WO2002025782A2 - Emetteur optique comprenant un laser a reglage progressif - Google Patents

Emetteur optique comprenant un laser a reglage progressif Download PDF

Info

Publication number
WO2002025782A2
WO2002025782A2 PCT/US2001/029706 US0129706W WO0225782A2 WO 2002025782 A2 WO2002025782 A2 WO 2002025782A2 US 0129706 W US0129706 W US 0129706W WO 0225782 A2 WO0225782 A2 WO 0225782A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
mode
optical
mirror
cavity
Prior art date
Application number
PCT/US2001/029706
Other languages
English (en)
Other versions
WO2002025782A3 (fr
Inventor
Arnaud Garnache
Daniele Romanini
Frederic Stoeckel
Alexandre Katchanov
Guido Knippels
Barbara Paldus
Chris Rella
Bruce Richman
Marc Levenson
Original Assignee
Blue Leaf, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/668,905 external-priority patent/US6741629B1/en
Priority claimed from US09/930,841 external-priority patent/US6611546B1/en
Application filed by Blue Leaf, Inc. filed Critical Blue Leaf, Inc.
Priority to AU2001292973A priority Critical patent/AU2001292973A1/en
Priority to EP01973387A priority patent/EP1364432A2/fr
Publication of WO2002025782A2 publication Critical patent/WO2002025782A2/fr
Publication of WO2002025782A3 publication Critical patent/WO2002025782A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18375Structure of the reflectors, e.g. hybrid mirrors based on metal reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02253Out-coupling of light using lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/1062Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using a controlled passive interferometer, e.g. a Fabry-Perot etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0215Bonding to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/024Arrangements for thermal management
    • H01S5/02407Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling
    • H01S5/02415Active cooling, e.g. the laser temperature is controlled by a thermo-electric cooler or water cooling by using a thermo-electric cooler [TEC], e.g. Peltier element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/041Optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0617Arrangements for controlling the laser output parameters, e.g. by operating on the active medium using memorised or pre-programmed laser characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/0687Stabilising the frequency of the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18377Structure of the reflectors, e.g. hybrid mirrors comprising layers of different kind of materials, e.g. combinations of semiconducting with dielectric or metallic layers

Definitions

  • VECSEL does not appear to meet DWDM telecom requirements. 1
  • the micro-machined membrane mirror must be flexible in order to move the required tuning- distance, and is therefore sensitive to external perturbations arid can ' becohie self-excited. It is also complex to produce. Furthermore, a complex feedback control system would be required to maintain membrane mirror position, limiting absolute frequency set point stability and reproducibility in laser tuning.
  • Element (d) may comprise one or more electro-optically tunable Lyot filter arid/b'r one or more eiectro-optically actuated etalons and/or one or more electro- optically tunable ve'r ⁇ ieal coupler filters.
  • Lyot filters reference may be made to Polarization, edited by Bruce Billings 1990, ISBN 0-8194-0495-0, and to B Lyot, Comptes Rendus, 1933, the disclosures of which are incorporated herein by reference.
  • a single ECSAL can access the entire C or L optical communications band.
  • An optical fiber transmitter comprises an active mirror for emitting an information-carrying laser beam at a design wavelength and has an external cavity length defining a plurality of " optical modes, each mode corresponding to a channel wavelength of a multichannel optical telecommunications system.
  • the external mirror is positioned relative to the semiconductor structure by a spacer mounted to (preferably directly or indirectly on) the heat sink at a distance, for example, of 0.5 to 50 mm to form the external cavity and chosen to create a laser frequency comb corresponding to a predetermined optical channel spacing.
  • a focusing intra-cavity lens and plano/plano mirror can be used to form the external cavity.
  • the external cavity design should be a stable resonator as defined in A.E. Siegmann, Lasers. University Science Books, 1986, where the external. cavity provides feedback stabilization.
  • a cavity mode diameter of 50 ⁇ m will be achieved if the mirror radius of curvature is equal to 0.63 cm.
  • Such mirrors can be manufactured by known methods, such as molding against a diamond-turned metal preform. In all laser designs, the cavity must be a stable resonator. Other devices may be used, such as plano/plano mirrors used in conjunction with an intra cavity lens.
  • a fiber optic telecommunications transmitter 100 is schematically illustrated in FIG. 3 for putting modulated optical power emitted by a VECSEL 104 into an optical fiber 106 of a communications network operating in the near infrared spectrum, e.g., 1000 nm to 1700 nm and having a multiplicity of spaced apart channels therein, e.g. 12.5 GHz or 25 GHz adjacent channel spacing.
  • a distributed Bragg reflector (DBR) layer stack 126 is then formed on top of the active region.
  • the DBR 126 comprises an odd number of quarter-wavelength interleaved layers, preferably greater than twenty pairs plus one, to achieve an odd number of quarter wavelengths.
  • the DBR layers comprise alternating indium gallium aluminum arsenide, and indium phosphide quarter wave layers, so that total reflectance within the DBR at the design wavelength is greater than 99 percent.
  • a metal film mirror layer 128, e.g. gold or gold alloy, is sputter-deposited onto the DBR 126 to complete the fabrication of the semiconductor structure by the epitaxial process. The metal mirror increases the reflectance from 99 percent to approximately 99.5 percent.
  • VECSEL 104 has a pump-transparent dielectric mirror layer 214, an active gain region 216 and an antireflection coating 218.
  • An external surface of the dielectric mirror layer 214 is polished very smooth and is bonded to a transparent substrate layer 212, such as diamond, by a suitable bonding method or agent. Vacuum bonding by VanDerWaals forces, or peripheral soldering with a solder material, such as indium, is preferred.
  • External lens 220 and spacer 222 are equivalent to those of VECSEL 104, and the explanations given above apply here. With suitable modifications that will be apparent from by the foregoing explanations, the pump laser radiation could enter the active region of VECSEL 204 via external mirror 220, and the laser radiation could exit via aperture 211.
  • Spacers can be manufactured within a 1 ⁇ m tolerance. During manufacturing it is necessary to make a final adjustment of spacer length so that it meets the required 0.04 ⁇ m tolerance in order that laser mode spacing equal the telecom channel spacing. This fine adjustment is also required in order that the absolute frequency of any given mode be within the required tolerance equal to the absolute frequency of the telecom channel closest to this mode. It does not matter which mode is tuned to the nearest telecom channel providing that the mode spacing corresponds correctly with the telecom channel comb. The channel number can be adjusted in the processor unit 121.
  • mirror 116 is fixed to spacer 115 such that the border of its spherical surface abuts the polished flat surface of the cylindrical spacer.
  • Mirror 116 is located in a spring loaded mount or other fixture, so that by adjustment of, for example, a spring, the spacer can be axially displaced relative to a base plate 502, or can be given a small elastic deformation.
  • Base plate 502 may be provided with a recessed or flanged region 504 sized to provide a small interference fit with spacer 115 so that the spacer is initially maintained at a starting position. An adjustment of 1 ⁇ along the longitudinal axis of VECSEL 500 can readily be made while monitoring a spectrum analyzer.
  • electro-optic media are typically birefringent, it may be necessary for the light within such a frequency selective element to have a single polarization. This can be achieved by means of a polarization selective element 32.
  • Adequate low-loss polarizers are known and include prisms with Brewster angled surfaces, thin films with polarization sensitive reflection coefficients and Glan-Thompson birefringent polarizing prisms.
  • the spacer thickness t In order for the etalon 31 to have only a single transmission maximum within the gain band of the amplifying mirror (FIGJ3), the spacer thickness t must be less than ⁇ 0 2 /(2n 0 ⁇ G ) ,
  • the voltage requirements of the crystals 35 in FIGs. 16, 18 and 19 in which the voltage is applied transversely across the crystals can be reduced by reducing the separation between the electrodes connected to the leads 40, 41 and 42, necessarily reducing the clear aperture of the device 30.
  • the first beam waist is inherently formed within the active mirror gain medium.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Un laser utile en tant que partie d'un émetteur à fibre optique sur des longueurs d'onde multiples, ne possède qu'un seul mode, un miroir d'amplification à semi-conducteur de puits quantiques multiples en tant qu'élément d'amplification et comprend un deuxième miroir constituant une cavité optique dont la longueur définit une séquence de modes optiques. L'élément d'amplification possède un dispositif servant à régler le laser d'un mode à l'autre par modification d'une température du miroir d'amplification.
PCT/US2001/029706 2000-09-22 2001-09-21 Emetteur optique comprenant un laser a reglage progressif WO2002025782A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001292973A AU2001292973A1 (en) 2000-09-22 2001-09-21 Optical transmitter comprising a stepwise tunable laser
EP01973387A EP1364432A2 (fr) 2000-09-22 2001-09-21 Emetteur optique comprenant un laser a reglage progressif

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US09/668,905 US6741629B1 (en) 2000-09-22 2000-09-22 Optical transmitter having optically pumped vertical external cavity surface emitting laser
US09/688,905 2000-09-22
US09/930,841 US6611546B1 (en) 2001-08-15 2001-08-15 Optical transmitter comprising a stepwise tunable laser
US09/930,841 2001-08-15

Publications (2)

Publication Number Publication Date
WO2002025782A2 true WO2002025782A2 (fr) 2002-03-28
WO2002025782A3 WO2002025782A3 (fr) 2003-09-25

Family

ID=27100015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/029706 WO2002025782A2 (fr) 2000-09-22 2001-09-21 Emetteur optique comprenant un laser a reglage progressif

Country Status (3)

Country Link
EP (1) EP1364432A2 (fr)
AU (1) AU2001292973A1 (fr)
WO (1) WO2002025782A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004062052A2 (fr) * 2002-12-30 2004-07-22 Intel Corporation Procede et appareil de detection de temperature d'element d'accord thermique dans des dispositifs optiques accordables
US6870867B2 (en) 2001-07-06 2005-03-22 Intel Corporation Tunable laser temperature sensing control system
DE102004011456A1 (de) * 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Oberflächenemittierender Halbleiterlaser mit einem Interferenzfilter
US7903716B2 (en) 2004-01-30 2011-03-08 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser having an interference filter
US8772006B2 (en) 1999-10-29 2014-07-08 Agilent Technologies, Inc. Compositions and methods utilizing DNA polymerases
CN109921275A (zh) * 2017-12-13 2019-06-21 深圳新飞通光电子技术有限公司 快速调频的外腔激光器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9312662B1 (en) 2014-09-30 2016-04-12 Lumentum Operations Llc Tunable laser source

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789318A (en) * 1971-05-14 1974-01-29 Thomson Csf Stimulated emission radiation source with adjustable wavelength
EP0485187A2 (fr) * 1990-11-07 1992-05-13 Oki Electric Industry Co., Ltd. Dispositif pour la génération du deuxième harmonique utilisant un laser comme source de la fréquence fondamentale
US5131002A (en) * 1991-02-12 1992-07-14 Massachusetts Institute Of Technology External cavity semiconductor laser system
US5555253A (en) * 1995-01-09 1996-09-10 Amoco Corporation Technique for locking a laser diode to a passive cavity
WO1999012235A1 (fr) * 1997-09-05 1999-03-11 Micron Optics, Inc. Lasers fabry-perot accordables, a emission par la surface
WO2000024095A1 (fr) * 1998-10-16 2000-04-27 New Focus, Inc. Laser a cavite exterieure accordable en continu
US6097742A (en) * 1999-03-05 2000-08-01 Coherent, Inc. High-power external-cavity optically-pumped semiconductor lasers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789318A (en) * 1971-05-14 1974-01-29 Thomson Csf Stimulated emission radiation source with adjustable wavelength
EP0485187A2 (fr) * 1990-11-07 1992-05-13 Oki Electric Industry Co., Ltd. Dispositif pour la génération du deuxième harmonique utilisant un laser comme source de la fréquence fondamentale
US5131002A (en) * 1991-02-12 1992-07-14 Massachusetts Institute Of Technology External cavity semiconductor laser system
US5555253A (en) * 1995-01-09 1996-09-10 Amoco Corporation Technique for locking a laser diode to a passive cavity
WO1999012235A1 (fr) * 1997-09-05 1999-03-11 Micron Optics, Inc. Lasers fabry-perot accordables, a emission par la surface
WO2000024095A1 (fr) * 1998-10-16 2000-04-27 New Focus, Inc. Laser a cavite exterieure accordable en continu
US6097742A (en) * 1999-03-05 2000-08-01 Coherent, Inc. High-power external-cavity optically-pumped semiconductor lasers

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GARNACHE A ET AL: "DIODE-PUMPED BROADBAND VERTICAL-EXTERNAL-CAVITY SURFACE-EMITTING SEMICONDUCTOR LASER APPLIED TO HIGH-SENSITIVITY INTRACAVITY ABSORPTION SPECTROSCOPY" JOURNAL OF THE OPTICAL SOCIETY OF AMERICA - B, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 17, no. 9, September 2000 (2000-09), pages 1589-1598, XP001056148 ISSN: 0740-3224 cited in the application *
HOLM M A ET AL: "ACTIVELY STABILIZED SINGLE-FREQUENCY VERTICAL-EXTERNAL-CAVITY ALGAAS LASER" IEEE PHOTONICS TECHNOLOGY LETTERS, IEEE INC. NEW YORK, US, vol. 11, no. 12, December 1999 (1999-12), pages 1551-1553, XP000924493 ISSN: 1041-1135 *
MICHLER P ET AL: "EMISSION DYNAMICS OF IN0.2GA0.8AS/GAAS LAMBDA AND 2 LAMBDA MICROCAVITY LASERS" APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS. NEW YORK, US, vol. 68, no. 2, 8 January 1996 (1996-01-08), pages 156-158, XP000552697 ISSN: 0003-6951 *
ORTSIEFER M ET AL: "Room-temperature operation of index-guided 1.55 µm InP-based vertical-cavity surface-emitting laser" ELECTRONICS LETTERS, IEE STEVENAGE, GB, vol. 36, no. 5, 2 March 2000 (2000-03-02), pages 437-439, XP006014948 ISSN: 0013-5194 *
WRIGHT P D ET AL: "Homogeneous or inhomogeneous line broadening in a semiconductor laser: observations on In/sub 1-x/Ga/sub x/P/sub 1-z/As/sub z/ double heterojunctions in an external grating cavity" APPLIED PHYSICS LETTERS, 1 JULY 1976, USA, vol. 29, no. 1, pages 18-20, XP002241873 ISSN: 0003-6951 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8772006B2 (en) 1999-10-29 2014-07-08 Agilent Technologies, Inc. Compositions and methods utilizing DNA polymerases
US6870867B2 (en) 2001-07-06 2005-03-22 Intel Corporation Tunable laser temperature sensing control system
US6904070B2 (en) 2001-07-06 2005-06-07 Intel Corporation Tunable laser and laser current source
WO2004062052A2 (fr) * 2002-12-30 2004-07-22 Intel Corporation Procede et appareil de detection de temperature d'element d'accord thermique dans des dispositifs optiques accordables
WO2004062052A3 (fr) * 2002-12-30 2004-11-25 Intel Corp Procede et appareil de detection de temperature d'element d'accord thermique dans des dispositifs optiques accordables
DE102004011456A1 (de) * 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Oberflächenemittierender Halbleiterlaser mit einem Interferenzfilter
US7903716B2 (en) 2004-01-30 2011-03-08 Osram Opto Semiconductors Gmbh Surface emitting semiconductor laser having an interference filter
CN109921275A (zh) * 2017-12-13 2019-06-21 深圳新飞通光电子技术有限公司 快速调频的外腔激光器

Also Published As

Publication number Publication date
EP1364432A2 (fr) 2003-11-26
AU2001292973A1 (en) 2002-04-02
WO2002025782A3 (fr) 2003-09-25

Similar Documents

Publication Publication Date Title
US6711203B1 (en) Optical transmitter comprising a stepwise tunable laser
US6611546B1 (en) Optical transmitter comprising a stepwise tunable laser
US6741629B1 (en) Optical transmitter having optically pumped vertical external cavity surface emitting laser
US6658034B2 (en) Surface-emitting semiconductor laser
US7835417B2 (en) Narrow spectrum light source
EP0677736B1 (fr) Détection de substances chimiques dans un échantillon
US6763053B2 (en) Laser having multiple reflectivity band reflector
US20050213618A1 (en) Semi-integrated designs for external cavity tunable lasers
US20020054614A1 (en) Wavelength discretely tunable semiconductor laser
US7027472B2 (en) Fixed wavelength single longitudinal mode coolerless external cavity semiconductor laser system
US20100265975A1 (en) Extended cavity semiconductor laser device with increased intensity
US5412676A (en) Method and apparatus for the determination of the relative frequency offset between an input optical signal and a resonance frequency of an optical cavity
US20040071181A1 (en) Retro-reflective etalon and the devices using the same
US6669367B2 (en) Optical fiber with mirror for semiconductor laser
US20090274177A1 (en) Turnable laser device
EP3146601B1 (fr) Dispositifs laser à émission par la surface à cavité externe verticale permettant une cohérence élevée, une accordabilité de grande taille et une puissance élevée
US6792010B2 (en) Laser with reduced parasitic etalon effects
US6816534B2 (en) Tunable single frequency filter for lasers
US20200412093A1 (en) External-cavity quantum cascade laser
EP1364432A2 (fr) Emetteur optique comprenant un laser a reglage progressif
US20050276303A1 (en) External Cavity Laser
US20020163952A1 (en) VCSEL with single lasing-reflectivity peak reflector
Blume et al. 633-nm single-mode master-oscillator power-amplifier module
Rattunde et al. Single‐frequency and High Power Operation of 2–3 Micron VECSEL
Garnache et al. Single frequency free-running low noise compact extended-cavity semiconductor laser at high power level

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 524033

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2001973387

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001973387

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001973387

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP