvature R 11 on the outer periphery thereof, and the force IR 11 I / IR 10 I ⁇ 0.4 is satisfied.
  • the imaging lens according to claim 4 of the present invention is the imaging lens according to any one of claims 1 to 3, wherein the convex lens constituting the imaging lens has an image plane.
  • the lens surface on the image side of the convex lens is an aspheric surface, and the local radius of curvature R 20 near the optical axis of the lens surface on the image surface side of the convex lens, and the local radius of curvature R 21 on the outer peripheral portion and the force R 0. 7
  • Further, the imaging lens according to claim 5 of the present invention is the imaging lens according to any one of claims 1 to 4, which constitutes the imaging lens.
  • a phase grating having the function of an optical low-pass filter is formed on either the object side or the image side of the convex lens.
  • the imaging lens according to claim 6 of the present invention is the imaging lens according to claim 5, wherein the phase grating is disposed at least in one direction on a surface of the convex lens on the subject side. It is formed with a periodic structure.
  • the imaging lens according to claim 7 of the present invention is the imaging lens according to any one of claims 1 to 6, wherein the object side and the image of the convex lens constituting the imaging lens are provided. ⁇ because the anti-reflection film is formed on both surfaces.
  • an imaging unit is an imaging unit having an imaging element and an imaging lens for forming an image of a subject on the imaging element, wherein the imaging lens comprises: Item 8.
  • An electronic camera according to a ninth aspect of the present invention is configured using the imaging lens described in any one of the first to seventh aspects of the present invention.
  • An electronic camera according to claim 10 of the present invention is configured using the imaging unit according to claim 8.
  • the imaging lens blocks light in an infrared region. Since the lens is made of a convex lens formed using the same material, the same member can simultaneously achieve the lens imaging function and infrared shielding function, making the entire lens smaller and thinner and simplifying the processing of the member. As a result, it is possible to provide an inexpensive imaging lens and a lens unit, and it is possible to provide an inexpensive ultra-small electronic camera using the imaging lens.
  • the diaphragm is arranged closer to the subject than the convex lens, the focal length of the convex lens is f, and the convex lens is Assuming that the radius of curvature of the object side of r is r1, satisfies the relationship of _2.0 ⁇ f / r1 ⁇ 0, so that one convex lens has chromatic aberration and The effect that various aberrations including a tune can be favorably corrected can be obtained.
  • the imaging lens according to claim 3 of the present invention is the imaging lens according to claim 1 or 2, wherein the convex lens has an aspherical surface on the object side, and the convex lens has an aspheric surface on the object side.
  • the local radius of curvature of the lens surface near the optical axis is R10 and the local radius of curvature of its outer periphery is R11,
  • the convex lens has an aspheric surface on the image surface side, and has a local curvature radius near the optical axis of the lens surface on the image surface side of the convex lens.
  • R 20 assuming that the local radius of curvature of the outer peripheral portion is R 21, by satisfying the relationship 0.7
  • an optical low-pass filter is provided on any surface of the convex lens. Since a phase grating is formed, which has the function of, in addition to the function of shielding infrared rays, high-frequency image components can be suppressed with a single convex lens, so that the effect of reducing the size and cost of the lens unit can be obtained. .
  • the imaging lens according to claim 6 of the present invention is the imaging lens according to claim 5, wherein the imaging lens is formed on the surface of the convex lens on the subject side with a periodic structure in at least one direction.
  • the imaging lens according to claim 7 of the present invention is the imaging lens according to any one of claims 1 to 6, wherein the object side and the image of the convex lens constituting the imaging lens are provided. Since the anti-reflection films are formed on both surfaces, the transmissivity can be improved and the lens surface can be protected.
  • an imaging unit according to claim 8 of the present invention is an imaging unit having an imaging element and an imaging lens for forming a subject image on the imaging element, wherein the imaging lens is An imaging lens according to any one of Items 1 to 7 And a holder member for holding the imaging lens and enclosing the imaging element is provided, so that the entire imaging unit can be reduced in size and the cost can be reduced.
  • the electronic camera according to claim 9 of the present invention is configured using the imaging lens according to any one of claims 1 to 7, an ultra-compact and inexpensive information device is provided.
  • the effect is that an electronic force film for the camera can be provided.
  • the electronic camera according to claim 10 of the present invention is configured using the imaging unit according to claim 8, and thus provides an ultra-compact and inexpensive electronic camera for information equipment. The effect that it can be obtained is obtained.
  • FIG. 1 is a diagram showing a configuration of an imaging lens according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a configuration of an imaging lens according to Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing a configuration of an imaging lens unit according to Embodiment 3 of the present invention.
  • FIG. 4 is a diagram showing a configuration centered on an imaging lens unit of an electronic camera according to Embodiment 4 of the present invention.
  • FIG. 5 is a diagram showing aberrations of the imaging lens according to the first example of the imaging lens according to the first embodiment.
  • FIG. 6 is a diagram illustrating aberrations of the imaging lens according to the second example of the imaging lens according to the first embodiment.
  • FIG. 7 is a diagram illustrating aberrations of the imaging lens according to the third example of the imaging lens according to the first embodiment.
  • FIG. 8 is a diagram showing aberrations of the imaging lens according to Specific Example 4 of the imaging lens according to the first embodiment.
  • FIG. 9 is a diagram showing aberrations of the imaging lens according to the specific example 5 of the imaging lens according to the first embodiment.
  • FIG. 10 is a diagram illustrating aberrations of the imaging lens according to Specific Example 6 that does not satisfy the conditions of the imaging lens according to the first embodiment.
  • FIG. 1 is a diagram showing a configuration of an image pickup section centered on an aspherical zoom lens which is an image pickup lens of the first embodiment.
  • reference numeral 12 denotes a convex lens, which is made of a lens material that absorbs the infrared region. Therefore, in addition to the lens function of forming an image of a subject on the CCD 14, light in the infrared region is also emitted. It has the function of shutting off.
  • a lens material absorbing the infrared region for example, a glass material mixed with copper oxide is used.
  • the convex lens 12 is disposed close to and behind the stop 11 when viewed from the subject. As a result, even with a single convex lens, occurrence of chromatic aberration of magnification in particular can be minimized.
  • Reference numeral 13 denotes a flat plate equivalent to a CCD 14 face plate.
  • both surfaces of the lens are coated with an anti-reflection film 15 to improve the transmittance and to protect the lens surface.
  • conditional expression (1) relates to the power of the object-side surface. If the lower limit is exceeded, the astigmatic difference increases, and if the upper limit is exceeded, field curvature cannot be corrected.
  • the lens surface 12 a on the object side of the convex lens 12 be aspherical. Further, the local radius of curvature near the optical axis of the lens surface 12 a is R 10, and the local curvature of the outer peripheral portion is When the radius is R 11, the following conditional expression,
  • the lens surface 12 b on the image plane side of the convex lens 12 be aspherical. Further, the local curvature radius near the optical axis of this lens surface is R 20, and the local curvature of the outer peripheral portion is R 20. When the radius of curvature is R21, the following conditional expression,
  • conditional expression (3) is not satisfied, that is, if the lower limit is exceeded, spherical aberration will be insufficiently corrected. If the upper limit is exceeded, spherical aberration will be overcorrected and coma will be generated at the same time, and good aberration correction will not be possible.
  • the convex lens 12 is preferably manufactured by press molding for transferring the shape of a mold.
  • the anti-reflection films 15 are formed on both surfaces of the lens, it is preferable to form the anti-reflection films 15 on both surfaces of the lens rather than on one surface in view of improving transmittance and protecting the lens. .
  • Table 1 shows specific examples of the convex lens 12.
  • R (mm) is the radius of curvature of the lens
  • d (mm) is the thickness of the lens or the air gap of the lens
  • n is the refractive index of each lens for the d-line
  • V is the Abbe number of each lens for the d-line. (The same applies to the following specific examples 2 to 6).
  • F 1 to F 4 denote the object-side surface of the lens 12
  • F 2 denotes the image-side surface of the lens 12
  • F 2 denotes the object-side surface of the flat plate 13 in FIG. F3, and the image-side surface of the flat plate 13 is F4.
  • Table 2 below shows the aspherical shape of the aspherical zoom lens of Example 1 above.
  • Example 1 As shown in Table 3, with respect to the focal length of the convex lens, the radius of curvature of the surface on the object side satisfies the conditional expression (1) described above, and the field curvature and astigmatism are satisfactory. It has been corrected.
  • the aspherical shape of the object-side surface satisfies conditional expression (2), and field curvature is well corrected along with conditional expression (1).
  • the aspherical surface shape on the image side satisfies conditional expression (3), and spherical aberration and coma are well corrected. I have.
  • FIG. 5 shows an aberration chart of the imaging lens shown in Table 1 above.
  • FIG. 5 (a) is a diagram of the spherical aberration with respect to the d-line.
  • FIG. 5 (b) is a diagram of astigmatism, where the solid line indicates sagittal field curvature and the dotted line indicates meridional field curvature.
  • Fig. 5 (c) is a diagram showing distortion
  • Fig. 5 (d) is a diagram showing axial chromatic aberration.
  • the solid line is the d line
  • the dotted line is the F line
  • the wavy line is the C line.
  • Fig. 5 (e) is a diagram of chromatic aberration of magnification.
  • the dotted line shows the value for the F line
  • the dashed line shows the value for the C line. Note that the description of the symbols and the like in the above FIGS. 5 (a) to 5 (e) is the same for the subsequent drawings.
  • the imaging lens according to Example 1 shows good aberration performance.
  • Table 4 below shows another specific example 2 of the imaging lens.
  • Table 5 below shows the aspherical shape of the imaging lens of Example 2.
  • Example 2 satisfies the above-mentioned conditional expressions (1) to (3).
  • Table 6 The imaging lens shown in Table 4 also has good aberration performance, as can be seen from the aberration 14 performance diagram in FIG.
  • Table 7 shows another specific example 3 of the imaging lens.
  • Table 8 shows the aspherical shape of the imaging lens of Example 3.
  • Table 10 below shows another specific example 4 of the imaging lens.
  • Table 11 below shows the aspherical shape of the imaging lens of this example 4.
  • Table 12 As shown in Table 12, specific example 4 satisfies the above-mentioned conditional expressions (1) to (3).
  • Table 1 2 As can be seen from the aberration performance diagram of FIG. 8, the imaging lens shown in Table 10 also has good aberration 3 ⁇ 4fe performance.
  • Table 13 below shows another specific example 5 of the imaging lens.
  • Table 14 below shows the aspheric shape of the imaging lens of this fifth embodiment.
  • the imaging lenses shown in Table 13 above also show good aberration performance.
  • Table 16 shows Specific Example 6 which does not satisfy the conditions of the imaging lens according to the present embodiment.
  • Table 17 shows the aspherical shapes of the imaging lens of Example 6.
  • Table 18 As shown in Table 18, the specific example 6 exceeds the lower limit of the conditional expression (1). If the lower limit is exceeded, the radius of curvature of the object-side surface becomes relatively smaller than the focal length, and as can be seen from the aberration performance diagram of FIG. 10, astigmatism increases. Furthermore, the astigmatic difference, which is the difference between the dotted line and the solid line, is also large, indicating that the performance is greatly degraded. Furthermore, the radius of curvature is smaller as the lower limit of conditional expression (3) is exceeded.
  • the lens of Example 6 is made of a glass material mixed with oxidized copper, which is a glass material having a large coefficient of thermal expansion, the radius of curvature is small, so that the center and periphery of the lens are formed at the time of molding.
  • the difference in expansion and contraction is large, causing cracks in the lens, etc., making it impossible to secure the lens shape accuracy.
  • a lens that does not satisfy the conditions of the imaging lens according to the present embodiment as in the specific example 6 has poor aberration performance and is not preferable in terms of securing the lens shape accuracy.
  • the lens that forms the subject image on the CCD 14 is formed using a material that shields the infrared region, there is no need to separately provide an infrared cut-in filter.
  • an optical system having one function of an infrared cut filter can be constituted by the imaging lens alone, and the cost can be reduced.
  • FIG. 2 is a diagram showing an image pickup unit centered on an aspherical zoom lens which is an image pickup lens according to Embodiment 2.
  • FIG. 3 is a diagram illustrating a configuration.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and 22 denotes a convex lens, which is a lens material that absorbs an infrared region as in the first embodiment.
  • a phase grating 210 On the surface 22a on the object (subject) side, a phase grating 210 having a function of an optical low-pass filter and having a structure periodic in one direction is formed. With this configuration, a single convex lens 22 having an infrared shielding function and suppressing an image high-frequency component can be realized.
  • the convex lens 222 preferably has a lens surface on the image plane side that satisfies the above-described conditional expression (3), as in the first embodiment. It is preferable that the lens surface from which the periodic structure is removed satisfies the above-mentioned conditional expressions (1) and (2). Further, it is preferable that the phase grating 210 has a periodic structure having a trapezoidal cross section along a lens surface shape satisfying the conditional expressions (1) and (2). The phase grating 210 is preferably formed on the surface 22a on the object (subject) side of the convex lens 22 because the lens has a smaller curvature and is easier to manufacture. May be formed on the lens surface 22 b on the image plane side.
  • the convex lens 22 is preferably manufactured by press molding for transferring the shape of a mold in order to manufacture an ultra-small deformed lens at low cost.
  • an anti-reflection film may be coated on both surfaces of the lens 22 to improve the transmittance and protect the lens surface.
  • the image pickup device (CCD 14) is sealed with a convex lens 22 and a holder member (not shown) integrated with the convex lens 22, thereby reducing the size of the entire image pickup unit. Can be planned.
  • the lens 22 for imaging the subject image on the CCD 14 is formed using a material that shields the infrared region, and the lens surface 22 on the subject side is formed. Since a phase grating 210 is formed on a, an optical system having the functions of an infrared cut filter and an optical low-pass filter can be formed by a single imaging lens by processing only one component. However, lower prices can be realized.
  • the infrared shielding material is required to have a certain thickness because the infrared shielding effect is weakened when the material is made thinner. Since the convex lens itself having a required lens thickness required for the image action becomes unnecessary because it is made of a material for shielding infrared rays, the imaging lens of the second embodiment is ultra-thin and has a simple configuration. It can be.
  • the imaging lens having the above configuration it is possible to realize an ultra-compact and inexpensive electronic device for information equipment.
  • FIG. 3 is a diagram showing an example in which an aspherical zoom lens as an imaging lens according to the third embodiment is united.
  • 31 is a convex lens having a phase grating 310 on the lens surface on the subject side
  • 32 is a CCD which is an image sensor
  • the convex lens 31 and the CCD 32 are holder members 33.
  • the structure is such that the space between the convex lens 31 and the CCD 32 is sealed. Gas is sealed in the sealed space 34 to prevent dew condensation and the like.
  • a face plate is necessary to protect the surface of the CCD.
  • the face plate for the CCD is not required, and the size can be further reduced.
  • FIG. 4 shows an example of an electronic camera using an imaging lens according to the fourth embodiment.
  • the fourth embodiment includes an imaging unit 41 including the imaging lens described in the first and second embodiments or the imaging lens unit described in the third embodiment, a CCD 42 serving as an imaging device, A signal processing circuit 43 for processing the image signal obtained by the CCD 42.
  • an imaging lens or an imaging lens unit capable of reducing the size and thickness of the optical system an ultra-compact electronic camera can be realized.
  • CMOS sensor used as the image sensor
  • a photoelectric conversion system including the CCD 42 and the signal processing circuit 43 can be configured on one chip, and the size can be further reduced.
  • an imaging device serving as a video input unit of an information device such as a mobile phone or a PDA.
  • an imaging lens serving as a video input unit of an information device such as a mobile phone or a PDA.

Abstract

An imaging unit having an imaging lens capable of reducing the size and thickness of the entire lens, comprising a diaphragm (11), a convex lens (22) as the imaging lens, and a flat plate (13) equivalent to the face plate of a CCD (14) disposed in that order ranging from a body (object) to an image face, wherein a lens material absorbing infrared region is used for the convex lens (22), and a phase lattice (210) for removing high frequency components is formed on one lens surface.

Description

明 細 書 撮像レンズ、 撮像ユニット、 及び電子カメラ 技術分野  Description Imaging lens, imaging unit, and electronic camera
本発明は撮像レンズ、 撮像ユニット、 及び電子カメラに関し、 特に、 携帯電話 や P D Λなど情報機器の画像入力手段となる撮像素子を用いた電子カメラ用の撮 像レンズの小型化、 低価格化を図ったものに関するものである。 背景技術  The present invention relates to an imaging lens, an imaging unit, and an electronic camera, and in particular, to reduce the size and cost of an imaging lens for an electronic camera using an imaging element that is an image input unit of an information device such as a mobile phone or a PD. It's about what you're trying to do. Background art
最近の通信技術の進歩により、 文字情報や音声情報のみならず映像情報も相互 に通信が可能になってきている。 このため、 携帯電話や P D A (携帯情報端末) などの通信機器にも C C Dや CMO Sセンサーを用いた小型カメラが搭載される ようになつてきた。 この分野の小型カメラは携帯に適した超小型、 超薄型化、 さ らに安価であることが強く求められている。  Recent advances in communication technology have enabled video information as well as textual and audio information to communicate with each other. For this reason, communication devices such as mobile phones and PDAs (Personal Digital Assistants) have come to be equipped with small cameras using CCD and CMOS sensors. There is a strong demand for miniature cameras in this field to be ultra-compact, ultra-thin, and inexpensive to carry.
ところ力 上述した C C Dや C MO Sセンサーなどの撮像素子は、 画像を 2次 元でサンプリングするため、 サンプリング周波数の 2分の 1以上の高周波は偽信 号となってしまい、 そのような高周波成分をあらかじめ除去するため、 水晶の光 学ローパスフィルターがレンズ素子と撮像素子との間に必要となっていた。また、 上記撮像素子は可視域だけでなく長波長側でも感度を持っているため、 長波長の 赤外領域は遮断しなければならず、 このため赤外領域を吸収する赤外力ットフィ ノレターなどを組み込む必要があつた。  However, imaging devices such as the CCD and CMOS sensors described above sample images in two dimensions, so high frequencies that are more than half the sampling frequency are false signals. In order to remove this in advance, a quartz optical low-pass filter was required between the lens element and the image sensor. In addition, since the above-mentioned imaging device has sensitivity not only in the visible region but also in the long wavelength side, it is necessary to block the long wavelength infrared region. It needed to be incorporated.
この 2種類のフィルターの必要性により、 撮像ュニッ卜の小型化や低価格化が 制約されていた。 そして、 この問題に対して、 例えば、 特開平 8— 2 0 1 7 2 9 号公報では、 平板の赤外遮蔽板にプラスチックの材料でできたレンズおよび光学 口一パスフィルターの役割をする位相格子を貼り合わせて一体に形成する方法が 記載されている。  The necessity of these two types of filters has restricted the miniaturization and cost reduction of the imaging unit. In order to address this problem, for example, Japanese Patent Application Laid-Open No. Hei 8-210729 discloses that a flat infrared shielding plate has a lens made of a plastic material and a phase grating serving as an optical aperture filter. And a method of integrally forming the two by bonding together.
従来の撮像レンズは以上のように構成されており、 特開平 8— 2 0 1 7 2 9号 公報に示された光学素子では、 各機能素子を貼り合わせて一体にするため小型化 は図れる方向であるが、 個々の素子は独立して作成されて貼り合わされるため、 個々の機能素子ごとに必要な厚みは変わらず、 さらなる小型化、 低価格化が難し いという問題点があった。 The conventional imaging lens is configured as described above, and the optical element disclosed in Japanese Patent Application Laid-Open No. H08-201729 is miniaturized because the functional elements are bonded and integrated. However, since the individual elements are created and bonded independently, the thickness required for each functional element does not change, and there is a problem that further miniaturization and cost reduction are difficult. Was.
また、 プラスチックレンズの場合、 材質によっては、 反射防止膜の形成が難し い場合もあり、 レンズの歩留まりを向上しにくい原因にもなつていた。  Also, in the case of a plastic lens, depending on the material, it may be difficult to form an anti-reflection film, which may cause a difficulty in improving the lens yield.
本発明は以上のような問題点を解消するためになされたもので、 レンズ全体を 小型化、 薄型化するとともに、 低価格化を実現することのできる撮像レンズ、 及 び該撮像レンズを用いた撮像ュニット、電子力メラを提供することを目的とする。 発明の開示  The present invention has been made in order to solve the above problems, and has been made to use an imaging lens capable of realizing a small and thin lens as a whole and at a low cost, and using the imaging lens. It is an object to provide an imaging unit and an electronic force camera. Disclosure of the invention
この発明の請求の範囲第 1項にかかる撮像レンズは、 被写体像を撮像素子に結 像させる撮像レンズにおいて、 上記撮像レンズを、 赤外領域の光を遮断する材料 を用レ、て形成された凸レンズで構成したものである。  An imaging lens according to claim 1 of the present invention is an imaging lens that forms a subject image on an imaging device, wherein the imaging lens is formed by using a material that blocks light in an infrared region. It is composed of a convex lens.
また、 この発明の請求の範囲第 2項にかかる撮像レンズは、 上記請求の範囲第 1項記載の撮像レンズにおいて、 上記撮像レンズを構成する凸レンズよりも被写 体側に絞りを備え、 上記凸レンズの焦点距離 f と、 凸レンズの被写体側の曲率半 径 r lと力 一 2 . 0く f Z r 1く 0の条件を満足するものである。  Further, the imaging lens according to claim 2 of the present invention is the imaging lens according to claim 1, further comprising a stop closer to the object than the convex lens forming the imaging lens, It satisfies the condition of focal length f, radius of curvature rl of the convex lens on the object side, and force of 2.0 to fZr1 to 0.
また、 本発明の請求の範囲第 3項にかかる撮像レンズは、 請求の範囲第 1項ま たは第 2項記載の撮像レンズにぉレ、て、 上記撮像レンズを構成する凸レンズは、 その被写体側のレンズ面が非球面であり、 該凸レンズの被写体側のレンズ面の、 光軸近傍の局所的曲率半径 R 1 0と、 その外周部の局所的曲率半径 R 1 1と力 I R 1 1 I / I R 1 0 I < 0 . 4の条件を満足するものである。  Further, the imaging lens according to claim 3 of the present invention is the same as the imaging lens according to claim 1 or 2, wherein the convex lens constituting the imaging lens is The lens surface on the lens side is an aspheric surface, the local radius of curvature R 10 near the optical axis of the lens surface on the object side of the convex lens, the local radius of curvature R 11 on the outer periphery thereof, and the force IR 11 I / IR 10 I <0.4 is satisfied.
また、 本発明の請求の範囲第 4項にかかる撮像レンズは、 請求の範囲第 1項な いし第 3項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する 凸レンズは、 その像面側のレンズ面が非球面であり、 該凸レンズの像面側のレン ズ面の、 光軸近傍の局所的曲率半径 R 2 0と、 その外周部の局所的曲率半径 R 2 1と力 0 . 7く | R 2 l | Z | R 2 0 | く 1 . 2の条件を満足するものである。 また、 本発明の請求の範囲第 5項にかかる撮像レンズは、 請求の範囲第 1項な レヽし第 4項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する 凸レンズの、 被写体側および像面側のいずれかの面に、 光学的ローパスフィ^^タ 一の作用を持つ位相格子が形成されているものである。 The imaging lens according to claim 4 of the present invention is the imaging lens according to any one of claims 1 to 3, wherein the convex lens constituting the imaging lens has an image plane. The lens surface on the image side of the convex lens is an aspheric surface, and the local radius of curvature R 20 near the optical axis of the lens surface on the image surface side of the convex lens, and the local radius of curvature R 21 on the outer peripheral portion and the force R 0. 7 | R 2 l | Z | R 20 | Further, the imaging lens according to claim 5 of the present invention is the imaging lens according to any one of claims 1 to 4, which constitutes the imaging lens. A phase grating having the function of an optical low-pass filter is formed on either the object side or the image side of the convex lens.
また、 本発明の請求の範囲第 6項にかかる撮像レンズは、 請求の範囲第 5項記 載の撮像レンズにおいて、 上記位相格子は、 上記凸レンズの被写体側の面上に少 なくとも一方向に周期的な構造で形成されるものである。  The imaging lens according to claim 6 of the present invention is the imaging lens according to claim 5, wherein the phase grating is disposed at least in one direction on a surface of the convex lens on the subject side. It is formed with a periodic structure.
また、 本発明の請求の範囲第 7項にかかる撮像レンズは、 請求の範囲第 1項な いし第 6項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する 凸レンズの被写体側および像面側の両面に、 反射防止膜が形成されているもので め θ。  Further, the imaging lens according to claim 7 of the present invention is the imaging lens according to any one of claims 1 to 6, wherein the object side and the image of the convex lens constituting the imaging lens are provided. Θ because the anti-reflection film is formed on both surfaces.
また、 本発明の請求の範囲第 8項にかかる撮像ユニットは、 撮像素子と、 被写 体像を前記撮像素子に結像させる撮像レンズとを有する撮像ュニッ卜において、 上記撮像レンズは、 請求の範囲第 1項ないし第 7項のいずれかに記載の撮像レン ズであり、 上記撮像レンズを保持し、 上記撮像素子を封止するホルダー部材を備 えたものである。  Further, an imaging unit according to claim 8 of the present invention is an imaging unit having an imaging element and an imaging lens for forming an image of a subject on the imaging element, wherein the imaging lens comprises: Item 8. The imaging lens according to any one of Items 1 to 7, further comprising a holder member that holds the imaging lens and seals the imaging element.
また、 本発明の請求の範囲第 9項にかかる電子カメラは、 請求の範囲第 1項な いし第 7項のレ、ずれかに記載の撮像レンズを用いて構成されたものである。  An electronic camera according to a ninth aspect of the present invention is configured using the imaging lens described in any one of the first to seventh aspects of the present invention.
また、 本発明の請求の範囲第 1 0項にかかる電子カメラは、 請求の範囲第 8項 記載の撮像ュニットを用いて構成されたものである。  An electronic camera according to claim 10 of the present invention is configured using the imaging unit according to claim 8.
以上のように、 本発明の請求の範囲第 1項にかかる撮像レンズによれば、 被写 体像を撮像素子に結像させる撮像レンズにおいて、 上記撮像レンズを、 赤外領域 の光を遮断する材料を用レ、て形成された凸レンズで構成したので、 同じ部材でレ ンズの結像作用と赤外遮蔽作用を同時に実現でき、 レンズ全体を小型化、 薄型化 するとともに、部材の加工が簡略化され低価格化が実現され、安価な撮像レンズ、 およびレンズュニッ卜が提供でき、 さらに本撮像レンズを用いた超小型の電子力 メラを安価に提供することができるという効果が得られる。  As described above, according to the imaging lens according to claim 1 of the present invention, in the imaging lens that forms an object image on the imaging device, the imaging lens blocks light in an infrared region. Since the lens is made of a convex lens formed using the same material, the same member can simultaneously achieve the lens imaging function and infrared shielding function, making the entire lens smaller and thinner and simplifying the processing of the member. As a result, it is possible to provide an inexpensive imaging lens and a lens unit, and it is possible to provide an inexpensive ultra-small electronic camera using the imaging lens.
また、 本発明の請求の範囲第 2項にかかる撮像レンズによれば、 請求の範囲第 1項にかかる撮像レンズにおいて、 凸レンズより被写体側に絞りが配置され、 凸 レンズの焦点距離を f 、 凸レンズの物体側の曲率半径を r 1としたとき、 _ 2 . 0 < f / r 1 < 0の関係を満足することにより、 凸レンズ 1枚で色収差、 像面湾 曲を含む諸収差を良好に補正することができるという効果が得られる。 Further, according to the imaging lens according to claim 2 of the present invention, in the imaging lens according to claim 1, the diaphragm is arranged closer to the subject than the convex lens, the focal length of the convex lens is f, and the convex lens is Assuming that the radius of curvature of the object side of r is r1, satisfies the relationship of _2.0 <f / r1 <0, so that one convex lens has chromatic aberration and The effect that various aberrations including a tune can be favorably corrected can be obtained.
また、 本発明の請求の範囲第 3項にかかる撮像レンズは、 請求の範囲第 1項ま たは第 2項にかかる撮像レンズにおいて、 凸レンズは物体側が非球面であり、 該 凸レンズの被写体側のレンズ面の、 光軸近傍の局所的曲率半径を R 1 0、 その外 周部の局所的曲率半径を R 1 1としたとき、 | R 1 1 | Z | R 1 0 | く 0 . 4の 関係を満足することにより、 非点収差および像面湾曲を良好に補正することがで きるという効果が得られる。  Further, the imaging lens according to claim 3 of the present invention is the imaging lens according to claim 1 or 2, wherein the convex lens has an aspherical surface on the object side, and the convex lens has an aspheric surface on the object side. Assuming that the local radius of curvature of the lens surface near the optical axis is R10 and the local radius of curvature of its outer periphery is R11, | R11 | Z | R10 | By satisfying the relationship, it is possible to obtain an effect that astigmatism and field curvature can be favorably corrected.
また、 本発明の請求の範囲第 4項に係る撮像レンズによれば、 凸レンズは像面 側が非球面であり、 該凸レンズの像面側のレンズ面の、 光軸近傍の局所的曲率半 径を R 2 0、 その外周部の局所的曲率半径を R 2 1としたとき 0 . 7く | R 2 1 I / I R 2 0 I < 1 . 2の関係を満足することにより、 球面収差およびコマ収差 を良好に補正することができるという効果が得られる。  Further, according to the imaging lens of claim 4 of the present invention, the convex lens has an aspheric surface on the image surface side, and has a local curvature radius near the optical axis of the lens surface on the image surface side of the convex lens. R 20, assuming that the local radius of curvature of the outer peripheral portion is R 21, by satisfying the relationship 0.7 | R 21 I / IR 20 I <1.2, spherical aberration and coma Can be satisfactorily corrected.
また、 本発明の請求の範囲第 5項にかかる撮像レンズによれば、 請求の範囲第 1項ないし第 4項のいずれかにかかる撮像レンズにおいて、 凸レンズのいずれか の面に光学的ローパスフィルタ一の作用を持つ、 位相格子を形成したので、 赤外 遮蔽の機能に加え、 画像高周波成分の抑圧も 1枚の凸レンズで実現できるため、 レンズュニットはさらに小型化、 低価格化できるという効果が得られる。  Further, according to the imaging lens according to claim 5 of the present invention, in the imaging lens according to any one of claims 1 to 4, an optical low-pass filter is provided on any surface of the convex lens. Since a phase grating is formed, which has the function of, in addition to the function of shielding infrared rays, high-frequency image components can be suppressed with a single convex lens, so that the effect of reducing the size and cost of the lens unit can be obtained. .
また、 本発明の請求の範囲第 6項にかかる撮像レンズは、 請求の範囲第 5項記 載の撮像レンズにおいて、 凸レンズの被写体側の面上に少なくとも一方向に周期 的な構造で形成することで、 凸レンズを用いて画像高周波成分の抑圧を行うこと ができるという効果が得られる。  Further, the imaging lens according to claim 6 of the present invention is the imaging lens according to claim 5, wherein the imaging lens is formed on the surface of the convex lens on the subject side with a periodic structure in at least one direction. Thus, the effect that the high frequency component of the image can be suppressed using the convex lens can be obtained.
また、 本発明の請求の範囲第 7項にかかる撮像レンズは、 請求の範囲第 1項な いし第 6項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する 凸レンズの被写体側および像面側の両面に、 反射防止膜が形成されるようにした ので、 透過率を向上できるとともに、 レンズ面の保護を行うことができるという 効果が得られる。  Further, the imaging lens according to claim 7 of the present invention is the imaging lens according to any one of claims 1 to 6, wherein the object side and the image of the convex lens constituting the imaging lens are provided. Since the anti-reflection films are formed on both surfaces, the transmissivity can be improved and the lens surface can be protected.
また、 本発明の請求の範囲第 8項にかかる撮像ユニットは、 撮像素子と被写体 像を前記撮像素子に結像させる撮像レンズとを有する撮像ュニッ卜において、 上 記撮像レンズは、 請求の範囲第 1項ないし第 7項のいずれかに記載の撮像レンズ であり、 上記撮像レンズを保持し、 上記撮像素子を封止するホルダ一部材を備え たものとしたので、 撮像ユニット全体を小型化でき、 かつ低価格化を図ることが できるという効果が得られる。 Further, an imaging unit according to claim 8 of the present invention is an imaging unit having an imaging element and an imaging lens for forming a subject image on the imaging element, wherein the imaging lens is An imaging lens according to any one of Items 1 to 7 And a holder member for holding the imaging lens and enclosing the imaging element is provided, so that the entire imaging unit can be reduced in size and the cost can be reduced. .
また、 本発明の請求の範囲第 9項にかかる電子カメラは、 請求の範囲第 1項な いし第 7項のいずれかに記載の撮像レンズを用いて構成したので、 超小型で安価 な情報機器用の電子力メラを提供することができるという効果が得られる。 また、 本発明の請求の範囲第 1 0項にかかる電子カメラは、 請求の範囲第 8項 記載の撮像ュニットを用いて構成したので、 超小型で安価な情報機器用の電子力 メラを提供することができるという効果が得られる。 図面の簡単な説明  Also, since the electronic camera according to claim 9 of the present invention is configured using the imaging lens according to any one of claims 1 to 7, an ultra-compact and inexpensive information device is provided. The effect is that an electronic force film for the camera can be provided. In addition, the electronic camera according to claim 10 of the present invention is configured using the imaging unit according to claim 8, and thus provides an ultra-compact and inexpensive electronic camera for information equipment. The effect that it can be obtained is obtained. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態 1に係る撮像レンズの構成を示す図である。 第 2図は、 本発明の実施の形態 2に係る撮像レンズの構成を示す図である。 第 3図は、 本発明の実施の形態 3に係る撮像レンズュニットの構成を示す図で ある。  FIG. 1 is a diagram showing a configuration of an imaging lens according to Embodiment 1 of the present invention. FIG. 2 is a diagram showing a configuration of an imaging lens according to Embodiment 2 of the present invention. FIG. 3 is a diagram showing a configuration of an imaging lens unit according to Embodiment 3 of the present invention.
第 4図は、 本発明の実施の形態 4に係る電子カメラの撮像レンズュニットを中 心とした構成を示す図である。  FIG. 4 is a diagram showing a configuration centered on an imaging lens unit of an electronic camera according to Embodiment 4 of the present invention.
第 5図は、 上記実施の形態 1による撮像レンズの具体例 1による撮像レンズの 収差を示す図である。  FIG. 5 is a diagram showing aberrations of the imaging lens according to the first example of the imaging lens according to the first embodiment.
第 6図は、 上記実施の形態 1による撮像レンズの具体例 2による撮像レンズの 収差を示す図である。  FIG. 6 is a diagram illustrating aberrations of the imaging lens according to the second example of the imaging lens according to the first embodiment.
第 7図は、 上記実施の形態 1による撮像レンズの具体例 3による撮像レンズの 収差を示す図である。  FIG. 7 is a diagram illustrating aberrations of the imaging lens according to the third example of the imaging lens according to the first embodiment.
第 8図は、 上記実施の形態 1による撮像レンズの具体例 4による撮像レンズの 収差を示す図である。  FIG. 8 is a diagram showing aberrations of the imaging lens according to Specific Example 4 of the imaging lens according to the first embodiment.
第 9図は、 上記実施の形態 1による撮像レンズの具体例 5による撮像レンズの 収差を示す図である。  FIG. 9 is a diagram showing aberrations of the imaging lens according to the specific example 5 of the imaging lens according to the first embodiment.
第 1 0図は、 実施の形態 1による撮像レンズの条件を満たさない具体例 6によ る撮像レンズの収差を示す図である。 発明を実施するための最良の形態 FIG. 10 is a diagram illustrating aberrations of the imaging lens according to Specific Example 6 that does not satisfy the conditions of the imaging lens according to the first embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
(実施の形態 1 )  (Embodiment 1)
以下、 本発明の実施の形態 1にかかる撮像レンズについて説明する。 第 1図は 本実施の形態 1の撮像レンズである非球面ズームレンズを中心とした撮像部の構 成を示す図である。 図において、 1 2は凸レンズであり、 赤外領域を吸収するレ ンズ材料が使用されており、 このため、 被写体像を C C D 1 4に結像させるレン ズ作用に加え、 赤外領域の光を遮断する機能を有している。 赤外領域を吸収する レンズ材料としては、 たとえば酸化銅を混入したガラス材料を用いる。 また、 こ の凸レンズ 1 2は、被写体から見て、絞り 1 1の後方に近接して配置されている。 これにより凸レンズ 1枚でも、 特に倍率の色収差の発生を極力少なくすることが できる。 また、 1 3は C C D 1 4のフェースプレートに等価な平板である。  Hereinafter, the imaging lens according to the first embodiment of the present invention will be described. FIG. 1 is a diagram showing a configuration of an image pickup section centered on an aspherical zoom lens which is an image pickup lens of the first embodiment. In the figure, reference numeral 12 denotes a convex lens, which is made of a lens material that absorbs the infrared region. Therefore, in addition to the lens function of forming an image of a subject on the CCD 14, light in the infrared region is also emitted. It has the function of shutting off. As a lens material absorbing the infrared region, for example, a glass material mixed with copper oxide is used. The convex lens 12 is disposed close to and behind the stop 11 when viewed from the subject. As a result, even with a single convex lens, occurrence of chromatic aberration of magnification in particular can be minimized. Reference numeral 13 denotes a flat plate equivalent to a CCD 14 face plate.
さらに、 レンズ両面には反射防止膜 1 5がコーティングされており、 透過率を 向上させるとともに、 レンズ面の保護の役割を果たしている。 上記凸レンズ 1 2 の焦点距離を f 、 物体 (被写体) 側の面 1 2 aの曲率半径を r 1としたとき、 条 件式 (1 ) として、  Further, both surfaces of the lens are coated with an anti-reflection film 15 to improve the transmittance and to protect the lens surface. Assuming that the focal length of the convex lens 12 is f and the radius of curvature of the object (subject) side surface 12 a is r 1, as a conditional expression (1),
- 2 . 0 < ί / 1 < 0 - · · ( 1 )  -2.0 <0/1 <0-(1)
の関係を満足することが好ましい。 上記条件式 (1 ) は、 物体側の面のパワーに 関するものであり、 下限を越えると非点隔差が大きくなり、 上限を越えると像面 湾曲が補正できなくなる。 Is preferably satisfied. The above conditional expression (1) relates to the power of the object-side surface. If the lower limit is exceeded, the astigmatic difference increases, and if the upper limit is exceeded, field curvature cannot be corrected.
また、凸レンズ 1 2の物体側のレンズ面 1 2 aが非球面であることが好ましく、 さらにこのレンズ面 1 2 aの光軸近傍の局所的曲率半径を R 1 0、 外周部の局所 的曲率半径を R 1 1としたとき、 以下の条件式、  It is preferable that the lens surface 12 a on the object side of the convex lens 12 be aspherical. Further, the local radius of curvature near the optical axis of the lens surface 12 a is R 10, and the local curvature of the outer peripheral portion is When the radius is R 11, the following conditional expression,
I R 1 1 I / I R 1 0 I < 0 . 4 · · · ( 2 )  I R 11 I / I R 10 I <0.4. (2)
の関係を満足することが望ましい。 なお、 上記条件式 (2 ) を満足しない場合、 すなわち、 上限を越えると特に非点隔差が大きくなり、 良好な収差補正が得られ なくなる。 It is desirable to satisfy the following relationship. If the above conditional expression (2) is not satisfied, that is, if the upper limit is exceeded, the astigmatism is particularly large, and good aberration correction cannot be obtained.
また、凸レンズ 1 2の像面側のレンズ面 1 2 bが非球面であることが好ましく、 さらに、 このレンズ面の光軸近傍の局所的曲率半径を R 2 0、 外周部の局所的曲 率半径を R 21としたとき、 以下の条件式、 It is preferable that the lens surface 12 b on the image plane side of the convex lens 12 be aspherical. Further, the local curvature radius near the optical axis of this lens surface is R 20, and the local curvature of the outer peripheral portion is R 20. When the radius of curvature is R21, the following conditional expression,
0. 7< | R21 | / | R20 | < 1. 2 · · · (3)  0.7 <| R21 | / | R20 | <1.2 · · · (3)
の関係を満足することが望ましい。 なお、 上記条件式 (3) を満足しない場合、 すなわち、 下限を越えると球面収差が補正不足となる。 また、 上限を越えると球 面収差が補正過剰となると同時にコマ収差が発生し、 良好な収差補正ができなく なる。 It is desirable to satisfy the following relationship. If conditional expression (3) is not satisfied, that is, if the lower limit is exceeded, spherical aberration will be insufficiently corrected. If the upper limit is exceeded, spherical aberration will be overcorrected and coma will be generated at the same time, and good aberration correction will not be possible.
なお、 凸レンズ 12は超小型の非球面レンズを安価に製造するため、 金型の形 状を転写するプレス成形で製造されることが好ましレ、。 また、 上記レンズの両面 に反射防止膜 15を形成したが、 透過率向上、 レンズの保護の面から考えて、 反 射防止膜 15は、 レンズ片面よりも両面に形成するのが好ましレ、。  In order to manufacture the ultra-small aspherical lens at low cost, the convex lens 12 is preferably manufactured by press molding for transferring the shape of a mold. Although the anti-reflection films 15 are formed on both surfaces of the lens, it is preferable to form the anti-reflection films 15 on both surfaces of the lens rather than on one surface in view of improving transmittance and protecting the lens. .
以下、 上記条件式 (1) 〜 (3) を満たした撮像レンズの具体例を、 それぞれ、 条件式の満足する範囲でパラメータを変えたものを 3通り示す。  Hereinafter, three specific examples of the imaging lens satisfying the above conditional expressions (1) to (3) will be described in three cases in which parameters are changed within a range satisfying the conditional expressions.
(具体例 1 )  (Specific example 1)
上記凸レンズ 12の具体例を表 1に示す。 表 1において、 R (mm) はレンズ の曲率半径、 d (mm) はレンズの肉厚またはレンズの空気間隔、 nは各レンズ の d線に対する屈折率、 Vは各レンズの d線に対するアッベ数を示している (以 下の具体例 2〜 6についても同じ)。 また、 F 1〜F4はそれぞれ、 例えば、 第 1 図においては、 レンズ 12の被写体側の面を F 1とし、 レンズ 12の像面側の面 を F 2とし、 平板 13の被写体側の面を F 3とし、 平板 13の像面側の面を F 4 としている。  Table 1 shows specific examples of the convex lens 12. In Table 1, R (mm) is the radius of curvature of the lens, d (mm) is the thickness of the lens or the air gap of the lens, n is the refractive index of each lens for the d-line, and V is the Abbe number of each lens for the d-line. (The same applies to the following specific examples 2 to 6). In FIG. 1, for example, F 1 to F 4 denote the object-side surface of the lens 12, F 2 denotes the image-side surface of the lens 12, and F 2 denotes the object-side surface of the flat plate 13 in FIG. F3, and the image-side surface of the flat plate 13 is F4.
Figure imgf000009_0001
Figure imgf000009_0001
また、 非球面形状は以下の数 1で定義している (以下の具体例 2〜 6について も同じ)。 数 H2/R The aspheric shape is defined by the following equation (the same applies to the following specific examples 2 to 6). Number H 2 / R
SAG = +D-H4+E-H6+F-H8+G SAG = + DH 4 + EH 6 + FH 8 + G
1+ 1-C1+K) (H/R)2 1+ 1-C1 + K) (H / R) 2
(a)  (a)
Figure imgf000010_0001
Figure imgf000010_0001
dH2 dH 2
SAG 光軸からの高さが Hにおける非球面上の点の頂点からの距雜Distance from vertex of point on aspheric surface at height H from SAG optical axis
H 光軸からの高さ H Height from optical axis
R 非球面頂点の曲率半径  R radius of curvature of aspherical vertex
K 円錐常数  K conical constant
D 非球面係数  D aspheric coefficient
非球面係数  Aspheric coefficient
C 局所的な曲率半径  C local radius of curvature
上記具体例 1の非球面ズームレンズの非球面形状を以下の表 2に示す。 Table 2 below shows the aspherical shape of the aspherical zoom lens of Example 1 above.
表 2 Table 2
Figure imgf000010_0002
Figure imgf000010_0002
具体例 1は、 表 3に示したように、 凸レンズの焦点距離に対して、 物体側の面 の曲率半径が上述した条件式 (1) を満足し、 像面湾曲、 非点隔差が良好に補正 されている。 また、 物体側の面の非球面形状が条件式 (2) を満足しており、 条 件式 (1) と合わせて像面湾曲が良好に捕正されている。 さらに像側の面の非球 面形状が条件式 (3) を満足しており、 球面収差、 コマ収差が良好に捕正されて いる。 In Example 1, as shown in Table 3, with respect to the focal length of the convex lens, the radius of curvature of the surface on the object side satisfies the conditional expression (1) described above, and the field curvature and astigmatism are satisfactory. It has been corrected. In addition, the aspherical shape of the object-side surface satisfies conditional expression (2), and field curvature is well corrected along with conditional expression (1). Furthermore, the aspherical surface shape on the image side satisfies conditional expression (3), and spherical aberration and coma are well corrected. I have.
表 3
Figure imgf000011_0002
第 5図に上記表 1に示した撮像レンズの収差^ 4能図を示す。 なお、 第 5 (a) 図は d線に対する球面収差の図である。 また、 第 5 (b) 図は、 非点収差の図で あって、実線はサジタル像面湾曲を示し、点線はメリディォナル像面湾曲を示す。 さらに、 第 5 (c) 図は歪曲収差を示す図、 第 5 (d) 図は軸上色収差を示す図 であって、 それぞれにおいて、 実線は d線、 点線は F線、 波線は C線に対する値 を示す。 また、 第 5 (e) 図は倍率色収差の図であって、 点線は F線、 波線は C 線に対する値を示す。 なお、 以上の第 5 (a) 図〜第 5 (e) 図における図中の 記号などの説明は、 以降の図面についても同じである。
Table 3
Figure imgf000011_0002
FIG. 5 shows an aberration chart of the imaging lens shown in Table 1 above. FIG. 5 (a) is a diagram of the spherical aberration with respect to the d-line. FIG. 5 (b) is a diagram of astigmatism, where the solid line indicates sagittal field curvature and the dotted line indicates meridional field curvature. Further, Fig. 5 (c) is a diagram showing distortion, and Fig. 5 (d) is a diagram showing axial chromatic aberration. In each case, the solid line is the d line, the dotted line is the F line, and the wavy line is the C line. Indicates the value. Fig. 5 (e) is a diagram of chromatic aberration of magnification. The dotted line shows the value for the F line, and the dashed line shows the value for the C line. Note that the description of the symbols and the like in the above FIGS. 5 (a) to 5 (e) is the same for the subsequent drawings.
第 5図から分かるように、 具体例 1に係わる撮像レンズは良好な収差性能を示 している。  As can be seen from FIG. 5, the imaging lens according to Example 1 shows good aberration performance.
(具体例 2)  (Specific example 2)
以下の表 4に、 上記撮像レンズのもう一つの具体例 2を示す。 また、 この具体 例 2の撮像レンズの非球面形状を以下の表 5に示す。 表 4  Table 4 below shows another specific example 2 of the imaging lens. Table 5 below shows the aspherical shape of the imaging lens of Example 2. Table 4
Figure imgf000011_0003
表 5
Figure imgf000011_0003
Table 5
Figure imgf000011_0001
具体例 2は、 表 6に示したように、 上述した条件式 (1) 〜 (3) を満たして いる。 表 6
Figure imgf000012_0001
上記表 4に示した撮像レンズにおいても、 第 6図の収差 14能図から分かるよう に、 良好な収差性能を示している。
Figure imgf000011_0001
As shown in Table 6, Example 2 satisfies the above-mentioned conditional expressions (1) to (3). Table 6
Figure imgf000012_0001
The imaging lens shown in Table 4 also has good aberration performance, as can be seen from the aberration 14 performance diagram in FIG.
(具体例 3)  (Specific example 3)
さらに、 以下の表 7に、 上記撮像レンズのもう一つの具体例 3を示す。 また、 この具体例 3の撮像レンズの非球面形状を以下の表 8に示す。 表 7  Further, Table 7 below shows another specific example 3 of the imaging lens. Table 8 below shows the aspherical shape of the imaging lens of Example 3. Table 7
Figure imgf000012_0002
表 8
Figure imgf000012_0002
Table 8
Figure imgf000012_0003
具体例 3は、 表 9に示したように、 上述した条件式 (1) 〜 (3) を満たして いる。 f/r1 0.00
Figure imgf000012_0003
Specific example 3 satisfies the above-mentioned conditional expressions (1) to (3) as shown in Table 9. f / r1 0.00
表 9 I R11 I / I R10 | 0.02 Table 9 I R11 I / I R10 | 0.02
| R21 | / | R20 | 1.13 上記表 7に示した撮像レンズは、 第 7図の収差性能図から分かるように、 良好 な収差性能を示している。 | R21 | / | R20 | 1.13 The imaging lenses shown in Table 7 above have excellent aberration performance as can be seen from the aberration performance diagram of FIG.
(具体例 4 )  (Specific example 4)
以下の表 1 0に、 上記撮像レンズのもう一つの具体例 4を示す。 また、 この具 体例 4の撮像レンズの非球面形状を以下の表 1 1に示す。 表 1 0  Table 10 below shows another specific example 4 of the imaging lens. Table 11 below shows the aspherical shape of the imaging lens of this example 4. Table 10
Figure imgf000013_0001
Figure imgf000013_0001
Figure imgf000013_0002
Figure imgf000013_0002
具体例 4は、 表 1 2に示したように、 上述した条件式 (1 ) 〜 (3 ) を満たし ている。 表 1 2
Figure imgf000013_0003
上記表 1 0に示した撮像レンズにおいても、 第 8図の収差性能図から分かるよ うに、 良好な収差 ¾fe能を示している。
As shown in Table 12, specific example 4 satisfies the above-mentioned conditional expressions (1) to (3). Table 1 2
Figure imgf000013_0003
As can be seen from the aberration performance diagram of FIG. 8, the imaging lens shown in Table 10 also has good aberration ¾fe performance.
(具体例 5 )  (Specific example 5)
以下の表 1 3に、 上記撮像レンズのもう一つの具体例 5を示す。 また、 この具 体例 5の撮像レンズの非球面形状を以下の表 1 4に示す。 表 1 3 Table 13 below shows another specific example 5 of the imaging lens. Table 14 below shows the aspheric shape of the imaging lens of this fifth embodiment. Table 13
Figure imgf000014_0002
表 1 4
Figure imgf000014_0002
Table 14
Figure imgf000014_0003
具体例 5は、 表 1 5に示したように、 上述した条件式 ( 1 ) ( 3 ) を満たし ている。 表 1 5
Figure imgf000014_0004
Figure imgf000014_0003
Specific example 5 satisfies the above-mentioned conditional expressions (1) and (3) as shown in Table 15. Table 15
Figure imgf000014_0004
上記表 1 3に示した撮像レンズにおいても、 第 9図の収差性能図から分かるよ うに、 良好な収差性能を示している。 As can be seen from the aberration performance diagram in FIG. 9, the imaging lenses shown in Table 13 above also show good aberration performance.
(具体例 6 )  (Specific example 6)
さらに、 以下の表 1 6に、 本実施の形態による撮像レンズの条件を満たさない 具体例 6を示す。 また、 この具体例 6の撮像レンズの非球面形状を以下の表 1 7 に示す。 表 1 6
Figure imgf000014_0001
表 1 7
Further, Table 16 below shows Specific Example 6 which does not satisfy the conditions of the imaging lens according to the present embodiment. Table 17 below shows the aspherical shapes of the imaging lens of Example 6. Table 16
Figure imgf000014_0001
Table 17
Figure imgf000015_0001
Figure imgf000015_0001
表 1 8
Figure imgf000015_0002
具体例 6は表 1 8に示したように、 上述した条件式(1 ) の下限を越えている。 下限を超えると物体側の面の曲率半径が焦点距離に対して相対的に小さくなり、 第 1 0図の収差性能図からもわかるように、 非点収差が大きぐなつている。 さら に点線と実線の隔差である非点隔差も大きくなっており、 性能が大きく劣化して いるのがわかる。 さらにまた、 上述した条件式 (3 ) の下限を越えるほどに、 曲 率半径が小さい。
Table 18
Figure imgf000015_0002
As shown in Table 18, the specific example 6 exceeds the lower limit of the conditional expression (1). If the lower limit is exceeded, the radius of curvature of the object-side surface becomes relatively smaller than the focal length, and as can be seen from the aberration performance diagram of FIG. 10, astigmatism increases. Furthermore, the astigmatic difference, which is the difference between the dotted line and the solid line, is also large, indicating that the performance is greatly degraded. Furthermore, the radius of curvature is smaller as the lower limit of conditional expression (3) is exceeded.
従って、具体例 6のレンズを、熱膨張係数が大きいガラス材料であるところの、 酸ィ匕銅を混入したガラス材料を用いて作成した場合は、 曲率半径が小さいため成 形時に中心と周辺の膨張収縮の差が大きく、 レンズのひびわれなどが発生し、 レ ンズの形状精度が確保できなくなる。  Therefore, when the lens of Example 6 is made of a glass material mixed with oxidized copper, which is a glass material having a large coefficient of thermal expansion, the radius of curvature is small, so that the center and periphery of the lens are formed at the time of molding. The difference in expansion and contraction is large, causing cracks in the lens, etc., making it impossible to secure the lens shape accuracy.
この具体例 6のように、 本実施の形態による撮像レンズの条件を満たさないレ ンズは、 収差性能が悪く、 またレンズの形状精度の確保の点で好ましくない。 このように本実施の形態 1では、被写体像を C C D 1 4に結像させるレンズを、 赤外領域を遮蔽する材料を用いて形成するようにしたので、 赤外カツトフイノレタ —を別途設ける必要がなくなり、 一つの部材のみの加工で、 撮像レンズ単体で赤 外カットフィルタ一機能を有する光学系を構成でき、 低価格化を実現することが できる。  A lens that does not satisfy the conditions of the imaging lens according to the present embodiment as in the specific example 6 has poor aberration performance and is not preferable in terms of securing the lens shape accuracy. As described above, in the first embodiment, since the lens that forms the subject image on the CCD 14 is formed using a material that shields the infrared region, there is no need to separately provide an infrared cut-in filter. By processing only one member, an optical system having one function of an infrared cut filter can be constituted by the imaging lens alone, and the cost can be reduced.
(実施の形態 2 )  (Embodiment 2)
次に本発明の実施の形態 2による撮像レンズについて説明する。 第 2図は、 本 実施の形態 2に係る撮像レンズである非球面ズームレンズを中心とした撮像部の 構成を示す図である。 図において、 第 1図と同一符号は同一、 または相当部分を 示し、 2 2は凸レンズであり上記実施の形態 1と同様に、 赤外領域を吸収するレ ンズ材料が使用されており、 また、 物体 (被写体) 側の面 2 2 aには光学的ロー パスフィルターの作用を持つ、 一方向に周期的な構造の位相格子 2 1 0が形成さ れている。 この構成により、 赤外遮蔽の機能を有するとともに、 画像高周波成分 の抑圧もできるものを、 1枚の凸レンズ 2 2で実現することができる。 Next, an imaging lens according to Embodiment 2 of the present invention will be described. FIG. 2 is a diagram showing an image pickup unit centered on an aspherical zoom lens which is an image pickup lens according to Embodiment 2. FIG. 3 is a diagram illustrating a configuration. In the figure, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and 22 denotes a convex lens, which is a lens material that absorbs an infrared region as in the first embodiment. On the surface 22a on the object (subject) side, a phase grating 210 having a function of an optical low-pass filter and having a structure periodic in one direction is formed. With this configuration, a single convex lens 22 having an infrared shielding function and suppressing an image high-frequency component can be realized.
上記凸レンズ 2 2は、 実施の形態 1と同様に、 その像面側のレンズ面が、 上述 した条件式 (3 ) を満足することが好ましく、 また、 その被写体側の、 位相格子 2 1 0の周期構造を除去したレンズ面が、 上述した条件式 (1 )、 ( 2 ) を満足す ることが好ましい。 さらに、位相格子 2 1 0は、上記条件式 ( 1 )、 ( 2 ) を満足す るレンズ面形状に沿って、断面台形形状の周期構造が形成されることが好ましい。 なお、位相格子 2 1 0は、 凸レンズ 2 2の物体 (被写体) 側の面 2 2 aの方が、 レンズの曲率がゆるく、 その製造が容易なため、 この面に形成するのが好ましい 、 これは、 像面側のレンズ面 2 2 bに形成してもよい。  The convex lens 222 preferably has a lens surface on the image plane side that satisfies the above-described conditional expression (3), as in the first embodiment. It is preferable that the lens surface from which the periodic structure is removed satisfies the above-mentioned conditional expressions (1) and (2). Further, it is preferable that the phase grating 210 has a periodic structure having a trapezoidal cross section along a lens surface shape satisfying the conditional expressions (1) and (2). The phase grating 210 is preferably formed on the surface 22a on the object (subject) side of the convex lens 22 because the lens has a smaller curvature and is easier to manufacture. May be formed on the lens surface 22 b on the image plane side.
また、 上記実施の形態 1と同様に、 凸レンズ 2 2は、 超小型の異形レンズを安 価に製造するため、 金型の形状を転写するプレス成形で製造されることが好まし レ、。  Also, as in the first embodiment, the convex lens 22 is preferably manufactured by press molding for transferring the shape of a mold in order to manufacture an ultra-small deformed lens at low cost.
さらに、 実施の形態 1と同様に、 レンズ 2 2の両面に反射防止膜をコーティン グし、 透過率を向上させるとともに、 レンズ面の保護をするようにしてもよレ、。 また、 撮像素子 (C C D 1 4 ) を、 凸レンズ 2 2と、 凸レンズ 2 2と一体のホ ルダ一部材 (図示せず) とで封止する構成にすることで、 撮像ユニット全体の小 型化を図ることができる。  Further, similarly to the first embodiment, an anti-reflection film may be coated on both surfaces of the lens 22 to improve the transmittance and protect the lens surface. In addition, the image pickup device (CCD 14) is sealed with a convex lens 22 and a holder member (not shown) integrated with the convex lens 22, thereby reducing the size of the entire image pickup unit. Can be planned.
このように本実施の形態 2によれば、 被写体像を C C D 1 4に結像させるレン ズ 2 2を、 赤外領域を遮蔽する材料を用いて形成するとともに、 被写体側のレン ズ面 2 2 aに位相格子 2 1 0を形成するようにしたので、 撮像レンズ単体で赤外 カツトフィルターと光学ローパスフィルタ一の機能を有する光学系を、 一つの部 材のみの加工で、 形成することができ、 低価格化を実現することができる。  As described above, according to the second embodiment, the lens 22 for imaging the subject image on the CCD 14 is formed using a material that shields the infrared region, and the lens surface 22 on the subject side is formed. Since a phase grating 210 is formed on a, an optical system having the functions of an infrared cut filter and an optical low-pass filter can be formed by a single imaging lens by processing only one component. However, lower prices can be realized.
特に、 赤外遮蔽用の材料は、 薄くすると赤外の遮蔽効果が弱くなるため、 ある 程度の厚みが必要であるが、 本実施の形態 2では、 その板厚は、 本来レンズの結 像作用に必要な所要のレンズ厚を有する凸レンズ自体が赤外遮蔽用の材料よりな ることによって不要となるため、 本実施の形態 2の撮像レンズは、 超薄型で、 か つ簡単な構成とすることができる。 In particular, the infrared shielding material is required to have a certain thickness because the infrared shielding effect is weakened when the material is made thinner. Since the convex lens itself having a required lens thickness required for the image action becomes unnecessary because it is made of a material for shielding infrared rays, the imaging lens of the second embodiment is ultra-thin and has a simple configuration. It can be.
また、 上記構成を有する撮像レンズを用いることにより、 超小型で安価な、 情 報機器用の電子力メラを実現することができる。  Further, by using the imaging lens having the above configuration, it is possible to realize an ultra-compact and inexpensive electronic device for information equipment.
(実施の形態 3 )  (Embodiment 3)
次に本発明の実施の形態 3にかかる撮像レンズュニットについて説明する。 第 3図は、 本実施の形態 3にかかる、 撮像レンズである非球面ズームレンズをュニ ット化した一例を示す図である。 図において、 3 1は被写体側のレンズ面に位相 格子 3 1 0を有する凸レンズ、 3 2は撮像素子である C C Dであり、 上記凸レン ズ 3 1と C C D 3 2とは、 ホルダー部材 3 3で接合され、 凸レンズ 3 1と C C D 3 2との間の空間が密閉されている構造となっている。 そしてこの密閉された空 間 3 4中には、 結露などを防ぐため、 ガスが封入されている。  Next, an imaging lens unit according to a third embodiment of the present invention will be described. FIG. 3 is a diagram showing an example in which an aspherical zoom lens as an imaging lens according to the third embodiment is united. In the figure, 31 is a convex lens having a phase grating 310 on the lens surface on the subject side, 32 is a CCD which is an image sensor, and the convex lens 31 and the CCD 32 are holder members 33. The structure is such that the space between the convex lens 31 and the CCD 32 is sealed. Gas is sealed in the sealed space 34 to prevent dew condensation and the like.
以上のような本実施の形態 3では、 C C Dの表面を保護するために、 フェース プレートが必要である。 上記実施の形態 1, 2に比べて、 該 C C D用のフェース プレートが不要となり、 さらに小型化を図ることができる。  In the third embodiment described above, a face plate is necessary to protect the surface of the CCD. Compared with the first and second embodiments, the face plate for the CCD is not required, and the size can be further reduced.
(実施の形態 4 )  (Embodiment 4)
次に本発明の実施の形態 4にかかる電子カメラについて説明する。 第 4図は、 本実施の形態 4に係る、 撮像レンズを使用した電子カメラの一例を示している。 本実施の形態 4は、 上記実施の形態 1 , 2で述べた撮像レンズ、 あるいは実施の 形態 3で述べた撮像レンズユニット、 を含む撮像ユニット 4 1と、 撮像素子であ る C C D 4 2と、 該 C C D 4 2で得られた画像信号を処理するための信号処理回 路 4 3とから構成されている。 このように、 光学系を小型化、 薄型化できる撮像 レンズ、 あるいは撮像レンズユニットを用いたことにより、 超小型の電子カメラ を実現することができる。  Next, an electronic camera according to a fourth embodiment of the present invention will be described. FIG. 4 shows an example of an electronic camera using an imaging lens according to the fourth embodiment. The fourth embodiment includes an imaging unit 41 including the imaging lens described in the first and second embodiments or the imaging lens unit described in the third embodiment, a CCD 42 serving as an imaging device, A signal processing circuit 43 for processing the image signal obtained by the CCD 42. As described above, by using an imaging lens or an imaging lens unit capable of reducing the size and thickness of the optical system, an ultra-compact electronic camera can be realized.
さらに、 撮像素子として CMO Sセンサーを用いれば、 C C D 4 2と、 信号処 理回路 4 3とよりなる光電変換系を、 1チップで構成でき、 さらに小型化を図る ことができる。 産業上の利用可能性 Furthermore, if a CMOS sensor is used as the image sensor, a photoelectric conversion system including the CCD 42 and the signal processing circuit 43 can be configured on one chip, and the size can be further reduced. Industrial applicability
以上のように本発明に係る撮像レンズによれば、 レンズ全体を小型化、 薄型化 するとともに、 低価格化することができ、 特に携帯電話や P D Aなどの情報機器 の映像入力手段となる撮像素子を用いた電子カメラ用の撮像レンズとして利用価 ί直力 si¾レヽ。 As described above, according to the imaging lens of the present invention, the entire lens can be reduced in size and thickness, and the price can be reduced. In particular, an imaging device serving as a video input unit of an information device such as a mobile phone or a PDA. use number ί straight force s I¾ Rere as an imaging lens for an electronic camera using a.

Claims

請求の範囲 The scope of the claims
1. 被写体像を撮像素子に結像させる撮像レンズにおいて、 1. In an imaging lens that forms a subject image on an image sensor,
上記撮像レンズを、 赤外領域の光を遮断する材料を用いて形成された凸レンズ で構成した、  The imaging lens is constituted by a convex lens formed using a material that blocks light in an infrared region,
ことを特徴とする撮像レンズ。  An imaging lens, characterized in that:
2. 請求の範囲第 1項記載の撮像レンズにおいて、  2. In the imaging lens according to claim 1,
上記撮像レンズを構成する凸レンズよりも被写体側に絞りを備え、  An aperture is provided on the subject side relative to the convex lens constituting the imaging lens,
上記凸レンズの焦点距離 f と、 凸レンズの被写体側の曲率半径 r 1とが、 -2. 0< ί/r 1 < 0  The focal length f of the convex lens and the radius of curvature r 1 of the convex lens on the object side are -2.0 << / r 1 <0
の条件を満足する、 Satisfying the conditions of
ことを特徴とする撮像レンズ。  An imaging lens, characterized in that:
3. 請求の範囲第 1項または第 2項記載の撮像レンズにおいて、 3. In the imaging lens according to claim 1 or 2,
上記撮像レンズを構成する凸レンズは、 その被写体側のレンズ面が非球面であ り、  The convex lens constituting the imaging lens has an aspherical lens surface on the subject side,
該凸レンズの被写体側のレンズ面の、 光軸近傍の局所的曲率半径 R 1 0と、 そ の外周部の局所的曲率半径 R 1 1とが、  The local radius of curvature R 10 near the optical axis of the lens surface of the convex lens on the subject side and the local radius of curvature R 11 of the outer peripheral portion thereof are:
| R 1 11/ l R l O | < 0. 4  | R 1 11 / l R l O | <0.4
の条件を満足する、 Satisfying the conditions of
ことを特徴とする撮像レンズ。  An imaging lens, characterized in that:
4. 請求の範囲第 1項ないし第 3項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する凸レンズは、その像面側のレンズ面が非球面であり、 該凸レンズの像面側のレンズ面の、 光軸近傍の局所的曲率半径 R 20と、 その 外周部の局所的曲率半径 R 2 1とが、  4. The imaging lens according to any one of claims 1 to 3, wherein a convex lens constituting the imaging lens has an aspherical lens surface on an image surface side, and an image surface side of the convex lens. The local radius of curvature R 20 near the optical axis of the lens surface of the lens and the local radius of curvature R 21 of the outer peripheral portion thereof are:
0. 7 < | R2 1 | / | R 20 | < 1. 2  0.7 <<| R2 1 | / | R 20 | <1.2
の条件を満足する、 Satisfying the conditions of
ことを特徴とする撮像レンズ。  An imaging lens, characterized in that:
5. 請求の範囲第 1項ないし第 4項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する凸レンズの、 被写体側および像面側のいずれかの面 に、 光学的ローパスフィルターの作用を持つ位相格子が形成されている、 ことを特徴とする撮像レンズ。 5. The imaging lens according to any one of claims 1 to 4, wherein the convex lens constituting the imaging lens has one of a subject side and an image plane side. An imaging lens, wherein a phase grating having an action of an optical low-pass filter is formed.
6 . 請求の範囲第 5項記載の撮像レンズにおいて、  6. The imaging lens according to claim 5,
上記位相格子は、 上記凸レンズの被写体側の面上に少なくとも一方向に周期的 な構造で形成されている、  The phase grating is formed on the object-side surface of the convex lens in a structure that is periodic in at least one direction.
ことを特徴とする撮影レンズ。  An imaging lens characterized by the following:
7 . 請求の範囲第 1項ないし第 6項のいずれかに記載の撮像レンズにおいて、 上記撮像レンズを構成する凸レンズの被写体側および像面側の両面に、 反射防 止膜が形成されている、 ことを特徴とする撮像レンズ。  7. The imaging lens according to any one of claims 1 to 6, wherein an anti-reflection film is formed on both the object side and the image plane side of the convex lens constituting the imaging lens, An imaging lens, characterized in that:
8 . 撮像素子と、 被写体像を前記撮像素子に結像させる撮像レンズとを有する 撮像ュニッ卜において、 8. In an imaging unit having an imaging element and an imaging lens that forms a subject image on the imaging element,
上記撮像レンズは、 請求の範囲第 1項ないし第 7項のいずれかに記載の撮像レ ンズであり、  The imaging lens is the imaging lens according to any one of claims 1 to 7,
上記撮像レンズを保持し、 上記撮像素子を封止するホルダー部材を備えた、 ことを特徴とする撮像ユニット。  An imaging unit, comprising: a holder member that holds the imaging lens and seals the imaging element.
9 . 請求の範囲第 1項ないし第 7項のいずれかに記載の撮像レンズを用いて構成 された、  9. An image pickup lens according to any one of claims 1 to 7,
ことを特徴とする電子カメラ。  An electronic camera, characterized in that:
1 0 . 請求の範囲第 8項記載の撮像ュニットを用いて構成された、 10. An imaging unit according to claim 8,
ことを特徴とする電子カメラ。  An electronic camera, characterized in that:
PCT/JP2001/008642 2000-09-29 2001-10-01 Imaging lens, imaging unit, and electronic camera WO2002027377A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-299511 2000-09-29
JP2000299511A JP2006023321A (en) 2000-09-29 2000-09-29 Imaging lens, imaging unit and miniature electronic camera

Publications (1)

Publication Number Publication Date
WO2002027377A1 true WO2002027377A1 (en) 2002-04-04

Family

ID=18781304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008642 WO2002027377A1 (en) 2000-09-29 2001-10-01 Imaging lens, imaging unit, and electronic camera

Country Status (2)

Country Link
JP (1) JP2006023321A (en)
WO (1) WO2002027377A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686412A3 (en) * 2004-12-03 2006-08-16 Ohara Inc. Optical component and method of manufacture of optical component

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157310A1 (en) * 2008-06-25 2009-12-30 コニカミノルタオプト株式会社 Imaging optical system
JP5206485B2 (en) * 2009-02-25 2013-06-12 ソニー株式会社 Electronic device, imaging device, and grip structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714811A (en) * 1980-07-01 1982-01-26 Canon Inc Lens for copying machine
JPH04191716A (en) * 1990-11-27 1992-07-10 Konica Corp Wide angle photographing lens
JPH10213739A (en) * 1997-01-29 1998-08-11 Konica Corp Photographing lens
JPH1138315A (en) * 1997-07-22 1999-02-12 Konica Corp Image pickup lens, phase diffraction grating having optical low pass effect, and image pickup optical system
US5995279A (en) * 1994-11-09 1999-11-30 Canon Kabushiki Kaisha Optical element, and taking optical system and image pickup apparatus using it
JPH11352324A (en) * 1998-06-10 1999-12-24 Sony Corp Infrared cut filter and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714811A (en) * 1980-07-01 1982-01-26 Canon Inc Lens for copying machine
JPH04191716A (en) * 1990-11-27 1992-07-10 Konica Corp Wide angle photographing lens
US5995279A (en) * 1994-11-09 1999-11-30 Canon Kabushiki Kaisha Optical element, and taking optical system and image pickup apparatus using it
JPH10213739A (en) * 1997-01-29 1998-08-11 Konica Corp Photographing lens
JPH1138315A (en) * 1997-07-22 1999-02-12 Konica Corp Image pickup lens, phase diffraction grating having optical low pass effect, and image pickup optical system
JPH11352324A (en) * 1998-06-10 1999-12-24 Sony Corp Infrared cut filter and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686412A3 (en) * 2004-12-03 2006-08-16 Ohara Inc. Optical component and method of manufacture of optical component
US7405883B2 (en) 2004-12-03 2008-07-29 Ohara Inc. Optical component and method of manufacture of optical component

Also Published As

Publication number Publication date
JP2006023321A (en) 2006-01-26

Similar Documents

Publication Publication Date Title
CN112394477B (en) Camera lens
JP4153013B1 (en) Imaging lens, imaging unit, and portable information terminal including the same
JP3717488B2 (en) Single focus lens
US6985309B2 (en) Imaging lens
US20200096734A1 (en) Imaging optical system, image capturing unit and electronic device
US8526115B2 (en) Imaging lens system
JP5951739B2 (en) Optical imaging lens set
JP4173210B2 (en) Imaging lens
JP2009020182A (en) Imaging lens, camera module, and image pickup unit
US20080130143A1 (en) Subminiature imaging optical system
GB2455600A (en) Compact lens system having four aspheric lenses
JP2009008758A (en) Imaging device, camera module and portable terminal equipment
JP2008139853A (en) Imaging lens having three-lens configuration, camera module, and portable terminal equipment
JP2009069196A (en) Imaging lens, camera module and imaging equipment
US11092785B2 (en) Optical imaging lens assembly comprising five lenses of +−−+−, +−0+−, +−++−, +−+−−, or +−−−− refractive powers, image capturing unit and electronic device
JP2007286548A (en) Zoom lens, digital camera, and portable information device
JP2012093717A (en) Variable power optical system and imaging apparatus
CN111033348B (en) Single-focus imaging optical system, lens unit, and imaging device
JP2009098513A (en) Four-lens-type small imaging lens, camera module, and imaging apparatus
JP2007212636A (en) Zoom lens system, imaging apparatus and camera
JP2004271991A (en) Imaging lens
JP2004295075A (en) Zoom lens
JP2009145597A (en) Imaging lens, imaging unit, and personal digital assistant incorporating this imaging unit
JP2008076594A (en) Imaging lens, camera module, and portable terminal device
WO2009136580A1 (en) Image pickup optical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP