WO2002025711A1 - Method of measuring image characteristics and exposure method - Google Patents

Method of measuring image characteristics and exposure method Download PDF

Info

Publication number
WO2002025711A1
WO2002025711A1 PCT/JP2001/008177 JP0108177W WO0225711A1 WO 2002025711 A1 WO2002025711 A1 WO 2002025711A1 JP 0108177 W JP0108177 W JP 0108177W WO 0225711 A1 WO0225711 A1 WO 0225711A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
projection
imaging
mark
condition
Prior art date
Application number
PCT/JP2001/008177
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroki Okuno
Masahiko Okumura
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to KR10-2003-7003834A priority Critical patent/KR20030033067A/en
Priority to JP2002529824A priority patent/JPWO2002025711A1/en
Priority to AU2001288073A priority patent/AU2001288073A1/en
Publication of WO2002025711A1 publication Critical patent/WO2002025711A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment

Definitions

  • the present invention relates to a method of transferring a photolithography-listed mask pattern onto a sensitive substrate for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma, or a thin-film magnetic head.
  • a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma, or a thin-film magnetic head.
  • the present invention relates to a method for measuring an imaging characteristic of a projection system of a projection exposure apparatus used, and an exposure method. Further, the present invention relates to a projection exposure apparatus using such a method for measuring an imaging characteristic.
  • the reticle pattern as a mask is transferred via a projection optical system to each shot area on a wafer (or glass plate, etc.) coated with a resist as a sensitive material or a photosensitive material.
  • a projection exposure apparatus such as a stepper is used.
  • a semiconductor device is formed by stacking a dozen or more circuit patterns on a wafer in a predetermined positional relationship. Therefore, a projection exposure apparatus uses a reticle or alignment mark (reticle mark or wafer mark) on the wafer. It has been detected.
  • an alignment sensor that detects a reticle mark illuminates the reticle mark with illumination light for exposure (exposure light), captures an image with a CCD camera or the like, and processes the obtained image data.
  • a method using exposure light such as the VRA (Visual Reticle Alignment) method that measures the position of a reticle mark by image processing is used.
  • Such a VRA type alignment sensor may be used when measuring imaging characteristics such as a projection magnification of a projection optical system.
  • a so-called lens controller is used to correct magnification fluctuations.
  • LC lens controller
  • a driving member such as a piezo element is arranged on the lens support to adjust the lens interval.
  • an imaging characteristic control mechanism for controlling the exposure wavelength.
  • the imaging characteristics are controlled using an imaging characteristic control mechanism such as a lens controller.
  • an imaging characteristic control mechanism such as a lens controller.
  • the imaging characteristic using the VRA type alignment sensor is used. Is measured, and the measured imaging characteristics are set as an initial state, and thereafter, for example, using the amount of fluctuation of the imaging characteristics predicted by empirical rules, the imaging characteristics are set to fall within a predetermined target range. Had control.
  • the illumination condition may be switched to so-called deformed illumination or illumination with a small coherence factor (small illumination) depending on the line width or pattern shape to be exposed.
  • small coherence factor small illumination
  • the imaging characteristics such as the projection magnification of the projection optical system fluctuate slightly, and the image projected on the wafer may change slightly, resulting in a decrease in the overlay accuracy and the like.
  • the VRA alignment sensor which detects the position of the reticle mark, illuminates the target mark with an illumination system separate from the exposure illumination optical system. If the projection magnification of the projection optical system is obtained from the projection optical system, the projection magnification at the time of exposure may be adjusted even if the projection magnification is adjusted based on the obtained projection magnification. There was a risk that an error would occur in the shadow magnification.
  • the present invention can adjust the imaging state with high accuracy even when the environmental conditions at the time of measuring (detecting) the imaging state (imaging characteristics) of the image of the pattern to be transferred are changed.
  • the primary purpose is to do so.
  • the present invention provides a high-precision imaging state even when the illumination condition for measuring (detecting) the imaging state (imaging characteristic) is different from the illumination condition for actual exposure.
  • the second purpose is to be able to adjust Disclosure of the invention
  • An exposure method illuminates a mask (R) with an exposure beam and transfers a pattern image of the mask onto a substrate (W) via a projection system (PL).
  • the mark (34A, 34B) is detected, and the environmental condition at the time of detection is used when adjusting the image forming state of the pattern image based on the detection result.
  • an image formation state for example, projection magnification
  • the image formation state thus obtained changes according to the environmental conditions (for example, the atmospheric pressure around the projection system) at the time of detecting the mark. Therefore, for example, the relationship between the environmental condition and the imaging state obtained from the detection result of the mark is obtained and stored in advance, and correction according to the environmental condition is performed, thereby forming the image at the time of the detection.
  • the image state can be measured with high accuracy.
  • the imaging characteristic of the projection system is corrected so as to cancel the error of the imaging state from the target state, thereby forming the image of the projection image.
  • the image state can be adjusted with high precision.
  • the adjustment of the imaging characteristics of the projection system is performed by using the value of the imaging state obtained from the detection result of the mark as it is, an adjustment error of the imaging state may remain during actual exposure. There is.
  • the amount of adjustment of the image formation state is, for example, the condition for forming the pattern image and the amount of adjustment. It is determined to include an offset corresponding to the difference from the mark detection condition.
  • the illumination conditions at the time of detection of the mark as conditions for detecting the mark and the illumination conditions at the time of exposure during the actual lithography process as conditions for forming the pattern image include the numerical aperture of illumination light and the shape of the aperture stop. And other conditions may be different. Therefore, for example, the amount of change in the image formation state due to the difference in the illumination conditions is obtained in advance and tabulated, and the measured value of the image formation state obtained from the detection result of the mark is calculated according to the pattern image formation conditions. By performing the correction, the image formation state at the time of exposure can be adjusted with higher accuracy.
  • the offset differs as an example according to the pattern image forming conditions, and is corrected according to the environmental conditions.
  • Illumination conditions as the formation conditions include a plurality of conditions such as normal illumination and annular illumination. By changing the offset of the adjustment amount for each of these conditions, the imaging state is enhanced under various conditions. The accuracy can be corrected.
  • the pattern image formation conditions are based on the above-described illumination conditions (ie, a predetermined plane (pupil plane of the illumination system) which has a substantially Fourier transform relationship with the pattern surface of the mask in the illumination system that illuminates the mask with the exposure beam. The intensity distribution of the exposure beam on the pupil plane of the projection system and the numerical aperture of the projection system.
  • the adjustment amount of the imaging state obtained from the detection result may be corrected based on the formation condition of the pattern image.
  • the projection exposure apparatus comprises an illumination system (1, 3, 6 to 9, 13 to 19) for illuminating the mask (R) with an exposure beam, and a pattern image of the mask (W).
  • a projection exposure apparatus having a projection system (PL) for projecting onto a mark, a mark detection system (38A, 38B) for detecting a mark via the projection system, and an environment for detecting the mark.
  • An environment detection system (31) that detects conditions
  • an image adjustment system 28, 42, 43
  • the exposure method of the present invention can be performed.
  • the imaging state adjustment system corrects the adjustment amount of the imaging state obtained from the detection result based on the environmental condition.
  • the imaging state adjustment system adjusts the adjustment amount to the pattern image forming conditions and the It is desirable that the determination be made to include an offset corresponding to a difference from the mark detection condition.
  • the method for measuring the imaging characteristics according to the present invention is a method for measuring the imaging characteristics of a projection system (PL) that projects an image of the object (R) on the first surface onto the second surface (W).
  • a mark (34A) disposed on at least one of the first and second surfaces is detected through the projection system, and a first step (step) of calculating an imaging characteristic of the projection system from the detection result is performed.
  • the relationship between the environmental condition and the imaging characteristic (for example, projection magnification) of the projection system calculated in the first step is obtained in advance
  • the imaging characteristics of the projection system can be corrected with high accuracy. 'In this case, it is desirable to change the correction amount of the calculation result according to the environmental conditions.
  • an offset corresponding to the difference between the mark detection condition and the image forming condition of the object is added to the calculation result to determine a correction amount of the imaging characteristic, and the offset is determined according to the environmental condition. It is desirable to change.
  • the first and second device manufacturing methods according to the present invention each include a lithographic step of forming a device pattern on a substrate (W) using the exposure method or the projection exposure apparatus of the present invention.
  • the exposure method or the projection exposure apparatus of the present invention since the exposure method or the projection exposure apparatus of the present invention is used, the image forming state of the pattern image can be adjusted with high accuracy, and a high-performance device can be manufactured.
  • FIG. 1 is a configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention.
  • FIG. 2 is a diagram showing the aperture stop plate 9 of FIG.
  • FIG. 3 is a perspective view showing a main part of a stage system and an alignment system of the projection exposure apparatus of FIG.
  • FIG. 4 is an enlarged view showing an image in the observation field of view of the RA microscope 38A of FIG. Figure 5 shows the positional relationship between the reference mark image and the reticle mark during reticle alignment.
  • FIG. FIG. 6 is a diagram showing an example of the relationship between the atmospheric pressure around the projection optical system and the corresponding correction value of the magnification error of the projection optical system.
  • FIG. 7 is a flowchart showing an example of the calibration operation of the projection magnification of the projection optical system. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to control the imaging characteristics of a projection exposure apparatus of a scanning exposure type using a step-and-scan method.
  • FIG. 1 shows a schematic configuration of a projection exposure apparatus used in the present embodiment.
  • an ultraviolet pulse laser beam narrowed at a wavelength of 193 nm from an ArF excimer laser light source 1 is used.
  • the exposure light IL passes through a beam matching unit (BMU) 3 including a movable mirror and the like, and enters a variable dimmer 6 via a light-shielding pipe 5.
  • An exposure controller 29 for controlling the amount of exposure to the resist on the wafer controls the start and stop of light emission of the ArF excimer laser light source 1, the light emission intensity, the oscillation frequency, etc., and the variable light reduction. Adjust the extinction rate in the detector 6.
  • the exposure controller 29 receives information such as the target exposure amount from the main control system 28 that supervises and controls the operation of the entire apparatus, and sends the information such as the actually measured exposure amount to the main control system 28 as described later. Output.
  • K r F excimer laser wavelength 2 4 8 nm
  • K r 2 laser wavelength 1 4 6 nm
  • F 2 other such laser wavelength 1 5 7 nm
  • Laser light i-line (wavelength 365 nm) of a mercury lamp, or soft X-ray can also be used.
  • the exposure light IL that has passed through the variable attenuator 6 is incident on an optical integrator (uniformizer or homogenizer) 8 such as a fly-eye lens through a beam shaping optical system including lens systems 7A and 7B.
  • an optical integrator uniformizer or homogenizer
  • a fly-eye lens is used as the optical / integral lens 8 and the exit surface (the exit-side focal plane) of the optical / integral shutter 8 is substantially the same as the pupil plane (Fourier transform plane) of the illumination system. I do.
  • an aperture stop plate 9 of an illumination system is arranged on an emission surface of the optical integrator 8 so as to be rotatable by a drive motor 10.
  • the internal reflection type 8 is referred to as the internal reflection type Or a diffractive optical element may be used.
  • the exit surface is arranged almost conjugate with the pattern surface of the reticle R, and the aperture stop plate 9 is connected to the light source 1 and the optical integrator. Placed between evening 8
  • the aperture stop plate 9 has a circular aperture stop 9a for normal illumination, and an annular aperture having an inner diameter of approximately 1/2 of an outer diameter for annular illumination as an example of deformed illumination. 1Z 2 annular aperture 9b, 2/3 annular aperture 9c with an inner diameter of almost 2Z3 annular aperture, and multiple as another example of modified illumination (in this example, An aperture stop 9 d for quadrupole illumination consisting of four (4) eccentric small apertures is arranged. Further, the aperture stop 9a for ordinary illumination is provided with an iris stop (not shown) for controlling the aperture shape in order to switch to illumination for a small coherence factor (low-value illumination).
  • the main control system 28 rotates the aperture stop plate 9 via the drive motor 10 in accordance with the illumination conditions, so that the predetermined aperture stop that defines the illumination conditions is optically integrated. Is set on the exit surface of
  • a prism (cone prism, polyhedron, etc.) movable along the optical axis of the illumination optical system
  • An optical unit that includes at least one of a zoom optical system and a zoom optical system is placed between the light source 1 and the optical integrator 8, and when the optical integrator 8 is a fly-eye lens, the light enters.
  • the intensity distribution of the exposure light IL on the surface, optical, when the integrator 8 is an internal reflection type integrator, the incident angle range of the exposure light IL with respect to the incident surface is variable, so that the Of the exposure light IL (size and shape of the secondary light source), that is, the illumination conditions can be changed, and the light amount loss due to the change of the illumination conditions is suppressed Is desirable.
  • Exposure light IL emitted from optical integrator 8 and passing through a predetermined aperture stop in aperture stop plate 9 is incident on beam splitter 11 having a high transmittance and a low reflectance.
  • the exposure light reflected by the beam splitter 11 enters an integrator sensor 12 composed of a photoelectric detector, and a detection signal of the integrator sensor 12 is supplied to an exposure controller 29.
  • the exposure controller 29 is an Integral
  • the illuminance (pulse) of the exposure light I 'L The energy), and the integrated value (exposure amount) are monitored.
  • the exposure light IL transmitted through the beam splitter 11 passes through a reflection mirror 13 and a condenser lens system 14 and enters a fixed field stop 15 in a reticle blind mechanism 16.
  • a scanning exposure type such as a step-and-scan method as in this example
  • unnecessary unnecessary light before and after scanning exposure is provided in addition to a field stop 15 for defining an illumination area.
  • a movable field stop is provided to prevent exposure of the area.
  • the exposure light IL shaped by the field stop 15 of the reticle blind mechanism 16 is applied to the pattern area of the reticle R via the imaging lens system 17, the reflection mirror 18 and the main condenser lens system 19. Illuminate the rectangular illumination area 36 (see Fig. 3) with a uniform illuminance distribution.
  • An illumination optical system (illumination system) is configured.
  • the image of the circuit pattern in the illumination area of the reticle R is projected onto both sides (or one side on the wafer side) through a telecentric projection optical system PL to a predetermined projection magnification (eg, 1Z4, 1Z). 5), the light is projected onto the exposure area of the resist layer on the wafer W arranged on the image plane of the projection optical system PL.
  • the exposure area is located on one of the plurality of shot areas on wafer W.
  • the projection optical system PL corresponding to the projection system of the present invention is a dioptric system (refractive system).
  • International Publication (W () 0 0 As disclosed in U.S. Pat. No.
  • a direct optical system is constructed by arranging a plurality of refractive lenses along one optical axis and two concave mirrors each having an opening near the optical axis.
  • a cylindrical catadioptric system (catadioptric system) may be used.
  • a catadioptric system or the like having an optical axis bent in a V-shape may be used as the projection optical system PL.
  • a sub-champ 60 is provided to block the illumination optical path from the inside of the pipe 5 to the main condenser lens system 19 through the variable dimmer 6, the lens systems 7A and 7B, the optical integrator 8 and the like. ing.
  • the exposure light In order to avoid absorption by light-absorbing substances, the entire inside of the sub-chamber 60 and the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) are dried through piping (not shown).
  • a purge gas such as a nitrogen gas or a helium gas is supplied.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken perpendicular to the plane of Figure 1 in a plane perpendicular to the Z axis
  • the Y axis is taken parallel to the plane of Figure 1 I do.
  • the projection optical system PL of the present example includes a plurality of optical members (typically, lenses LI and L2 are shown in FIG. 1) arranged along the optical axis AX, and a mirror that holds these. It consists of a tube and. Then, in order to control the projection magnification of the projection optical system PL and imaging characteristics such as predetermined aberrations (distortion, coma, astigmatism, curvature of field, etc.), the projection optical system PL includes The actuators 43, 44 are provided for driving the lenses L1, L2 in the Z direction at three independent positions at equal angular intervals, and the driving amount of the actuators 43, 44 is increased. It is controlled by the imaging characteristic controller 42.
  • a piezoelectric element (piezo element, etc.) or an electric micro-mechanical element can be used for the actuators 43 and 44, and three actuators 43 (or 44) can be simultaneously expanded and contracted.
  • the tilt angles around the X and Y axes can be controlled.
  • the imaging characteristics controller 42 and the actuators 43, 44 correspond to the imaging adjustment system of the present invention, and the imaging characteristics are controlled in accordance with a control command of the imaging characteristics from the main control system 28.
  • the controller 42 drives the actuators 43, 44 so as to correct the specified imaging characteristics by the specified amount.
  • the imaging adjustment system includes a lens controller (LC) that controls the pressure of a gas (purge gas) in an airtight chamber between predetermined lenses in the projection optical system PL, or a position in the optical axis direction of the reticle R.
  • LC lens controller
  • a mechanism for controlling at three points may be used.
  • controlling the atmospheric pressure on the optical path of the exposure light IL is substantially equivalent to controlling the wavelength of the exposure light IL. Therefore, the image forming characteristic may be controlled by controlling the oscillation wavelength of the ArF excimer laser light source 1 by the exposure controller 29. In this case, the ArF excimer laser light source 1 and the exposure controller 29 form an image adjustment system.
  • the imaging characteristics depend on the pressure (atmospheric pressure) of the gas around the projection optical system PL. Even fluctuates. Therefore, a barometer 31 for measuring the atmospheric pressure is installed near the projection optical system PL, and the atmospheric pressure measured by the barometer 31 is supplied to the main control system 28. In this case, the relationship between the atmospheric pressure and the amount of change in the imaging characteristics is stored in advance as a table in the storage device in the main control system 28, and when the atmospheric pressure fluctuates, the imaging characteristics of the projection optical system PL are allowed. When it is predicted to fluctuate beyond the range, the main control system 28 adjusts the imaging characteristic via the imaging characteristic controller 42 so as to cancel the expected fluctuation amount of the imaging characteristic. to correct.
  • the main control system 2 is controlled in accordance with the integrated energy monitored by the integration sensor 12. 8 drives the imaging characteristic controller 42 so as to cancel the expected fluctuation amount of the imaging characteristic. As a result, the imaging characteristics are kept constant during the exposure.
  • the barometer 31 of the present example corresponds to the environment detection system of the present invention.
  • the image forming characteristics fluctuate in accordance with a change in the light amount distribution of the exposure light IL on the pupil plane of the projection optical system PL, for example, the image forming characteristic relates to the light amount distribution on the pupil plane of the projection optical system PL.
  • the main control system 28 adjusts the imaging characteristic via the imaging characteristic controller 42 so as to cancel out the expected fluctuation amount of the imaging characteristic.
  • the light quantity distribution on the pupil plane of the projection optical system PL is changed by changing the above-mentioned illumination conditions (light quantity distribution of the exposure light IL on the pupil plane (Fourier transform plane) of the illumination optical system) and the reticle.
  • the main control system 28 calculates the amount of change or the amount of correction of the imaging characteristic according to the illumination conditions and the like, since the value changes according to the type of the pattern (line width or the like). At this time, instead of or in addition to moving at least one lens of the projection optical system PL via the imaging characteristic controller 42, the oscillation wavelength of the exposure light IL is changed via the exposure controller 29. Further, the fluctuation of the imaging characteristic may be corrected.
  • reticle R is suction-held on reticle stage 20
  • reticle stage 20 is mounted on reticle base 21 movably in the X, Y, and rotation directions.
  • FIG. 3 is a perspective view showing a main part of the stage system and the alignment system of FIG. 1.
  • the reticle stage 20 is substantially perpendicular to the X axis and the Y axis.
  • a movable mirror 2 2a having two reflecting surfaces is fixed, and a two-axis laser beam LRX 1 and a two-axis parallel to the X axis are provided on the movable mirror 22 a by a laser interferometer in the drive control unit 22 shown in FIG.
  • a laser beam LRY parallel to LRX2 and Y-axis is irradiated, and the X- and Y-coordinates and rotation angle of reticle stage 20 (reticle R) are measured in real time by the laser interferometer.
  • the drive control unit 22 based on the measurement results and the control information from the main control system 28, based on a drive module (not shown), a voice coil motor, etc.
  • the positioning operation of reticle stage 20 is controlled via).
  • the wafer W is suction-held on the sample table 24 via the wafer holder 23.
  • the sample table 24 is placed on an XY plane (not shown) parallel to the image plane of the projection optical system PL.
  • the sample stage 24 and the XY stage 25 are fixed on an XY stage 25 that moves two-dimensionally along the top surface, and a wafer stage 26 is configured.
  • the sample stage 24 controls the focus position (position in the Z direction) and the tilt angle of the wafer W to adjust the surface of the wafer W to the image plane of the projection optical system PL by the autofocus method and the auto-repeller method.
  • the XY stage 25 performs stepping of the wafer W in the X and Y directions.
  • an alignment sensor 35 for a wafer mark of an off-axis system and an image processing system is arranged on a side surface in the Y direction of the projection optical system PL.
  • the side surface in the + X direction and the side surface in the + Y direction of the sample stage 24 are mirror-finished and used as a movable mirror.
  • the two-axis laser beams parallel to the X-axis are respectively applied to the + X side and + Y side of the sample stage 24.
  • LWX 1, LWX 2, and a laser beam LWY parallel to the Y axis are emitted.
  • the extension of the optical axis of the Y-axis laser beam LWY passes through the detection center of the alignment sensor 35 and the optical axis AX of the projection optical system PL, and the X-axis laser beams LWX 1 and LWX 2
  • the extension of the optical axis passes through the optical axis AX and the detection center of the alignment sensor 35, respectively. Therefore, the Y coordinate of the sample stage 24 is measured by the laser beam LWY, and the X coordinate of the sample stage 24 is measured by the laser beam LW X1 at the time of exposure in order to suppress the occurrence of Abbe error. At the time of alignment, it is measured by laser beam LWX2. Also, from the difference between the measured values of the two laser beams LWX 1 and LWX 2, The rotation angle of the sample stage 24 is measured.
  • the side surface of the sample stage 24 is used as a movable mirror as shown in Fig. 3, there is a displacement in the Z direction between the optical path of the laser beam and the surface of the wafer W.
  • Abbe error may occur due to pitching or rolling of 24.
  • the laser beams LWX 1, LWX 2, and LWY are each separated by a predetermined distance in the Z direction, and the laser beam is irradiated on the side surface of the sample table 24.
  • Abbe error due to pitching of the sample stage 24 or the like may be corrected based on the measurement value by the laser beam.
  • a movable mirror having an orthogonal reflection surface is installed on the sample stage 24, and the movable mirror is irradiated with a laser beam to measure the position of the sample stage 24. Is also good.
  • the two-dimensional position and rotation angle of the sample stage 24 (wafer W) measured by the laser interferometer in the drive control unit 27 are measured by the main control system 28 and the It is also supplied to the Lightment Contoller 30.
  • the drive control unit 27 controls the positioning operation of the XY stage 25 via a drive motor (not shown) based on the measured values and the control information from the main control system 28. You. However, the rotation error of the wafer W is corrected, for example, by rotating the reticle stage 20 via the main control system 28 and the drive control unit 22.
  • the main control system 28 rotates the aperture stop plate 9 as necessary to set illumination conditions. Then, the reticle R is scanned through the reticle stage 20 in the + Y direction (or -Y direction), that is, in the scanning direction SD (see FIG. 3) at the speed Vr with respect to the illumination area of the exposure light IL. Synchronously, the speed of the wafer W in the -Y direction (or the + Y direction) with respect to the exposure area by the projection optical system PL via the XY stage 25 is 0-Vr (j3 is from the reticle R to the wafer W). Scanning magnification).
  • the scanning directions of the reticle R and the wafer W are opposite because the projection optical system PL performs reverse projection.When the erect image is projected, the scanning directions of the reticle R and the wafer W are the same. Become. At this time, the exposure controller 29 controls the exposure amount for each shot area on the wafer W. Then, after the scanning exposure of the pattern image of the reticle R onto one shot area on the wafer W is completed, the next shot area on the wafer W is transferred to the exposure area by the projection optical system PL via the XY stage 25. Foreground After that, the operation of synchronously scanning the reticle R and the wafer W is repeated in a step-and-scan manner, and each shot area on the wafer W is scanned and exposed.
  • a pair of reticle marks 37 A and 37 B are formed so as to sandwich the pattern area PA of the reticle R in the X direction (non-scanning direction), Image processing reticle alignment microscopes (hereinafter referred to as “RA microscopes”) 38 A and 38 B are arranged above the reticle marks 37 A and 37 B, respectively.
  • the imaging signals of the RA microscopes 38A and 38B are supplied to the alignment controller 30.
  • the alignment controller 30 converts the supplied imaging signals into the X and Y directions of two marks, respectively.
  • the amount of displacement is calculated, and the obtained amount of displacement is supplied to the main control system 28 in FIG.
  • the main control system 28 as an imaging adjustment system obtains a predetermined imaging characteristic from the supplied positional shift amount.
  • a reference member 32 made of a glass substrate is fixed near the wafer holder 23 on the sample stage 24, and the upper surface of the reference member 32 is set at the same height as the surface (wafer surface) of the wafer W.
  • Two frame-like reference marks 34 A, 34 B arranged on the upper surface of the reference member 32 at predetermined intervals in the X direction, and a line-and-space pattern in the X direction and the Y direction
  • a two-dimensional reference mark 33 is formed in combination with the line 'and' space pattern.
  • the distance between the fiducial marks 34 A and 34 B in the X direction is set equal to the designed distance between the reticle marks 37 A and 37 B and the projected image on the wafer stage side. 4
  • the distance between the center of B and the center of fiducial mark 33 in the Y direction is the designed distance between the center of the pattern image of reticle R and the detection center of alignment sensor 35 (baseline amount) BL 1 Is set to.
  • the alignment sensor 35 forms an epi-illumination system that illuminates the target mark with illumination light insensitive to the photoresist on the wafer W in a relatively wide band, and forms an image of the target mark.
  • a two-dimensional image sensor for imaging the image of the test mark and the index mark.
  • the image signal of the image sensor is also provided.
  • Alignment controller 30 processes the imaging signal and detects the amount of displacement of the mark in the X and Y directions with respect to the center (detection center) of the index mark on the wafer stage 26 with respect to the wafer, and The detection result is supplied to the main control system 28.
  • a mirror 41 for bending is arranged on the 34A, 34B side. Leading to the side.
  • the reference marks 34A and 34B of the present example are illuminated from the bottom side with illumination light having the same wavelength as the exposure light IL, and no chromatic aberration occurs in the projection optical system PL.
  • the surface on which the reference marks 34A and 34B are formed and the surface on which the reticle marks 37A and 37B are formed are conjugate with respect to the projection optical system PL.
  • the RA microscope 38A (or 38B) above the reticle R allows the reference mark 34A (or 34B) to be projected onto the reticle surface by the projection optical system PL.
  • the displacement of the reticle mark 37A (or 37B) can be detected with high accuracy.
  • the reference marks 34A and 34B of this example correspond to the marks of the present invention, and the RA microscopes 38A and 38B correspond to the mark detection system.
  • the illumination condition from the bottom of the reference marks 34A and 34B by the transmission optical system 39, the lens 40, and the mirror 41 is the illumination condition of the exposure light IL by the illumination optical system including the optical integral 8 Therefore, the measurement results of the imaging characteristics using the reference marks 34A and 34B are corrected in accordance with the actual lighting conditions at the time of exposure, as described later.
  • illuminating the reference marks 34 A and 34 B from the bottom using the transmission optical system 39 instead of illuminating the RA microscopes 38 A and 38 B with illumination light of the same wavelength as the exposure light A mechanism may be provided.
  • RA microscopes 38 A and 38 B with illumination light of the same wavelength as the exposure light A mechanism may be provided.
  • RA microscopes 38 A and 38 B with illumination light of the same wavelength as the exposure light A mechanism may be provided.
  • the reticle marks 37A, 37B are illuminated from above by the illumination light from 38A, 38B, and the reference marks 34A, 37A, 37B are illuminated through the projection optical system PL with the illumination light transmitted around the reticle marks 37A, 37B. Illuminate 34 B. And fiducial mark 34A, 3
  • reference marks are provided on the reticle stage 20 corresponding to the reference marks 34A and 34B on the reference member 32 in FIG. 3, and the reference marks on the reticle stage 20 are used instead of the reticle marks 37A and 37B.
  • the amount of displacement between the reference marks 32A and 34B on the reference member 32 may be detected by the RA microscopes 38A and 38B.
  • the reference marks on the reticle stage 20 are arranged, for example, at the positions of the respective vertices of a rectangle, and the reference marks are provided in a frame-like arrangement on the reference member 32 so as to correspond to the reference marks.
  • the distortion of the optical system PL can also be measured.
  • the reference marks 34A and 34B, the reticle marks 37A and 37B, and the RA microscopes 38A and 38B are used when performing reticle alignment.In this example, these mechanisms and the imaging characteristic controller 42 and the like are used.
  • the measurement and correction of the predetermined imaging characteristics of the projection optical system PL are performed by using this.
  • an example of the measurement operation and the correction operation (calibration operation of the projection magnification) of the projection magnification will be described with reference to the flowchart of FIG. 7, using the imaging characteristic of the measurement target as the projection magnification of the projection optical system PL. .
  • step 101 of FIG. 7 the amount of displacement of the reticle marks 37A, 37B with respect to the projected image of the reference marks 34A, 34B on the reticle surface is determined by the RA microscopes 38A, 38B. measure. Therefore, the main control system 28 in FIG. 1 drives the XY stage 25 to move the reference marks 34A, 34B of the reference member 32 to a position substantially conjugate with the reticle marks 37A, 37B.
  • the reference marks 34A and 34B are illuminated from the bottom surface of the reference member 32 with the illumination light having the same wavelength as the exposure light I by using the transmission optical system 39, the lens 40, and the mirror 41 of FIG.
  • FIG. 4 shows the observation field of view 38 Aa on the reticle surface of one RA microscope 38 A.
  • the image 34 AR of one reference mark 34 A and the image of the reticle mark 37 A are RA
  • An image was taken with a microscope 38 A, and the image signal was compared with the alignment control shown in Fig. 1.
  • Processing by the controller 30 detects the amount of displacement ( ⁇ 1, ⁇ 1) of the center RA of the reticle mark 37A in the X and Y directions with respect to the center 8 of the image 3481 of the reference mark. .
  • the center RB of the reticle mark 37 B with respect to the center FB see FIG. 5 of the image of the other reference mark 34 B in the X and Y directions.
  • the deviation ( ⁇ ⁇ 2, ⁇ Y2) is detected.
  • the reticle alignment is performed based on the detected positional deviation amounts of the reticle marks 37A and 37B.
  • the main control system 28 determines the center 1 ⁇ 8, RB of the reticle mark 37A, 373 with respect to the straight line connecting the image centers FA, FB of the reference marks 34A, 34B.
  • Ie the rotation angle ⁇ of the reticle R with respect to the reference member 32.
  • the reticle stage 20 is rotated by ⁇ 0 through the drive control unit 22, and the position of the reticle stage 20 in the ⁇ direction is adjusted so that the displacement amounts ⁇ 1 and ⁇ 2 in the Y direction become 0, respectively. .
  • the center 18, RB of the reticle mark 37 37, 378 is located on a straight line connecting the center 8, FB of the image of the reference mark 34 ⁇ , 348.
  • the main control system 28 distributes the amount of displacement of the center RA and RB with respect to the center FA and FB in the X direction symmetrically, that is, the two center RA and RB
  • the reticle stage 20 is moved in the X direction so that the amount of displacement in the X direction is symmetrically set by ⁇ D.
  • the displacement AD in the X direction may be measured again through the RA microscopes 38A and 38B. In this case, assuming that the displacement of the center RA in the X and Y directions with respect to the center FA is ( ⁇ D, 0), the displacement of the other is ( ⁇ AD, 0).
  • the projection magnification of the projection optical system ⁇ L / 3 (reticle surface From the standard magnification (design value) ⁇ .
  • the projection magnification] 3 is obtained by dividing the distance DW between the centers of the reference marks 34 ⁇ and 34 ⁇ on the wafer stage side by the distance between the reference marks 34 ⁇ and 34: 6 at the center of the image 8 and FB on the reticle surface.
  • the projection magnification] 3 Is represented by the following equation.
  • the distance DW between the centers of the reference marks 34A and 34B on the wafer stage side and the distance DR between the centers RA and RB of the reticle marks 37A and 37B are measured in advance with high precision and stored in the main control system 28. This is stored as a known exposure parameter in the apparatus.
  • the main control system 28 calculates the projection magnification] 3 from equation (1), and then calculates the projection magnification as follows: the reference magnification of 6/3. From the error ⁇ / 32. .
  • a correction value ⁇ / 31 of the magnification error according to the atmospheric pressure ⁇ ⁇ around the projection optical system PL and the illumination conditions at the next exposure is calculated.
  • the numerical aperture NA! LL of the illumination system and the shape of the illumination system aperture stop are used.
  • Figure 6 shows an example of the relationship between the atmospheric pressure P around the projection optical system PL when measuring the projection magnification and the magnification error measured accordingly (hereinafter referred to as the “magnification error correction value ⁇ j31”).
  • the horizontal axis represents the atmospheric pressure P (hPa)
  • the vertical axis represents the magnification error correction value 1 (ppm).
  • the magnification error of the projection optical system PL changes almost linearly with respect to the atmospheric pressure P at the time of measuring the projection magnification, and the correction value ⁇ 1 of the magnification error is expressed by the following equation. Can be approximated.
  • the coefficients a (ppm / hPa) and b (ppm) are the slope and offset of the magnification error with respect to the atmospheric pressure P, respectively, and the values of these coefficients a and b differ depending on the lighting conditions.
  • Table 1 shows examples of measured values of coefficients a and b under various lighting conditions.
  • NA PL and NA ILL are the numerical apertures of the projection optical system PL and the illumination optical system, respectively.
  • Ring illumination uses a 1/2 annular aperture 9b
  • 2Z3 annular illumination uses a 2/3 annular aperture 9c.
  • the numerical aperture NA I LL of the illumination optical system at the time of annular illumination means the numerical aperture of the outer diameter of the annular zone.
  • the coefficient a SIM indicates the slope of the magnification error under each lighting condition obtained by simulation. Table 1 shows that the simulation results agree well with the measured data.
  • the values of the slope a of the magnification error and the offset b of the magnification error corresponding to each lighting condition are recorded as a table in a storage device inside the main control system 28 or an external host computer in FIG.
  • the main control system 28 obtains, from the table, values of the gradient a of the magnification error and the offset b of the magnification error corresponding to the illumination condition at the time of exposure. Then, the main control system 28 obtains a correction value ⁇ ; 31 of the magnification error from the equation (3) based on the measured value of the atmospheric pressure P by the barometer 31.
  • the main control system 28 sets the reference magnification of the projection magnification] 3 obtained in step 102 to [3].
  • step 105 the main control system 28 adjusts the state of the lenses L 1 and L 2 of the projection optical system PL by driving the actuators 43 and 44 via the imaging characteristic controller 42. Then, the projection magnification 0 of the projection optical system PL is corrected so as to cancel the residual magnification error ⁇ / 3, that is, the projection magnification becomes ( ⁇ -room ⁇ ).
  • the projection magnification measured by the RA microscopes 38A and 38B the projection magnification measured by the RA microscopes 38A and 38B;
  • the projection magnification can be determined with high accuracy according to the illumination conditions at the time of exposure and the atmospheric pressure P around the projection optical system PL.Based on this result, the projection magnification can be determined with high accuracy. Can be calibrated. Further, according to the present example, since the images of the reference marks 34 A and 34 B and the detection results of the reticle marks 37 A and 37 B by the RA microscope 38 A and 38 B are used, the reticle alignment There is an advantage that the projection magnification can be adjusted at the same time.
  • an exposure step (step 106) is performed.
  • the resist pattern left after the development is masked.
  • a processing step of performing etching, ion implantation, etc., and a resist removing step of removing unnecessary resist after the processing step are repeated, thereby completing the process.
  • a dicing process of cutting wafers into chips for each burned circuit, a bonding process of wiring each chip, and a packaging process of packaging each chip are manufactured through processes.
  • an illumination optical system composed of multiple lenses and a projection optical system are incorporated into the main body of the projection exposure apparatus to perform optical adjustment, and a reticle stage and a wafer stage composed of many mechanical parts are attached to the main body of the exposure apparatus and wired.
  • the projection exposure apparatus according to the present embodiment can be manufactured by connecting the pipes and pipes and performing the overall adjustment (electrical adjustment, operation check, etc.). It is desirable to manufacture the projection exposure apparatus in a clean room where the temperature and cleanliness are controlled. ⁇
  • the lenses LI and L2 are driven to control the imaging characteristics.
  • the exposure light from the ArF excimer laser light source 1 is used.
  • the oscillation wavelength ⁇ of the IL may be controlled.
  • the projection magnification of the projection optical system PL is used as the imaging state or the imaging characteristic.
  • the distortion, coma, and non- Measurement and control of point aberration and the like may be performed.
  • three or more fiducial marks 34A and 34B may be arranged, and the displacement of each projected image may be measured.
  • a box-in-box mark may be used in place of the fiducial marks 34A and 34B to measure the amount of displacement between the outer poxmark image and the inner poxmark image.
  • the illumination system for the RA microscopes 38 A and 38 B is provided separately from the illumination optical system, but at least a part of the illumination optical system is provided for the RA microscopes 38 A and 38 B. May be used as an illumination system.
  • at least a part of the exposure light IL emitted from the aperture stop plate 9 is guided to the RA microscopes 38A and 38B, and the exposure light IL is irradiated on the reticle mark and the reference mark. Good.
  • a beam splitter is disposed above the reticle marks 37A and 37B so as to be retractable, and at the time of mark measurement, the beam splitter is set in the optical path of the exposure light IL to expose the light from the illumination optical system.
  • the reticle marks 37 A and 37 B and the reference marks 34 A and 34 B are illuminated with light IL, and the reflected light from those marks is passed through the beam splitter to the RA microscopes 38 A and 38 B. You may make it detect.
  • RA microscopes 38A and 38B were used as the mark detection system of the present invention, but the mark detection system is not limited to the RA microscope, and the configuration may be arbitrary. Absent.
  • the mark detection system a space image measurement system or the like that detects a spatial image of a mark projected through the projection optical system PL through a predetermined opening on the wafer stage 26 side may be used. In this case, for example, an opening wider than the line width of the image of each mark constituting the test mark is used as the opening, and an image signal obtained by imaging the image of the test mark is differentiated. The position of the image of the test mark may be detected from the obtained signal.
  • the slit is illuminated from the wafer stage 26 side with illumination light having the same wavelength as the exposure light, transmitted through this slit, and further reflected by the reticle R via the projection optical system PL.
  • a focus position detection sensor that detects the best focus position of the projection optical system PL by receiving light through the slit may be used.
  • the adjustment of the imaging state or the imaging characteristics is performed simultaneously with the reticle alignment, but both need not be performed at the same time. Only the detection may be performed without adjusting the state or the imaging characteristics. Further, in the above-described embodiment, atmospheric pressure (pressure in an installation environment such as a projection optical system) is used as an environmental condition, but temperature or the like may be used instead or in combination therewith.
  • the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device as in the above-described embodiment.
  • an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern on a square glass plate, and a plasma It can be widely applied to exposure devices for manufacturing devices such as display elements, micromachines, thin-film magnetic heads, and DNA chips.
  • the magnification of the projection optical system is not limited to a reduction system, and may be any one of an equal magnification and an enlargement system.
  • the exposure method of the present invention even when environmental conditions at the time of detecting a mark are variously changed, for example, by correcting the detection result of the mark using the environmental condition at the time of the detection, the detection result can be obtained. It can be used to adjust the imaging state of the pattern image with high precision.
  • the imaging state is detected (measured). Even when the illumination condition at the time of exposure differs from the illumination condition at the time of actual exposure, the imaging state can be adjusted with high accuracy.
  • the exposure method of the present invention can be performed. Further, according to the imaging characteristic measuring method of the present invention, the imaging characteristic of the projection system can be adjusted with high accuracy in accordance with the environmental conditions at the time of the measurement.
  • the image forming state of the pattern image can be adjusted with high accuracy, and a highly functional device can be manufactured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Atmospheric Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A method of measuring image characteristics capable of high-precision measurement of the image characteristics of a projection optical system according to illuminating conditions at exposure and an atmospheric pressure surrounding the projection optical system, and an exposure method. With reference marks (34A, 34B) illuminated from the interior of a sample table (24) by illuminating light having the same wavelength as that of exposure light, positional deviations of reticle marks (37A, 37B) from images, via a projection optical system (PL), of the reference marks (34A, 34B) are measured by reticle alignment microscopes (38A, 38B), and a projection magnification β of the projection optical system (PL) is calculated from this measurement to determine an errorΔβ2 from its reference magnification β0. A correction value Δβ1 for a magnification error according to the illuminating conditions of a reticle (R) at exposure and an atmospheric pressure P surrounding the projection optical system (PL) is subtracted from the determined error Δβ2 to determine an actual residual magnification error Δβ(=Δβ2-Δβ1) at exposure.

Description

明 細 書 結像特性の計測方法及び露光方法 技術分野  Description Measurement method of imaging characteristics and exposure method
本発明は、 例えば半導体素子、 撮像素子 (C C D等) 、 液晶表示素子、 プラズ 、 又は薄膜磁気へッド等のデバイスを製造するためのフォトリソ 枉 マスクパターンを感応性の基板上に転写する際に使用される投影 露光装置の投影系の結像特性の計測方法、 及び露光方法に関する。 更に、 本発明 は、 そのような結像特性の計測方法を使用する投影露光装置に関する。 背景技術  The present invention relates to a method of transferring a photolithography-listed mask pattern onto a sensitive substrate for manufacturing a device such as a semiconductor device, an imaging device (such as a CCD), a liquid crystal display device, a plasma, or a thin-film magnetic head. The present invention relates to a method for measuring an imaging characteristic of a projection system of a projection exposure apparatus used, and an exposure method. Further, the present invention relates to a projection exposure apparatus using such a method for measuring an imaging characteristic. Background art
半導体素子等を製造する際に、 マスクとしてのレチクルのパターンを投影光学 系を介して、 感応材料又は感光材料としてのレジストが塗布されたウェハ (又は ガラスプレート等) 上の各ショット領域に転写するステッパー等の投影露光装置 が使用されている。 例えば半導体素子はウェハ上に十数層の回路パターンを所定 の位置関係で積み重ねて形成されるため、 投影露光装置には、 レチクルやウェハ 上のァライメントマーク (レチクルマークやウェハマーク) の位置を検出するた えられている。 When manufacturing semiconductor devices, etc., the reticle pattern as a mask is transferred via a projection optical system to each shot area on a wafer (or glass plate, etc.) coated with a resist as a sensitive material or a photosensitive material. A projection exposure apparatus such as a stepper is used. For example, a semiconductor device is formed by stacking a dozen or more circuit patterns on a wafer in a predetermined positional relationship. Therefore, a projection exposure apparatus uses a reticle or alignment mark (reticle mark or wafer mark) on the wafer. It has been detected.
Figure imgf000003_0001
は種々の方式があるが、 例えばレチクルマークを検 出するァライメントセンサには、 露光用の照明光 (露光光) でレチクルマークを 照明して C C Dカメラ等で撮像し、 得られた画像データを画像処理してレチクル マークの位置を計測する V R A (Vi sual Ret icle Al ignment) 方式等の露光光を 用いる方式が用いられる。 このような V R A方式のァライメントセンサは、 投影 光学系の投影倍率等の結像特性を計測する際にも使用される場合がある。
Figure imgf000003_0001
There are various methods. For example, an alignment sensor that detects a reticle mark illuminates the reticle mark with illumination light for exposure (exposure light), captures an image with a CCD camera or the like, and processes the obtained image data. A method using exposure light such as the VRA (Visual Reticle Alignment) method that measures the position of a reticle mark by image processing is used. Such a VRA type alignment sensor may be used when measuring imaging characteristics such as a projection magnification of a projection optical system.
また、 投影露光装置においては、 投影光学系の周囲の大気圧が変動すると、 投 影光学系全体としての屈折率が変化し、 投影光学系の投影倍率が変動してしまう ため、 気圧変化による投影倍率の変動を修正するために、 例えばいわゆるレンズ コントローラ (L C) が用いられる。 これは、 投影光学系を構成する一部のレン ズ間の空間を密閉空間とし、 その密閉空間内の気体の圧力を調整することにより、 気圧変化による投影倍率の変動を修正するものである。 更に、 気圧変化等により 生じる投影倍率の誤差や投影光学系の諸収差等の結像特性の変動を補正するため に、 レンズ支持部にピエゾ素子等の駆動部材を配置してレンズ間隔を調整したり、 露光波長を制御したりする結像特性制御機構も使用されている。 Also, in a projection exposure apparatus, if the atmospheric pressure around the projection optical system changes, the refractive index of the entire projection optical system changes, and the projection magnification of the projection optical system changes. For example, a so-called lens controller (LC) is used to correct magnification fluctuations. This is because some lenses that make up the projection optical system The space between the windows is a closed space, and by adjusting the pressure of the gas in the closed space, the fluctuation of the projection magnification due to the atmospheric pressure change is corrected. Furthermore, in order to correct projection magnification errors caused by changes in atmospheric pressure and fluctuations in imaging characteristics such as various aberrations of the projection optical system, a driving member such as a piezo element is arranged on the lens support to adjust the lens interval. And an imaging characteristic control mechanism for controlling the exposure wavelength.
上記の如く従来の投影露光装置では、 気圧変化等による結像特性の変動に対処 するために、 レンズコントロ一ラ等の結像特性制御機構を用いて結像特性を制御 していた。 このような結像特性制御機構を用いる場合には、 例えば露光シーケン スの開始時、 及び所定ロット数のウェハに対する露光が終わる毎に、 上記の V R A方式のァライメントセンサ等を用いて結像特性を計測し、 この計測された結像 特性を初期状態として、 その後は、 例えば経験則によって予測される結像特性の 変動量を用いて、 その結像特性が所定の目標範囲内に収まるように制御していた。 しかしながら、 その結像特性の計測時においても、 投影光学系の周囲の大気圧 は変化しており、 その計測時の大気圧に応じてその結像特性の計測値に誤差が生 じる恐れがある。 このように結像特性の計測値 (初期状態) 自体に誤差が生じて いると、 その後で結像特性制御機構を用いて予想される結像特性の変動量を補正 したとしても、 残留誤差が生じることになる。 このような残留誤差は現状では僅 かであると考えられるが、 集積回路の高密度化による回路パターンの微細化が今 後も更に進むにつれて、 最終的に製造されるデバイスの歩留りの悪化等を招く恐 れがある。  As described above, in the conventional projection exposure apparatus, in order to cope with fluctuations in the imaging characteristics due to a change in atmospheric pressure or the like, the imaging characteristics are controlled using an imaging characteristic control mechanism such as a lens controller. When such an imaging characteristic control mechanism is used, for example, at the start of the exposure sequence, and each time the exposure of a predetermined number of wafers is completed, the imaging characteristic using the VRA type alignment sensor is used. Is measured, and the measured imaging characteristics are set as an initial state, and thereafter, for example, using the amount of fluctuation of the imaging characteristics predicted by empirical rules, the imaging characteristics are set to fall within a predetermined target range. Had control. However, even when measuring the imaging characteristics, the atmospheric pressure around the projection optical system changes, and there is a possibility that an error may occur in the measured values of the imaging characteristics depending on the atmospheric pressure at the time of the measurement. is there. As described above, if an error occurs in the measured value (initial state) of the imaging characteristic itself, the residual error will remain even if the expected fluctuation amount of the imaging characteristic is corrected using the imaging characteristic control mechanism thereafter. Will happen. Such residual errors are considered to be small at present, but as circuit patterns become finer due to higher densities of integrated circuits, the yield of final manufactured devices will deteriorate. There is a fear of inviting.
また、 投影露光装置においては、 露光する線幅やパターン形状に応じて照明条 件をいわゆる変形照明や小さいコヒーレンスファクタの照明 (小び値照明) 等に 切り換えることがあるが、 照明条件を切り換える度に投影光学系の投影倍率等の 結像特性が僅かに変動し、 ウェハ上に投影される像が微妙に変化して、 重ね合わ せ精度等が低下する場合があった。  Also, in a projection exposure apparatus, the illumination condition may be switched to so-called deformed illumination or illumination with a small coherence factor (small illumination) depending on the line width or pattern shape to be exposed. In some cases, the imaging characteristics such as the projection magnification of the projection optical system fluctuate slightly, and the image projected on the wafer may change slightly, resulting in a decrease in the overlay accuracy and the like.
また、 レチクルマークの位置を検出する V R A方式のァライメントセンサは、 露光用の照明光学系とは別の照明系で被検マークを照明する方式であるため、 V R A方式のァライメントセンサによる計測結果より投影光学系の投影倍率を求め た場合には、 求められた投影倍率に基づいて投影倍率を調整しても、 露光時の投 影倍率に誤差が生じてしまう恐れがあつた。 The VRA alignment sensor, which detects the position of the reticle mark, illuminates the target mark with an illumination system separate from the exposure illumination optical system. If the projection magnification of the projection optical system is obtained from the projection optical system, the projection magnification at the time of exposure may be adjusted even if the projection magnification is adjusted based on the obtained projection magnification. There was a risk that an error would occur in the shadow magnification.
本発明は斯かる点に鑑み、 転写対象のパターンの像の結像状態 (結像特性) の 計測時 (検出時) の環境条件が変化した場合でも、 高精度にその結像状態を調整 できるようにすることを第 1の目的とする。  In view of the above, the present invention can adjust the imaging state with high accuracy even when the environmental conditions at the time of measuring (detecting) the imaging state (imaging characteristics) of the image of the pattern to be transferred are changed. The primary purpose is to do so.
また、 本発明は、 その結像状態 (結像特性) を計測'(検出) する際の照明条件 と、 実際の露光時の照明条件とが異なるような場合でも、 高精度にその結像状態 を調整できるようにすることを第 2の目的とする。 発明の開示  In addition, the present invention provides a high-precision imaging state even when the illumination condition for measuring (detecting) the imaging state (imaging characteristic) is different from the illumination condition for actual exposure. The second purpose is to be able to adjust Disclosure of the invention
本発明による露光方法は、 露光ビームでマスク (R) を照明し、 投影系 (P L ) を介してそのマスクのパターン像を基板 (W) 上に転写する露光方法において、 その投影系を介してマーク (3 4 A, 3 4 B ) を検出し、 この検出結果に基づい てそのパターン像の結像状態を調整するときにその検出時の環境条件を用いるも のである。  An exposure method according to the present invention illuminates a mask (R) with an exposure beam and transfers a pattern image of the mask onto a substrate (W) via a projection system (PL). The mark (34A, 34B) is detected, and the environmental condition at the time of detection is used when adjusting the image forming state of the pattern image based on the detection result.
斯かる本発明によれば、 そのマークの検出結果よりそのパターン像の結像状態 (例えば投影倍率) を求める。 この場合、 そのように求められる結像状態は、 そ のマークの検出時の環境条件 (例えばその投影系の周囲の気圧等) に応じて変化 する。 そこで、 例えば予めその環境条件と、 そのマークの検出結果より求められ る結像状態との関係を求めて記憶しておき、 その環境条件に応じた補正を行うこ とによって、 その検出時における結像状態を高精度に計測することができる。 そ の後、 この計測結果を用いてその結像状態の目標とする状態からの誤差を相殺す るように、 その投影系の結像特性を補正することによって、 そのパ夕一ン像の結 像状態を高精度に調整することができる。 これに対して、 そのマークの検出結果 より求められる結像状態の値をそのまま用いて、 その投影系の結像特性の調整を 行うと、 実際の露光時には結像状態の調整誤差が残存する恐れがある。  According to the present invention, an image formation state (for example, projection magnification) of the pattern image is obtained from the detection result of the mark. In this case, the image formation state thus obtained changes according to the environmental conditions (for example, the atmospheric pressure around the projection system) at the time of detecting the mark. Therefore, for example, the relationship between the environmental condition and the imaging state obtained from the detection result of the mark is obtained and stored in advance, and correction according to the environmental condition is performed, thereby forming the image at the time of the detection. The image state can be measured with high accuracy. Then, using the measurement result, the imaging characteristic of the projection system is corrected so as to cancel the error of the imaging state from the target state, thereby forming the image of the projection image. The image state can be adjusted with high precision. On the other hand, if the adjustment of the imaging characteristics of the projection system is performed by using the value of the imaging state obtained from the detection result of the mark as it is, an adjustment error of the imaging state may remain during actual exposure. There is.
この場合、 その検出結果から求められるその結像状態の調整量をその環境条件 に基づいて補正することが望ましい。 これによつて容易に結像状態を高精度に調 整することができる。  In this case, it is desirable to correct the adjustment amount of the imaging state obtained from the detection result based on the environmental condition. This makes it possible to easily adjust the imaging state with high accuracy.
また、 その結像状態の調整量は、 一例としてそのパターン像の形成条件とその マークの検出条件との差異に応じたオフセットを含んで決定される。 例えばその マークの検出条件としてのそのマークの検出時の照明条件と、 そのパターン像の 形成条件としての実際のリソグラフィ工程中の露光時の照明条件とは、 照明光の 開口数や開口絞りの形状等の条件が異なることがある。 そこで、 例えば予めその 照明条件の相違によるその結像状態の変化量を求めてテーブル化しておき、 その マークの検出結果より得られるその結像状態の計測値を、 そのパターン像の形成 条件に応じて補正することによって、 露光時における結像状態をより高精度に調 整することができる。 In addition, the amount of adjustment of the image formation state is, for example, the condition for forming the pattern image and the amount of adjustment. It is determined to include an offset corresponding to the difference from the mark detection condition. For example, the illumination conditions at the time of detection of the mark as conditions for detecting the mark and the illumination conditions at the time of exposure during the actual lithography process as conditions for forming the pattern image include the numerical aperture of illumination light and the shape of the aperture stop. And other conditions may be different. Therefore, for example, the amount of change in the image formation state due to the difference in the illumination conditions is obtained in advance and tabulated, and the measured value of the image formation state obtained from the detection result of the mark is calculated according to the pattern image formation conditions. By performing the correction, the image formation state at the time of exposure can be adjusted with higher accuracy.
また、 そのオフセットは、 一例としてそのパターン像の形成条件に応じて異な るとともに、 その環境条件に応じて補正される。 その形成条件としての照明条件 には通常照明、 及び輪帯照明等の複数の条件があるが、 これらの条件毎に調整量 のオフセットを変えることによって、 種々の条件下でその結像状態を高精度に補 正できる。 なお、 パターン像の形成条件は前述の照明条件 (即ち、 露光ビームで マスクを照明する照明系内でマスクのパターン面と実質的にフーリエ変換の関係 となる所定面 (照明系の瞳面) 上での露光ビームの強度分布) だけでなく、 投影 系の瞳面上での露光ビームの強度分布や投影系の開口数などを含むものである。 また、 その検出結果から求められるその結像状態の調整量を、 そのパターン像 の形成条件に基づいて補正するようにしてもよい。  In addition, the offset differs as an example according to the pattern image forming conditions, and is corrected according to the environmental conditions. Illumination conditions as the formation conditions include a plurality of conditions such as normal illumination and annular illumination. By changing the offset of the adjustment amount for each of these conditions, the imaging state is enhanced under various conditions. The accuracy can be corrected. Note that the pattern image formation conditions are based on the above-described illumination conditions (ie, a predetermined plane (pupil plane of the illumination system) which has a substantially Fourier transform relationship with the pattern surface of the mask in the illumination system that illuminates the mask with the exposure beam. The intensity distribution of the exposure beam on the pupil plane of the projection system and the numerical aperture of the projection system. Further, the adjustment amount of the imaging state obtained from the detection result may be corrected based on the formation condition of the pattern image.
次に、 本発明による投影露光装置は、 露光ビームでマスク (R) を照明する照 明系 (1 , 3, 6〜9 , 1 3〜1 9 ) と、 そのマスクのパターン像を基板 (W) 上に投影する投影系 (P L ) とを有する投影露光装置において、 その投影系を介 してマークを検出するマーク検出系 (3 8 A, 3 8 B ) と、 そのマークの検出時 における環境条件を検出する環境検出系 (3 1 ) と、 その検出結果に基づいてそ のパターン像の結像状態を調整するときにその環境条件を用いる結像調整系 (2 8 , 4 2 , 4 3 , 4 4 ) とを備えたものである。 斯かる本発明によれば、 本発明 の露光方法を実施できる。  Next, the projection exposure apparatus according to the present invention comprises an illumination system (1, 3, 6 to 9, 13 to 19) for illuminating the mask (R) with an exposure beam, and a pattern image of the mask (W). ) A projection exposure apparatus having a projection system (PL) for projecting onto a mark, a mark detection system (38A, 38B) for detecting a mark via the projection system, and an environment for detecting the mark. An environment detection system (31) that detects conditions, and an image adjustment system (28, 42, 43) that uses the environmental conditions when adjusting the imaging state of the pattern image based on the detection results , 4 4). According to the present invention, the exposure method of the present invention can be performed.
この場合、 その結像状態調整系は、 その検出結果から求められるその結像状態 の調整量をその環境条件に基づいて補正することが望ましい。  In this case, it is desirable that the imaging state adjustment system corrects the adjustment amount of the imaging state obtained from the detection result based on the environmental condition.
また、 その結像状態調整系は、 その調整量をそのパターン像の形成条件とその マークの検出条件との差異に応じたオフセットを含んで決定することが望ましい。 次に、 本発明による結像特性の計測方法は、 第 1面の物体 (R) の像を第 2面 (W) 上に投影する投影系 (P L ) の結像特性の計測方法において、 その第 1及 び第 2面の少なくとも一方に配置されるマーク (3 4 A) をその投影系を介して 検出し、 この検出結果よりその投影系の結像特性を算出する第 1工程 (ステップAlso, the imaging state adjustment system adjusts the adjustment amount to the pattern image forming conditions and the It is desirable that the determination be made to include an offset corresponding to a difference from the mark detection condition. Next, the method for measuring the imaging characteristics according to the present invention is a method for measuring the imaging characteristics of a projection system (PL) that projects an image of the object (R) on the first surface onto the second surface (W). A mark (34A) disposed on at least one of the first and second surfaces is detected through the projection system, and a first step (step) of calculating an imaging characteristic of the projection system from the detection result is performed.
1 0 1 , 1 0 2 ) と、 その第 1工程の実行時の環境条件に基づいて、 その第 1ェ 程で求めた結像特性の算出結果を補正する第 2工程 (ステップ 1 0 3 , 1 0 4 ) とを有するものである。 10 1, 10 2) and a second step (steps 10 3, 10 3) for correcting the calculation result of the imaging characteristics obtained in the first step based on the environmental conditions at the time of executing the first step. 104).
斯かる本発明によれば、 例えば予めその環境条件とその第 1工程において算出 されるその投影系の結像特性 (例えば投影倍率) との関係を求めておき、 その第 According to the present invention, for example, the relationship between the environmental condition and the imaging characteristic (for example, projection magnification) of the projection system calculated in the first step is obtained in advance,
1工程において算出された結像特性をその環境条件に応じて補正することによつ て、 その投影系の結像特性を高精度に補正することができる。 ' この場合、 その環境条件に応じてその算出結果の補正量を異ならせることが望 ましい。 By correcting the imaging characteristics calculated in one step according to the environmental conditions, the imaging characteristics of the projection system can be corrected with high accuracy. 'In this case, it is desirable to change the correction amount of the calculation result according to the environmental conditions.
また、 そのマークの検出条件とその物体の像の形成条件との差異に応じたオフ セットをその算出結果に加えてその結像特性の補正量を決定し、 その環境条件に 応じてそのオフセットを変化させることが望ましい。  In addition, an offset corresponding to the difference between the mark detection condition and the image forming condition of the object is added to the calculation result to determine a correction amount of the imaging characteristic, and the offset is determined according to the environmental condition. It is desirable to change.
次に、 本発明による第 1及び第 2のデバイス製造方法は、 それぞれ本発明の露 光方法又は投影露光装置を用いて、 デバイスパターンを基板 (W) 上に形成する リソグラフイエ程を含むものである。 斯かる本発明によれば、 本発明の露光方法 又は投影露光装置を用いるため、 そのパターン像の結像状態を高精度に調整する ことができ、 高機能のデバイスを製造することができる。 図面の簡単な説明  Next, the first and second device manufacturing methods according to the present invention each include a lithographic step of forming a device pattern on a substrate (W) using the exposure method or the projection exposure apparatus of the present invention. According to the present invention, since the exposure method or the projection exposure apparatus of the present invention is used, the image forming state of the pattern image can be adjusted with high accuracy, and a high-performance device can be manufactured. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例において使用される投影露光装置を示す構 成図である。 図 2は、 図 1の開口絞り板 9を示す図である。 図 3は、 図 1の投影 露光装置のステージ系及びァライメント系の要部を示す斜視図である。 図 4は、 図 3の R A顕微鏡 3 8 Aの観察視野内の像を示す拡大図である。 図 5は、 レチク ルァライメント時における基準マークの像とレチクルマークとの位置関係を示す 図である。 図 6は、 投影光学系の周囲の大気圧とそれに応じた投影光学系の倍率 誤差の補正値との関係の一例を示す図である。 図 7は、 投影光学系の投影倍率の キヤリブレーション動作の一例を示すフローチャートである。 発明を実施するための最良の形態 FIG. 1 is a configuration diagram showing a projection exposure apparatus used in an example of an embodiment of the present invention. FIG. 2 is a diagram showing the aperture stop plate 9 of FIG. FIG. 3 is a perspective view showing a main part of a stage system and an alignment system of the projection exposure apparatus of FIG. FIG. 4 is an enlarged view showing an image in the observation field of view of the RA microscope 38A of FIG. Figure 5 shows the positional relationship between the reference mark image and the reticle mark during reticle alignment. FIG. FIG. 6 is a diagram showing an example of the relationship between the atmospheric pressure around the projection optical system and the corresponding correction value of the magnification error of the projection optical system. FIG. 7 is a flowchart showing an example of the calibration operation of the projection magnification of the projection optical system. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態の一例につき図面を参照して説明する。 本 例はステップ ·アンド ·スキャン方式よりなる走査露光型の投影露光装置の結像 特性を制御する場合に本発明を適用したものである。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, the present invention is applied to control the imaging characteristics of a projection exposure apparatus of a scanning exposure type using a step-and-scan method.
図 1は、 本例で使用される投影露光装置の概略構成を示し、 この図 1において、 A r Fエキシマレ一ザ光源 1からの波長 1 9 3 n mで狭帯化された紫外パルスレ —ザビームよりなる露光光 I Lは、 可動ミラー等を含むビームマッチングュニッ ト (B MU) 3を通り、 遮光性のパイプ 5を介して可変減光器 6に入射する。 ゥ ェハ上のレジス卜に対する露光量を制御するための露光コントローラ 2 9が、 A r Fエキシマレーザ光源 1の発光の開始及び停止、 並びに発光強度や発振周波数 等を制御すると共に、 可変減光器 6における減光率を調整する。 露光コントロー ラ 2 9は、 装置全体の動作を統轄制御する主制御系 2 8から目標露光量等の情報 を受け取ると共に、 後述のように実測される露光量等の情報を主制御系 2 8に出 力する。 なお、 露光光 (露光ビーム) としては、 K r Fエキシマレーザ (波長 2 4 8 n m) 、 K r 2 レーザ (波長 1 4 6 n m) 、 若しくは F 2 レーザ (波長 1 5 7 nm) 等の他のレーザ光、 水銀ランプの i線 (波長 3 6 5 n m) 、 又は軟 X線 等を使用することもできる。 FIG. 1 shows a schematic configuration of a projection exposure apparatus used in the present embodiment. In FIG. 1, an ultraviolet pulse laser beam narrowed at a wavelength of 193 nm from an ArF excimer laser light source 1 is used. The exposure light IL passes through a beam matching unit (BMU) 3 including a movable mirror and the like, and enters a variable dimmer 6 via a light-shielding pipe 5. An exposure controller 29 for controlling the amount of exposure to the resist on the wafer controls the start and stop of light emission of the ArF excimer laser light source 1, the light emission intensity, the oscillation frequency, etc., and the variable light reduction. Adjust the extinction rate in the detector 6. The exposure controller 29 receives information such as the target exposure amount from the main control system 28 that supervises and controls the operation of the entire apparatus, and sends the information such as the actually measured exposure amount to the main control system 28 as described later. Output. As the exposure light (exposure beam), K r F excimer laser (wavelength 2 4 8 nm), K r 2 laser (wavelength 1 4 6 nm), or F 2 other such laser (wavelength 1 5 7 nm) Laser light, i-line (wavelength 365 nm) of a mercury lamp, or soft X-ray can also be used.
可変減光器 6を通った露光光 I Lは、 レンズ系 7 A, 7 Bよりなるビーム整形 光学系を経てフライアイレンズ等のオプティカル ·インテグレー夕 (ュニフォマ ィザ、 又はホモジナイザ) 8に入射する。 本実施の形態ではオプティカル,イン テグレ一夕 8としてフライアイレンズを用いるものとし、 オプティカル ·インテ グレー夕 8の射出面 (射出側焦点面) が照明系の瞳面 (フーリエ変換面) とほぼ 一致している。 また、 オプティカル'インテグレータ 8の射出面には照明系の開 口絞り板 9が、 駆動モータ 1 0によって回転自在に配置されている。 なお、 ォプ ティカル ·ィンテグレー夕 8として内面反射型ィンテグレー夕 (ロッドィンテグ レー夕など) 或いは回折光学素子などを用いてもよく、 特に内面反射型 レー夕ではその射出面がレチクル Rのパターン面とほぼ共役に配置され、 開口絞 り板 9は光源 1とオプティカル ·インテグレー夕 8との間に配置される。 The exposure light IL that has passed through the variable attenuator 6 is incident on an optical integrator (uniformizer or homogenizer) 8 such as a fly-eye lens through a beam shaping optical system including lens systems 7A and 7B. In the present embodiment, it is assumed that a fly-eye lens is used as the optical / integral lens 8 and the exit surface (the exit-side focal plane) of the optical / integral shutter 8 is substantially the same as the pupil plane (Fourier transform plane) of the illumination system. I do. Further, an aperture stop plate 9 of an illumination system is arranged on an emission surface of the optical integrator 8 so as to be rotatable by a drive motor 10. The internal reflection type 8 is referred to as the internal reflection type Or a diffractive optical element may be used. In particular, in the case of an internal reflection type laser, the exit surface is arranged almost conjugate with the pattern surface of the reticle R, and the aperture stop plate 9 is connected to the light source 1 and the optical integrator. Placed between evening 8
図 2に示すように、 開口絞り板 9には、 通常照明用の円形の開口絞り 9 a、 変 形照明の一例としての輪帯照明用の内径が外径のほぼ 1 / 2の輪帯開口よりなる 1 Z 2輪帯絞り 9 b、 内径が外径のほぼ 2 Z 3の輪帯開口よりなる 2 / 3輪帯絞 り 9 c、 及び変形照明の別の例としての複数 (本例では 4個) の偏心した小開口 よりなる 4極照明用の開口絞り 9 dが配置されている。 更に、 その通常の照明用 の開口絞り 9 aには、 小さいコヒーレンスファクタ用の照明 (小び値照明) に切 り換えるために開口形状を制御する虹彩絞り (不図示) も備えられている。 図 1 に戻り、 主制御系 2 8が照明条件に応じて駆動モータ 1 0を介して開口絞り板 9 を回転することで、 その照明条件を規定する所定の開口絞りがオプティカル -ィ ンテグレー夕 8の射出面に設定される。  As shown in FIG. 2, the aperture stop plate 9 has a circular aperture stop 9a for normal illumination, and an annular aperture having an inner diameter of approximately 1/2 of an outer diameter for annular illumination as an example of deformed illumination. 1Z 2 annular aperture 9b, 2/3 annular aperture 9c with an inner diameter of almost 2Z3 annular aperture, and multiple as another example of modified illumination (in this example, An aperture stop 9 d for quadrupole illumination consisting of four (4) eccentric small apertures is arranged. Further, the aperture stop 9a for ordinary illumination is provided with an iris stop (not shown) for controlling the aperture shape in order to switch to illumination for a small coherence factor (low-value illumination). Returning to FIG. 1, the main control system 28 rotates the aperture stop plate 9 via the drive motor 10 in accordance with the illumination conditions, so that the predetermined aperture stop that defines the illumination conditions is optically integrated. Is set on the exit surface of
なお、 開口絞り板 9の代わりに、 或いはそれと組み合わせて、 例えば照明光学 系内に交換して配置される複数の回折光学素子、 照明光学系の光軸に沿って可動 なプリズム (円錐プリズム、 多面体プリズムなど) 、 及びズーム光学系の少なく とも一つを含む光学ュニットを、 光源 1とオプティカル ·インテグレー夕 8との 間に配置し、 オプティカル ·インテグレー夕 8がフライアイレンズであるときに はその入射面上での露光光 I Lの強度分布、 オプティカル,インテグレータ 8が 内面反射型インテグレー夕であるときにはその入射面に対する露光光 I Lの入射 角度範囲を可変とすることで、 照明光学系の瞳面上での露光光 I Lの光量分布 ( 2次光源の大きさや形状) 、 即ち照明条件を変更可能とし、 照明条件の変更に 伴う光量損失を抑えることが望ましい。  In addition, instead of or in combination with the aperture stop plate 9, for example, a plurality of diffractive optical elements that are exchanged and arranged in the illumination optical system, a prism (cone prism, polyhedron, etc.) movable along the optical axis of the illumination optical system An optical unit that includes at least one of a zoom optical system and a zoom optical system is placed between the light source 1 and the optical integrator 8, and when the optical integrator 8 is a fly-eye lens, the light enters. The intensity distribution of the exposure light IL on the surface, optical, when the integrator 8 is an internal reflection type integrator, the incident angle range of the exposure light IL with respect to the incident surface is variable, so that the Of the exposure light IL (size and shape of the secondary light source), that is, the illumination conditions can be changed, and the light amount loss due to the change of the illumination conditions is suppressed Is desirable.
オプティカル ·インテグレー夕 8から射出されて開口絞り板 9中の所定の開口 絞りを通過した露光光 I Lは、 透過率が高く反射率が低いビームスプリツ夕 1 1 に入射する。 ビームスプリツ夕 1 1で反射された露光光は、 光電検出器よりなる インテグレー夕センサ 1 2に入射し、 インテグレ一タセンサ 1 2の検出信号は露 光コントローラ 2 9に供給されている。 露光コントローラ 2 9は、 インテグレ一  Exposure light IL emitted from optical integrator 8 and passing through a predetermined aperture stop in aperture stop plate 9 is incident on beam splitter 11 having a high transmittance and a low reflectance. The exposure light reflected by the beam splitter 11 enters an integrator sensor 12 composed of a photoelectric detector, and a detection signal of the integrator sensor 12 is supplied to an exposure controller 29. The exposure controller 29 is an Integral
2の検出信号より間接的にウェハに対する露光光 I' Lの照度 (パルス エネルギー) 、 及びその積算値 (露光量) をモニタする。 The illuminance (pulse) of the exposure light I 'L The energy), and the integrated value (exposure amount) are monitored.
ビームスプリツ夕 1 1を透過した露光光 I Lは、 反射ミラ一 1 3及ぴコンデン サレンズ系 1 4を経てレチクルブラインド機構 1 6内の固定の視野絞り 1 5に入 射する。 なお、 本例のように投影露光装置がステップ ·アンド ·スキャン方式の ような走査露光型である場合には、 照明領域を規定する視野絞り 1 5の他に、 走 査露光の前後に不要な領域への露光を防止するための可動の視野絞りが設けられ る。 レチクルブラインド機構 1 6の視野絞り 1 5で整形された露光光 I Lは、 結 像用レンズ系 1 7、 反射ミラ一 1 8、 及び主コンデンサレンズ系 1 9を介して、 レチクル Rのパターン領域上の矩形の照明領域 3 6 (図 3参照) を一様な照度分 布で照明する。 A r Fエキシマレ一ザ光源 1、 B MU 3、 可変減光器 6、 レンズ 系 7 A, 7 B、 オプティカル ·インテグレー夕 8、 開口絞り板 9、 ミラ一 1 3〜 主コンデンサレンズ系 1 9より照明光学系 (照明系) が構成されている。  The exposure light IL transmitted through the beam splitter 11 passes through a reflection mirror 13 and a condenser lens system 14 and enters a fixed field stop 15 in a reticle blind mechanism 16. When the projection exposure apparatus is of a scanning exposure type such as a step-and-scan method as in this example, in addition to a field stop 15 for defining an illumination area, unnecessary unnecessary light before and after scanning exposure is provided. A movable field stop is provided to prevent exposure of the area. The exposure light IL shaped by the field stop 15 of the reticle blind mechanism 16 is applied to the pattern area of the reticle R via the imaging lens system 17, the reflection mirror 18 and the main condenser lens system 19. Illuminate the rectangular illumination area 36 (see Fig. 3) with a uniform illuminance distribution. A r F excimer laser light source 1, B MU 3, variable dimmer 6, lens system 7A, 7B, optical integrator 8, aperture stop plate 9, mirror 13 An illumination optical system (illumination system) is configured.
露光光 I Lのもとで、 レチクル Rの照明領域内の回路パターンの像が両側 (又 はウェハ側に片側) テレセントリックな投影光学系 P Lを介して所定の投影倍率 (例えば 1 Z 4 , 1 Z 5等) で、 投影光学系 P Lの結像面に配置されたウェハ W 上のレジスト層の露光領域に投影される。 その露光領域は、 ウェハ W上の複数の ショット領域のうちの 1つのショット領域上に位置している。 なお、 本発明の投 影系に対応する投影光学系 P Lは、 ジォプトリック系 (屈折系) であるが、 短波 長の露光光に対する吸収を少なくするために、 例えば国際公開公報 (W〇) 0 0 / 3 9 6 2 3号に開示されているように、 1本の光軸に沿って複数の屈折レンズ と、 それぞれ光軸の近傍に開口を有する 2つの凹面鏡とを配置して構成される直 筒型のカタジォプトリック系 (反射屈折系) を使用してもよい。 又は、 投影光学 系 P Lとして、 光軸が V字型に折れ曲がつたような反射屈折系等を使用してもよ い。  Under the exposure light IL, the image of the circuit pattern in the illumination area of the reticle R is projected onto both sides (or one side on the wafer side) through a telecentric projection optical system PL to a predetermined projection magnification (eg, 1Z4, 1Z). 5), the light is projected onto the exposure area of the resist layer on the wafer W arranged on the image plane of the projection optical system PL. The exposure area is located on one of the plurality of shot areas on wafer W. The projection optical system PL corresponding to the projection system of the present invention is a dioptric system (refractive system). In order to reduce the absorption of short-wavelength exposure light, for example, International Publication (W () 0 0 As disclosed in U.S. Pat. No. 3,996,23, a direct optical system is constructed by arranging a plurality of refractive lenses along one optical axis and two concave mirrors each having an opening near the optical axis. A cylindrical catadioptric system (catadioptric system) may be used. Alternatively, a catadioptric system or the like having an optical axis bent in a V-shape may be used as the projection optical system PL.
本例では露光光 I Lとして真空紫外域の A r Fエキシマレーザ光 (波長 1 9 3 n m) を用いているため、 酸素等の吸光物質による露光光 I Lの吸収を防止する 必要がある。 そこで、 パイプ 5内から可変減光器 6、 レンズ系 7 A, 7 B、 及び オプティカル ·インテグレー夕 8等を経て主コンデンサレンズ系 1 9までの照明 光路を外気から遮断するサブチャンパ 6 0が設けられている。 そして、 露光光の 吸光物質による吸収を避けるために、 そのサブチャンバ 6 0内の全体、 及び投影 光学系 P Lの鏡筒内部の空間 (複数のレンズ素子間の空間) の全体には不図示の 配管を介して乾燥窒素ガス、 又はヘリウムガス等のパージガスが供給されている。 以下、 投影光学系 P Lの光軸 AXに平行に Z軸を取り、 Z軸に垂直な平面内で図 1の紙面に垂直に X軸を、 図 1の紙面に平行に Y軸を取って説明する。 In this example, since the ArF excimer laser light (wavelength: 193 nm) in the vacuum ultraviolet region is used as the exposure light IL, it is necessary to prevent the absorption of the exposure light IL by a light absorbing substance such as oxygen. Therefore, a sub-champ 60 is provided to block the illumination optical path from the inside of the pipe 5 to the main condenser lens system 19 through the variable dimmer 6, the lens systems 7A and 7B, the optical integrator 8 and the like. ing. And the exposure light In order to avoid absorption by light-absorbing substances, the entire inside of the sub-chamber 60 and the entire space inside the lens barrel of the projection optical system PL (space between multiple lens elements) are dried through piping (not shown). A purge gas such as a nitrogen gas or a helium gas is supplied. In the following, the Z axis is taken parallel to the optical axis AX of the projection optical system PL, the X axis is taken perpendicular to the plane of Figure 1 in a plane perpendicular to the Z axis, and the Y axis is taken parallel to the plane of Figure 1 I do.
先ず、 本例の投影光学系 P Lは、 光軸 AXに沿って配置された複数枚の光学部 材 (図 1では、 代表的にレンズ L I , L 2を示す。)と、 これらを保持する鏡筒と から構成されている。 そして、 投影光学系 P Lの投影倍率、 及び所定の収差 (デ イスト一シヨン、 コマ収差、 非点収差、 像面湾曲等) 等の結像特性を制御するた めに、 投影光学系 P L中のレンズ L 1, L 2を独立に等角度間隔で配置された 3 箇所の位置で Z方向に駆動するァクチユエ一夕 4 3, 4 4が設けられ、 ァクチュ エー夕 4 3 , 4 4の駆動量が結像特性コントローラ 4 2によって制御されている。 ァクチユエ一夕 4 3 , 4 4としては、 圧電素子 (ピエゾ素子等) 、 又は電気式の マイクロメ一夕等を使用でき、 3箇所のァクチユエ一夕 4 3 (又は 4 4 ) を同時 に伸縮することでレンズ L 1 (又は L 2 ) を光軸 AX方向に駆動できると共に、 3箇所のァクチユエ一夕 4 3 (又は 4 4 ) の駆動量を変えることによって、 レン ズ L 1 (又は L 2 ) の X軸及び Y軸の回りのチルト角を制御することができる。 結像特性コントローラ 4 2、 及びァクチユエ一夕 4 3, 4 4が本発明の結像調 整系に対応しており、 主制御系 2 8からの結像特性の制御指令に応じて結像特性 コントローラ 4 2は、 指定された結像特性を指定された量だけ補正するようにァ クチユエ一夕 4 3, 4 4を駆動する。 なお、 その結像調整系としては、 投影光学 系 P L内の所定のレンズ間の気密室内の気体 (パージガス) の圧力を制御するレ ンズコントローラ (L C) 、 又はレチクル Rの光軸方向の位置を 3箇所で制御す る機構等を使用してもよい。 また、 例えば露光光 I Lの光路上の気圧を制御する ことは、 露光光 I Lの波長を制御することとほぼ等価である。 そこで、 露光コン トロ一ラ 2 9によって A r Fエキシマレーザ光源 1の発振波長を制御することに よって、 結像特性を制御してもよい。 この場合には、 A r Fエキシマレーザ光源 1及び露光コントローラ 2 9が結像調整系となる。  First, the projection optical system PL of the present example includes a plurality of optical members (typically, lenses LI and L2 are shown in FIG. 1) arranged along the optical axis AX, and a mirror that holds these. It consists of a tube and. Then, in order to control the projection magnification of the projection optical system PL and imaging characteristics such as predetermined aberrations (distortion, coma, astigmatism, curvature of field, etc.), the projection optical system PL includes The actuators 43, 44 are provided for driving the lenses L1, L2 in the Z direction at three independent positions at equal angular intervals, and the driving amount of the actuators 43, 44 is increased. It is controlled by the imaging characteristic controller 42. A piezoelectric element (piezo element, etc.) or an electric micro-mechanical element can be used for the actuators 43 and 44, and three actuators 43 (or 44) can be simultaneously expanded and contracted. Can drive the lens L 1 (or L 2) in the optical axis AX direction, and by changing the driving amount of the three actuators 43 (or 44), the lens L 1 (or L 2) can be driven. The tilt angles around the X and Y axes can be controlled. The imaging characteristics controller 42 and the actuators 43, 44 correspond to the imaging adjustment system of the present invention, and the imaging characteristics are controlled in accordance with a control command of the imaging characteristics from the main control system 28. The controller 42 drives the actuators 43, 44 so as to correct the specified imaging characteristics by the specified amount. The imaging adjustment system includes a lens controller (LC) that controls the pressure of a gas (purge gas) in an airtight chamber between predetermined lenses in the projection optical system PL, or a position in the optical axis direction of the reticle R. A mechanism for controlling at three points may be used. Also, for example, controlling the atmospheric pressure on the optical path of the exposure light IL is substantially equivalent to controlling the wavelength of the exposure light IL. Therefore, the image forming characteristic may be controlled by controlling the oscillation wavelength of the ArF excimer laser light source 1 by the exposure controller 29. In this case, the ArF excimer laser light source 1 and the exposure controller 29 form an image adjustment system.
また、 その結像特性は、 投影光学系 P Lの周囲の気体の圧力 (大気圧) によつ ても変動する。 そこで、 投影光学系 P Lの近くに大気圧を計測するための気圧計 3 1が設置されており、 気圧計 3 1で計測される大気圧が主制御系 2 8に供給さ れている。 この場合、 予め大気圧と結像特性の変動量との関係がテーブルとして 主制御系 2 8内の記憶装置に記憶されており、 大気圧が変動して投影光学系 P L の結像特性が許容範囲を超えて変動することが予測されるときに、 主制御系 2 8 は、 その結像特性の予測される変動量を相殺するように結像特性コントローラ 4 2を介してその結像特性を補正する。 また、 その結像特性は、 投影光学系 P Lを 通過する露光光 I Lの積算エネルギーに応じても変動するため、 例えばインテグ レー夕センサ 1 2によってモニタされる積算エネルギーに応じて、 主制御系 2 8 は、 予測される結像特性の変動量を相殺するように結像特性コントローラ 4 2を 駆動する。 これによつて、 露光中に結像特性が一定の状態に維持される。 なお、 本例の気圧計 3 1が、 本発明の環境検出系に対応している。 The imaging characteristics depend on the pressure (atmospheric pressure) of the gas around the projection optical system PL. Even fluctuates. Therefore, a barometer 31 for measuring the atmospheric pressure is installed near the projection optical system PL, and the atmospheric pressure measured by the barometer 31 is supplied to the main control system 28. In this case, the relationship between the atmospheric pressure and the amount of change in the imaging characteristics is stored in advance as a table in the storage device in the main control system 28, and when the atmospheric pressure fluctuates, the imaging characteristics of the projection optical system PL are allowed. When it is predicted to fluctuate beyond the range, the main control system 28 adjusts the imaging characteristic via the imaging characteristic controller 42 so as to cancel the expected fluctuation amount of the imaging characteristic. to correct. In addition, since the imaging characteristics vary depending on the integrated energy of the exposure light IL passing through the projection optical system PL, for example, the main control system 2 is controlled in accordance with the integrated energy monitored by the integration sensor 12. 8 drives the imaging characteristic controller 42 so as to cancel the expected fluctuation amount of the imaging characteristic. As a result, the imaging characteristics are kept constant during the exposure. Note that the barometer 31 of the present example corresponds to the environment detection system of the present invention.
更に、 その結像特性は、 投影光学系 P Lの瞳面上での露光光 I Lの光量分布の 変化に応じても変動するため、 例えば投影光学系 P Lの瞳面上での光量分布に関 する情報に応じて、 主制御系 2 8は予測される結像特性の変動量を相殺するよう に結像特性コントローラ 4 2を介してその結像特性を調整する。 ここで、 投影光 学系 P Lの瞳面上での光量分布は、 前述した照明条件 (照明光学系の瞳面 (フー リエ変換面) 上での露光光 I Lの光量分布) の変更、 及びレチクルパターンの種 類 (線幅など) などに応じて変化するので、 主制御系 2 8はその照明条件などに 応じて結像特性の変動量或いは補正量を算出する。 このとき、 結像特性コント口 —ラ 4 2を介して投影光学系 P Lの少なくとも 1つのレンズを移動する代わりに、 或いはそれに加えて、 露光コントローラ 2 9を介して露光光 I Lの発振波長を変 更して、 その結像特性の変動を補正してもよい。  Further, since the image forming characteristics fluctuate in accordance with a change in the light amount distribution of the exposure light IL on the pupil plane of the projection optical system PL, for example, the image forming characteristic relates to the light amount distribution on the pupil plane of the projection optical system PL. According to the information, the main control system 28 adjusts the imaging characteristic via the imaging characteristic controller 42 so as to cancel out the expected fluctuation amount of the imaging characteristic. Here, the light quantity distribution on the pupil plane of the projection optical system PL is changed by changing the above-mentioned illumination conditions (light quantity distribution of the exposure light IL on the pupil plane (Fourier transform plane) of the illumination optical system) and the reticle. The main control system 28 calculates the amount of change or the amount of correction of the imaging characteristic according to the illumination conditions and the like, since the value changes according to the type of the pattern (line width or the like). At this time, instead of or in addition to moving at least one lens of the projection optical system PL via the imaging characteristic controller 42, the oscillation wavelength of the exposure light IL is changed via the exposure controller 29. Further, the fluctuation of the imaging characteristic may be corrected.
次に、 本例の投影露光装置のステージ系及びァライメント系の構成につき説明 する。 先ず、 レチクル Rは、 レチクルステージ 2 0上に吸着保持され、 レチクル ステージ 2 0は、 レチクルベース 2 1上に X方向、 Y方向、 及び回転方向に移動 自在に載置されている。  Next, the configuration of the stage system and the alignment system of the projection exposure apparatus of this embodiment will be described. First, reticle R is suction-held on reticle stage 20, and reticle stage 20 is mounted on reticle base 21 movably in the X, Y, and rotation directions.
図 3は、 図 1のステージ系及びァライメント系の要部を示す斜視図であり、 こ の図 3に示すように、 レチクルステージ 2 0上には X軸、 及び Y軸にほぼ垂直な 2つの反射面を持つ移動鏡 2 2 aが固定され、 この移動鏡 2 2 aに図 1の駆動制 御ュニット 2 2内のレーザ干渉計より X軸に平行な 2軸のレーザビーム L R X 1, L R X 2 , 及び Y軸に平行なレーザビーム L RYが照射され、 そのレーザ干渉計 によってレチクルステージ 2 0 (レチクル R) の X座標、 Y座標、 及び回転角が リアルタイムに計測されている。 図 1に戻り、 駆動制御ユニット 2 2は、 その計 測結果、 及び主制御系 2 8からの制御情報に基づいて、 不図示の駆動モ一夕 (リ 二ァモ一夕やボイスコイルモータ等) を介してレチクルステージ 2 0の位置決め 動作の制御を行う。 FIG. 3 is a perspective view showing a main part of the stage system and the alignment system of FIG. 1. As shown in FIG. 3, the reticle stage 20 is substantially perpendicular to the X axis and the Y axis. A movable mirror 2 2a having two reflecting surfaces is fixed, and a two-axis laser beam LRX 1 and a two-axis parallel to the X axis are provided on the movable mirror 22 a by a laser interferometer in the drive control unit 22 shown in FIG. A laser beam LRY parallel to LRX2 and Y-axis is irradiated, and the X- and Y-coordinates and rotation angle of reticle stage 20 (reticle R) are measured in real time by the laser interferometer. Returning to FIG. 1, the drive control unit 22 based on the measurement results and the control information from the main control system 28, based on a drive module (not shown), a voice coil motor, etc. The positioning operation of reticle stage 20 is controlled via).
次に、 ウェハ Wは、 ウェハホルダ 2 3を介して試料台 2 4上に吸着保持され、 試料台 2 4は、 投影光学系 P Lの像面と平行な XY平面 (不図示のウェハべ一ス の上面) に沿って 2次元移動する X Yステージ 2 5上に固定され、 試料台 2 4及 び X Yステージ 2 5よりウェハステージ 2 6が構成されている。 試料台 2 4は、 ウェハ Wのフォーカス位置 (Z方向の位置) 、 及び傾斜角を制御してウェハ Wの 表面をォ一トフォーカス方式、 及びォートレペリング方式で投影光学系 P Lの像 面に合わせ込み、 XYステージ 2 5はウェハ Wの X方向、 Y方向へのステツピン グを行う。 また、 投影光学系 P Lの Y方向の側面に、 オフ 'ァクシス方式で画像 処理方式のウェハマーク用のァライメントセンサ 3 5が配置されている。  Next, the wafer W is suction-held on the sample table 24 via the wafer holder 23. The sample table 24 is placed on an XY plane (not shown) parallel to the image plane of the projection optical system PL. The sample stage 24 and the XY stage 25 are fixed on an XY stage 25 that moves two-dimensionally along the top surface, and a wafer stage 26 is configured. The sample stage 24 controls the focus position (position in the Z direction) and the tilt angle of the wafer W to adjust the surface of the wafer W to the image plane of the projection optical system PL by the autofocus method and the auto-repeller method. The XY stage 25 performs stepping of the wafer W in the X and Y directions. Further, an alignment sensor 35 for a wafer mark of an off-axis system and an image processing system is arranged on a side surface in the Y direction of the projection optical system PL.
そして、 試料台 2 4の + X方向の側面、 及び + Y方向の側面はそれぞれ鏡面加 ェされて移動鏡として使用される。 駆動制御ュニット 2 7内のレーザ干渉計より、 図 3に示すように、 試料台 2 4の + X方向の側面、 及び + Y方向の側面にそれぞ れ X軸に平行な 2軸のレーザビーム LWX 1 , LWX 2、 及び Y軸に平行なレー ザビーム LWYが照射されている。 この場合、 Y軸のレーザビーム LWYの光軸 の延長線は、 ァライメントセンサ 3 5の検出中心、 及び投影光学系 P Lの光軸 A Xを通過し、 X軸のレーザビーム LWX 1及び LWX 2の光軸の延長線はそれぞ れ光軸 AX、 及びァライメントセンサ 3 5の検出中心を通過している。 そこで、 試料台 2 4の Y座標はレーザビーム LWYによって計測されると共に、 アッベ誤 差の発生を抑制するために、 試料台 2 4の X座標は露光時にはレーザビーム LW X 1によつて計測され、 ァライメント時にはレーザビ一ム L WX 2によつて計測 される,。 また、 2つのレーザビーム LWX 1 , LWX 2による計測値の差分より 試料台 2 4の回転角が計測される。 Then, the side surface in the + X direction and the side surface in the + Y direction of the sample stage 24 are mirror-finished and used as a movable mirror. From the laser interferometer in the drive control unit 27, as shown in Fig. 3, the two-axis laser beams parallel to the X-axis are respectively applied to the + X side and + Y side of the sample stage 24. LWX 1, LWX 2, and a laser beam LWY parallel to the Y axis are emitted. In this case, the extension of the optical axis of the Y-axis laser beam LWY passes through the detection center of the alignment sensor 35 and the optical axis AX of the projection optical system PL, and the X-axis laser beams LWX 1 and LWX 2 The extension of the optical axis passes through the optical axis AX and the detection center of the alignment sensor 35, respectively. Therefore, the Y coordinate of the sample stage 24 is measured by the laser beam LWY, and the X coordinate of the sample stage 24 is measured by the laser beam LW X1 at the time of exposure in order to suppress the occurrence of Abbe error. At the time of alignment, it is measured by laser beam LWX2. Also, from the difference between the measured values of the two laser beams LWX 1 and LWX 2, The rotation angle of the sample stage 24 is measured.
なお、 図 3のように試料台 2 4の側面を移動鏡として使用する場合、 レーザビ ームの光路とゥェハ Wの表面との間に Z方向の位置ずれが生じているために、 試 料台 2 4のピッチング、 又はローリングによってアッベ誤差が生じる恐れがある。 これを避けるために、 レ一ザビーム LWX 1, LWX 2 , LWYに対してそれぞ れ Z方向に所定間隔離してレーザビームを試料台 2 4の側面に照射し、 Z方向に 離れた 1対のレ一ザビームによる計測値に基づいて試料台 2 4のピッチング等に よるアッベ誤差を補正するようにしてもよい。 また、 レチクルステージ 2 0と同 様に、 試料台 2 4上に直交する反射面を有する移動鏡を設置し、 この移動鏡にレ —ザビームを照射して試料台 2 4の位置計測を行ってもよい。  When the side surface of the sample stage 24 is used as a movable mirror as shown in Fig. 3, there is a displacement in the Z direction between the optical path of the laser beam and the surface of the wafer W. Abbe error may occur due to pitching or rolling of 24. To avoid this, the laser beams LWX 1, LWX 2, and LWY are each separated by a predetermined distance in the Z direction, and the laser beam is irradiated on the side surface of the sample table 24. Abbe error due to pitching of the sample stage 24 or the like may be corrected based on the measurement value by the laser beam. Similarly to the reticle stage 20, a movable mirror having an orthogonal reflection surface is installed on the sample stage 24, and the movable mirror is irradiated with a laser beam to measure the position of the sample stage 24. Is also good.
図 1に戻り、 駆動制御ュニット 2 7内のレーザ干渉計によって計測される試料 台 2 4 (ウェハ W) の 2次元的な位置、 及び回転角の計測値は、 主制御系 2 8及 びァライメントコント口一ラ 3 0にも供給されている。 そして、 駆動制御ュニッ ト 2 7は、 その計測値及び主制御系 2 8からの制御情報に基づいて、 不図示の駆 動モータ (リニアモー夕等) を介して XYステージ 2 5の位置決め動作を制御す る。 但し、 ウェハ Wの回転誤差は、 一例として、 主制御系 2 8及び駆動制御ュニ ット 2 2を介してレチクルステージ 2 0を回転することで補正される。  Referring back to FIG. 1, the two-dimensional position and rotation angle of the sample stage 24 (wafer W) measured by the laser interferometer in the drive control unit 27 are measured by the main control system 28 and the It is also supplied to the Lightment Contoller 30. The drive control unit 27 controls the positioning operation of the XY stage 25 via a drive motor (not shown) based on the measured values and the control information from the main control system 28. You. However, the rotation error of the wafer W is corrected, for example, by rotating the reticle stage 20 via the main control system 28 and the drive control unit 22.
露光時には、 必要に応じて主制御系 2 8が開口絞り板 9を回転することによつ て照明条件の設定が行われる。 そして、 レチクルステージ 2 0を介して露光光 I Lの照明領域に対してレチクル Rが + Y方向 (又は— Y方向) 、 即ち走査方向 S D (図 3参照) に速度 V rで走査されるのに同期して、 XYステージ 2 5を介し て投影光学系 P Lによる露光領域に対してゥェ八 Wがー Y方向 (又は + Y方向) に速度 0 - V r ( j3はレチクル Rからウェハ Wへの投影倍率) で走査される。 レ チクル Rとウェハ Wとで走査方向が逆であるのは、 投影光学系 P Lが反転投影を 行うからであり、 正立像が投影されるときにはレチクル Rとウェハ Wとの走査方 向は同じになる。 この際に、 露光コントローラ 2 9によってウェハ W上の各ショ ット領域に対する露光量の制御が行われる。 そして、 ウェハ W上の一つのショッ ト領域へのレチクル Rのパターン像の走査露光が終了した後、 XYステージ 2 5 を介してウェハ W上の次のショット領域を投影光学系 P Lによる露光領域の手前 に移動してから、 レチクル Rとウェハ Wとを同期走査するという動作がステップ •アンド ·スキャン方式で繰り返されて、 ウェハ W上の各ショット領域への走査 露光が行われる。 At the time of exposure, the main control system 28 rotates the aperture stop plate 9 as necessary to set illumination conditions. Then, the reticle R is scanned through the reticle stage 20 in the + Y direction (or -Y direction), that is, in the scanning direction SD (see FIG. 3) at the speed Vr with respect to the illumination area of the exposure light IL. Synchronously, the speed of the wafer W in the -Y direction (or the + Y direction) with respect to the exposure area by the projection optical system PL via the XY stage 25 is 0-Vr (j3 is from the reticle R to the wafer W). Scanning magnification). The scanning directions of the reticle R and the wafer W are opposite because the projection optical system PL performs reverse projection.When the erect image is projected, the scanning directions of the reticle R and the wafer W are the same. Become. At this time, the exposure controller 29 controls the exposure amount for each shot area on the wafer W. Then, after the scanning exposure of the pattern image of the reticle R onto one shot area on the wafer W is completed, the next shot area on the wafer W is transferred to the exposure area by the projection optical system PL via the XY stage 25. Foreground After that, the operation of synchronously scanning the reticle R and the wafer W is repeated in a step-and-scan manner, and each shot area on the wafer W is scanned and exposed.
さて、 上記のようにウェハ W上の各ショット領域への露光を行う前には、 予め レチクル Rのパターンとウェハ W上の各ショット領域とのァライメントを高精度 に行っておく必要がある。 このため、 図 3に示すように、 レチクル Rのパターン 領域 P Aを X方向 (非走査方向) に挟むように 1対の例えば十字型のレチクルマ ーク 3 7 A及ぴ 3 7 Bが形成され、 レチクルマーク 3 7 A及び 3 7 Bの上方にそ れぞれ画像処理方式のレチクルァライメント顕微鏡 (以下、 「R A顕微鏡」 と呼 ぶ) 3 8 A及び 3 8 Bが配置されている。 R A顕微鏡 3 8 A, 3 8 Bの撮像信号 はァライメントコント口一ラ 3 0に供給されており、 ァライメントコントローラ 3 0は、 供給された撮像信号よりそれぞれ 2つのマークの X方向、 Y方向への位 置ずれ量を求め、 求めた位置ずれ量を図 1の主制御系 2 8に供給する。 結像調整 系としての主制御系 2 8は、 供給された位置ずれ量より所定の結像特性を求める。 図 3において、 試料台 2 4上のウェハホルダ 2 3の近傍にガラス基板よりなる 基準部材 3 2が固定され、 基準部材 3 2の上面はウェハ Wの表面 (ウェハ面) と 同じ高さに設定されている。 基準部材 3 2の上面に 2つの枠状の X方向に所定間 隔で配置された 2次元の基準マーク 3 4 A, 3 4 B、 及び X方向へのライン ·ァ ンド ·スペースパターンと Y方向へのライン 'アンド 'スペースパターンとを組 み合わせた 2次元の基準マ一ク 3 3が形成されている。 基準マーク 3 4 A, 3 4 Bの X方向の間隔は、 レチクルマーク 3 7 A, 3 7 Bのウェハステージ側への投 影像の設計上の間隔に等しく設定され、 基準マーク 3 4 A, 3 4 Bの中心と、 基 準マーク 3 3の中心との Y方向の間隔は、 レチクル Rのパターン像の中心とァラ ィメントセンサ 3 5の検出中心との設計上の間隔 (ベースライン量) B L 1に設 定されている。  Before the exposure of each shot area on the wafer W as described above, it is necessary to preliminarily align the pattern of the reticle R with each shot area on the wafer W with high precision. Therefore, as shown in FIG. 3, a pair of reticle marks 37 A and 37 B are formed so as to sandwich the pattern area PA of the reticle R in the X direction (non-scanning direction), Image processing reticle alignment microscopes (hereinafter referred to as “RA microscopes”) 38 A and 38 B are arranged above the reticle marks 37 A and 37 B, respectively. The imaging signals of the RA microscopes 38A and 38B are supplied to the alignment controller 30. The alignment controller 30 converts the supplied imaging signals into the X and Y directions of two marks, respectively. The amount of displacement is calculated, and the obtained amount of displacement is supplied to the main control system 28 in FIG. The main control system 28 as an imaging adjustment system obtains a predetermined imaging characteristic from the supplied positional shift amount. In FIG. 3, a reference member 32 made of a glass substrate is fixed near the wafer holder 23 on the sample stage 24, and the upper surface of the reference member 32 is set at the same height as the surface (wafer surface) of the wafer W. ing. Two frame-like reference marks 34 A, 34 B arranged on the upper surface of the reference member 32 at predetermined intervals in the X direction, and a line-and-space pattern in the X direction and the Y direction A two-dimensional reference mark 33 is formed in combination with the line 'and' space pattern. The distance between the fiducial marks 34 A and 34 B in the X direction is set equal to the designed distance between the reticle marks 37 A and 37 B and the projected image on the wafer stage side. 4 The distance between the center of B and the center of fiducial mark 33 in the Y direction is the designed distance between the center of the pattern image of reticle R and the detection center of alignment sensor 35 (baseline amount) BL 1 Is set to.
図 1に戻り、 ァライメントセンサ 3 5は、 比較的広帯域でウェハ W上のフォト レジストに対して非感光性の照明光で被検マークを照明する落射照明系と、 被検 マークの像が形成される面に配置された指標マークと、 被検マ一クの像及び指標 マークを撮像する 2次元の撮像素子とを備えており、 この撮像素子の撮像信号も ァライメントコントローラ 30に供給されている。 ァライメントコントローラ 3 0は、 その撮像信号を処理してその指標マークのウェハステージ 26上の共役像 の中心 (検出中心) に対する被検マークの X方向、 Y方向への位置ずれ量を検出 し、 検出結果を主制御系 28に供給する。 更に、 基準部材 32の底面の試料台 2 4の内部には、 伝達光学系 39の先端部、 この先端部からの照明光を集光するレ ンズ 40、 その集光された照明光を基準マーク 34 A, 34B側に折り曲げるミ ラー 41が配置されており、 伝達光学系 39は、 A r Fエキシマレーザ光源 1内 で露光光 I Lの光路から分岐された光を照明光として基準部材 32の底面側に導 いている。 これによつて、 本例の基準マーク 34 A, 34Bは、 露光光 I Lと同 じ波長の照明光で底面側から照明され、 投影光学系 PLで色収差が生じない。 その照明光のもとで、 基準マーク 34A, 34 Bの形成面とレチクルマーク 3 7 A, 37 Bの形成面 (レチクル面) とは投影光学系 PLに関して共役となる。 従って、 特別に色収差補正用の光学系を設けることなく、 レチクル Rの上方の R A顕微鏡 38A (又は 38B) によって、 基準マーク 34A (又は 34B) の投 影光学系 PLによるレチクル面への投影像に対するレチクルマーク 37 A (又は 37 B) の位置ずれ量を高精度に検出することができる。 本例の基準マーク 34 A, 34 Bが本発明のマ一クに対応し、 RA顕微鏡 38A, 38 Bがマーク検出 系に対応している。 本例では、 伝達光学系 39、 レンズ 40、 及びミラー 41に よる基準マーク 34A, 34 Bの底面からの照明条件が、 オプティカル ·インテ ダレ一夕 8を含む照明光学系による露光光 I Lの照明条件と異なっているため、 後述のようにその基準マーク 34A, 34 Bを用いた結像特性の計測結果を、 実 際の露光時の照明条件等に合わせて補正する。 Returning to FIG. 1, the alignment sensor 35 forms an epi-illumination system that illuminates the target mark with illumination light insensitive to the photoresist on the wafer W in a relatively wide band, and forms an image of the target mark. And a two-dimensional image sensor for imaging the image of the test mark and the index mark. The image signal of the image sensor is also provided. Alignment controller 30. The alignment controller 30 processes the imaging signal and detects the amount of displacement of the mark in the X and Y directions with respect to the center (detection center) of the index mark on the wafer stage 26 with respect to the wafer, and The detection result is supplied to the main control system 28. Further, inside the sample stage 24 on the bottom surface of the reference member 32, a tip of the transmission optical system 39, a lens 40 for condensing illumination light from the tip, and a reference mark for the condensed illumination light. A mirror 41 for bending is arranged on the 34A, 34B side. Leading to the side. Thus, the reference marks 34A and 34B of the present example are illuminated from the bottom side with illumination light having the same wavelength as the exposure light IL, and no chromatic aberration occurs in the projection optical system PL. Under the illumination light, the surface on which the reference marks 34A and 34B are formed and the surface on which the reticle marks 37A and 37B are formed (reticle surface) are conjugate with respect to the projection optical system PL. Therefore, without providing an optical system for correcting chromatic aberration, the RA microscope 38A (or 38B) above the reticle R allows the reference mark 34A (or 34B) to be projected onto the reticle surface by the projection optical system PL. The displacement of the reticle mark 37A (or 37B) can be detected with high accuracy. The reference marks 34A and 34B of this example correspond to the marks of the present invention, and the RA microscopes 38A and 38B correspond to the mark detection system. In this example, the illumination condition from the bottom of the reference marks 34A and 34B by the transmission optical system 39, the lens 40, and the mirror 41 is the illumination condition of the exposure light IL by the illumination optical system including the optical integral 8 Therefore, the measurement results of the imaging characteristics using the reference marks 34A and 34B are corrected in accordance with the actual lighting conditions at the time of exposure, as described later.
なお、 伝達光学系 39などを用いて基準マーク 34 A, 34 Bをその底面から 照明する代わりに、 例えば RA顕微鏡 38A, 38 Bに露光光と同じ波長の照明 光で被検マークを照明する照明機構を備えてもよい。 この場合には、 RA顕微鏡 Instead of illuminating the reference marks 34 A and 34 B from the bottom using the transmission optical system 39, for example, illuminating the RA microscopes 38 A and 38 B with illumination light of the same wavelength as the exposure light A mechanism may be provided. In this case, RA microscope
38A, 38 Bからの照明光でレチクルマーク 37 A, 37 Bをその上方から照 明し、 レチクルマーク 37A, 37 Bの周囲を透過した照明光で投影光学系 PL を介して基準マーク 34 A, 34 Bを照明する。 そして、 基準マーク 34A, 3The reticle marks 37A, 37B are illuminated from above by the illumination light from 38A, 38B, and the reference marks 34A, 37A, 37B are illuminated through the projection optical system PL with the illumination light transmitted around the reticle marks 37A, 37B. Illuminate 34 B. And fiducial mark 34A, 3
4 Bからの反射光、 及びレチクルマーク 37 A, 37 Bからの反射光によって R A顕微鏡 38 A, 38 Bの内部に形成される両方のマークの像を検出することに よって、 両マークの位置ずれ量を検出することができる。 4 R due to reflected light from B and reflected light from reticle marks 37 A and 37 B By detecting the images of both marks formed inside the A microscopes 38A and 38B, it is possible to detect the amount of displacement between the two marks.
また、 図 3の基準部材 32上の基準マーク 34 A, 34Bに対応してレチクル ステージ 20上に基準マークを設け、 レチクルマーク 37 A, 37 Bの代わりと してのレチクルステージ 20上の基準マークと、 基準部材 32上の基準マーク 3 4A, 34Bとの位置ずれ量を R A顕微鏡 38 A, 38 Bで検出するようにして もよい。 この際に、 レチクルステージ 20上の基準マークを例えば長方形の各頂 点の位置に配置し、 それに対応するように基準部材 32上にも枠状の配置で基準 マ一クを設けることによって、 投影光学系 P Lのディスト一ション等も計測する ことができる。 このようにレチクルステージ 20上に基準マークを設ける場合に は、 その配置の自由度が増加する。  Also, reference marks are provided on the reticle stage 20 corresponding to the reference marks 34A and 34B on the reference member 32 in FIG. 3, and the reference marks on the reticle stage 20 are used instead of the reticle marks 37A and 37B. The amount of displacement between the reference marks 32A and 34B on the reference member 32 may be detected by the RA microscopes 38A and 38B. At this time, the reference marks on the reticle stage 20 are arranged, for example, at the positions of the respective vertices of a rectangle, and the reference marks are provided in a frame-like arrangement on the reference member 32 so as to correspond to the reference marks. The distortion of the optical system PL can also be measured. When the fiducial marks are provided on the reticle stage 20 as described above, the degree of freedom of the arrangement increases.
上記の基準マーク 34A, 34B、 レチクルマーク 37A, 37B、 及び RA 顕微鏡 38A, 38Bはレチクルァライメントを行う場合に使用されるが、 本例 ではこれらの機構、 及び上記の結像特性コントローラ 42等を用いて投影光学系 PLの所定の結像特性の計測及び補正を行う。 以下では、 計測対象の結像特性を 投影光学系 PLの投影倍率として、 その投影倍率の計測動作及び補正動作 (投影 倍率のキヤリブレーシヨン動作) の一例について図 7のフローチャートを参照し て説明する。  The reference marks 34A and 34B, the reticle marks 37A and 37B, and the RA microscopes 38A and 38B are used when performing reticle alignment.In this example, these mechanisms and the imaging characteristic controller 42 and the like are used. The measurement and correction of the predetermined imaging characteristics of the projection optical system PL are performed by using this. In the following, an example of the measurement operation and the correction operation (calibration operation of the projection magnification) of the projection magnification will be described with reference to the flowchart of FIG. 7, using the imaging characteristic of the measurement target as the projection magnification of the projection optical system PL. .
先ず、 図 7のステップ 101において、 図 3に示すように、 RA顕微鏡 38A, 38 Bにより基準マーク 34 A, 34 Bのレチクル面への投影像に対するレチク ルマーク 37 A, 37 Bの位置ずれ量を計測する。 このため、 図 1の主制御系 2 8は、 XYステージ 25を駆動して、 基準部材 32の基準マーク 34 A, 34B をほぼレチクルマーク 37 A, 37 Bと共役な位置に移動する。 次に、 この状態 で図 1の伝達光学系 39、 レンズ 40、 及びミラー 41を用いて、 露光光 I と 同じ波長の照明光で基準部材 32の底面より基準マーク 34A, 34Bを照明す る。  First, in step 101 of FIG. 7, as shown in FIG. 3, the amount of displacement of the reticle marks 37A, 37B with respect to the projected image of the reference marks 34A, 34B on the reticle surface is determined by the RA microscopes 38A, 38B. measure. Therefore, the main control system 28 in FIG. 1 drives the XY stage 25 to move the reference marks 34A, 34B of the reference member 32 to a position substantially conjugate with the reticle marks 37A, 37B. Next, in this state, the reference marks 34A and 34B are illuminated from the bottom surface of the reference member 32 with the illumination light having the same wavelength as the exposure light I by using the transmission optical system 39, the lens 40, and the mirror 41 of FIG.
図 4は、 一方の R A顕微鏡 38 Aのレチクル面での観察視野 38 A aを示し、 この図 4において、 一方の基準マ一ク 34 Aの像 34 AR及びレチクルマーク 3 7 Aの像を R A顕微鏡 38 Aで撮像し、 その撮像信号を図 1のァライメントコン トローラ 30で処理することによって、 基準マークの像 34八1 の中心 八に対 するレチクルマ一ク 37 Aの中心 R Aの X方向及び Y方向への位置ずれ量 (ΔΧ 1, ΔΥ 1) を検出する。 これと並行して、 他方の R A顕微鏡 38 Bを介して、 他方の基準マーク 34 Bの像の中心 FB (図 5参照) に対するレチクルマーク 3 7 Bの中心 RBの X方向及び Y方向への位置ずれ量 (ΔΧ2, Δ Y2) を検出す る。 FIG. 4 shows the observation field of view 38 Aa on the reticle surface of one RA microscope 38 A. In FIG. 4, the image 34 AR of one reference mark 34 A and the image of the reticle mark 37 A are RA An image was taken with a microscope 38 A, and the image signal was compared with the alignment control shown in Fig. 1. Processing by the controller 30 detects the amount of displacement (ΔΧ1, ΔΥ1) of the center RA of the reticle mark 37A in the X and Y directions with respect to the center 8 of the image 3481 of the reference mark. . In parallel with this, via the other RA microscope 38 B, the center RB of the reticle mark 37 B with respect to the center FB (see FIG. 5) of the image of the other reference mark 34 B in the X and Y directions. The deviation (Δ 量 2, ΔY2) is detected.
ここで本例では、 検出されたレチクルマーク 37 A, 37 Bの位置ずれ量に基 づいて、 レチクルァライメントを行う。 先ず、 主制御系 28は、 図 5 (A) に示 すように、 基準マーク 34 A, 34Bの像の中心 FA, FBを結ぶ直線に対する レチクルマーク 3 7 A, 373の中心1^八, RBを結ぶ直線の回転角、 即ち基準 部材 32に対するレチクル Rの回転角 Θを求める。 次に、 駆動制御ユニット 22 を介してレチクルステージ 20を— 0だけ回転し、 Y方向の位置ずれ量 ΔΥ1, △ Υ 2がそれぞれ 0になるようにレチクルステージ 20の Υ方向の位置を調整す る。 その結果、 レチクルマーク 37 Α, 378の中心1 八, RBは、 基準マーク 34 Α, 348の像の中心 八, FBを結ぶ直線上に位置する。 その後、 主制御 系 28は、 図 5 (Β) に示すように、 中心 FA, FBに対する中心 RA, RBの X方向の位置ずれ量が対称に振り分けられるように、 即ち 2つの中心 RA, RB の X方向の位置ずれ量が対称に△ Dずつになるようにレチクルステージ 20を X 方向に移動させる。 これでレチクルァライメントが完了する。 この際に、 RA顕 微鏡 38A, 3 8 Bを介してその X方向への位置ずれ量 ADを再計測してもよい。 この場合、 一方の中心 FAに対する中心 RAの X方向、 Y方向への位置ずれ量が (△D, 0) であるとすると、 他方の位置ずれ量は (― AD, 0) となる。  Here, in this example, the reticle alignment is performed based on the detected positional deviation amounts of the reticle marks 37A and 37B. First, as shown in FIG. 5 (A), the main control system 28 determines the center 1 ^ 8, RB of the reticle mark 37A, 373 with respect to the straight line connecting the image centers FA, FB of the reference marks 34A, 34B. , Ie, the rotation angle の of the reticle R with respect to the reference member 32. Next, the reticle stage 20 is rotated by −0 through the drive control unit 22, and the position of the reticle stage 20 in the に direction is adjusted so that the displacement amounts ΔΥ1 and ΔΥ2 in the Y direction become 0, respectively. . As a result, the center 18, RB of the reticle mark 37 37, 378 is located on a straight line connecting the center 8, FB of the image of the reference mark 34Α, 348. Then, as shown in Fig. 5 (Β), the main control system 28 distributes the amount of displacement of the center RA and RB with respect to the center FA and FB in the X direction symmetrically, that is, the two center RA and RB The reticle stage 20 is moved in the X direction so that the amount of displacement in the X direction is symmetrically set by ΔD. This completes the reticle alignment. At this time, the displacement AD in the X direction may be measured again through the RA microscopes 38A and 38B. In this case, assuming that the displacement of the center RA in the X and Y directions with respect to the center FA is (△ D, 0), the displacement of the other is (−AD, 0).
次に、 ステップ 1 02に進み、 検出されたレチクルマーク 37 A, 37 Bの基 準マーク 34A, 34 Bの像に対する位置ずれ量 に基づいて、 投影光学系 Ρ Lの投影倍率 /3 (レチクル面からウェハ面に対する投影倍率) を算出し、 基準倍 率 (設計値) β ο からの誤差 2を求める。 この場合、 投影倍率 ]3は、 ウェハ ステージ側の基準マーク 34 Α, 34Βの中心の間隔 DWを、 レチクル面での基 準マーク 34 Α, 34:6の像の中心 八, FBの間隔で除算した値であり、 レチ クルマーク 3 7 A, 37 Βの中心 RA, RBの間隔を DRとすると、 投影倍率 ]3 は次式のように表される。 Next, proceeding to step 102, based on the amount of displacement of the detected reticle marks 37A, 37B with respect to the images of the reference marks 34A, 34B, the projection magnification of the projection optical system ΡL / 3 (reticle surface From the standard magnification (design value) βο. In this case, the projection magnification] 3 is obtained by dividing the distance DW between the centers of the reference marks 34Α and 34Β on the wafer stage side by the distance between the reference marks 34Α and 34: 6 at the center of the image 8 and FB on the reticle surface. When the distance between the center RA and RB of the reticle mark 37 A, 37 mm is DR, the projection magnification] 3 Is represented by the following equation.
β=Ό / (DR+ 2 - ΔΌ) … (1)  β = Ό / (DR + 2-ΔΌ)… (1)
なお、 図 5 (Α) において、 基準マーク 34 Α, 34:8の像の中心?八, FB の間隔が、 レチクルマーク 37 A, 37Βの中心 RA, RBの間隔 DRよりも短 くなつている場合には、 (1) 式の位置ずれ量 ADの符号は一 (マイナス) にな る。 ここで、 ウェハステージ側の基準マーク 34 A, 34Bの中心の間隔 DW及 びレチクルマーク 37 A, 37Bの中心 RA, RBの間隔 DRは、 予め高精度に 計測されて、 主制御系 28の記憶装置に既知の露光パラメータとして記憶されて いる。 主制御系 28は、 (1) 式より投影倍率 ]3を算出した後、 次のようにその 投影倍率 ;6の基準倍率 /3。 からの誤差 Δ/32を求める。 .  In Fig. 5 (5), the center of the image of fiducial mark 34Α, 34: 8? 8) If the distance between FBs is shorter than the distance DR between the centers RA and RB of the reticle marks 37A and 37 符号, the sign of the displacement AD in equation (1) becomes one (minus). You. Here, the distance DW between the centers of the reference marks 34A and 34B on the wafer stage side and the distance DR between the centers RA and RB of the reticle marks 37A and 37B are measured in advance with high precision and stored in the main control system 28. This is stored as a known exposure parameter in the apparatus. The main control system 28 calculates the projection magnification] 3 from equation (1), and then calculates the projection magnification as follows: the reference magnification of 6/3. From the error Δ / 32. .
A β 2 = β- β ο … (2)  A β 2 = β- β ο… (2)
次に、 ステップ 103において、 投影光学系 PLの周囲の大気圧 Ρ及び次の露 光時の照明条件に応じた倍率誤差の補正値 Δ/31を算出する。 その照明条件とし ては、 照明系の開口数 NA!LL 、 及び照明系開口絞りの形状 (図 2の絞り 9 a〜 9 dの何れを使用するか) を用いる。 更に本例では、 投影光学系 PLの開口数 N APLもその照明条件とみなす。 なお、 その照明系の開口数 NAILL の代わりに σ 値 (=NAILL /NAPL) を使用してもよい。 Next, in step 103, a correction value Δ / 31 of the magnification error according to the atmospheric pressure 周 囲 around the projection optical system PL and the illumination conditions at the next exposure is calculated. As the illumination conditions, the numerical aperture NA! LL of the illumination system and the shape of the illumination system aperture stop (which one of the apertures 9a to 9d in FIG. 2 is used) are used. Further, in this example, the numerical aperture NA PL of the projection optical system PL is also considered as the illumination condition. Note that a σ value (= NA ILL / NAPL) may be used instead of the numerical aperture NA ILL of the illumination system.
図 6は、 投影倍率の計測時の投影光学系 P Lの周囲の大気圧 Pとそれに応じて 実測された倍率誤差 (以下、 「倍率誤差の補正値 Δ j31」 と呼ぶ) との関係の一 例を示し、 この図 6において、 横軸は大気圧 P (hPa) 、 縦軸は倍率誤差の補正値 1 (ppm) を示す。 図 6に示すように、 投影光学系 PLの倍率誤差は、 投影倍 率の計測時の大気圧 Pに対してほぼ直線的に変化し、 倍率誤差の補正値 Δ 1は、 次式のように近似できる。  Figure 6 shows an example of the relationship between the atmospheric pressure P around the projection optical system PL when measuring the projection magnification and the magnification error measured accordingly (hereinafter referred to as the “magnification error correction value Δj31”). In FIG. 6, the horizontal axis represents the atmospheric pressure P (hPa), and the vertical axis represents the magnification error correction value 1 (ppm). As shown in FIG. 6, the magnification error of the projection optical system PL changes almost linearly with respect to the atmospheric pressure P at the time of measuring the projection magnification, and the correction value Δ1 of the magnification error is expressed by the following equation. Can be approximated.
Δ /31 =a · P + b … (3)  Δ / 31 = a · P + b… (3)
ここで、 係数 a (ppm/hPa) 及び b (ppm) はそれぞれ大気圧 Pに対する倍率誤差 の傾き及びオフセットであり、 これらの係数 a, bの値は、 照明条件により異な つた値となる。 表 1に種々の照明条件における係数 a, bの値の実測例を示す。 表 1において、 NAPL及び NAILL は、 それぞれ投影光学系 PL及び照明光学系 の開口数であり、 照明方式中の通常照明は図 1の開口絞り 9 aを使用し、 1/2 輪帯照明は 1 / 2輪帯絞り 9 bを使用し、 2 Z 3輪帯照明は 2/3輪帯絞り 9 c を使用することを意味する。 また、 輪帯照明時の照明光学系の開口数 NAI LL は、 輪帯の外径の開口数を意味する。 また、 係数 aSIM (ppm Pa) は、 シミュレーシ ヨンにより求めた各照明条件における倍率誤差の傾きを示す。 表 1より、 シミュ レーションの結果は実測デー夕と良く合致していることが分かる。 Here, the coefficients a (ppm / hPa) and b (ppm) are the slope and offset of the magnification error with respect to the atmospheric pressure P, respectively, and the values of these coefficients a and b differ depending on the lighting conditions. Table 1 shows examples of measured values of coefficients a and b under various lighting conditions. In Table 1, NA PL and NA ILL are the numerical apertures of the projection optical system PL and the illumination optical system, respectively. For the normal illumination in the illumination method, use the aperture stop 9a shown in FIG. Ring illumination uses a 1/2 annular aperture 9b, and 2Z3 annular illumination uses a 2/3 annular aperture 9c. Further, the numerical aperture NA I LL of the illumination optical system at the time of annular illumination means the numerical aperture of the outer diameter of the annular zone. The coefficient a SIM (ppm Pa) indicates the slope of the magnification error under each lighting condition obtained by simulation. Table 1 shows that the simulation results agree well with the measured data.
【表 1】  【table 1】
Figure imgf000020_0001
本例では、 図 1の主制御系 28内部の記憶装置又は外部のホストコンピュータ 等に、 各照明条件に対応した倍率誤差の傾き a及び倍率誤差のオフセット bの値 がテーブルとして記録されており、 主制御系 28は、 そのテーブルより露光時の 照明条件に対応した倍率誤差の傾き a及び倍率誤差のオフセット bの値を求める。 そして、 主制御系 28は、 気圧計 3 1による大気圧 Pの計測値に基づいて、 (3) 式より倍率誤差の補正値 Δ;3 1を求める。
Figure imgf000020_0001
In this example, the values of the slope a of the magnification error and the offset b of the magnification error corresponding to each lighting condition are recorded as a table in a storage device inside the main control system 28 or an external host computer in FIG. The main control system 28 obtains, from the table, values of the gradient a of the magnification error and the offset b of the magnification error corresponding to the illumination condition at the time of exposure. Then, the main control system 28 obtains a correction value Δ; 31 of the magnification error from the equation (3) based on the measured value of the atmospheric pressure P by the barometer 31.
次に、 ステップ 1 04に進み、 主制御系 28は、 ステップ 1 02において求め られた投影倍率 ]3の基準倍率 ]3。 に対する誤差 Δ |32から、 ステップ 103にお いて求められた倍率誤差の補正値 Δ/3 1を差し引いて、 露光時における実際の残 留倍率誤差△ 3 (=Δ/32-Δ /31) を求める。  Next, proceeding to step 104, the main control system 28 sets the reference magnification of the projection magnification] 3 obtained in step 102 to [3]. 32, the actual residual magnification error (3 (= Δ / 32−Δ / 31) during exposure is subtracted from the magnification error correction value Δ / 31 found in step 103 from the error Δ | 32 Ask.
そして、 ステップ 1 05において、 主制御系 28は、 結像特性コントローラ 4 2を介してァクチユエ一夕 43, 44を駆動することによって、 投影光学系 PL のレンズ L 1, L 2の状態を調整し、 投影光学系 PLの投影倍率 0を残留倍率誤 差 Δ /3を相殺するように、 即ち投影倍率が (β—厶 β) になるように補正する。 このように、 露光時の照明条件及び投影光学系 P Lの周囲の大気圧 Pの計測値 に基づいて、 R A顕微鏡 3 8 A, 3 8 Bにより計測された投影倍率 ;8の誤差 Then, in step 105, the main control system 28 adjusts the state of the lenses L 1 and L 2 of the projection optical system PL by driving the actuators 43 and 44 via the imaging characteristic controller 42. Then, the projection magnification 0 of the projection optical system PL is corrected so as to cancel the residual magnification error Δ / 3, that is, the projection magnification becomes (β-room β). Thus, based on the illumination conditions at the time of exposure and the measured value of the atmospheric pressure P around the projection optical system PL, the projection magnification measured by the RA microscopes 38A and 38B;
2を補正することによって、 露光時の照明条件及び投影光学系 P Lの周囲の大気 圧 Pに応じて、 高精度に投影倍率を求めることができ、 この結果に基づいて高精 度に投影倍率をキャリブレーションすることができる。 更に本例によれば、 R A 顕微鏡 3 8 A, 3 8 Bによる基準マーク 3 4 A, 3 4 Bの像及びレチクルマーク 3 7 A, 3 7 Bの検出結果を利用するため、 レチクルァライメントと同時に投影 倍率の調整を行うことができる利点がある。 By correcting (2), the projection magnification can be determined with high accuracy according to the illumination conditions at the time of exposure and the atmospheric pressure P around the projection optical system PL.Based on this result, the projection magnification can be determined with high accuracy. Can be calibrated. Further, according to the present example, since the images of the reference marks 34 A and 34 B and the detection results of the reticle marks 37 A and 37 B by the RA microscope 38 A and 38 B are used, the reticle alignment There is an advantage that the projection magnification can be adjusted at the same time.
以上のようにして投影倍率 i3が調整された後、 露光工程 (ステップ 1 0 6 ) が 行われ、 露光が行われたウェハは、 現像工程を経てから、 現像後に残されたレジ ストパターンをマスクとしてエッチングやイオン注入等を行う加工工程、 加工ェ 程後の不要なレジストを除去するレジスト除去工程等を経る。 そして、 露光、 現 像、 加工、 レジスト除去等の各工程を繰り返すことで、 ゥェ八プロセスが終了す る。 ウェハプロセスが終了すると、 実際の組立工程にて、 焼き付けられた回路毎 にゥェハを切断してチップ化するダイシング工程、 各チップに配線等を行うボン ディング工程、 各チップ毎にパッケージングするパッケージング工程等を経て、 最終的に L S I等の半導体デバイスが製造される。  After the projection magnification i3 is adjusted as described above, an exposure step (step 106) is performed. After the exposed wafer is subjected to the development step, the resist pattern left after the development is masked. Through a processing step of performing etching, ion implantation, etc., and a resist removing step of removing unnecessary resist after the processing step. Then, the steps of exposure, image development, processing, and resist removal are repeated, thereby completing the process. When the wafer process is completed, in the actual assembly process, a dicing process of cutting wafers into chips for each burned circuit, a bonding process of wiring each chip, and a packaging process of packaging each chip Finally, semiconductor devices such as LSIs are manufactured through processes.
また、 複数のレンズから構成される照明光学系、 投影光学系を投影露光装置本 体に組み込み光学調整をすると共に、 多数の機械部品からなるレチクルステ一ジ やウェハステージを露光装置本体に取り付けて配線や配管を接続し、 更に総合調 整 (電気調整、 動作確認等) をすることにより本実施の形態の投影露光装置を製 造することができる。 なお、 投影露光装置の製造は温度及びクリーン度等が管理 されたクリーンルームで行うことが望ましい。 ―  In addition, an illumination optical system composed of multiple lenses and a projection optical system are incorporated into the main body of the projection exposure apparatus to perform optical adjustment, and a reticle stage and a wafer stage composed of many mechanical parts are attached to the main body of the exposure apparatus and wired. The projection exposure apparatus according to the present embodiment can be manufactured by connecting the pipes and pipes and performing the overall adjustment (electrical adjustment, operation check, etc.). It is desirable to manufacture the projection exposure apparatus in a clean room where the temperature and cleanliness are controlled. ―
なお、 上記の実施の形態では、 レンズ L I , L 2を駆動して結像特性を制御し ているが、 その代わりに、 又はそれと併用して、 A r Fエキシマレーザ光源 1か らの露光光 I Lの発振波長 λを制御するようにしてもよい。  In the above embodiment, the lenses LI and L2 are driven to control the imaging characteristics. However, instead of or in combination with this, the exposure light from the ArF excimer laser light source 1 is used. The oscillation wavelength λ of the IL may be controlled.
また、 上記の実施の形態では、 結像状態又は結像特性として投影光学系 P Lの 投影倍率を用いているが、 その他に結像状態として、 投影光学系 P Lのディスト ーシヨン、 コマ収差、 及び非点収差等の計測、 及び制御を行うようにしてもよい。 ディストーションを計測する場合には、 基準マーク 3 4 A, 3 4 Bを例えば 3個 以上配置して、 それぞれの投影像の位置ずれ量を計測すればよく、 コマ収差を計 測する場合には、 例えば基準マーク 3 4 A, 3 4 Bの代わりにボックス ·イン - ボックスマークを使用して、 外側のポックスマ一クの像と内側のポックスマ一ク の像との位置ずれ量を計測すればよい。 Further, in the above embodiment, the projection magnification of the projection optical system PL is used as the imaging state or the imaging characteristic. In addition, the distortion, coma, and non- Measurement and control of point aberration and the like may be performed. When measuring distortion, for example, three or more fiducial marks 34A and 34B may be arranged, and the displacement of each projected image may be measured. When measuring coma, For example, a box-in-box mark may be used in place of the fiducial marks 34A and 34B to measure the amount of displacement between the outer poxmark image and the inner poxmark image.
なお、 上記の実施の形態では照明光学系とは別に R A顕微鏡 3 8 A, 3 8 Bの 照明系を設けるものとしたが、 照明光学系の少なくとも一部を R A顕微鏡 3 8 A, 3 8 Bの照明系として利用してもよい。 例えば、 開口絞り板 9から射出される露 光光 I Lの少なくとも一部を R A顕微鏡 3 8 A, 3 8 Bに導き、 その露光光 I L をレチクルマークや基準マークに照射するように構成してもよい。 又は、 レチク ルマーク 3 7 A, 3 7 Bの上方に退避自在にビ一ムスプリッ夕を配置し、 マーク 計測時には、 そのビームスプリッ夕を露光光 I Lの光路に設置して、 照明光学系 からの露光光 I Lでレチクルマーク 3 7 A, 3 7 B及び基準マーク 3 4 A, 3 4 Bを照明し、 それらのマークからの反射光をそのビームスプリッタを介して R A 顕微鏡 3 8 A, 3 8 Bで検出するようにしてもよい。  In the above embodiment, the illumination system for the RA microscopes 38 A and 38 B is provided separately from the illumination optical system, but at least a part of the illumination optical system is provided for the RA microscopes 38 A and 38 B. May be used as an illumination system. For example, at least a part of the exposure light IL emitted from the aperture stop plate 9 is guided to the RA microscopes 38A and 38B, and the exposure light IL is irradiated on the reticle mark and the reference mark. Good. Alternatively, a beam splitter is disposed above the reticle marks 37A and 37B so as to be retractable, and at the time of mark measurement, the beam splitter is set in the optical path of the exposure light IL to expose the light from the illumination optical system. The reticle marks 37 A and 37 B and the reference marks 34 A and 34 B are illuminated with light IL, and the reflected light from those marks is passed through the beam splitter to the RA microscopes 38 A and 38 B. You may make it detect.
更に、 上記の実施の形態では本発明のマーク検出系として R A顕微鏡 3 8 A, 3 8 Bを用いたが、 そのマーク検出系は R A顕微鏡に限られるものではなく、 そ の構成は任意で構わない。 例えばそのマーク検出系として、 投影光学系 P Lを介 して投影されるマークの空間像を、 ウェハステージ 2 6側で所定の開口を介して 検出する空間像計測系等を用いてもよい。 この場合、 その開口として例えば被検 マークを構成する各マークの像の線幅よりも幅の広い開口を用いて、 その被検マ —クの像を撮像して得られる撮像信号を微分して得られる信号から、 その被検マ ークの像の位置を検出するようにしてもよい。 また、 そのマーク検出系として、 ウェハステージ 2 6側から露光光と同じ波長の照明光でスリツトを照明し、 この スリツトを透過して、 更に投影光学系 P Lを介してレチクル Rで反射された照明 光を、 そのスリットを介して受光することによって、 投影光学系 P Lのべストフ オーカス位置を検出するフォーカス位置検出センサを用いてもよい。  Further, in the above embodiment, RA microscopes 38A and 38B were used as the mark detection system of the present invention, but the mark detection system is not limited to the RA microscope, and the configuration may be arbitrary. Absent. For example, as the mark detection system, a space image measurement system or the like that detects a spatial image of a mark projected through the projection optical system PL through a predetermined opening on the wafer stage 26 side may be used. In this case, for example, an opening wider than the line width of the image of each mark constituting the test mark is used as the opening, and an image signal obtained by imaging the image of the test mark is differentiated. The position of the image of the test mark may be detected from the obtained signal. As a mark detection system, the slit is illuminated from the wafer stage 26 side with illumination light having the same wavelength as the exposure light, transmitted through this slit, and further reflected by the reticle R via the projection optical system PL. A focus position detection sensor that detects the best focus position of the projection optical system PL by receiving light through the slit may be used.
また、 前述の実施の形態ではレチクルァライメン卜と同時に結像状態又は結像 特性の調整を行うものとしているが、 両者を同時に行わなくてもよいし、 結像状 態又は結像特性の調整を行わないでその検出のみを行うだけでもよい。 また、 前 述の実施の形態では、 環境条件として大気圧 (投影光学系などの設置環境下での 圧力) を用いているが、 その代わりに、 或いはそれと組み合わせて温度などを用 いてもよい。 Further, in the above-described embodiment, the adjustment of the imaging state or the imaging characteristics is performed simultaneously with the reticle alignment, but both need not be performed at the same time. Only the detection may be performed without adjusting the state or the imaging characteristics. Further, in the above-described embodiment, atmospheric pressure (pressure in an installation environment such as a projection optical system) is used as an environmental condition, but temperature or the like may be used instead or in combination therewith.
なお、 本発明は上記の実施の形態のような半導体素子製造用の露光装置に限ら れることなく、 例えば、 角型のガラスプレートに液晶表示素子パターンを露光す る液晶用の露光装置、 並びにプラズマディスプレイ素子、 マイクロマシン、 薄膜 磁気へッド、 及び D N Aチップ等のデバイスを製造するための露光装置にも広く 適用できる。 また、 投影光学系の倍率は縮小系のみならず等倍及び拡大系のいず れでもよい。  The present invention is not limited to an exposure apparatus for manufacturing a semiconductor device as in the above-described embodiment. For example, an exposure apparatus for a liquid crystal for exposing a liquid crystal display element pattern on a square glass plate, and a plasma It can be widely applied to exposure devices for manufacturing devices such as display elements, micromachines, thin-film magnetic heads, and DNA chips. Further, the magnification of the projection optical system is not limited to a reduction system, and may be any one of an equal magnification and an enlargement system.
なお、' 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得る。 また、 明細書、 特許請求の範囲、 図面、 及び要約を 含む 2 0 0 0年 9月 2 1日付け提出の日本国特願 2 0 0 0 - 2 8 6 5 1 5の全て の開示内容は、 そつくりそのまま引用して本願に組み込まれている。 産業上の利用の可能性  Note that the present invention is not limited to the above-described embodiment, and can take various configurations without departing from the spirit of the present invention. In addition, all disclosures of Japanese Patent Application No. 2000-2806515, filed on September 21, 2000, including the specification, claims, drawings, and abstract are as follows: , And are incorporated in the present application as they are. Industrial applicability
本発明の露光方法によれば、 マークの検出時の環境条件が種々に変化した場合 でも、 例えばそのマークの検出結果をその検出時の環境条件を用いて補正するこ とによって、 その検出結果を用いてパターン像の結像状態を高精度に調整するこ とができる。  According to the exposure method of the present invention, even when environmental conditions at the time of detecting a mark are variously changed, for example, by correcting the detection result of the mark using the environmental condition at the time of the detection, the detection result can be obtained. It can be used to adjust the imaging state of the pattern image with high precision.
また、 その結像状態の調整量を、 そのパターン像の形成条件とそのマークの検 出条件との差異に応じたオフセットを含んで決定する場合には、 例えば結像状態 を検出 (計測) する際の照明条件と、 実際の露光時の照明条件とが異なるような 場合でも、 高精度にその結像状態を調整することができる。  When determining the adjustment amount of the imaging state including an offset corresponding to a difference between the pattern image forming condition and the mark detection condition, for example, the imaging state is detected (measured). Even when the illumination condition at the time of exposure differs from the illumination condition at the time of actual exposure, the imaging state can be adjusted with high accuracy.
次に、 本発明の投影露光装置によれば、 本発明の露光方法を実施することがで きる。 また、 本発明による結像特性の計測方法によれば、 その計測時の環境条件 に応じてその投影系の結像特性を高精度に調整することができる。  Next, according to the projection exposure apparatus of the present invention, the exposure method of the present invention can be performed. Further, according to the imaging characteristic measuring method of the present invention, the imaging characteristic of the projection system can be adjusted with high accuracy in accordance with the environmental conditions at the time of the measurement.
また、 本発明の第 1及び第 2のデバイス製造方法によれば、 そのパターン像の 結像状態を高精度に調整することができ、 高機能のデバイスを製造できる。  Further, according to the first and second device manufacturing methods of the present invention, the image forming state of the pattern image can be adjusted with high accuracy, and a highly functional device can be manufactured.

Claims

請 求 の 範 囲 The scope of the claims
1 . 露光ビームでマスクを照明し、 投影系を介して前記マスクのパターン像を基 板上に転写する露光方法において、 1. An exposure method for illuminating a mask with an exposure beam and transferring a pattern image of the mask onto a substrate via a projection system,
前記投影系を介してマ一クを検出し、 該検出結果に基づいて前記パターン像の 結像状態を調整するときに前記検出時の環境条件を用いることを特徴とする露光 方法。  An exposure method comprising: detecting a mark via the projection system; and using the environmental condition at the time of the detection when adjusting an image forming state of the pattern image based on the detection result.
2 . 前記検出結果から求められる前記結像状態の調整量を前記環境条件に基づい て補正することを特徴とする請求の範囲 1に記載の露光方法。  2. The exposure method according to claim 1, wherein an adjustment amount of the imaging state obtained from the detection result is corrected based on the environmental condition.
3 . 前記調整量は、 前記パターン像の形成条件と前記マークの検出条件との差異 に応じたオフセットを含んで決定されることを特徴とする請求の範囲 2に記載の 露光方法。  3. The exposure method according to claim 2, wherein the adjustment amount is determined including an offset corresponding to a difference between a condition for forming the pattern image and a condition for detecting the mark.
4 . 前記オフセットは、 前記パターン像の形成条件に応じて異なるとともに、 前 記環境条件に応じて補正されることを特徴とする請求の範囲 3に記載の露光方法。  4. The exposure method according to claim 3, wherein the offset varies depending on a condition for forming the pattern image and is corrected according to the environmental condition.
5 . 前記検出結果から求められる前記結像状態の調整量を前記パターン像の形成 条件に基づいて補正することを特徴とする請求の範囲 1〜 4の何れか一項に記載 の露光方法。 5. The exposure method according to any one of claims 1 to 4, wherein the adjustment amount of the imaging state obtained from the detection result is corrected based on a condition for forming the pattern image.
6 . 前記検出結果に基づいて前記投影系の結像特性を算出し、 該算出された結像 特性と前記環境条件とに基づいて前記結像状態を調整することを特徴とする請求 の範囲 1〜 4の何れか一項に記載の露光方法。  6. The imaging characteristic of the projection system is calculated based on the detection result, and the imaging state is adjusted based on the calculated imaging characteristic and the environmental condition. 5. The exposure method according to claim 1.
7 . 露光ビームでマスクを照明する照明系と、 前記マスクのパターン像を基板上 に投影する投影系とを有する投影露光装置において、  7. A projection exposure apparatus comprising: an illumination system for illuminating a mask with an exposure beam; and a projection system for projecting a pattern image of the mask onto a substrate.
前記投影系を介してマークを検出するマーク検出系と、  A mark detection system for detecting a mark via the projection system,
前記マークの検出時における環境条件を検出する環境検出系と、  An environment detection system for detecting an environmental condition at the time of detecting the mark,
前記検出結果に基づいて前記パ夕一ン像の結像状態を調整するときに前記環境 条件を用いる結像状態調整系と  An imaging state adjustment system that uses the environmental condition when adjusting the imaging state of the power image based on the detection result;
を備えたことを特徴とする投影露光装置。 A projection exposure apparatus comprising:
8 . 前記結像状態調整系は、 前記検出結果から求められる前記結像状態の調整量 を前記環境条件に基づいて補正することを特徴とする請求の範囲 7に記載の投影 8. The projection according to claim 7, wherein the imaging state adjustment system corrects the adjustment amount of the imaging state obtained from the detection result based on the environmental condition.
9 . 前記結像状態調整系は、 前記調整量を前記パターン像の形成条件と前記マー クの検出条件との差異に応じたオフセットを含んで決定することを特徴とする請 求の範囲 8に記載の投影露光装置。 9. The image forming state adjusting system according to claim 8, wherein the adjustment amount is determined to include an offset corresponding to a difference between a condition for forming the pattern image and a condition for detecting the mark. The projection exposure apparatus according to claim 1.
1 0 . 前記結像状態調整系は、 前記検出結果から求められる前記結像状態の調整 量を前記パターン像の形成条件に基づいて補正することを特徴とする請求の範囲 7、 8、 又は 9に記載の投影露光装置。 10. The imaging state adjustment system according to claim 7, 8, or 9, wherein the imaging state adjustment system corrects the adjustment amount of the imaging state obtained from the detection result based on a condition for forming the pattern image. 3. The projection exposure apparatus according to claim 1.
1 1 . 前記検出結果に基づいて前記投影系の結像特性を算出し、 該結像特性と前 記環境条件とに基づいて前記結像状態を調整することを特徴とする請求の範囲 7 〜 9の何れか一項に記載の投影露光装置。  11. An imaging characteristic of the projection system is calculated based on the detection result, and the imaging state is adjusted based on the imaging characteristic and the environmental condition. 10. The projection exposure apparatus according to claim 9.
1 2 . 第 1面の物体の像を第 2面上に投影する投影系の結像特性の計測方法にお いて、  1 2. In the method of measuring the imaging characteristics of the projection system that projects the image of the object on the first surface onto the second surface,
前記第 1及び第 2面の少なくとも一方に配置されるマークを前記投影系を介し て検出し、 該検出結果より前記投影系の結像特性を算出する第 1工程と、 前記第 1工程の実行時の環境条件に基づいて、 前記第 1工程で求めた結像特性 の算出結果を補正する第 2工程と  A first step of detecting, via the projection system, a mark arranged on at least one of the first and second surfaces, and calculating an imaging characteristic of the projection system from the detection result; and executing the first step A second step of correcting the calculation result of the imaging characteristic obtained in the first step based on the environmental conditions at the time.
を有することを特徴とする結像特性の計測方法。 A method for measuring imaging characteristics, comprising:
1 3 . 前記環境条件に応じて前記算出結果の補正量を異ならせることを特徴とす る請求の範囲 1 2に記載の結像特性の計測方法。  13. The method according to claim 12, wherein a correction amount of the calculation result is changed according to the environmental condition.
1 4 . 前記マークの検出条件と前記物体の像の形成条件との差異に応じたオフセ ットを前記算出結果に加えて前記結像特性の補正量が決定され、 14. An offset corresponding to a difference between the mark detection condition and the image forming condition of the object is added to the calculation result to determine a correction amount of the imaging characteristic,
前記環境条件に応じて前記オフセットを変化させることを特徴とする請求の範 囲 1 2に記載の結像特性の計測方法。  13. The method according to claim 12, wherein the offset is changed according to the environmental condition.
1 5 . 前記物体の像の形成条件に応じて前記オフセット及びその補正量を異なら せることを特徴とする請求の範囲 1 4に記載の結像特性の計測方法。  15. The method for measuring imaging characteristics according to claim 14, wherein the offset and the correction amount thereof are made different according to the image forming conditions of the object.
1 6 . 前記物体の像の形成条件をも用いて前記算出結果を補正することを特徴と する請求の範囲 1 2〜1 5の何れか一項に記載の結像特性の計測方法。  16. The method for measuring imaging characteristics according to any one of claims 12 to 15, wherein the calculation result is corrected using the image forming conditions of the object.
1 7 . 請求の範囲 1〜4の何れか一項に記載の露光方法を用いて、 デバイスパ夕 ーンを基板上に形成するリソグラフイエ程を含むことを特徴とするデバイス製造 方法。 17. A device manufacturing method including a lithographic step of forming a device pattern on a substrate by using the exposure method according to any one of claims 1 to 4. Method.
1 8 . 請求の範囲 7〜 9の何れか一項に記載の投影露光装置を用いて、 デバイス パターンを基板上に形成するリソグラフイエ程を含むことを特徴とするデバイス 製造方法。  18. A device manufacturing method including a lithographic process of forming a device pattern on a substrate using the projection exposure apparatus according to any one of claims 7 to 9.
PCT/JP2001/008177 2000-09-21 2001-09-20 Method of measuring image characteristics and exposure method WO2002025711A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR10-2003-7003834A KR20030033067A (en) 2000-09-21 2001-09-20 Method of measuring image characteristics and exposure method
JP2002529824A JPWO2002025711A1 (en) 2000-09-21 2001-09-20 Measurement method of exposure characteristics and exposure method
AU2001288073A AU2001288073A1 (en) 2000-09-21 2001-09-20 Method of measuring image characteristics and exposure method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000286515 2000-09-21
JP2000-286515 2000-09-21

Publications (1)

Publication Number Publication Date
WO2002025711A1 true WO2002025711A1 (en) 2002-03-28

Family

ID=18770427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/008177 WO2002025711A1 (en) 2000-09-21 2001-09-20 Method of measuring image characteristics and exposure method

Country Status (5)

Country Link
JP (1) JPWO2002025711A1 (en)
KR (1) KR20030033067A (en)
CN (1) CN1462471A (en)
AU (1) AU2001288073A1 (en)
WO (1) WO2002025711A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009117556A (en) * 2007-11-05 2009-05-28 Canon Inc Exposure apparatus and device fabrication method
JP2013008967A (en) * 2011-06-22 2013-01-10 Asml Netherlands Bv System and method to ensure light source and image stability
US8502961B2 (en) 2009-07-02 2013-08-06 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
JP2017010042A (en) * 2006-09-01 2017-01-12 株式会社ニコン Exposure equipment and exposure method and device production method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105700301B (en) * 2003-04-10 2018-05-25 株式会社尼康 Environmental system including the vacuum removing for being used for immersion lithography device
KR100806036B1 (en) * 2003-11-13 2008-02-26 동부일렉트로닉스 주식회사 Exposure method for semiconductor wafer
KR101328356B1 (en) * 2004-02-13 2013-11-11 가부시키가이샤 니콘 Exposure method and system, and device production method
US8703368B2 (en) * 2012-07-16 2014-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography process
CN103439869B (en) * 2013-09-02 2016-01-27 上海华力微电子有限公司 The method of measurement pattern density
CN107187057A (en) * 2017-05-17 2017-09-22 合肥蔚星光电科技有限公司 A kind of scaling method of projection lens enlargement ratio
CN108896550B (en) * 2018-03-30 2021-10-22 湖北工程学院 Facial mask printing quality detection method and system
CN111254066B (en) * 2018-12-03 2023-05-05 长春长光华大智造测序设备有限公司 Imaging adjusting device and high-throughput gene sequencer
JP7361599B2 (en) * 2019-12-26 2023-10-16 キヤノン株式会社 Exposure equipment and article manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227847A (en) * 1995-02-21 1996-09-03 Nikon Corp Projection aligner
JPH1012515A (en) * 1996-06-20 1998-01-16 Nikon Corp Projection aligner
JPH10261563A (en) * 1997-03-18 1998-09-29 Nikon Corp Projection aligner method and device
JPH10289864A (en) * 1997-04-11 1998-10-27 Nikon Corp Projection exposing device
JPH10312958A (en) * 1997-05-13 1998-11-24 Hitachi Ltd Fabrication of semiconductor integrated circuit device
JPH11176733A (en) * 1997-12-15 1999-07-02 Nikon Corp Exposure method and aligner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08227847A (en) * 1995-02-21 1996-09-03 Nikon Corp Projection aligner
JPH1012515A (en) * 1996-06-20 1998-01-16 Nikon Corp Projection aligner
JPH10261563A (en) * 1997-03-18 1998-09-29 Nikon Corp Projection aligner method and device
JPH10289864A (en) * 1997-04-11 1998-10-27 Nikon Corp Projection exposing device
JPH10312958A (en) * 1997-05-13 1998-11-24 Hitachi Ltd Fabrication of semiconductor integrated circuit device
JPH11176733A (en) * 1997-12-15 1999-07-02 Nikon Corp Exposure method and aligner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017010042A (en) * 2006-09-01 2017-01-12 株式会社ニコン Exposure equipment and exposure method and device production method
JP2009117556A (en) * 2007-11-05 2009-05-28 Canon Inc Exposure apparatus and device fabrication method
US8502961B2 (en) 2009-07-02 2013-08-06 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
US9329489B2 (en) 2009-07-02 2016-05-03 Canon Kabushiki Kaisha Exposure method, exposure apparatus, and method of manufacturing device
JP2013008967A (en) * 2011-06-22 2013-01-10 Asml Netherlands Bv System and method to ensure light source and image stability
US9459537B2 (en) 2011-06-22 2016-10-04 Asml Netherlands B.V. System and method to ensure source and image stability

Also Published As

Publication number Publication date
AU2001288073A1 (en) 2002-04-02
CN1462471A (en) 2003-12-17
JPWO2002025711A1 (en) 2004-01-29
KR20030033067A (en) 2003-04-26

Similar Documents

Publication Publication Date Title
JP4345098B2 (en) Exposure apparatus, exposure method, and device manufacturing method
KR100599932B1 (en) Method of measuring aberration in an optical imaging system
US7088426B2 (en) Projection optical system adjustment method, prediction method, evaluation method, adjustment method, exposure method and exposure apparatus, program, and device manufacturing method
US20020085190A1 (en) Manufacturing method in manufacturing line, manufacturing method for exposure apparatus, and exposure apparatus
US7119880B2 (en) Projection optical system, exposure apparatus, and device manufacturing method
KR101070202B1 (en) Measurement method transfer characteristic measurement method exposure device adjustment method and device manufacturing method
WO2008126926A1 (en) Exposure method and electronic device manufacturing method
US20110212389A1 (en) Focus test mask, focus measurement method, exposure method and exposure apparatus
WO2002025711A1 (en) Method of measuring image characteristics and exposure method
JP2003151884A (en) Focusing method, position-measuring method, exposure method, and device-manufacturing method
US20080100894A1 (en) Apparatus for moving curved-surface mirror, exposure apparatus and device manufacturing method
WO1999005709A1 (en) Exposure method and aligner
US20030086078A1 (en) Projection exposure apparatus and aberration measurement method
JP2002170754A (en) Exposure system, method of detecting optical characteristic, and exposure method
JP2897345B2 (en) Projection exposure equipment
JP4147574B2 (en) Wavefront aberration measurement method, projection optical system adjustment method and exposure method, and exposure apparatus manufacturing method
JP3958261B2 (en) Optical system adjustment method
JP2009038152A (en) Optical system, exposure device, and device manufacturing method
KR101019389B1 (en) Exposure device
JPWO2002047132A1 (en) X-ray projection exposure apparatus, X-ray projection exposure method, and semiconductor device
JP2006080444A (en) Measurement apparatus, test reticle, aligner, and device manufacturing method
JP2001358059A (en) Method for evaluating exposure apparatus and exposure apparatus
JPH11233424A (en) Projection optical device, aberration measuring method, projection method, and manufacture of device
JP6226525B2 (en) Exposure apparatus, exposure method, and device manufacturing method using them
JP2003100612A (en) Surface position detecting apparatus, method of adjusting the focusing apparatus, surface position detecting method, exposing apparatus and method of manufacturing device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002529824

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037003834

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018161413

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037003834

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase