WO2002027361A1 - Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants - Google Patents

Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants Download PDF

Info

Publication number
WO2002027361A1
WO2002027361A1 PCT/FR2001/002985 FR0102985W WO0227361A1 WO 2002027361 A1 WO2002027361 A1 WO 2002027361A1 FR 0102985 W FR0102985 W FR 0102985W WO 0227361 A1 WO0227361 A1 WO 0227361A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
diffraction
optical
angle
bragg reflector
Prior art date
Application number
PCT/FR2001/002985
Other languages
English (en)
Inventor
Didier Lepere
Original Assignee
Jobin Yvon S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jobin Yvon S.A. filed Critical Jobin Yvon S.A.
Priority to AT01972219T priority Critical patent/ATE280959T1/de
Priority to US10/381,050 priority patent/US20040027647A1/en
Priority to DE60106784T priority patent/DE60106784T2/de
Priority to AU92005/01A priority patent/AU9200501A/en
Priority to EP20010972219 priority patent/EP1344093B1/fr
Publication of WO2002027361A1 publication Critical patent/WO2002027361A1/fr
Priority to US11/065,362 priority patent/US7233444B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1838Diffraction gratings for use with ultraviolet radiation or X-rays

Definitions

  • the present invention relates to an optical light diffraction method, as well as to a corresponding optical system and device.
  • the field of application of the invention relates both to wavelength measurements carried out on monochromatic light beams and to the dispersion of polychromatic beams, for example in a monochromator.
  • diffraction gratings for the diffraction of light is well known.
  • an incident beam is grazed under grazing incidence on a diffraction grating and a returned beam is recovered for a given order of diffraction, according to a diffraction angle satisfying the law of gratings (Fresnel diffraction).
  • the networks used, for example for synchrotron radiation VUV are typically etched in materials such as silicon or SiC CVD, by ion etching or laminating.
  • diffraction crystals For diffractions at shorter wavelengths, other systems such as diffraction crystals are used. In such a crystal, having a given distance between reticular planes, incident beams are diffracted according to Bragg's law.
  • the usable wavelength range is bounded above by the distance between the reticular planes, and it is further limited by the fact that the angular range is generally between 5 ° and 85 ° for practical reasons. For example, for an oriented silicon single crystal (111), for which twice the distance between reticular planes is 0.627 nm, the wavelength range varies between 0.055 nm and 0.625 nm.
  • Bragg reflectors by stacking thin layers on a substrate. They also diffract light in accordance with Bragg's law.
  • - Bragg reflector - a crystal or a stack of layers on a substrate.
  • the invention relates to an optical light diffraction method implementing a diffraction grating, making it possible to cover a wide spectral range, ranging for example from the ultraviolet in vacuum to hard X-rays. More precisely, the optical measurement method of the invention makes it possible to take into account wavelengths ranging from 0.1 nm to 20 nm or more, by means of a single device and in a simple and economical manner.
  • the invention also relates to an optical system and an optical measuring device having the aforementioned advantages.
  • the subject of the invention is an optical measurement method in which:
  • At least one incident beam of light having at least one wavelength is sent on a surface of an optical system having a normal, in a direction forming an angle of incidence relative to the normal, this optical system comprising a Bragg reflector and an etched grating on the surface of the Bragg reflector, and
  • the wavelengths and the angle of incidence of at least one of the incident beams are such that this incident beam is diffracted by the Bragg reflector and / or by the grating.
  • the Bragg reflector on which the grating is engraved is directly used for diffraction at short wavelengths.
  • the method of the invention thus proves to allow a dissociation of the Fresnel diffractions (on the network) and of Bragg (in the Bragg reflector), and in this way allow a double operation in the VUV domain (network) and in the X-ray domain (Bragg reflector).
  • the method of the invention thus makes it possible to considerably simplify the measurement protocol and to have more reduced equipment.
  • the Bragg reflector is a crystal
  • the angle of incidence is between 5 ° and 80 and / or
  • the wavelengths are between 0.1 nm and 0.7 nm.
  • the crystal is formed from an oriented silicon single crystal (111) and the grating is directly etched on this crystal.
  • a substrate proves to be particularly suitable for fulfilling the double function of crystal diffraction and grating diffraction.
  • the network is advantageously covered with a metallic layer. This increases the efficiency of the network.
  • the wavelengths and the angle of incidence of at least one other of the incident beams are such that this incident beam is diffracted by the grating.
  • the angle of incidence is at least equal to 70 ° and / or
  • the wavelengths of the other incident beam are between 0.6 nm and 150 nm.
  • the incident beams are polychromatic light beams.
  • the method is then advantageously implemented in a monochromator, the optical system acting as a dispersing element and being followed by a selection slot.
  • the incident beams are monochromatic light beams.
  • the optical system can thus be used as a primary standard for measuring wavelengths.
  • the invention also relates to an optical system comprising a Bragg reflector.
  • the Bragg reflector is a crystal and the crystal is formed from a single crystal of silicon.
  • optical measurement device comprising:
  • the invention also applies to the use of the method or the device according to the invention for a primary calibration for the measurement of wavelengths (monochromatic beam of light) or for a dispersion in a monochromator or spectrograph (beam of polychromatic light).
  • FIG. 1 is a block diagram illustrating an optical system used in the method according to the invention (the scales are not respected for questions of visibility);
  • FIG. 2 shows a profile, measured with a tunnel effect microscope
  • FIG. 3 is a block diagram of the implementation of the optical measurement method according to the invention in crystal diffraction mode;
  • - Figure 4 is a block diagram of the implementation of the optical measurement method according to the invention in a diffraction grating mode;
  • FIG. 5 shows for the optical system of Figure 2 and in diffraction crystal mode, the reflectivity as a function of the difference from the angle of incidence to the Bragg angle for a wavelength equal to 0.154 nm ;
  • FIG. 6 represents for the optical system of FIG. 2 and in diffraction grating mode, the efficiency as a function of the angle of incidence for the orders 1 and -1, for a wavelength equal to 1, 33 nm;
  • FIG. 7 represents for the optical system of FIG. 2 and in diffraction grating mode, the efficiency as a function of the angle of incidence for the orders 1 and -1, for a wavelength equal to 1, 55 nm;
  • FIG. 8 shows an optical measurement device used to implement an optical measurement method according to the invention.
  • An optical system 1 (FIG. 1) comprises a Bragg reflector 2 and a grating 3 etched on the substrate of the Bragg reflector 2 at a surface 8 of the optical system 1.
  • the grating 3 is covered with a metallic layer 4, for example consisting of a 10 nm layer of gold.
  • the Bragg reflector 2 advantageously consists of a single crystal of orientation silicon (111). It is super-polished, with a slope error of a few tenths of an arc seconds and a roughness of a few ⁇ . This polishing allows the optical system 1 to operate in grazing reflection, for use in vacuum ultraviolet using diffraction by the grating 3.
  • the Bragg 2 reflector is a stack of layers. It can itself be deposited on a substrate.
  • the diffraction grating 3 is for example registered by holographic recording and ion machining. It comprises lines 5 (FIG. 2) having a depth for example less than 10 nm, which makes it a very slightly modulated network.
  • the profile of the network 3 can be obtained by tunneling microscopy, in height (etching depth), width and length (axes 11, 12 and 13 respectively, in nm).
  • the density N of lines of the network 3 per mm is for example equal to 1200.
  • the optical system 1 is used to cover a spectral range extending from the vacuum ultraviolet to hard X-rays.
  • a first implementation FIG. 3
  • an incident beam 21 having a wavelength less than 0.6 nm is sent to the surface 8.
  • the optical system 1 having a normal 20 at the surface 8 the incident beam 21 forms with respect to this normal, an angle ⁇ and with respect to the reticular planes 6 of the reflector of Bragg 2 (that is to say in this case with respect to the surface 8), an angle ⁇ .
  • the angle ⁇ is preferably between 5 ° and 80 °.
  • the optical system 1 then behaves like a conventional diffraction crystal, the beams diffracted 22 by the Bragg reflector 2 forming with the normal 20, an angle ⁇ equal to the angle ⁇ ( Figure 3).
  • This system 1 can thus in particular be used as a standard of wavelength or as a diffracting element of an X-ray monochromator.
  • the absence of disturbances of the Bragg diffraction in the Bragg reflector 2 by the grating 3 can be explained by the fact that the depth of the lines 5 of the grating is sufficiently small compared to the depth of penetration of the incident beam in the Bragg 2 reflector, when this incident beam has sufficiently short wavelengths (in particular X-rays).
  • the angle ⁇ being between 5 ° and 80 °, the range of usable wavelengths extends from approximately 0.1 nm to 0.625 nm.
  • the optical system 1 is operated in a diffraction grating in the field of ultraviolet under vacuum.
  • An incident beam 25 is thus sent (FIG. 4) at a wavelength greater than 0.6 nm.
  • This incident beam 25 forms with the normal 20, an angle ⁇ making it possible to obtain a high efficiency in the diffraction order used, advantageously greater than or equal to 70 °, so that the incident radiation is almost grazing. This maintains a high efficiency.
  • the incident beam 25 then interacts with the diffraction grating 3 and produces diffracted beams 26 forming angles ⁇ with the normal 20, these diffraction angles ⁇ depending on the order of diffraction considered (the diffracted beam 26 shown in FIG. 4 corresponds for example to the order -1).
  • the response of the optical system 1 was tested for a fixed wavelength (0.154 nm) as a function of the angle of incidence on an X-ray tube with a oni-2 ⁇ goniometer.
  • the detector is rotated by 2 ⁇ , so as to satisfy Bragg's law.
  • Figure 5 as a function of the difference from the angle of incidence to the Bragg angle (given by Bragg's law, axis 14, in arcseconds), the reflectivity for the wavelength of 0.154 nm . It is observed that the curve 31 obtained has a width at half height less than 20 arcseconds, the result being equivalent to that obtained with conventional silicon crystals. This validates the use of the optical system 1 in the X-ray field.
  • the efficiency that is to say the ratio of the intensity of the flux of the diffracted beam 26 to the intensity of the flux of the beam is represented incident 25, axis 17
  • the efficiency that is to say the ratio of the intensity of the flux of the diffracted beam 26 to the intensity of the flux of the beam is represented incident 25, axis 17
  • sets of points 41 and 43 are obtained respectively. They are compared respectively to theoretical curves 42 and 44 calculated from the parameters of network 3, deduced from measurements carried out with the tunnel effect microscope.
  • sets of points 45 and 47 are respectively plotted and the corresponding theoretical curves 46 and 48 for the orders -1 and +1 of diffraction.
  • optical measurement device (FIG. 8) comprising means of lighting 51 of the surface 8 of the optical system 1 and means 52 for recovering beams returned by the optical system 1 after diffraction of the incident beams.
  • This device also includes means 53 for relative rotation of the optical system with respect to the incident beams, acting on the optical system 1 and / or on the orientation of the incident beams 21 or 25, so as to produce a relative rotation 54.
  • a monochromatic beam of light is emitted and, by means of rotation 53, the optical system 1 is oriented relative to the incident beam in crystal diffraction mode (angle of incidence ⁇ between 5 ° and 80 °) or in grating diffraction mode (angle of incidence ⁇ advantageously greater than or equal to 70 °), according to the domain of belonging of the wavelength of the beam treated.
  • the lighting means 51 are the output of a synchrotron producing a beam of polychromatic energy
  • the optical system 1 and the recovery means 52 are used as a monochromator.
  • the recovery means 52 notably comprise a slot for selecting wavelengths.
  • the device is then implemented in grating or crystal diffraction mode, depending on the wavelength (s) studied.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Optical Communication System (AREA)
  • Laser Surgery Devices (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Glass Compositions (AREA)
  • Measurement Of Optical Distance (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Abstract

L'invention concerne un procédé optique de diffraction de la lumière couvrant un vaste domaine de longueurs d'onde, un système optique et un dispositif de mesure optique correspondants.Selon le procédé optique, on envoie au moins un faisceau incident (21) de lumière sur une surface d'un système optique (1), selon un angle d'incidence (α) par rapport à la normale (20) à la surface, le système optique comprenant un réflecteur de Bragg (2) et un réseau (3) gravé sur le réflecteur de Bragg (2) à la surface. On récupère au moins un faisceau renvoyé (22) par le système optique selon un angle de diffraction (b) par rapport à la normale après diffraction. Les longueurs d'onde et l'angle d'incidence d'au moins un des faisceaux incidents sont tels que ce faisceau incident est diffracté par le réflecteur de Bragg et/ou par le réseau. Applications à l'étalonnage primaire pour la mesure de longueurs d'onde et à la dispersion dans un monochromateur.

Description

Procédé optique de diffraction de ia lumière, système optique et dispositif correspondants.
La présente invention se rapporte à un procédé optique de diffraction de la lumière, ainsi qu'à un système optique et à un dispositif correspondants.
Le domaine d'application de l'invention concerne aussi bien les mesures de longueurs d'onde effectuées sur des faisceaux de lumière monochromatiques que la dispersion de faisceaux polychromatiques, par exemple dans un monochromateur. L'utilisation de réseaux de diffraction pour la diffraction de la lumière est bien connue. Ainsi, dans le domaine ultraviolet sous vide (longueurs d'onde supérieures à 0,6 nm) ou VUV, on envoie classiquement un faisceau incident sous incidence rasante sur un réseau de diffraction et on récupère un faisceau renvoyé pour un ordre donné de diffraction, selon un angle de diffraction satisfaisant la loi des réseaux (diffraction de Fresnel). Les réseaux employés, par exemple pour un rayonnement synchrotron VUV, sont typiquement gravés dans des matériaux tels que du silicium ou du SiC CVD, par gravure ionique ou laminage.
La plage de longueurs d'onde pouvant être couverte par de tels réseaux est cependant limitée inférieurement. En effet, à angle d'incidence constant, la réflectivité décroît avec la longueur d'onde. Une efficacité satisfaisante de diffraction peut ainsi difficilement être obtenue en deçà de 0,6 nm.
Pour des diffractions à des longueurs d'onde plus faibles, on met en oeuvre d'autres systèmes tels que des cristaux de diffraction. Dans un tel cristal, ayant une distance entre plans réticulaires donnée, des faisceaux incidents sont diffractés selon la loi de Bragg. Le domaine de longueurs d'onde utilisable est borné supérieurement par la distance entre les plans réticulaires, et il est de plus limité par le fait que la plage angulaire est généralement comprise entre 5° et 85° pour des raisons pratiques. Par exemple, pour un monocristal de silicium orienté (111), pour lequel le double de la distance entre plans réticulaires vaut 0,627 nm, le domaine de longueurs d'onde varie entre 0,055 nm et 0,625 nm.
On sait aussi réaliser des réflecteurs de Bragg par empilement de couches minces sur un substrat. Ils diffractent également la lumière conformément à la loi de Bragg. Dans la suite, on nommera - réflecteur de Bragg - un cristal ou un empilement de couches sur un substrat. Ainsi, pour couvrir une plage de longueurs d'onde comprise par exemple entre 0,1 nm et 2 nm, il est nécessaire d'avoir recours à deux dispositifs et deux mises en œuvre complètement distincts, l'un d'entre eux permettant de travailler dans le domaine VUV (réseau de diffraction) et l'autre dans le domaine des rayons X (cristal de diffraction). Or, il s'avère dans certains cas utile de travailler dans une plage couvrant ces deux domaines, par exemple pour un monochromateur recueillant un faisceau synchrotron.
L'invention concerne un procédé optique de diffraction de la lumière mettant en œuvre un réseau de diffraction, permettant de couvrir un domaine spectral étendu, s'étendant par exemple de l'ultraviolet sous vide aux rayons X durs. Plus précisément, le procédé de mesure optique de l'invention rend possible une prise en compte de longueurs d'onde allant de 0,1 nm à 20 nm ou davantage, au moyen d'un unique dispositif et de manière simple et économique. L'invention concerne également un système optique et un dispositif de mesure optique ayant les avantages précités.
A cet effet, l'invention a pour objet un procédé de mesure optique dans lequel :
- on envoie au moins un faisceau incident de lumière ayant au moins une longueur d'onde sur une surface d'un système optique ayant une normale, selon une direction formant un angle d'incidence par rapport à la normale, ce système optique comprenant un réflecteur de Bragg et un réseau gravé à la surface du réflecteur de Bragg, et
- on récupère au moins un faisceau renvoyé par le système optique selon une direction de diffraction formant un angle de diffraction par rapport à la normale, après diffraction des faisceaux incidents par le système optique.
Selon l'invention, les longueurs d'onde et l'angle d'incidence d'au moins un des faisceaux incidents sont tels que ce faisceau incident est diffracté par le réflecteur de Bragg et/ou par le réseau. Ainsi, le réflecteur de Bragg sur lequel est gravé le réseau, est directement utilisé pour la diffraction à de faibles longueurs d'onde.
Le procédé de l'invention s'avère ainsi autoriser une dissociation des diffractions de Fresnel (sur le réseau) et de Bragg (dans le réflecteur de Bragg), et permettre de cette manière un double fonctionnement dans le domaine VUV (réseau) et dans le domaine des rayons X (réflecteur de Bragg). Le procédé de l'invention permet ainsi de simplifier considérablement le protocole de mesure et d'avoir un équipement plus réduit.
Avantageusement, pour ce faisceau incident diffracté par le réflecteur de Bragg : - le réflecteur de Bragg est un cristal,
- l'angle d'incidence est compris entre 5° et 80 et/ou
- les longueurs d'onde sont comprises entre 0,1 nm et 0,7 nm.
Dans un mode de mise en œuvre préféré, le cristal est formé d'un monocristal de silicium orienté (111) et le réseau est directement gravé sur ce cristal. Un tel substrat s'avère particulièrement approprié pour remplir la double fonction de diffraction cristal et diffraction réseau.
Le réseau est avantageusement recouvert d'une couche métallique. On augmente ainsi l'efficacité du réseau.
Préférentiellement, les longueurs d'onde et l'angle d'incidence d'au moins un autre des faisceaux incidents sont tels que ce faisceau incident est diffracté par le réseau.
On exerce ainsi la double fonction du système optique : diffraction par le cristal et diffraction par le réseau
Avantageusement, pour cet autre faisceau incident diffracté par le réseau :
- l'angle d'incidence est au moins égal à 70° et/ou
- les longueurs d'onde de l'autre faisceau incident sont comprises entre 0,6 nm et 150 nm.
Dans une première forme de mise en œuvre du procédé, les faisceaux incidents sont des faisceaux de lumière polychromatique. On met alors avantageusement en œuvre le procédé dans un monochromateur, le système optique faisant office d'élément dispersif et étant suivi d'une fente de sélection.
Dans un second mode de mise en œuvre du procédé, les faisceaux incidents sont des faisceaux de lumière monochromatique. On peut ainsi utiliser le système optique comme étalon primaire pour la mesure de longueurs d'onde.
L'invention concerne également un système optique comprenant un réflecteur de Bragg.
Selon l'invention, il comporte un réseau de diffraction gravé sur le réflecteur de Bragg. Préférentiellement, le réflecteur de Bragg est un cristal et le cristal est formé d'un monocristal de silicium.
Ce système optique permet de mettre en œuvre le procédé de l'invention. L'invention a également pour objet un dispositif de mesure optique comprenant :
- un système optique conforme à l'invention,
- des moyens d'éclairage de la surface du système optique au moyen d'au moins un faisceau incident de lumière, - des moyens de récupération d'au moins un faisceau renvoyé par le système optique après diffraction des faisceaux incidents par le système optique, et
- des moyens de rotation relative du système optique par rapport aux faisceaux incidents. L'invention s'applique aussi à l'utilisation du procédé ou du dispositif selon l'invention pour un étalonnage primaire pour la mesure de longueurs d'onde (faisceau de lumière monochromatique) ou pour une dispersion dans un monochromateur ou spectrographe (faisceau de lumière polychromatique).
La présente invention sera mieux comprise et illustrée au moyen des exemples suivants de réalisation et de mise en œuvre, nullement limitatifs, en référence aux dessins annexés sur lesquels :
- la figure 1 est un schéma de principe illustrant un système optique utilisé dans le procédé selon l'invention (les échelles ne sont pas respectées pour des questions de visibilité) ; - la figure 2 montre un profil, mesuré avec un microscope à effet tunnel
(STM), d'une modulation enregistrée sur un système optique utilisé pour mettre en œuvre un procédé de mesure optique selon l'invention ;
- la figure 3 est un schéma de principe de mise en œuvre du procédé de mesure optique selon l'invention en mode cristal de diffraction ; - la figure 4 est un schéma de principe de la mise en œuvre du procédé de mesure optique selon l'invention dans un mode réseau de diffraction ;
- la figure 5 représente pour le système optique de la figure 2 et en mode cristal de diffraction, la réflectivité en fonction de la différence de l'angle d'incidence à l'angle de Bragg pour une longueur d'onde égale à 0,154 nm ; - la figure 6 représente pour le système optique de la figure 2 et en mode réseau de diffraction, l'efficacité en fonction de l'angle d'incidence pour les ordres 1 et -1 , pour une longueur d'onde égale à 1 ,33 nm ;
- la figure 7 représente pour le système optique de la figure 2 et en mode réseau de diffraction, l'efficacité en fonction de l'angle d'incidence pour les ordres 1 et -1 , pour une longueur d'onde égale à 1 ,55 nm ; et
- la figure 8 montre un dispositif de mesure optique utilisé pour mettre en œuvre un procédé de mesure optique selon l'invention.
Un système optique 1 (figure 1) comprend un réflecteur de Bragg 2 et un réseau 3 gravé sur le substrat du réflecteur de Bragg 2 à une surface 8 du système optique 1. Le réseau 3 est recouvert d'une couche métallique 4, par exemple constituée d'une couche de 10 nm d'or.
Le réflecteur de Bragg 2 est avantageusement constitué d'un monocristal de silicium d'orientation (111). Il est super-poli, avec une erreur de pente de quelques dixièmes d'arcsecondes et une rugosité de quelques Â. Ce polissage permet le fonctionnement du système optique 1 en réflexion rasante, pour une utilisation en ultraviolet sous vide mettant en œuvre une diffraction par le réseau 3.
Dans un mode de réalisation alternatif, le réflecteur de Bragg 2 est un empilement de couches. Il peut être lui-même déposé sur un substrat.
Le réseau de diffraction 3 est par exemple inscrit par enregistrement holographique et usinage ionique. Il comprend des traits 5 (figure 2) ayant une profondeur par exemple inférieure à 10 nm, ce qui en fait un réseau très peu modulé. Le profil du réseau 3 peut être obtenu par microscopie à effet tunnel, en hauteur (profondeur de gravure), largeur et longueur (respectivement axes 11 , 12 et 13, en nm). La densité N de traits du réseau 3 par mm est par exemple égale à 1200.
Pour les traits 5, différentes formes (sinusoïdaux, triangulaires, en créneau) et différentes lois densités (constantes ou variables) peuvent être utilisées.
On emploie le système optique 1 pour couvrir un domaine spectral s'étendant de l'ultraviolet sous vide aux rayons X durs. Ainsi, selon une première mise en œuvre (figure 3), on envoie un faisceau incident 21 ayant une longueur d'onde inférieure à 0,6 nm sur la surface 8. Le système optique 1 ayant une normale 20 à la surface 8, le faisceau incident 21 forme par rapport à cette normale, un angle α et par rapport aux plans réticulaires 6 du réflecteur de Bragg 2 (c'est-à-dire en l'espèce par rapport à la surface 8), un angle θ.
L'angle α est préférentiellement compris entre 5° et 80°.
Le système optique 1 se comporte alors comme un cristal de diffraction classique, les faisceaux diffractés 22 par le réflecteur de Bragg 2 formant avec la normale 20, un angle β égal à l'angle α (figure 3). Ce système 1 peut ainsi notamment être utilisé comme étalon de ' longueur d'onde ou comme un élément diffractant d'un monochromateur à rayons X.
L'absence de perturbations de la diffraction de Bragg dans le réflecteur de Bragg 2 par le réseau 3 peut s'expliquer par le fait que la profondeur des traits 5 du réseau est suffisamment petite par rapport à la profondeur de pénétration du faisceau incident dans le réflecteur de Bragg 2, lorsque ce faisceau incident a des longueurs d'onde suffisamment petites (en particulier rayons X).
Le domaine spectral couvert est donné par la loi de Bragg : λ = 2d sin θ d désignant la distance entre les plans réticulaires. De la sorte, pour le réflecteur de Bragg 2 de l'exemple (monocristal de silicium orienté (111)), le double 2d de la distance vaut 0,627 nm.
Ainsi, l'angle α étant compris entre 5° et 80°, la plage de longueurs d'onde utilisable s'étend environ de 0,1 nm à 0,625 nm.
On obtient également de bons résultats en utilisant un monocristal de silicium orienté (311).
Selon une seconde mise en œuvre, on fait fonctionner le système optique 1 en réseau de diffraction dans le domaine de l'ultraviolet sous vide. On envoie ainsi (figure 4) un faisceau incident 25 à une longueur d'onde supérieure à 0,6 nm. Ce faisceau incident 25 forme avec la normale 20, un angle α permettant d'obtenir une grande efficacité dans l'ordre de diffraction utilisé, avantageusement supérieur ou égal à 70°, de manière à ce que le rayonnement incident soit quasi rasant. On maintient ainsi une efficacité importante. Le faisceau incident 25 interagit alors avec le réseau 3 de diffraction et produit des faisceaux diffractés 26 formant des angles β avec la normale 20, ces angles de diffraction β dépendant de l'ordre de diffraction considéré (le faisceau diffracté 26 représenté sur la figure 4 correspond par exemple à l'ordre -1). On a vérifié le bon comportement du système optique 1 pour les deux modes de fonctionnement, respectivement en diffraction de Bragg et de Fresnel. Pour les tests effectués, la densité de traits 5 par mm vaut 1200 et la profondeur des traits 5 est égale à 7,2 nm.
Ainsi, on a testé la réponse du système optique 1 pour une longueur d'onde fixe (0,154 nm) en fonction de l'angle d'incidence sur un tube à rayons X avec un goniomètre Θ-2Θ. Dans un tel montage, lorsque l'angle d'incidence varie de Δθ, le détecteur est tourné de 2ΔΘ, de façon à satisfaire la loi de Bragg. On reporte (figure 5) en fonction de la différence de l'angle d'incidence à l'angle de Bragg (donné par la loi de Bragg, axe 14, en arcsecondes), la réflectivité pour la longueur d'onde de 0,154 nm. On observe que la courbe 31 obtenue a une largeur à mi-hauteur inférieure à 20 arcsecondes, le résultat étant équivalent à celui obtenu avec des cristaux de silicium classiques. Ceci valide l'utilisation du système optique 1 dans le domaine des rayons X.
Pour tester le mode de fonctionnement en réseau de diffraction, on a envoyé successivement deux faisceaux 25 monochromatiques à deux longueurs d'onde distinctes. Pour chacune d'entre elles, on a mesuré l'efficacité du réseau 3 dans l'ordre -1 et +1 en fonction de l'angle d'incidence α. De plus, k désignant l'ordre de diffraction, λ représentant la longueur d'onde et N étant le nombre de traits 5 par mm du réseau 3, on a placé le détecteur à un angle tel que la loi des réseaux soit satisfaite : sin α + sin β = k N λ.
On représente ainsi pour la longueur d'onde de 1 ,33 nm (figure 6), l'efficacité (c'est-à-dire le rapport de l'intensité du flux du faisceau diffracté 26 à l'intensité du flux du faisceau incident 25, axe 17) en fonction de l'angle d'incidence (axe 16, en degrés). On obtient pour les ordres -1 et 1 , respectivement des ensembles de points 41 et 43. On les compare respectivement à des courbes théoriques 42 et 44 calculées à partir des paramètres du réseau 3, déduits de mesures réalisées avec le microscope à effet tunnel. De même, pour une longueur d'onde de 1 ,55 nm (figure 7), on trace respectivement des ensembles de points 45 et 47 et les courbes théoriques correspondantes 46 et 48 pour les ordres -1 et +1 de diffraction.
On observe que les mesures obtenues sont très proches des courbes théoriques, ce qui valide le fonctionnement du système optique 1 en mode réseau de diffraction, celui-ci diffractant le rayonnement avec une efficacité notable. On peut ainsi utiliser le système optique 1 dans un dispositif de mesure optique (figure 8) comprenant des moyens d'éclairage 51 de la surface 8 du système optique 1 et des moyens de récupération 52 de faisceaux renvoyés par le système optique 1 après diffraction des faisceaux incidents. Ce dispositif comprend aussi des moyens de rotation 53 relative du système optique par rapport aux faisceaux incidents, agissant sur le système optique 1 et/ou sur l'orientation des faisceaux incidents 21 ou 25, de manière à produire une rotation relative 54.
Par exemple, on émet avec les moyens d'éclairage 51 , un faisceau de lumière monochromatique et on oriente grâce aux moyens de rotation 53, le système optique 1 par rapport au faisceau incident en mode de diffraction cristal (angle d'incidence α compris entre 5° et 80°) ou en mode de diffraction réseau (angle d'incidence α avantageusement supérieur ou égal à 70°), selon le domaine d'appartenance de la longueur d'onde du faisceau traité. On procède alors de manière classique en fonctionnement cristal ou en fonctionnement réseau avec les moyens de récupération 52. Dans un autre exemple, les moyens d'éclairage 51 sont la sortie d'un synchrotron produisant un faisceau d'énergie polychromatique, et le système optique 1 ainsi que les moyens de récupération 52 sont utilisés comme monochromateur. Les moyens de récupération 52 comprennent notamment une fente de sélection de longueurs d'onde. On met alors en œuvre le dispositif en mode de diffraction réseau ou de diffraction cristal, selon la ou les longueurs d'onde étudiées.

Claims

REVENDICATIONS
1. Procédé optique de diffraction de la lumière dans lequel :
- on envoie au moins un faisceau incident (21 , 25) de lumière ayant au moins une longueur d'onde sur une surface (8) d'un système optique (1) ayant une normale (20), selon une direction d'incidence formant un angle d'incidence (α) par rapport à la normale (20), ledit système optique (1) comprenant un réflecteur de Bragg (2) et un réseau (3) gravé sur le réflecteur de Bragg (2) à ladite surface (8), et
- on récupère au moins un faisceau renvoyé (22, 26) par le système optique (1) selon au moins une direction de diffraction formant un angle de diffraction (β) par rapport à la normale (20), après diffraction du faisceau incident (21 , 25) par le système optique (1), caractérisé en ce que lesdites longueurs d'onde et ledit angle d'incidence (α) d'au moins un des faisceaux incidents (21) sont tels que ledit faisceau incident (21) est diffracté par le réflecteur de Bragg (2) et/ou par le réseau.
2. Procédé optique selon la revendication 1 , caractérisé en ce que le réflecteur de Bragg est un cristal.
3. Procédé optique selon l'une des revendications 1 ou 2, caractérisé en ce que ledit angle d'incidence (α) est compris entre 5° et 80°.
4. Procédé optique selon l'une quelconque des revendications 1 à 3, caractérisé en ce que lesdites longueurs d'onde sont comprises entre 0,1 nm et 0,7 nm.
5. Procédé optique selon l'une quelconque des revendications 2 à 4, caractérisé en ce que le réflecteur de Bragg (2) est formé d'un monocristal de silicium orienté (111).
6. Procédé optique selon l'une quelconque des revendications précédentes, caractérisé en ce que le réseau (3) est recouvert d'une couche métallique (4). .
7. Procédé optique selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites longueurs d'onde et ledit angle d'incidence (α) d'au moins un autre des faisceaux incidents (25) sont tels que ledit faisceau incident (25) est diffracté par le réseau (3).
8. Procédé optique selon la revendication 7, caractérisé en ce que ledit angle d'incidence (α) dudit autre faisceau incident (25) est au moins égal à 70°.
9. Procédé optique selon l'une des revendications 7 ou 8, caractérisé en ce que lesdites longueurs d'onde dudit autre faisceau incident (25) sont comprises entre 0,6 nm et 150 nm.
10. Procédé optique selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits faisceaux incidents sont des faisceaux de lumière polychromatique.
11. Procédé optique selon l'une quelconque des revendications 1 à 9, caractérisé en ce que lesdits faisceaux incidents sont des faisceaux de lumière monochromatique.
12. Système optique (1) comprenant un réflecteur de Bragg (2), caractérisé en ce qu'il comporte un réseau (3) de diffraction gravé sur le réflecteur de Bragg.
13. Système optique selon la revendication 12, caractérisé en ce que le réflecteur de Bragg est un cristal.
14. Système optique (1) selon la revendication 13, caractérisé en que le réflecteur de Bragg (2) est formé d'un monocristal de silicium.
15. Dispositif de mesure optique comprenant :
- un système optique (1) conforme à l'une des revendications 12 à 14, - des moyens d'éclairage (51) de ladite surface (8) du système optique (1) au moyen d'au moins un faisceau incident (21 , 25) de lumière,
-- des moyens de récupération (52) d'au moins un faisceau renvoyé (22, 26) par le système optique (1) après diffraction desdits faisceaux incidents (21 , 25) par le système optique (1), et
- des moyens de rotation (53) relative du système optique (1) par rapport auxdits faisceaux incidents (21 , 25).
16. Utilisation du procédé de mesure optique selon l'une quelconque des revendications 1 à 11 ou du dispositif selon l'une des revendications 12 à 15, pour un étalonnage primaire pour la mesure de longueurs d'onde ou pour une dispersion dans un monochromateur.
PCT/FR2001/002985 2000-09-26 2001-09-26 Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants WO2002027361A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AT01972219T ATE280959T1 (de) 2000-09-26 2001-09-26 Optisches verfahren zur brechung von licht mit entsprechendem optischen system und gerät
US10/381,050 US20040027647A1 (en) 2000-09-26 2001-09-26 Optical method for light diffraction, corresponding optical system and device
DE60106784T DE60106784T2 (de) 2000-09-26 2001-09-26 Optisches verfahren zur brechung von licht mit entsprechendem optischen system und gerät
AU92005/01A AU9200501A (en) 2000-09-26 2001-09-26 Optical method for light diffraction, corresponding optical system and device
EP20010972219 EP1344093B1 (fr) 2000-09-26 2001-09-26 Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants
US11/065,362 US7233444B2 (en) 2000-09-26 2005-02-25 Light diffraction optical method, with corresponding optical system and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/12237 2000-09-26
FR0012237A FR2814548B1 (fr) 2000-09-26 2000-09-26 Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10381050 A-371-Of-International 2001-09-26
US11/065,362 Continuation US7233444B2 (en) 2000-09-26 2005-02-25 Light diffraction optical method, with corresponding optical system and device

Publications (1)

Publication Number Publication Date
WO2002027361A1 true WO2002027361A1 (fr) 2002-04-04

Family

ID=8854691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002985 WO2002027361A1 (fr) 2000-09-26 2001-09-26 Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants

Country Status (7)

Country Link
US (2) US20040027647A1 (fr)
EP (1) EP1344093B1 (fr)
AT (1) ATE280959T1 (fr)
AU (1) AU9200501A (fr)
DE (1) DE60106784T2 (fr)
FR (1) FR2814548B1 (fr)
WO (1) WO2002027361A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090034576A1 (en) * 2007-08-03 2009-02-05 Newport Corporation Linewidth-narrowed excimer laser cavity
EP3214432B9 (fr) * 2008-12-18 2019-03-06 Ascensia Diabetes Care Holdings AG Procédé et ensemble de détermination de la température d'un capteur d'essai
JP6993916B2 (ja) * 2018-03-27 2022-01-14 株式会社日立エルジーデータストレージ 導光板、導光板製造方法及び映像表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915463A (en) * 1988-10-18 1990-04-10 The United States Of America As Represented By The Department Of Energy Multilayer diffraction grating
WO1999035523A1 (fr) * 1998-01-07 1999-07-15 Templex Technology Inc. Grilles de diffraction composites pour traitement de signaux et applications de guides optiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2690036B2 (ja) * 1995-03-23 1997-12-10 工業技術院長 X線分光集光素子

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4915463A (en) * 1988-10-18 1990-04-10 The United States Of America As Represented By The Department Of Energy Multilayer diffraction grating
WO1999035523A1 (fr) * 1998-01-07 1999-07-15 Templex Technology Inc. Grilles de diffraction composites pour traitement de signaux et applications de guides optiques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SOUVOROV A ET AL: "ACOUSTIC EXCITATION OF THE CIRCULAR BRAGG-FRESNEL LENS IN BACKSCATTERING GEOMETRY", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 70, no. 7, 17 February 1997 (1997-02-17), pages 829 - 831, XP000687232, ISSN: 0003-6951 *

Also Published As

Publication number Publication date
US7233444B2 (en) 2007-06-19
FR2814548A1 (fr) 2002-03-29
DE60106784T2 (de) 2005-12-22
US20050190449A1 (en) 2005-09-01
US20040027647A1 (en) 2004-02-12
AU9200501A (en) 2002-04-08
EP1344093B1 (fr) 2004-10-27
FR2814548B1 (fr) 2003-02-21
DE60106784D1 (de) 2004-12-02
EP1344093A1 (fr) 2003-09-17
ATE280959T1 (de) 2004-11-15

Similar Documents

Publication Publication Date Title
EP0974042B1 (fr) Polarimetre et procede de mesure correspondant
EP3137881B1 (fr) Systeme et procede de spectrometrie de decharge luminescente et de mesure in situ de la profondeur de gravure d'un echantillon
FR2598797A1 (fr) Procede de mesure et/ou d'ajustement du deplacement d'un objet et appareil pour la mise en oeuvre de ce procede
CA2636881C (fr) Interferometre optique achromatique et compact, du type a decalage trilateral
EP0574987B1 (fr) Dispositif de traitement d'un signal mesuré correspondant à l'intensité de rayons X réfléchie par une structure de couches multiples sur un substrat
EP1828712B1 (fr) Caracterisation metrologique de circuits de microelectronique
EP0102272B1 (fr) Procédé de focalisation des réseaux de diffraction sphériques holographiques travaillant par réflexion, objectifs dispersifs et spectromètres en faisant application
FR2795175A1 (fr) Interferometre optique achromatique, du type a sensibilite continument reglable
FR2616269A1 (fr) Dispositif de test pour la mise en oeuvre d'un procede de realisation de dispositifs semiconducteurs
EP1700141B1 (fr) Reseau de diffraction bidimensionnel a empilements multicouches alternes et dispositif spectroscopique comportant ce reseau
EP1344093B1 (fr) Procede optique de diffraction de la lumiere, systeme optique et dispositif correspondants
WO2010007251A1 (fr) Dispositif de projection interférométrique a trois ouvertures pour produire une tache constituee de structures fines
EP0645645B1 (fr) Sonde vélocimétrique et clinométrique à laser
FR2733854A1 (fr) Dispositif de focalisation/dispersion de rayons x et procede de production de celui-ci
EP1086355B1 (fr) Procede ellipsometrique et dispositif de commande de la fabrication d'un composant en couche mince
EP0549456A1 (fr) Procédé et dispositif optiques de mesure de distance et leur application au positionnement relatif de pièces
EP0715189B1 (fr) Procédés de fabrication d'un réseau réfléchissant de diffraction optique
JP4542321B2 (ja) 偏光非依存性光タップにおいて使用する装置
EP2473824B1 (fr) Interféromètre à compensation de champ
FR2760889A1 (fr) Dispositif et procede de modulation d'un faisceau de rayons x
JP2000075098A (ja) X線分光素子
WO2017198971A1 (fr) Installation et procede de mesure d'un etat de surface ou de volume d'un objet par diffusion en champ lointain
EP2373962A2 (fr) Engin aeronautique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001972219

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10381050

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001972219

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001972219

Country of ref document: EP