WO2002027259A2 - Procede et appareil d'alignement precis d'une arme par rapport a un dispositif de visee - Google Patents
Procede et appareil d'alignement precis d'une arme par rapport a un dispositif de visee Download PDFInfo
- Publication number
- WO2002027259A2 WO2002027259A2 PCT/US2001/029993 US0129993W WO0227259A2 WO 2002027259 A2 WO2002027259 A2 WO 2002027259A2 US 0129993 W US0129993 W US 0129993W WO 0227259 A2 WO0227259 A2 WO 0227259A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gun
- boresight
- sight
- target
- image
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G3/00—Aiming or laying means
- F41G3/32—Devices for testing or checking
- F41G3/323—Devices for testing or checking for checking the angle between the muzzle axis of the gun and a reference axis, e.g. the axis of the associated sighting device
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F41—WEAPONS
- F41G—WEAPON SIGHTS; AIMING
- F41G1/00—Sighting devices
- F41G1/54—Devices for testing or checking ; Tools for adjustment of sights
Definitions
- the present invention relates to the subject of aligning a firearm with respect to a fire control system or a sight, a procedure widely known as "boresighting", to increase the hit probability and accuracy of the firearm. More specifically the present invention relates to an apparatus and method for remote boresighting a large caliber gun by electro-optical means, where a single user performs the alignment in close proximity to the fire control system or the sighting system (referred to hereafter generically as a "sight") of a weapons platform carrying the gun, for example a main battle tank or an armored personal carrier.
- Modern line-of-sight weapons are required to satisfy a high hit probability with the first shot.
- the precise alignment of a firearm to its sight is crucial for achieving a high hit probability and accuracy.
- direct fire weapons such as tanks or armored vehicle guns, referred to hereafter as "tank" guns
- this alignment is done by two soldiers: a first soldier who views the target through a device which normally includes a telescope mounted in the tank gun's muzzle, and a second soldier (the "gunner”) who aims his sight at the same target.
- the first soldier then signals to the second, using for example hand gestures, to position the tank gun so that the telescope line-of-sight coincides with the target, while the second soldier centers his sight on the same point.
- US patent 4,936,190 describes an electrooptical muzzle sight used to aim a gun during the firing process.
- An aiming device permanently attached to the muzzle includes a CCD camera as does the present invention, thus allowing one instead of two users to aim and fire the gun.
- this device is used to replace the gunner sight and not for alignment or boresighting procedures between the gunner sight and the gun muzzle axis.
- US patent 5,711,104 describes a small arm visual aiming system and a method for aiming a firearm.
- a device including a CCD is used not to boresight the gun to the sight prior to firing the gun at a target, but to aim the firearm during the firing process and to prevent exposing the user to an enemy.
- This device, while permanently attached to a muzzle is useful only for small firearms, and not for large caliber guns.
- the remote boresighting procedure of the present invention is essentially different from fire control alignment procedures between a gunner sight and an external (to a tank) remote target acquiring element such as a TV camera, as disclosed for example in US Pat. 4,318,330.
- the latter procedures do not solve the basic problem of boresighting, which is ensuring alignment between the gunner sight and the gun line-of-fire (or muzzle axis).
- the TV camera is fixedly mounted on the turret, remote from the gun's muzzle and there is no assurance that the camera and the gun remain aligned. In fact, in configurations such as that of US pat.
- the present invention provides such a method and apparatus, which is simpler, less time consuming, more accurate and safer by not requiring one soldier to stand outside the armored vehicle. Boresighting of a large caliber weapon according to the present invention can be done frequently, at day and at night, thus preserving a high hit accuracy and high first hit probability.
- a primary object of the present invention is to provide an improved boresighting, by enabling a gunner to point the gun to a target of his choice by himself, without the need for another crew member to help him.
- Another object of the present invention is to increase the alignment accuracy, by allowing the gunner to pick a target that is clearly the target he is pointing his fire control system at, and by providing him an unambiguous identification of this target
- a further object of the present invention is to shorten the time it takes to perform the alignment, and by allowing it to be performed frequently, day and night
- a still further object of the invention is to make the alignment procedure safer by not requiring a crew member to be outside the armored vehicle or tank when performing the boresighting.
- a method by which a precise alignment of a gun relative to a sight comprising the steps of: a) attaching a boresight to the gun, the boresight including an electro-optic imaging device; b) acquiring an image of the target through the boresight; c) transmitting the image to a remote display positioned in proximity to the sight; d) viewing the target through the sight; and e) aligning the image with the target viewed through the sight.
- the attaching includes inserting the boresight inside a muzzle of the gun.
- the attaching includes permanently attaching the boresight externally to the gun.
- the acquiring includes acquiring a video image.
- the attaching renders parallel a longitudinal axis of the boresight and a longitudinal axis of the gun.
- the transmitting is effected via a hardwired link between the imaging device and the display.
- the transmitting is effected via a wireless transmission.
- the aligning further includes superimposing a cross hair on the video image.
- the cross hair is provided electronically.
- an apparatus for the precise alignment of a gun relative to a sight comprising: a) a boresight operative to be secured to the gun, the boresight including an electro-optic imaging device for acquiring an image of a target; and b) a remote display for displaying the target.
- a mechanism for transmitting the image from the imaging device to the remote display is provided.
- the mechanism for transmitting includes a wireless mechanism.
- the mechanism for transmitting includes a hardwired link.
- the mechanism for superposing generates the cross hair electronically.
- the boresight is operative to be reversibly secured to the gun.
- the boresight is operative to be reversibly inserted in the muzzle. According to yet another feature of the apparatus of the present invention, the boresight is fixedly attached to the gun.
- the present invention successfully addresses the shortcomings of the presently known configurations by providing a method and an apparatus for the precise alignment of a weapon relative to a sight or fire control system, which is simpler, less time consuming, more accurate and safer by not requiring one soldier to stand outside an armored vehicle.
- FIG. 1 illustrates a tank with a removable boresight mounted inside the muzzle of the gun
- FIG. 2 illustrates a tank with a fixed boresight mounted externally on the muzzle
- FIG. 3 depicts schematically one embodiment of the boresight of the present invention
- FIG. 4 depicts schematically another embodiment of the boresight of the present invention
- FIG.l illustrates one embodiment of a removable "internal" boresight 10 that is mounted inside a muzzle 12 of a weapon or gun 14 of a main battle tank 16.
- "Weapon” and "gun” are used interchangeably throughout this specification.
- Boresight 10 fits snugly inside muzzle 12, and may be inserted and removed easily, as well known in the art. Boresight 10 enables a user such as the gunner of tank 16 to align a sight 18 having a gunner line-of-sight 20 with respect to a gun muzzle axis 22 on a target 24. Sight 18 is operated from inside tank 16, so that the gunner is protected. When the alignment is completed, boresight 10 is dismantled from gun 14 and is stored until the next time the alignment is to be performed. Muzzle 12 where boresight 10 is mounted is where a shell or other projectile emerges from the barrel of gun 14, and governs the initial velocity direction of the projectile in its trajectory. In the boresighting procedure, gun muzzle axis 22 and gunner line-of-sight 20 meet at the same point on target 24, or in other words, the weapon (gun 14) is aligned with (or relative to) sight 18.
- FIG. 2 shows an embodiment of a fixed "external" boresight 10', mounted externally on gun 14 at muzzle 18.
- the mounting may be done using any type of mechanical means 30 which secure boresight 10' to gun 14, for example screws or clamps or other means well known in the art, and which ensure that a boresight line-of-sight 26 of boresight 10' is parallel to gun muzzle axis 22.
- boresight line-of-sight 26 and muzzle axis 22 indicate the same point. Since boresight 10' normally remains permanently attached to gun 14, including when gun 14 is fired, mechanical means 30 have to impart rigidity and maintain alignment of the combined boresight-gun assembly.
- the line extending from boresight line-of-sight 26 meets gunner line-of-sight 20 on the same point on target 24.
- the combined boresight-gun assembly alignment is maintained by periodical alignment checks, which are carried out much less frequently than the regular boresighting procedure. These checks verify that gun muzzle axis 22 remains parallel with boresight line-of-sight 26.
- a typical alignment check includes the use of an internal boresight 10 inside muzzle 12, and its alignment with external boresight 10'.
- boresight 10 is rotated inside muzzle 12, and a check is made that a cross-hair which is normally part of, and visible through the boresight telescope, remains fixed on the same point of a target.
- the alignment check between boresights 10 and 10' assures the alignment of boresight 10' (or equivalently its line-of-sight 26) and gun muzzle axis 22.
- boresight 10 is removed, leaving boresight 10' aligned with gun 14.
- FIG. 3 shows details of internal boresight 10 in a longitudinal cross section.
- Boresight 10 typically comprises a mechanical interface section 100 and an imaging section 102, the latter referred to hereafter as "imager" 102. In use, the imaging section points toward the target.
- imager 102 includes a telescope 104, an imaging device 106, such as a TV or CCD camera, positioned at the focal plane of telescope 104, and transmission means to transmit the images acquired by device 106 so that they may be viewed by the remote gunner.
- transmission means include a transmitter 108 and associated electronics to transmit the video signal to a monitor 112 inside tank 16, shown in FIGS. 1 and 2, either by using a hardwired link 110, or by using a wireless transmission mechanism.
- telescope 104 normally has a cross-hair.
- a cross-hair can also be imposed electronically on the video signal of the target, so that the target image seen on monitor 112 includes the cross-hair.
- the cross hair can be adjusted horizontally and vertically by the user to generate a line-of-sight that is parallel to the gun muzzle axis.
- imager 102 preferably also includes night- vision elements 114 to generate a video image in the dark, for example an image intensifier or infrared imaging elements, and a light source 116 invisible to the naked eye.
- Power to activate all electro-optical and electronic elements of imager 102 is preferably supplied from the tank's power plant through a physical connection, or from batteries (not shown) attached to the imager.
- the operation of the remote boresight, or the "remote boresighting" procedure of the present invention includes: a user, for example the gunner of the tank or armored vehicle inserts an internal boresight 10 into muzzle 12, or permanently attaches external boresight 10' to muzzle 12; the user then enters the tank, and views a target acquired through imager 102, a target which is displayed on a monitor inside the tank or armored vehicle. The user then sets the tank sight on the same target, so that a cross-hair on the sight is centered on the same point as the cross-hair on the monitor (which is either an image of a physical cross-hair of the telescope, or an electronically imposed cross hair).
- the gun muzzle axis and the tank sight are thus aligned, the procedure requiring only one user.
- the user exits the tank and removes internal boresight 10 from muzzle 12. If an external boresight is used, it normally remains permanently attached to gun 14. The same user preferably performs periodically the abovementioned alignment checks.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001293081A AU2001293081A1 (en) | 2000-09-29 | 2001-09-26 | Method and apparatus for the precise alignment of a weapon relative to a sight |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US67205900A | 2000-09-29 | 2000-09-29 | |
US09/672,059 | 2000-09-29 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2002027259A2 true WO2002027259A2 (fr) | 2002-04-04 |
WO2002027259A3 WO2002027259A3 (fr) | 2003-04-17 |
Family
ID=24696986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/029993 WO2002027259A2 (fr) | 2000-09-29 | 2001-09-26 | Procede et appareil d'alignement precis d'une arme par rapport a un dispositif de visee |
Country Status (2)
Country | Link |
---|---|
AU (1) | AU2001293081A1 (fr) |
WO (1) | WO2002027259A2 (fr) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1275927A3 (fr) * | 2001-07-12 | 2004-09-22 | Giat Industries | Dispositif de fixation d'un moyen d'observation |
EP1510775A1 (fr) * | 2003-08-28 | 2005-03-02 | Saab Ab | Méthode et dispositif d'alignement d'un canon |
WO2007074455A2 (fr) * | 2005-12-29 | 2007-07-05 | Men At Work Ltd. | Systeme et procede de visee |
WO2009045770A2 (fr) | 2007-09-28 | 2009-04-09 | The Boeing Company | Système et procédé de positionnement local |
CN102735105A (zh) * | 2012-07-12 | 2012-10-17 | 徐荣峰 | 实现两乘员移动战斗平台运转的火炮观瞄方法 |
US8568545B2 (en) | 2009-06-16 | 2013-10-29 | The Boeing Company | Automated material removal in composite structures |
ITRM20130434A1 (it) * | 2013-07-24 | 2015-01-25 | Mini Difesa | Sistema integrato di calibrazione e messa in punto del banco prova mest ii per il sistema d'arma milan |
DE202014008107U1 (de) | 2013-10-09 | 2015-02-05 | Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi | Einstell- und Befestigungsvorrichtung |
US8977528B2 (en) | 2009-04-27 | 2015-03-10 | The Boeing Company | Bonded rework simulation tool |
US9108738B1 (en) | 2009-05-19 | 2015-08-18 | The Boeing Company | Apparatus for refueling aircraft |
CN105094154A (zh) * | 2015-08-04 | 2015-11-25 | 重庆长安工业(集团)有限责任公司 | 一种基于图像补偿的火炮稳定控制方法 |
CN105387769A (zh) * | 2015-12-25 | 2016-03-09 | 中国人民解放军军械工程学院 | 基于自标定技术的火炮多轴线一致性光电检测装置 |
BE1023708B1 (fr) * | 2016-05-31 | 2017-06-22 | Cockerill Maintenance & Ingenierie Sa | Dispositif et méthode de simbleautage |
CN109990657A (zh) * | 2019-05-07 | 2019-07-09 | 武汉高德红外股份有限公司 | 一种基于图像配准的无靶单发校枪方法 |
RU2695141C2 (ru) * | 2018-10-22 | 2019-07-22 | Алексей Владимирович Зубарь | Способ автоматической выверки нулевых линий прицеливания оптико-электронных каналов прицелов бронетанкового вооружения |
RU2725677C2 (ru) * | 2020-02-27 | 2020-07-03 | Алексей Владимирович Зубарь | Способ текущей цифровой выверки прицелов с компенсацией положения прицельной марки на величину изгиба канала ствола |
CN115103998A (zh) * | 2020-02-17 | 2022-09-23 | 贝以系统哈格伦斯公司 | 包括瞄准装置的军用车辆以及用于车辆操作者的瞄准操作布置结构 |
WO2023031921A1 (fr) * | 2021-08-29 | 2023-03-09 | Bar Lev Omer | Système de distribution de charge utile en visibilité directe |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3787693A (en) * | 1972-12-14 | 1974-01-22 | Us Army | Boresight alignment device |
US4318330A (en) * | 1974-07-19 | 1982-03-09 | Rheinstahl Aktiengesellschaft | Method and apparatus for the precise alignment of a weapon |
US4534735A (en) * | 1982-07-29 | 1985-08-13 | Giravions Dorand | Fire simulation device for training in the operation of shoulder weapons and the like |
US4570530A (en) * | 1983-12-14 | 1986-02-18 | Rca Corporation | Workpiece alignment system |
US4750269A (en) * | 1987-01-05 | 1988-06-14 | Townsend Ellsworth D | Firearm sight-in device |
US4936190A (en) * | 1989-09-20 | 1990-06-26 | The United States Of America As Represented By The Secretary Of The Army | Electrooptical muzzle sight |
US5103713A (en) * | 1990-11-13 | 1992-04-14 | Hughes Aircraft Company | Imaging target sight |
-
2001
- 2001-09-26 WO PCT/US2001/029993 patent/WO2002027259A2/fr active Application Filing
- 2001-09-26 AU AU2001293081A patent/AU2001293081A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3787693A (en) * | 1972-12-14 | 1974-01-22 | Us Army | Boresight alignment device |
US4318330A (en) * | 1974-07-19 | 1982-03-09 | Rheinstahl Aktiengesellschaft | Method and apparatus for the precise alignment of a weapon |
US4534735A (en) * | 1982-07-29 | 1985-08-13 | Giravions Dorand | Fire simulation device for training in the operation of shoulder weapons and the like |
US4570530A (en) * | 1983-12-14 | 1986-02-18 | Rca Corporation | Workpiece alignment system |
US4750269A (en) * | 1987-01-05 | 1988-06-14 | Townsend Ellsworth D | Firearm sight-in device |
US4936190A (en) * | 1989-09-20 | 1990-06-26 | The United States Of America As Represented By The Secretary Of The Army | Electrooptical muzzle sight |
US5103713A (en) * | 1990-11-13 | 1992-04-14 | Hughes Aircraft Company | Imaging target sight |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1275927A3 (fr) * | 2001-07-12 | 2004-09-22 | Giat Industries | Dispositif de fixation d'un moyen d'observation |
EP1510775A1 (fr) * | 2003-08-28 | 2005-03-02 | Saab Ab | Méthode et dispositif d'alignement d'un canon |
WO2007074455A2 (fr) * | 2005-12-29 | 2007-07-05 | Men At Work Ltd. | Systeme et procede de visee |
WO2007074455A3 (fr) * | 2005-12-29 | 2009-04-09 | Men At Work Ltd | Systeme et procede de visee |
WO2009045770A2 (fr) | 2007-09-28 | 2009-04-09 | The Boeing Company | Système et procédé de positionnement local |
WO2009045770A3 (fr) * | 2007-09-28 | 2010-04-01 | The Boeing Company | Système et procédé de positionnement local |
US8977528B2 (en) | 2009-04-27 | 2015-03-10 | The Boeing Company | Bonded rework simulation tool |
US9108738B1 (en) | 2009-05-19 | 2015-08-18 | The Boeing Company | Apparatus for refueling aircraft |
US8568545B2 (en) | 2009-06-16 | 2013-10-29 | The Boeing Company | Automated material removal in composite structures |
CN102735105A (zh) * | 2012-07-12 | 2012-10-17 | 徐荣峰 | 实现两乘员移动战斗平台运转的火炮观瞄方法 |
ITRM20130434A1 (it) * | 2013-07-24 | 2015-01-25 | Mini Difesa | Sistema integrato di calibrazione e messa in punto del banco prova mest ii per il sistema d'arma milan |
DE202014008107U1 (de) | 2013-10-09 | 2015-02-05 | Aselsan Elektronik Sanayi Ve Ticaret Anonim Sirketi | Einstell- und Befestigungsvorrichtung |
CN105094154A (zh) * | 2015-08-04 | 2015-11-25 | 重庆长安工业(集团)有限责任公司 | 一种基于图像补偿的火炮稳定控制方法 |
CN105387769A (zh) * | 2015-12-25 | 2016-03-09 | 中国人民解放军军械工程学院 | 基于自标定技术的火炮多轴线一致性光电检测装置 |
BE1023708B1 (fr) * | 2016-05-31 | 2017-06-22 | Cockerill Maintenance & Ingenierie Sa | Dispositif et méthode de simbleautage |
WO2017207487A1 (fr) * | 2016-05-31 | 2017-12-07 | Cmi Defence S.A. | Dispositif et méthode de simbleautage |
US11435164B2 (en) | 2016-05-31 | 2022-09-06 | Cmi Defence S.A. | Boresighting device and method |
RU2695141C2 (ru) * | 2018-10-22 | 2019-07-22 | Алексей Владимирович Зубарь | Способ автоматической выверки нулевых линий прицеливания оптико-электронных каналов прицелов бронетанкового вооружения |
CN109990657A (zh) * | 2019-05-07 | 2019-07-09 | 武汉高德红外股份有限公司 | 一种基于图像配准的无靶单发校枪方法 |
CN109990657B (zh) * | 2019-05-07 | 2021-10-01 | 武汉高德红外股份有限公司 | 一种基于图像配准的无靶校枪方法 |
CN115103998A (zh) * | 2020-02-17 | 2022-09-23 | 贝以系统哈格伦斯公司 | 包括瞄准装置的军用车辆以及用于车辆操作者的瞄准操作布置结构 |
CN115103998B (zh) * | 2020-02-17 | 2024-04-30 | 贝以系统哈格伦斯公司 | 包括瞄准装置的军用车辆以及用于车辆操作者的瞄准操作布置结构 |
RU2725677C2 (ru) * | 2020-02-27 | 2020-07-03 | Алексей Владимирович Зубарь | Способ текущей цифровой выверки прицелов с компенсацией положения прицельной марки на величину изгиба канала ствола |
WO2023031921A1 (fr) * | 2021-08-29 | 2023-03-09 | Bar Lev Omer | Système de distribution de charge utile en visibilité directe |
IL285981B1 (en) * | 2021-08-29 | 2024-09-01 | Bar Lev Omer | A system for transporting cargo along a line of sight |
Also Published As
Publication number | Publication date |
---|---|
WO2002027259A3 (fr) | 2003-04-17 |
AU2001293081A1 (en) | 2002-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002027259A2 (fr) | Procede et appareil d'alignement precis d'une arme par rapport a un dispositif de visee | |
US7810273B2 (en) | Firearm sight having two parallel video cameras | |
US5711104A (en) | Small arms visual aiming system, a method for aiming a firearm, and headgear for use therewith | |
US9151574B2 (en) | Method of movement compensation for a weapon | |
US20110315767A1 (en) | Automatically adjustable gun sight | |
US8496480B2 (en) | Video capture, recording and scoring in firearms and surveillance | |
US7140142B2 (en) | Mirror sight apparatus for guns | |
US8505434B2 (en) | Fire guidance device for a hand fire weapon | |
US5054225A (en) | Gunsight flexibility and variable distance aiming apparatus | |
KR20070111418A (ko) | 원격 화기 정밀 사격제어 장치 | |
US20110030545A1 (en) | Weapons control systems | |
EP2694907A1 (fr) | Système de gestion de plusieurs tireurs d'élite | |
US20090133572A1 (en) | Boresighting system and method | |
US4533327A (en) | Apparatus for the supervision of a combat vehicle, especially an armored vehicle | |
RU59231U1 (ru) | Прицельный комплекс | |
IE903133A1 (en) | Optical sighting system for a gun mounted on mobile platform | |
RU2456529C2 (ru) | Огнестрельное оружие для проведения антитеррористической операции | |
RU2226664C2 (ru) | Комплекс управления вооружением танка | |
CN206146302U (zh) | 一种无线观察瞄准器 | |
RU189508U1 (ru) | Универсальное устройство для выверки прицельных приспособлений на артиллерийских системах | |
US20060010755A1 (en) | Rifle bore periscope | |
WO2023146491A1 (fr) | Système de visée pour équipement de vision à écran oled portable pour armes | |
WO2021133317A1 (fr) | Système de visée assisté par caméra et commandé par écran permettant l'utilisation simultanée de deux armes pour armes à feu portatives | |
RU2399011C1 (ru) | Устройство для использования ручного огнестрельного оружия при стрельбе из-за укрытия | |
CN114705079A (zh) | 一种智能射击枪械及智能火炮控制系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase in: |
Ref country code: JP |