WO2002025670A1 - Container for nuclear fuel transportation - Google Patents

Container for nuclear fuel transportation Download PDF

Info

Publication number
WO2002025670A1
WO2002025670A1 PCT/JP2000/006412 JP0006412W WO0225670A1 WO 2002025670 A1 WO2002025670 A1 WO 2002025670A1 JP 0006412 W JP0006412 W JP 0006412W WO 0225670 A1 WO0225670 A1 WO 0225670A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylindrical body
neutron
nuclear fuel
transport container
neutron shield
Prior art date
Application number
PCT/JP2000/006412
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Tooma
Masashi Shimizu
Kouichi Maki
Masashi Oda
Naoki Kumagai
Takashi Nishi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/006412 priority Critical patent/WO2002025670A1/en
Priority to JP2002529786A priority patent/JPWO2002025670A1/en
Publication of WO2002025670A1 publication Critical patent/WO2002025670A1/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F5/00Transportable or portable shielded containers
    • G21F5/005Containers for solid radioactive wastes, e.g. for ultimate disposal
    • G21F5/008Containers for fuel elements

Definitions

  • the present invention relates to a nuclear fuel transport container, and more particularly to a nuclear fuel transport container for transporting a spent nuclear fuel assembly generated in a nuclear power plant.
  • Spent nuclear fuel assemblies generated at nuclear power plants are dedicated nuclear fuel that can (1) secure radiation shielding, (2) secure subcriticality, (3) secure sealing, and (4) secure structural strength. Loaded in transport containers (or nuclear fuel transport and storage containers) and transported from nuclear power plants to storage locations.
  • nuclear fuel transport containers for spent nuclear fuel have been developed using high-energy neutrons as described in Nuclear Fuel Transport Engineering Carbon steel or stainless steel is used as a shielding material.
  • This high-energy neutron shielding material is also used as a structural material of the container body of a nuclear fuel transport container.
  • the conventional nuclear fuel transport container is an outer cylinder made of carbon steel (or stainless steel), an inner cylinder made of carbon steel (or stainless steel) installed inside the outer cylinder, and placed between the outer cylinder and the inner cylinder.
  • Neutron shield (consisting of materials containing hydrogen or boron).
  • the nuclear fuel transport container includes a basket forming a plurality of spaces for storing the spent fuel assemblies inside the inner cylinder. The neutrons emitted from the spent fuel assemblies loaded in the basket are shielded by the inner cylinder and then decelerated and shielded by the neutron shield.
  • Neutron shields used in nuclear fuel transport containers are generally made of organic substances. Therefore, in the safety analysis evaluation, in the test evaluation under special test conditions (evaluation at the time of fire), the shielding analysis is performed assuming that it does not exist because it burns and burns. At this time, Japanese law stipulates that the dose equivalent rate at a location 1 m away from the surface of the nuclear fuel transport container (the surface of the outer cylinder) must be less than 10 mS v / hr.
  • the value of the dose equivalent rate is the transport standard value of the IAEA, which is also observed in countries other than Japan, and is called the 'limited dose equivalent rate'.
  • Step I fuel assembly a fuel assembly with an 8-by-8 fuel rod array and a small diameter water rod
  • the diameter of the small-diameter water inlet is larger than the diameter of the fuel rods but smaller than the pitch of the fuel rods.
  • Step I fuel assembly The fuel assembly has a burnup of about 33 GWd / t before being loaded into the reactor.
  • This Step I fuel assembly will achieve a dose equivalent rate (10 m SV no hr) or less in a conventional nuclear fuel transport container.
  • a high burnup (approximately 39 GWd / t) fuel assembly (step 39) with a large diameter water inlet and fuel rods arranged in 8 rows and 8 columns, which is currently used in a nuclear power plant using BWRs
  • Some MOX fuel assemblies generate significantly more neutrons than Step I fuel assemblies.
  • the nuclear fuel transport container that transports these high burn-up fuel assemblies and MOX fuel assemblies must satisfy the above-mentioned limited dose equivalent rate, so the inner cylinder made of carbon steel (or stainless steel) is required.
  • An object of the present invention is to provide a nuclear fuel transport container capable of improving the transport efficiency of a spent fuel assembly.
  • a feature of the present invention is that it is provided adjacent to a cylindrical body made of either carbon steel or stainless steel, surrounding a plurality of spent fuel assemblies housed therein, and In addition, a neutron shield composed of a material having a large inelastic scattering cross section is provided.
  • a neutron shield composed of a material having a larger inelastic scattering cross-sectional area than a cylindrical body can be thinner than a case where the neutron shield is composed of carbon steel and stainless steel. For this reason, the weight of the nuclear fuel transport container can be reduced, and the number of spent fuel assemblies that can be stored in the nuclear fuel transport container can be increased. This can improve the transportation efficiency of spent fuel assemblies by the nuclear fuel transport container.
  • a feature of the first embodiment of the present invention is that the neutron shield provided adjacent to the cylindrical body is arranged inside other neutron shields containing hydrogen. Since the former neutron shield is located inside the latter neutron shield, the weight of the nuclear fuel transport container is reduced. This is because the weight of the former neutron shield becomes smaller as the neutron shield is located inward in the radial direction.
  • a feature of the second embodiment of the present invention 1 0 5 to 1 0 7 for the neutral terminal of the energy e V, inelastic the neutron shielding member provided adjacent to the tubular body
  • the elastic scattering cross section is larger than the inelastic scattering cross section of the cylindrical body for neutrons of that energy.
  • Neutron shielding body is improved shielding ability against 1 0 5 to 1 0 7 energy neutrons e V. Therefore, the thickness of the neutron shield in the radial direction is reduced, and the number of spent fuel assemblies that can be stored in the nuclear fuel transport container increases.
  • the neutron shield is preferably composed of one of tungsten, gadolinium and manganese.
  • Another feature of the present invention is that a first cylindrical body made of either carbon steel or stainless steel, and a first cylindrical body made of either carbon steel or stainless steel And a neutron shield provided between the first and second cylindrical bodies and made of a material having a larger inelastic scattering cross-sectional area than the cylindrical body.
  • a neutron shield provided between the first and second cylindrical bodies and made of a material having a larger inelastic scattering cross-sectional area than the cylindrical body.
  • a feature of the third embodiment of the present invention is that the first cylindrical body, the second cylindrical body, and the neutron shielding provided between the first cylindrical body and the second cylindrical body. That is, the first neutron shielding body, which is a body, is disposed inside the second neutron shielding body which is annularly arranged containing hydrogen. According to the third embodiment, since the first neutron shield is arranged inside the second neutron shield, the same effects as those obtained by the features of the first embodiment described above are produced. I will.
  • a feature of the fourth embodiment of the present invention is that the thickness of the first cylindrical body in the radial direction is smaller than the thickness of the second cylindrical body in the radial direction.
  • the decrease in the thickness of the first cylindrical body in the radial direction depends on the position at which the neutron shield provided between the first cylindrical body and the second cylindrical body is disposed, and the axial center of the nuclear fuel transport container. Closer. Therefore, the weight of the neutron shield is reduced, and the weight of the nuclear fuel transport container is further reduced.
  • Still another feature of the present invention is that a first metal portion made of either carbon steel or stainless steel, and provided inside the first metal portion, wherein the first metal portion is more inelastic.
  • a third neutron shield composed of a material having a large scattering cross-sectional area, a first lid attached to the container body, a second metal part composed of either carbon steel or stainless steel, and A second lid is provided inside the second metal part, has a fourth neutron shielding body containing hydrogen, and has a second lid which is attached to the container body so as to cover the first lid.
  • the container body is made of either carbon steel or stainless steel, and is made of either a first tubular body surrounding a plurality of spent fuel assemblies housed inside, a carbon steel or stainless steel.
  • a second tubular body configured and surrounding the first tubular body, provided between the first tubular body and the second tubular body, and having a less inelastic scattering cross-sectional area than the tubular body.
  • a first neutron shield composed of a large material, a second neutron shield containing hydrogen, which is annularly arranged around the second cylindrical body, and a second neutron shield which is annularly arranged. It has an outer tubular body surrounding the outer side.
  • the fuel rod cladding tube of the stored spent fuel assembly may be damaged.
  • the radioactive material inside the fuel rod is Not released to Since the third neutron shield is provided in the primary lid and the fourth neutron shield is provided in the secondary lid located outside, the primary lid and the secondary lid are compact and their respective weights are reduced. Reducing the weight of the primary and secondary lids leads to a reduction in the weight of the nuclear fuel transport container.
  • the third neutron shielding body is improved shielding ability against 1 0 5 to 1 0 7 energy neutrons e V. For this reason, the thickness of the third neutron shield in the axial direction is reduced, and the weight of the nuclear fuel transport container is reduced.
  • the third neutron shield is preferably composed of one of tungsten, gadolinium and manganese.
  • Fig. 1 is a characteristic diagram showing the relationship between neutron energy in a nuclear fuel transport container made of carbon steel and the neutron flux and dose equivalent rate at a location 1 m away from the surface of the nuclear fuel transport container
  • Fig. 2 shows the neutron energy
  • Fig. 3 is a characteristic diagram showing the relationship between the cross-sectional areas of iron (Fe)
  • Fig. 3 is a characteristic diagram showing the relationship between the neutron energy and each cross-sectional area of tungsten (W)
  • Fig. 4 is a graph showing the relationship between neutron energy and gadolinium (G d) is a characteristic diagram showing the relationship between each cross-sectional area
  • FIG. 1 is a characteristic diagram showing the relationship between neutron energy in a nuclear fuel transport container made of carbon steel and the neutron flux and dose equivalent rate at a location 1 m away from the surface of the nuclear fuel transport container
  • Fig. 2 shows the neutron energy
  • Fig. 3 is a characteristic diagram showing the relationship between the cross-sectional areas of iron
  • FIG. 5 is a characteristic diagram showing the relationship between neutron energy and each cross-sectional area of manganese (M n), and FIG. 6 is a preferred embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view of a nuclear fuel transport container according to an embodiment
  • FIG. 7 is a transverse sectional view of FIG. 6,
  • FIG. 8 is an enlarged longitudinal sectional view of a lid of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the inventors studied the neutron shielding characteristics of a nuclear fuel transport container. In particular, the neutron shielding characteristics of the nuclear fuel transport container when each of the Step I fuel assembly, the Step II fuel assembly, and the M0X fuel assembly were loaded were examined. These studies were based on analytical calculations.
  • Figure 1 shows the calculation results for a nuclear fuel transport container with an inner cylinder and an outer cylinder made of carbon steel.
  • the horizontal axis is the neutron energy
  • the left vertical axis is the neutron flux (relative value) at a distance of 1 m from the surface of the nuclear fuel transport container
  • the right vertical axis is lm from the surface of the nuclear fuel transport container.
  • the dose equivalent rate (relative value) at each location is shown.
  • Figures 2, 3, and 4 show the relationship between the energy of each neutron and each cross-section centered on the inelastic cross-section in Tandasten, gadolinium, and manganese, respectively.
  • tungsten, Gadoriniumu and manganese, inelastic scattering cross section in the region of the neutron Eneru formic one 1 0 5 ⁇ 1 0 7 e V is summer large as 1 barn extent can shield neutrons of energy regions 1 0 5 ⁇ 1 0 7 e V that can not be shielded by a carbon steel (or stainless steel).
  • the neutron energy 1 0 5 ⁇ 1 0 7 e V inelastic scattering cross section is large material region (element), tungsten (W), Gadoriniu beam (G d), manganese (M n)
  • the shielding performance of the nuclear fuel transport container is improved.
  • the thickness of the nuclear fuel transport container for example, the thickness of at least one of the inner and outer cylinders made of carbon steel (or stainless steel)
  • the diameter becomes smaller. This leads to a reduction in the weight of the nuclear fuel transport container.
  • the number of spent nuclear fuel assemblies that can be stored per nuclear fuel transport container can be increased. Therefore, the spent fuel collection The combined transport efficiency is improved.
  • a nuclear fuel transport container according to a preferred embodiment of the present invention will be described below with reference to FIGS. 6 and 7.
  • the nuclear fuel transport container 1 of the present embodiment stores a spent fuel assembly generated in a boiling water reactor.
  • the nuclear fuel transport container 1 includes a primary lid 11, a secondary lid 13, and a container body 15.
  • the container body 15 includes a basket 3, a first inner cylindrical body 4, a neutron shielding body 5, a second inner cylindrical body 6, a neutron shielding body 7, and an outer cylindrical body 9.
  • the first inner cylindrical body 4, the neutron shielding body 5, the second inner cylindrical body 6, the neutron shielding body 7, and the outer cylindrical body 9 are arranged concentrically.
  • the first inner cylindrical body 4, the second inner cylindrical body 6, and the outer cylindrical body 9 are made of carbon steel, but may be made of stainless steel.
  • Each of the first inner cylindrical body 4, the second inner cylindrical body 6, and the outer cylindrical body 9 has a container shape having a cylindrical side wall and a bottom connected to the side wall.
  • the neutron shield 5 is tungsten.
  • a basket 3 having a plurality of fuel storage spaces partitioned in a grid is provided inside the first inner cylindrical body 4.
  • a support 16 extending horizontally from the basket 3 is in contact with the inner surface of the first inner cylindrical body 4.
  • the first inner cylindrical body 4 is located inside the second inner cylindrical body 6.
  • the neutron shield 5 is disposed between the first inner cylindrical body 4 and the second inner cylindrical body 6.
  • the neutron shield 5 is formed not only between the side wall of the first inner cylindrical body 4 and the side wall of the second inner cylindrical body 6, but also at the bottom of the first inner cylindrical body 4 and the second inner cylindrical body. Also provided between the bottom of 6.
  • the outer cylindrical body 9 is located outside the second inner cylindrical body 6.
  • a plurality of fins 8 extending in the axial direction of the second inner cylindrical body 6 are attached to the outer surface of the second inner cylindrical body 6 and reach near the inner surface of the outer cylindrical body 9.
  • the neutron shield 7 is disposed between the second inner cylindrical body 6 and the outer cylindrical body 9.
  • the neutron shield 7 contains hydrogen It is composed of quality organic matter (eg, resin).
  • Primary lid 11 is made of carbon steel.
  • the primary lid 11 has a neutron shielding body 10 made of tungsten, and is attached to the first inner cylindrical body 4 of the container body 15 by screws 17 as shown in FIG. .
  • the secondary lid 13 is also made of carbon steel.
  • a neutron shield 12 made of resin is provided inside the secondary lid 13.
  • the secondary lid 13 is attached to the second inner cylindrical body 6 of the container body 15 by screws 18 as shown in FIG.
  • An annular gasket 19 seals between the secondary lid 11 and the first inner cylindrical body 4, and an annular gasket 20 seals between the secondary lid 13 and the second inner cylindrical body 6.
  • the primary lid 11 and the secondary lid 13 may be made of stainless steel.
  • the spent fuel assemblies generated from the boiling water reactor are stored in the spent fuel storage pool on the reactor terrestrial planet. Then, the spent fuel assemblies 14 stored for a predetermined period are stored in the nuclear fuel transport container 1. That is, the spent fuel assembly 14 is stored in the basket 3 with the primary lid 11 and the secondary lid 13 removed. After the spent fuel assemblies are stored in all the fuel storage spaces in the basket 3, the nuclear fuel transport container 1 is sealed with the primary lid 11 and the secondary lid 13. The nuclear fuel transport container 1 containing the spent fuel assemblies 14 is transported from the nuclear power plant to the nuclear fuel reprocessing facility. The secondary lid 13 and the primary lid 11 of the nuclear fuel transport container 1 are sequentially removed in the nuclear fuel reprocessing facility.
  • the spent fuel assemblies 14 in the basket 3 are removed from the nuclear fuel transport container 1 and transferred to the spent fuel storage pool in the nuclear fuel reprocessing facility, where they are stored until they are reprocessed.
  • Basket 3 is made of boron-containing stainless steel. Since the basket 3 contains boron, the criticality of nuclear fuel material in the spent fuel assembly stored adjacently can be prevented.
  • the heat generated in the spent fuel assembly 14 is transmitted to the first inner cylindrical body 4 by radiation from the basket 3 and heat transfer through the basket 3 and the support 16. This heat is transmitted from the first inner cylindrical body 4 to the outer cylindrical body 9 via the neutron shielding body 5, the second inner cylindrical body 6, and the fins 8, and is transferred from the outer cylindrical body 9 to the outside. Released into the air. Since the neutron shield 7 is made of resin, its thermal conductivity is low, and the transfer of heat from the second inner cylindrical body 6 to the outer cylindrical body 9 is promoted by the fins 8.
  • the neutrons emitted from the spent nuclear fuel assembly 14 are, in the radial direction of the nuclear fuel transport container 1, the plate of the basket 3, the first inner cylindrical body 4, the neutron shield 5, the second inner It is shielded by the cylindrical body 6, neutron shielding body 7 and outer cylindrical body 9.
  • the first inner cylindrical member 4 and the second inner cylindrical member 6 shield high energy neutrons emitted from the spent nuclear fuel assembly 14.
  • Neutron shielding body 5 is constituted by Tandasute emissions of metals, as described above, a large non-elastic scattering cross section for high energy neutrons having an energy of 1 0 5 ⁇ 1 0 7 e V.
  • the neutron shielding body 5 Oite shielding ability is lowered to the first inner tubular member 4 and the second inner cylindrical member 6, 1 0 5 to 1 0 7 high energy neutrons e V efficiently shielding I do.
  • the neutron shield 7 slows down and shields neutrons transmitted through the second inner cylindrical body 6.
  • neutrons are also supplied to the bottom plate of the basket 3, the first inner cylindrical body 4, the neutron shield 5, the second inner cylindrical body 6, and the neutron shield 7 And is shielded by the outer tubular body 9.
  • the neutrons in the lid of the nuclear fuel transport container 1 are also the metal part of the primary lid 11 (carbon steel), the neutron shield 10, the metal part of the secondary lid 13 (carbon steel) and the neutron shield 1 Shielded by two.
  • Neutron shield 10 is similar to neutron shield 5, The high-energy neutrons 1 0 5 ⁇ 1 0 7 e V efficiently shielding.
  • Neutron shielding body 1 0, shielding ability is lowered in the metal portion of the primary lid 1 1, to shield high energy neutrons 1 0 5 ⁇ 1 0 7 e V.
  • the radiation shielding ability of the nuclear fuel transport container 1 in the event of a fire will be described.
  • the neutron shields 7 and 12 which are composed of organic matter, will be destroyed. Therefore, the neutrons released from the spent nuclear fuel assembly 14 in the radial direction and the bottom of the nuclear fuel transport container 1 are the basket 3, the first inner cylindrical body 4, the neutron shield 5, and the second inner cylindrical body. Shielded by body 6 and outer tubular body 9.
  • neutrons are shielded by the metal part of the primary lid 11, the neutron shield 10 and the metal part of the secondary lid 13.
  • the specific gravity of carbon steel is 7.89 g / cm 3 and that of tungsten is 19.1 g / cm 3 .
  • the thickness of the neutron shield 5 can be reduced by about 20 Omm compared to the thickness of carbon steel. Therefore, the total weight of the nuclear fuel transport container in Case I is lighter than the total weight in Case I in a state where the spent fuel assemblies are not stored. The reduction in the total weight is equivalent to the spent nuclear fuel collection that can be stored in the nuclear fuel transport container in Case II.
  • the number of storage units in the united unit can be increased to about twice the number of storage units in Case II.
  • the case of using the neutron shielding body 5 constituted by inelastic scattering cross section is large tungsten neutron energy 1 0 5 ⁇ 1 0 7 e V region, use of carbon steel in place of the neutron shielding body 5
  • the number of spent nuclear fuel assemblies that can be stored in a nuclear fuel transport container can be doubled as compared with the case where This increases the transport efficiency of spent fuel assemblies.
  • the neutron shielding body 5 requires a predetermined thickness as described above in order to shield any are arranged at positions 1 0 5 ⁇ 1 0 7 e V of E Nerugi one neutron be in the radial direction. For this reason, the weight of the neutron shield 5 decreases as the inner diameter of the neutron shield 5 decreases.
  • the tungsten constituting the neutron shield 5 is fragile, but is not scattered around because it is surrounded by the rigid first inner cylindrical body 4 and the second inner cylindrical body 6, so that the neutron shield 5 is formed. Demonstrate the function of. For example, when the neutron shield 5 is disposed outside the second inner cylindrical body 6, for example, between the second inner cylindrical body 6 and the neutron shield 7, the nuclear fuel transport container falls during transportation. When the outer cylindrical body 9 is damaged and the neutron shield 7 scatters outside, the neutron shield 5 may also scatter outside. Scattering to the outside of the neutron shielding body 7, in the nuclear fuel transport container 1, reducing the shielding ability against 10 5 ⁇ 1 0 7 e V energy neutrons.
  • the neutron shield 5 is disposed inside the second inner cylindrical body 6, such a decrease in the shielding ability can be prevented. Further, by providing the first inner cylindrical body 4, the neutron shield 5 can be annularly arranged with a substantially uniform thickness inside the second inner cylindrical body 6.
  • the cross section of basket 3 is 7th It is square as shown in the figure. For this reason, when the first inner cylindrical body 4 is not provided, the neutron shield 5 is disposed between the second inner cylindrical body 6 and the basket 3.
  • the radial thickness of the neutron shield 5 needs to satisfy the above-mentioned predetermined thickness at the position where the thickness is the smallest. Therefore, there are places where the thickness of the neutron shield 5 in the radial direction becomes unnecessarily thick, so that the weight of the nuclear fuel transport container increases.
  • the thickness of the first inner cylindrical body 4 in the radial direction is smaller than the thickness of the second inner cylindrical body 4 in the radial direction. For this reason, the inner diameter of the neutron shield 5 having a large specific gravity adjacent to the second inner cylindrical body 4 is reduced. This leads to a reduction in the weight of the neutron shield 5 and a reduction in the weight of the nuclear fuel transport container 1.
  • the fuel rod cladding tube of the stored spent fuel assembly may be damaged by any chance. Also, radioactive materials in the fuel rods are not released out of the nuclear fuel transport container 1. Also, the neutron shield 10 in the primary lid 11 located inside, the neutron shield 12 in the secondary lid 13 located outside, the neutron shield 10 and the neutron shield 1 2 The primary lid 11 and the secondary lid 13 are compact, and their weights are reduced.
  • the neutron shields 5, 10 may be made of a tungsten alloy such as W—Fe and W—Pb, or a sintered body of tungsten, instead of metal tungsten. Further, the neutron shields 5, 10 may be made of gadolinium or manganese.
  • gadolinium is used in the form of a metal gadolinium, a gadolinium alloy such as Gd-Fe and Gd-Pb, or a sintered body of gadolinium.
  • the metal manganese, M n — Fe and M n — It takes the form of either a manganese alloy such as Pb or a sintered body of manganese.
  • the neutron shield 5, 10 only needs to contain at least one of tungsten, gadolinium, and manganese.
  • Spent fuel assemblies generated from pressurized water reactors are also transported using nuclear fuel transport containers.
  • the same structure as the nuclear fuel transport container 1 can be applied to this nuclear fuel transport container.
  • the cross-sectional area of a spent fuel assembly generated from a pressurized water reactor is larger than that of a spent fuel assembly generated from a boiling water reactor.
  • the nuclear fuel transport container that stores the spent fuel assemblies generated from the pressurized water reactor has a cross-sectional area of the fuel storage space formed in the basket, and the spent fuel assemblies generated from the boiling water reactor Is larger than its cross-sectional area.
  • the nuclear fuel transport container provided with the neutron shields 5 and 12 and storing the spent fuel assemblies generated from the pressurized water reactor can obtain the effects produced in the nuclear fuel transport container 1 described above.
  • Nuclear fuel transport ⁇ Storage containers are used for transport and storage of spent fuel assemblies.
  • the neutron shields 5, 12 used in the nuclear fuel transport container 1 can be applied to the nuclear fuel transport / storage container.
  • the nuclear fuel transport and storage container to which the neutron shields 5 and 12 are applied has the structure of the nuclear fuel transport container 1.
  • Nuclear fuel transport ⁇ Storage containers are also nuclear fuel transport containers. Industrial applicability
  • the present invention is applied not only to a nuclear fuel transport container for storing a spent fuel assembly generated in a boiling water nuclear power plant, but also to a nuclear fuel transport container for storing a spent fuel assembly generated in a pressurized water nuclear power plant. It is possible.
  • the present invention is also applicable to a nuclear fuel transport / storage container having a storage function.

Abstract

A container for nuclear fuel transportation comprises first and second cylindrical bodies of carbon steel (or stainless steel). The first cylindrical body encloses a plurality of spent fuel assemblies. The second cylindrical body encloses the first cylindrical body. Between the first and second cylindrical bodies is provided a first neutron shield composed of a material (for example, W, Gd or Mn) whose inelastic scattering cross section is greater than those of the cylindrical bodies. A second neutron shield containing hydrogen surrounds the second cylindrical body inside an outer cylindrical body. The first neutron shield effectively shields the neutrons of 105-107 eV energy, and it helps decrease the weight of the container for nuclear fuel transportation.

Description

明 細 書  Specification
核燃料輸送容器 技術分野  Nuclear fuel container technical field
本発明は、 核燃料輸送容器に係り、 特に、 原子力発電所で発生した使 用済核燃料集合体を輸送する核燃料輸送容器に関する。 背景技術  The present invention relates to a nuclear fuel transport container, and more particularly to a nuclear fuel transport container for transporting a spent nuclear fuel assembly generated in a nuclear power plant. Background art
原子力発電所で発生した使用済核燃料集合体は、 ( 1 ) 放射線のしゃ へいの確保、 (2 ) 未臨界の確保、 (3 ) 密封の確保、 (4 ) 構造強度の 確保ができる専用の核燃料輸送容器 (または核燃料輸送兼貯蔵容器) 内 に装荷され、 原子力発電所から貯蔵場所まで輸送される。  Spent nuclear fuel assemblies generated at nuclear power plants are dedicated nuclear fuel that can (1) secure radiation shielding, (2) secure subcriticality, (3) secure sealing, and (4) secure structural strength. Loaded in transport containers (or nuclear fuel transport and storage containers) and transported from nuclear power plants to storage locations.
従来、 使用済核燃料用の核燃料輸送容器は、 核燃料輸送工学 (財電力 中央研究所バックエンド研究会編、 福田佐登志 ·有富正憲監修、 P 7 6 ) に記載のように、 高エネルギー中性子の遮へぃ材として炭素鋼またはス テンレス鋼を用いている。 この高エネルギー中性子の遮へぃ材は、 核燃 料輸送容器の容器本体の構造材としても用いられる。 従来の核燃料輸送 容器は、 炭素鋼 (またはステンレス鋼) 製の外筒、 外筒内に設置された、 炭素鋼 (またはステンレス鋼) 製の内筒、 及び外筒と内筒との間に配置 された中性子遮へい体 (水素またはボロンを含む材料で構成) を備えて いる。 更に、 その核燃料輸送容器は、 内筒の内側に使用済燃料集合体を 収納する複数の空間を形成するバスケットを備える。 バスケット内に装 荷された使用済燃料集合体から放射される中性子は、 内筒で遮へいされ た後に、 中性子遮へい体により減速, 遮へいされる。  Conventionally, nuclear fuel transport containers for spent nuclear fuel have been developed using high-energy neutrons as described in Nuclear Fuel Transport Engineering Carbon steel or stainless steel is used as a shielding material. This high-energy neutron shielding material is also used as a structural material of the container body of a nuclear fuel transport container. The conventional nuclear fuel transport container is an outer cylinder made of carbon steel (or stainless steel), an inner cylinder made of carbon steel (or stainless steel) installed inside the outer cylinder, and placed between the outer cylinder and the inner cylinder. Neutron shield (consisting of materials containing hydrogen or boron). Further, the nuclear fuel transport container includes a basket forming a plurality of spaces for storing the spent fuel assemblies inside the inner cylinder. The neutrons emitted from the spent fuel assemblies loaded in the basket are shielded by the inner cylinder and then decelerated and shielded by the neutron shield.
核燃料輸送容器に用いられる中性子遮へい体は、 一般的に有機物で構 成されているため、 安全解析評価上、 特別の試験条件下の試験評価 (火 災時の評価) では燃えて焼失する関係上、 存在しないものとして遮へい 解析を実施する。 このとき、 核燃料輸送容器の表面(外筒の表面)から 1 m離れた場所での線量当量率は、 1 0 mS v/h rを下回る必要がある ことが日本の法律で規定されている。 線量当量率のその値は、 I AEA の輸送基準値であって日本以外の各国でも守られており、' 制限線量当量 率と呼ばれる。 現在、 日本において輸送の対象となっている BWR用の 使用済燃料集合体は、 8行 8列の燃料棒配列、 及び小径の水ロッドを有 する燃料集合体(ステップ I燃料集合体という)である。 小径の水口ッド の直径は燃料棒の直径よりも大きいが燃料棒の配列ピッチよりも小さレ ステップ I燃料集合体は原子炉に装荷される前の状態で約 3 3 GWd/ tの燃焼度が得られる、 8行 8列の燃料棒配列を有する燃料集合体 (ス テツプ I燃料集合体という) である。 このステップ I燃料集合体は、 従 来の核燃料輸送容器において制限線量当量率 ( 1 0 m S Vノ h r ) 以下 を達成する。 Neutron shields used in nuclear fuel transport containers are generally made of organic substances. Therefore, in the safety analysis evaluation, in the test evaluation under special test conditions (evaluation at the time of fire), the shielding analysis is performed assuming that it does not exist because it burns and burns. At this time, Japanese law stipulates that the dose equivalent rate at a location 1 m away from the surface of the nuclear fuel transport container (the surface of the outer cylinder) must be less than 10 mS v / hr. The value of the dose equivalent rate is the transport standard value of the IAEA, which is also observed in countries other than Japan, and is called the 'limited dose equivalent rate'. Currently, the spent fuel assemblies for BWRs currently being transported in Japan are a fuel assembly with an 8-by-8 fuel rod array and a small diameter water rod (Step I fuel assembly). is there. The diameter of the small-diameter water inlet is larger than the diameter of the fuel rods but smaller than the pitch of the fuel rods.Step I The fuel assembly has a burnup of about 33 GWd / t before being loaded into the reactor. This is a fuel assembly (referred to as Step I fuel assembly) having an 8 × 8 fuel rod array. This Step I fuel assembly will achieve a dose equivalent rate (10 m SV no hr) or less in a conventional nuclear fuel transport container.
現在、 BWRを用いた原子力発電所で使用されている、 太径の水口ッ ドを設け燃料棒を 8行 8列に配置した高燃焼度 (約 3 9 GWd/ t ) の 燃料集合体 (ステップ Π燃料集合体という)、 その原子力発電所で使用 が開始されつつある燃料棒を 9行 9列に配置した更に高燃焼度 (約 45 GWd/ t) の燃料集合体、 及び使用が予定されている MOX燃料集合 体は、 ステップ I燃料集合体に比べ中性子発生量が格段に多くなる。 こ れらの高燃焼度燃料集合体及び MOX燃料集合体を輸送する核燃料輸送 容器は、 上記の制限線量当量率を満足する必要があるため、 炭素鋼 (ま たはステンレス鋼) 製の内筒の厚さを非常に厚くしなければならない。 内筒の厚みの増加は、 核燃料輸送容器重量の増加につながり、 ひいては 核燃料輸送容器の制限重量を満足させるために内部に収納できる使用済 核燃料集合体の収納体数の減少につながる。 これは、 核燃料輸送容器 1 基当たりの収納体数が減少し、 使用済燃料集合体の輸送効率が低下する。 発明の開示 At present, a high burnup (approximately 39 GWd / t) fuel assembly (step 39) with a large diameter water inlet and fuel rods arranged in 8 rows and 8 columns, which is currently used in a nuclear power plant using BWRs A fuel assembly with a higher burnup (approximately 45 GWd / t), in which fuel rods that are beginning to be used at the nuclear power plant are arranged in 9 rows and 9 columns, and are expected to be used. Some MOX fuel assemblies generate significantly more neutrons than Step I fuel assemblies. The nuclear fuel transport container that transports these high burn-up fuel assemblies and MOX fuel assemblies must satisfy the above-mentioned limited dose equivalent rate, so the inner cylinder made of carbon steel (or stainless steel) is required. Must be very thick. An increase in the thickness of the inner cylinder leads to an increase in the weight of the nuclear fuel transport container, and consequently This leads to a decrease in the number of stored nuclear fuel assemblies that can be stored inside to satisfy the limit weight of the nuclear fuel transport container. This reduces the number of containers per nuclear fuel transport container and reduces the transport efficiency of spent fuel assemblies. Disclosure of the invention
本発明の目的は、 使用済燃料集合体の輸送効率を向上できる核燃料輸 送容器を提供することにある。  An object of the present invention is to provide a nuclear fuel transport container capable of improving the transport efficiency of a spent fuel assembly.
本発明の特徴は、 内部に収納される複数の使用済燃料集合体を取囲ん で炭素鋼及びステンレス鋼のいずれかによって構成された筒状体に隣接 して設けられ、 かつその筒状体よりも非弾性散乱断面積が大きい材料に よって構成された中性子遮へい体を備えたことにある。  A feature of the present invention is that it is provided adjacent to a cylindrical body made of either carbon steel or stainless steel, surrounding a plurality of spent fuel assemblies housed therein, and In addition, a neutron shield composed of a material having a large inelastic scattering cross section is provided.
筒状体よりも非弾性散乱断面積が大きい材料によって構成された中性 子遮へい体は、 この中性子遮へい体を炭素鋼及びステンレス鋼にて構成 した場合に比べて、 厚みを薄くできる。 このため、 核燃料輸送容器の重 量を低減でき、 核燃料輸送容器内に収納できる使用済燃料集合体が増加 できる。 これは、 核燃料輸送容器による使用済燃料集合体の輸送効率を 向上できる。  A neutron shield composed of a material having a larger inelastic scattering cross-sectional area than a cylindrical body can be thinner than a case where the neutron shield is composed of carbon steel and stainless steel. For this reason, the weight of the nuclear fuel transport container can be reduced, and the number of spent fuel assemblies that can be stored in the nuclear fuel transport container can be increased. This can improve the transportation efficiency of spent fuel assemblies by the nuclear fuel transport container.
本発明の第 1実施形態の特徴は、 筒状体に隣接して設けられた上記中 性子遮へい体が、 水素を含む他の中性子遮へい体よりも内側に配置され ていることにある。 前者の中性子遮へい体が後者の中性子遮へい体より も内側に位置しているため、 核燃料輸送容器の重量が軽減される。 これ は、 前者の中性子遮へい体が半径方向において内側に位置するほど、 前 者の中性子遮へい体の重量が小さくなるためである。  A feature of the first embodiment of the present invention is that the neutron shield provided adjacent to the cylindrical body is arranged inside other neutron shields containing hydrogen. Since the former neutron shield is located inside the latter neutron shield, the weight of the nuclear fuel transport container is reduced. This is because the weight of the former neutron shield becomes smaller as the neutron shield is located inward in the radial direction.
本発明の第 2実施態様の特徴は、 1 0 5〜 1 0 7 e Vのエネルギーの中 性子に対する、 筒状体に隣接して設けられた上記中性子遮へい体の非弾 性散乱断面積が、 そのエネルギーの中性子に対する、 その筒状体の非弾 性散乱断面積よりも大きいことにある。 中性子遮へい体は 1 0 5〜 1 0 7 e Vのエネルギーの中性子に対する遮へい能力が向上する。 このため、 中性子遮へい体の半径方向における厚みが薄くなり、 核燃料輸送容器内 に収納できる使用済燃料集合体の体数が増加する。 その中性子遮へい体 は、 好ましくはタングステン, ガドリニゥム及びマンガンのいずれかで 構成される。 A feature of the second embodiment of the present invention, 1 0 5 to 1 0 7 for the neutral terminal of the energy e V, inelastic the neutron shielding member provided adjacent to the tubular body The elastic scattering cross section is larger than the inelastic scattering cross section of the cylindrical body for neutrons of that energy. Neutron shielding body is improved shielding ability against 1 0 5 to 1 0 7 energy neutrons e V. Therefore, the thickness of the neutron shield in the radial direction is reduced, and the number of spent fuel assemblies that can be stored in the nuclear fuel transport container increases. The neutron shield is preferably composed of one of tungsten, gadolinium and manganese.
本発明の他の特徴は、 炭素鋼及びステンレス鋼のいずれかによつて構 成された第 1筒状体と、 炭素鋼及びステンレス鋼のいずれかによつて構 成されて第 1筒状体を取囲む第 2筒状体と、 第 1筒状体と第 2筒状体と の間に設けられ、 筒状体よりも非弾性散乱断面積が大きい材料によって 構成された中性子遮へい体とを備えたことにある。 この他の特徴によれ ば、 前述の本発明の特徴によって得られる効果を得ることができる。 更 に、 その他の特徴によれば、 第 2筒状体よりも内側に位置しているため、 万が一の核燃料輸送容器の落下事故においても、 筒状体よりも非弾性散 乱断面積が大きい材料によって構成された中性子遮へい体が外部に飛散 して核燃料輸送容器の遮へい能力が低下することを防止できる。 また、 その中性子遮へい体が第 1筒状体よりも外側に位置するので、 中性子遮 へい体の重量増加が抑制され、 核燃料輸送容器の重量が更に低減される。 本発明の第 3実施形態の特徴は、 前記第 1筒状体, 前記第 2筒状体、 及び前記第 1筒状体と前記第 2筒状体との間に設けられた前記中性子遮 へい体である第 1中性子遮へい体が、 水素を含んで環状に配置された第 2中性子遮へい体の内側に配置されたことにある。 第 3実施形態によれ ば、 第 1中性子遮へい体が第 2中性子遮へい体の内側に配置されている ので、 前述の第 1実施形態の特徴によって得られる効果と同じ効果を生 じる。 Another feature of the present invention is that a first cylindrical body made of either carbon steel or stainless steel, and a first cylindrical body made of either carbon steel or stainless steel And a neutron shield provided between the first and second cylindrical bodies and made of a material having a larger inelastic scattering cross-sectional area than the cylindrical body. Have prepared. According to the other features, the effects obtained by the features of the present invention described above can be obtained. In addition, according to other features, since it is located inside the second cylindrical body, even in the event of an accidental drop of the nuclear fuel transport container, a material having a larger inelastic scattering cross-sectional area than the cylindrical body This prevents the neutron shielding body constituted by the scattered scattered particles from scattered outside and reduces the shielding ability of the nuclear fuel transport container. Further, since the neutron shield is located outside the first cylindrical body, an increase in the weight of the neutron shield is suppressed, and the weight of the nuclear fuel transport container is further reduced. A feature of the third embodiment of the present invention is that the first cylindrical body, the second cylindrical body, and the neutron shielding provided between the first cylindrical body and the second cylindrical body. That is, the first neutron shielding body, which is a body, is disposed inside the second neutron shielding body which is annularly arranged containing hydrogen. According to the third embodiment, since the first neutron shield is arranged inside the second neutron shield, the same effects as those obtained by the features of the first embodiment described above are produced. I will.
本発明の第 4実施形態の特徴は、 第 1筒状体の半径方向における厚み は前記第 2筒状体の半径方向における厚みよりも薄くすることにある。 第 1筒状体の半径方向における厚みの減少は、 第 1筒状体と前記第 2筒 状体との間に設けられた中性子遮へい体が配置される位置を、 核燃料輸 送容器の軸心により近づけることになる。 このため、 その中性子遮へい 体の重量が低減され、 核燃料輸送容器の重量が更に低減される。  A feature of the fourth embodiment of the present invention is that the thickness of the first cylindrical body in the radial direction is smaller than the thickness of the second cylindrical body in the radial direction. The decrease in the thickness of the first cylindrical body in the radial direction depends on the position at which the neutron shield provided between the first cylindrical body and the second cylindrical body is disposed, and the axial center of the nuclear fuel transport container. Closer. Therefore, the weight of the neutron shield is reduced, and the weight of the nuclear fuel transport container is further reduced.
本発明の更に他の特徴は、 炭素鋼及びステンレス鋼のいずれかによつ て構成された第 1金属部、 及びこの第 1金属部の内部に設けられ、 第 1 金属部がよりも非弾性散乱断面積が大きい材料によって構成された第 3 中性子遮へい体を有し、 容器本体に取付けられる第 1蓋と、 炭素鋼及び ステンレス鋼のいずれかによつて構成された第 2金属部、 及びこの第 2 金属部の内部に設けられ、 水素を含む第 4中性子遮へい体を有し、 第 1 蓋を覆って容器本体に取付けられる第 2蓋とを備えたことにある。 容器 本体は、 炭素鋼及びステンレス鋼のいずれかによつて構成され、 内部に 収納される複数の使用済燃料集合体を取囲む第 1筒状体、 炭素鋼及ぴス テンレス鋼のいずれかによって構成されて前記第 1筒状体を取囲む第 2 筒状体、 前記第 1筒状体と前記第 2筒状体との間に設けられ、 前記筒状 体よりも非弾性散乱断面積が大きい材料によって構成された第 1中性子 遮へい体、 前記第 2筒状体を取囲んで環状に配置された、 水素を含む第 2中性子遮へい体、 及び前記環状に配置された第 2中性子遮へい体の外 側を取囲む外側筒状体を有する。  Still another feature of the present invention is that a first metal portion made of either carbon steel or stainless steel, and provided inside the first metal portion, wherein the first metal portion is more inelastic. A third neutron shield composed of a material having a large scattering cross-sectional area, a first lid attached to the container body, a second metal part composed of either carbon steel or stainless steel, and A second lid is provided inside the second metal part, has a fourth neutron shielding body containing hydrogen, and has a second lid which is attached to the container body so as to cover the first lid. The container body is made of either carbon steel or stainless steel, and is made of either a first tubular body surrounding a plurality of spent fuel assemblies housed inside, a carbon steel or stainless steel. A second tubular body configured and surrounding the first tubular body, provided between the first tubular body and the second tubular body, and having a less inelastic scattering cross-sectional area than the tubular body. A first neutron shield composed of a large material, a second neutron shield containing hydrogen, which is annularly arranged around the second cylindrical body, and a second neutron shield which is annularly arranged. It has an outer tubular body surrounding the outer side.
本発明のこの他の特徴によれば、 一次蓋及び二次蓋によって二重に容 器本体を密封しているため、 万が一、 収納している使用済燃料集合体の 燃料棒被覆管が損傷しても燃料棒内の放射性物質は、 核燃料輸送容器外 に放出されない。 一次蓋内に第 3中性子遮へい体を、 外側に位置する二 次蓋内に第 4中性子遮へい体を設けているので、 一次蓋及び二次蓋はコ ンパクトになりそれぞれの重量が低減される。 一次蓋及び二次蓋の重量 低減は、 核燃料輸送容器の重量低減につながる。 According to another feature of the present invention, since the container body is double-sealed by the primary lid and the secondary lid, the fuel rod cladding tube of the stored spent fuel assembly may be damaged. The radioactive material inside the fuel rod is Not released to Since the third neutron shield is provided in the primary lid and the fourth neutron shield is provided in the secondary lid located outside, the primary lid and the secondary lid are compact and their respective weights are reduced. Reducing the weight of the primary and secondary lids leads to a reduction in the weight of the nuclear fuel transport container.
本発明の第 5実施形態の特徴は、 1 0 5〜 1 0 7 e Vのエネルギーの中 性子に対する、 第 3中性子遮へい体の非弹性散乱断面積が、 1 0 5Features of the fifth embodiment of the present invention, with respect to 1 0 5 to 1 0 7 e V the neutral terminal of the energy, non弹性scattering cross section of a third neutron shielding body, 1 0 5 -
1 0 7 e Vのエネルギーの中性子に対する、 第 1金属部の非弾性散乱断 面積よりも大きいことにある。 第 3中性子遮へい体は 1 0 5〜 1 0 7 e V のエネルギーの中性子に対する遮へい能力が向上する。 このため、 第 3 中性子遮へい体の軸方向における厚みが薄くなり、 核燃料輸送容器の重 量が低減される。 その第 3中性子遮へい体は、 好ましくはタングステン, ガドリニゥム及びマンガンのいずれかで構成される。 図面の簡単な説明 1 0 7 for energy neutrons e V, in greater than inelastic scattering cross section of the first metal portion. The third neutron shielding body is improved shielding ability against 1 0 5 to 1 0 7 energy neutrons e V. For this reason, the thickness of the third neutron shield in the axial direction is reduced, and the weight of the nuclear fuel transport container is reduced. The third neutron shield is preferably composed of one of tungsten, gadolinium and manganese. BRIEF DESCRIPTION OF THE FIGURES
第 1図は炭素鋼を用いた核燃料輸送容器における中性子エネルギーと 核燃料輸送容器の表面から 1 m離れた場所での中性子束及び線量当量率 との関係を示す特性図、 第 2図は中性子エネルギーと鉄 (F e) の各断 面積との関係を示す特性図、 第 3図は中性子エネルギーとタングステン (W) の各断面積との関係を示す特性図、 第 4図は中性子エネルギーと ガドリニウム (G d ) の各断面積との関係を示す特性図、 第 5図は中性 子エネルギーとマンガン (M n ) の各断面積との関係を示す特性図、 第 6図は本発明の好適な一実施例である核燃料輸送容器の縦断面図、 第 7 図は第 6図の横断面図、 第 8図は第 6図の蓋部の拡大縦断面図である。 発明を実施するための最良の形態 発明者らは、 核燃料輸送容器の中性子遮へい特性を検討した。 特に、 ステップ Π燃料集合体、 ステツプ ΠΙ燃料集合体及び M 0 X燃料集合体の 各々を装荷した場合における核燃料輸送容器の中性子遮へい特性を検討 した。 これらの検討は、 解析計算に基づいて行われた。 例えば、 高燃焼 度燃料集合体の線源スぺクトルを考慮して詳細な中性子の遮へい計算を 行い、 特別の試験条件下の試験評価 (火災時の評価) 時における核燃料 輸送容器の制限線量当量率を評価した。 この解析, 評価は、 中性子スぺ クトルの変化と線量当量率に着目して行った。 炭素鋼にて製造された内 筒及び外筒を備えた核燃料輸送容器に対する計算結果を、 第 1図に示す。 第 1図において、 横軸は中性子のエネルギー、 左側の縦軸は核燃料輸送 容器表面から 1 m離れた場所での中性子束 (相対値)、 右側の縦軸は核 燃料輸送容器表面から l m離れた場所での線量当量率 (相対値) をそれ ぞれ示している。 第 1図に示された計算結果は、 核燃料輸送容器表面か ら 1 m離れた場所での中性子束が 1 e Vから 1 0 7 e Vまで広範囲にわ たって分布しているが、 核燃料輸送容器表面から 1 m離れた場所での制 限線量当量率が主に 1 0 5〜 1 0 7 e Vの高速中性子に支配されているこ とを示している。 すなわち、 核燃料輸送容器表面から l m離れた場所で の制限線量当量率は主に 1 0 5〜 1 0 7 e Vの高速中性子によって決定さ れるため、 このエネルギー領域の中性子を遮へいすることにより、 線量 当量率を非常に小さくできることが分かった。 発明者らは、 上記の核燃 料輸送容器において、 1 0 5〜 1 0 7 e Vの高速中性子が遮へいされにく い原因を解析的に究明した。 この結果、 発明者らは、 炭素鋼の主成分で ある鉄(F e)の非弾性散乱断面積が、 1 0 6〜 1 0 7 e Vでは約 l barn (第 2図参照) と比較的大きいものの、 1 0 6 e V以下では約 1 0— 2 barn に 急激に小さくなることに気が付いた。 この 1 0 6 e V以下で鉄の非弾性 散乱断面積が急激に小さくなることが、 従来の核燃料輸送容器で高速中 性子が遮へいされにくい原因であることが明らかになった。 Fig. 1 is a characteristic diagram showing the relationship between neutron energy in a nuclear fuel transport container made of carbon steel and the neutron flux and dose equivalent rate at a location 1 m away from the surface of the nuclear fuel transport container, and Fig. 2 shows the neutron energy and Fig. 3 is a characteristic diagram showing the relationship between the cross-sectional areas of iron (Fe), Fig. 3 is a characteristic diagram showing the relationship between the neutron energy and each cross-sectional area of tungsten (W), and Fig. 4 is a graph showing the relationship between neutron energy and gadolinium (G d) is a characteristic diagram showing the relationship between each cross-sectional area, FIG. 5 is a characteristic diagram showing the relationship between neutron energy and each cross-sectional area of manganese (M n), and FIG. 6 is a preferred embodiment of the present invention. FIG. 7 is a longitudinal sectional view of a nuclear fuel transport container according to an embodiment, FIG. 7 is a transverse sectional view of FIG. 6, and FIG. 8 is an enlarged longitudinal sectional view of a lid of FIG. BEST MODE FOR CARRYING OUT THE INVENTION The inventors studied the neutron shielding characteristics of a nuclear fuel transport container. In particular, the neutron shielding characteristics of the nuclear fuel transport container when each of the Step I fuel assembly, the Step II fuel assembly, and the M0X fuel assembly were loaded were examined. These studies were based on analytical calculations. For example, a detailed neutron shielding calculation was performed taking into account the source spectrum of a high burnup fuel assembly, and the equivalent dose limit of the nuclear fuel transport container during test evaluation under special test conditions (evaluation at the time of fire). Rate was evaluated. This analysis and evaluation focused on changes in the neutron spectrum and dose equivalent rates. Figure 1 shows the calculation results for a nuclear fuel transport container with an inner cylinder and an outer cylinder made of carbon steel. In Fig. 1, the horizontal axis is the neutron energy, the left vertical axis is the neutron flux (relative value) at a distance of 1 m from the surface of the nuclear fuel transport container, and the right vertical axis is lm from the surface of the nuclear fuel transport container. The dose equivalent rate (relative value) at each location is shown. Calculation results shown in FIG. 1, although the neutron flux in a nuclear fuel transport container surface or al 1 m away is distributed standing I a wide range from 1 e V to 1 0 7 e V, nuclear fuel transport container which indicates that the limit dose equivalent rate at 1 m away from the surface is dominated mainly to fast neutrons of 1 0 5 ~ 1 0 7 e V. That is, since limited dose equivalent rate at a distance lm from the nuclear fuel transport container surface which is mainly determined by fast neutrons 1 0 5 ~ 1 0 7 e V, by shielding neutrons of this energy region, the dose It was found that the equivalent ratio could be made very small. We, the nuclear fuel transport container of the above, fast neutrons 1 0 5 ~ 1 0 7 e V is the causes have difficulty shielded analytically. As a result, the inventors have found that inelastic scattering cross section of the iron is the main component of carbon steel (F e), relatively and 1 0 6 ~ 1 0 7 e V in about l barn (see FIG. 2) large but was noticed that an abrupt decrease in the 1 0 6 e V than about 1 0- 2 barn. Inelastic iron below the 1 0 6 e V It has been clarified that the sudden decrease in the scattering cross section is the reason that fast neutrons are difficult to be shielded by the conventional nuclear fuel transport container.
この結果より、 発明者らは、 核燃料輸送容器表面から l m離れた場所 での線量当量率を主に決めている 1 0 5〜 1 0 7 e Vの高速中性子を効率 良く遮へいできれば、 線量当量率を小さくできると考えた。 そして、 中 性子のエネルギー 1 0 5〜 1 0 7 e Vの範囲における非弹性散乱断面積が 炭素鋼またはステンレス鋼より大きい物質を核燃料輸送容器に用いれば 良いとの結論に至った。 この条件を満足する物質としては、 タンダステ ン (W) , ガドリニウム (G d ) 及びマンガン ( M n ) がある。 タンダ ステン, ガドリニウム及びマンガンにおける、 それぞれの中性子のエネ ルギ一と非弾性散乱断面積を中心とした各断面積との関係を、 第 2図, 第 3図及び第 4図にそれぞれ示している。 これらの図から明らかである ように、 タングステン, ガドリニゥム及びマンガンは、 中性子のェネル ギ一 1 0 5〜 1 0 7 e Vの範囲における非弾性散乱断面積は、 1 barn 程 度と大きくなつており、 炭素鋼 (またはステンレス鋼) にて遮へいでき ないエネルギー領域 1 0 5〜 1 0 7 e Vの中性子を遮へいできる。 From this result, the inventors found that if efficiently shield the faster neutrons 1 0 5 ~ 1 0 7 e V , which primarily determine the dose equivalent rate at a distance lm from the nuclear fuel transport container surface dose equivalent rate Thought it could be smaller. The non弹性scattering cross section in the energy range 1 0 5 ~ 1 0 7 e V a neutron is concluded that the larger material than carbon steel or stainless steel may be used in nuclear fuel transport container. Materials that satisfy this condition include tandatin (W), gadolinium (G d), and manganese (M n). Figures 2, 3, and 4 show the relationship between the energy of each neutron and each cross-section centered on the inelastic cross-section in Tandasten, gadolinium, and manganese, respectively. As is apparent from these figures, tungsten, Gadoriniumu and manganese, inelastic scattering cross section in the region of the neutron Eneru formic one 1 0 5 ~ 1 0 7 e V is summer large as 1 barn extent can shield neutrons of energy regions 1 0 5 ~ 1 0 7 e V that can not be shielded by a carbon steel (or stainless steel).
核燃料輸送容器に、 中性子のエネルギーが 1 0 5〜 1 0 7 e V領域の非 弾性散乱断面積が大きい材料 (元素), タングステン (W) , ガドリニゥ ム (G d ), マンガン (M n ) を用いることによって、 核燃料輸送容器 の遮へい性能が向上する。 このため、 中性子の遮へいに必要な、 核燃料 輸送容器の厚さ (例えば炭素鋼 (またはステンレス鋼) 製の内筒及び外 筒の少なくとも一方の厚さ) を薄くすることができ、 核燃料輸送容器の 直径が小さくなる。 これは、 核燃料輸送容器の重量が低減につながる。 核燃料輸送容器の重量低減により、 核燃料輸送容器一基当たりに収納で きる使用済核燃料集合体の体数を増加できる。 このため、 使用済燃料集 合体の輸送効率が向上する。 Nuclear fuel transport container, the neutron energy 1 0 5 ~ 1 0 7 e V inelastic scattering cross section is large material region (element), tungsten (W), Gadoriniu beam (G d), manganese (M n) By using it, the shielding performance of the nuclear fuel transport container is improved. For this reason, the thickness of the nuclear fuel transport container (for example, the thickness of at least one of the inner and outer cylinders made of carbon steel (or stainless steel)) necessary for neutron shielding can be reduced, The diameter becomes smaller. This leads to a reduction in the weight of the nuclear fuel transport container. By reducing the weight of the nuclear fuel transport container, the number of spent nuclear fuel assemblies that can be stored per nuclear fuel transport container can be increased. Therefore, the spent fuel collection The combined transport efficiency is improved.
本発明の好適な一実施例である核燃料輸送容器を、 第 6図及び第 7図 を用いて以下に説明する。  A nuclear fuel transport container according to a preferred embodiment of the present invention will be described below with reference to FIGS. 6 and 7.
本実施例の核燃料輸送容器 1は、 沸縢水型原子炉で発生した使用済燃 料集合体を収納する。 核燃料輸送容器 1は、 一次蓋 1 1, 二次蓋 1 3及 び容器本体 1 5を備える。 容器本体 1 5は、 バスケット 3, 第 1内側筒 状体 4 , 中性子遮へい体 5 , 第 2内側筒状体 6 , 中性子遮へい体 7及び 外側筒状体 9を備える。 第 1内側筒状体 4, 中性子遮へい体 5, 第 2内 側筒状体 6, 中性子遮へい体 7及び外側筒状体 9は、 同心円状に配置さ れる。 第 1内側筒状体 4, 第 2内側筒状体 6及び外側筒状体 9は炭素鋼 製であるが、 ステンレス鋼製にすることも可能である。 第 1内側筒状体 4 , 第 2内側筒状体 6及び外側筒状体 9は、 それぞれ筒状の側壁部、 及 び側壁部につながる底部を有する容器形状となっている。 中性子遮へい 体 5は、 タングステンである。 格子状に仕切られた複数の燃料収納空間 を有するバスケット 3が、 第 1内側筒状体 4の内側に設けられる。 バス ケット 3から水平方向に伸びる支持部 1 6が第 1内側筒状体 4の内面に 接している。 第 1内側筒状体 4は第 2内側筒状体 6の内側に位置する。 中性子遮へい体 5は、 第 1内側筒状体 4と第 2内側筒状体 6との間に配 置される。 すなわち、 中性子遮へい体 5は、 第 1内側筒状体 4の側壁と 第 2内側筒状体 6の側壁との間のみならず、 第 1内側筒状体 4の底部と 第 2内側筒状体 6の底部との間にも設けられる。 外側筒状体 9は第 2内 側筒状体 6の外側に位置している。 第 2内側筒状体 6の軸方向に伸びる 複数のフィン 8が、 第 2内側筒状体 6の外面に取付けられ、 外側筒状体 9の内面付近まで達している。 中性子遮へい体 7は第 2内側筒状体 6と 外側筒状体 9との間に配置される。 中性子遮へい体 7は、 水素を含む物 質である有機物(例えばレジン)で構成される。 The nuclear fuel transport container 1 of the present embodiment stores a spent fuel assembly generated in a boiling water reactor. The nuclear fuel transport container 1 includes a primary lid 11, a secondary lid 13, and a container body 15. The container body 15 includes a basket 3, a first inner cylindrical body 4, a neutron shielding body 5, a second inner cylindrical body 6, a neutron shielding body 7, and an outer cylindrical body 9. The first inner cylindrical body 4, the neutron shielding body 5, the second inner cylindrical body 6, the neutron shielding body 7, and the outer cylindrical body 9 are arranged concentrically. The first inner cylindrical body 4, the second inner cylindrical body 6, and the outer cylindrical body 9 are made of carbon steel, but may be made of stainless steel. Each of the first inner cylindrical body 4, the second inner cylindrical body 6, and the outer cylindrical body 9 has a container shape having a cylindrical side wall and a bottom connected to the side wall. The neutron shield 5 is tungsten. A basket 3 having a plurality of fuel storage spaces partitioned in a grid is provided inside the first inner cylindrical body 4. A support 16 extending horizontally from the basket 3 is in contact with the inner surface of the first inner cylindrical body 4. The first inner cylindrical body 4 is located inside the second inner cylindrical body 6. The neutron shield 5 is disposed between the first inner cylindrical body 4 and the second inner cylindrical body 6. That is, the neutron shield 5 is formed not only between the side wall of the first inner cylindrical body 4 and the side wall of the second inner cylindrical body 6, but also at the bottom of the first inner cylindrical body 4 and the second inner cylindrical body. Also provided between the bottom of 6. The outer cylindrical body 9 is located outside the second inner cylindrical body 6. A plurality of fins 8 extending in the axial direction of the second inner cylindrical body 6 are attached to the outer surface of the second inner cylindrical body 6 and reach near the inner surface of the outer cylindrical body 9. The neutron shield 7 is disposed between the second inner cylindrical body 6 and the outer cylindrical body 9. The neutron shield 7 contains hydrogen It is composed of quality organic matter (eg, resin).
一次蓋 1 1は、 炭素鋼で作られている。 この一次蓋 1 1は、 タンダス テンで構成された中性子遮へい体 1 0を内部に有し、 第 8図に示すよう にねじ 1 7によって容器本体 1 5の第 1内側筒状体 4に取付けられる。 二次蓋 1 3も炭素鋼で作られている。 レジンで構成される中性子遮へい 体 1 2が二次蓋 1 3の内部に設けられる。 二次蓋 1 3は第 8図に示すよ うに容器本体 1 5の第 2内側筒状体 6にねじ 1 8によって取付けられる。 環状ガスケット 1 9がー次蓋 1 1と第 1内側筒状体 4との間をシールし、 環状ガスケット 2 0が二次蓋 1 3と第 2内側筒状体 6との間をシールす る。 一次蓋 1 1及び二次蓋 1 3は、 ステンレス鋼で作成してもよい。  Primary lid 11 is made of carbon steel. The primary lid 11 has a neutron shielding body 10 made of tungsten, and is attached to the first inner cylindrical body 4 of the container body 15 by screws 17 as shown in FIG. . The secondary lid 13 is also made of carbon steel. A neutron shield 12 made of resin is provided inside the secondary lid 13. The secondary lid 13 is attached to the second inner cylindrical body 6 of the container body 15 by screws 18 as shown in FIG. An annular gasket 19 seals between the secondary lid 11 and the first inner cylindrical body 4, and an annular gasket 20 seals between the secondary lid 13 and the second inner cylindrical body 6. . The primary lid 11 and the secondary lid 13 may be made of stainless steel.
沸騰水型原子炉から発生した使用済燃料集合体は、 原子炉建星内の使 用済燃料貯蔵プールに貯蔵される。 そこで所定期間貯蔵された使用済燃 料集合体 1 4が核燃料輸送容器 1内に収納される。 すなわち、 一次蓋 1 1及び二次蓋 1 3が取外された状態で、 使用済燃料集合体 1 4がバス ケット 3内に収納される。 バスケット 3内の全ての燃料収納空間内に使 用済燃料集合体が収納された後、 一次蓋 1 1及び二次蓋 1 3によって核 燃料輸送容器 1を密封する。 使用済燃料集合体 1 4を収納した核燃料輸 送容器 1は、 原子力発電所から核燃料再処理施設に輸送される。 核燃料 再処理施設内で核燃料輸送容器 1の二次蓋 1 3及び一次蓋 1 1が順次は ずされる。 バスケット 3内の使用済燃料集合体 1 4は、 核燃料輸送容器 1から取出されて核燃料再処理施設内の使用済燃料貯蔵プール内に移送 され、 ここで再処理されるまで貯蔵される。 バスケット 3は、 ボロン含 有ステンレス鋼で構成される。 バスケット 3はボロンを含んでいるので、 隣接して収納された使用済燃料集合体内の核燃料物質の臨界を防止でき る。 核燃料輸送容器 1にて使用済燃料集合体 1 4の輸送中において、 使 用済燃料集合体 1 4において発生する熱は、 バスケット 3からの輻射、 及びバスケット 3及び支持部 1 6を介する伝熱によって、 第 1内側筒状 体 4に伝えられる。 この熱は、 第 1内側筒状体 4から、 中性子遮へい体 5, 第 2内側筒状体 6、 及びフィン 8を介して外側筒状体 9まで伝えら れ、 外側筒状体 9から外部の空気に放出される。 中性子遮へい体 7はレ ジンで構成されるため熱伝導率が低く、 第 2内側筒状体 6から外側筒状 体 9への熱の移動がフィン 8の設置によって促進される。 The spent fuel assemblies generated from the boiling water reactor are stored in the spent fuel storage pool on the reactor terrestrial planet. Then, the spent fuel assemblies 14 stored for a predetermined period are stored in the nuclear fuel transport container 1. That is, the spent fuel assembly 14 is stored in the basket 3 with the primary lid 11 and the secondary lid 13 removed. After the spent fuel assemblies are stored in all the fuel storage spaces in the basket 3, the nuclear fuel transport container 1 is sealed with the primary lid 11 and the secondary lid 13. The nuclear fuel transport container 1 containing the spent fuel assemblies 14 is transported from the nuclear power plant to the nuclear fuel reprocessing facility. The secondary lid 13 and the primary lid 11 of the nuclear fuel transport container 1 are sequentially removed in the nuclear fuel reprocessing facility. The spent fuel assemblies 14 in the basket 3 are removed from the nuclear fuel transport container 1 and transferred to the spent fuel storage pool in the nuclear fuel reprocessing facility, where they are stored until they are reprocessed. Basket 3 is made of boron-containing stainless steel. Since the basket 3 contains boron, the criticality of nuclear fuel material in the spent fuel assembly stored adjacently can be prevented. During transport of spent fuel assemblies 14 in nuclear fuel transport container 1, The heat generated in the spent fuel assembly 14 is transmitted to the first inner cylindrical body 4 by radiation from the basket 3 and heat transfer through the basket 3 and the support 16. This heat is transmitted from the first inner cylindrical body 4 to the outer cylindrical body 9 via the neutron shielding body 5, the second inner cylindrical body 6, and the fins 8, and is transferred from the outer cylindrical body 9 to the outside. Released into the air. Since the neutron shield 7 is made of resin, its thermal conductivity is low, and the transfer of heat from the second inner cylindrical body 6 to the outer cylindrical body 9 is promoted by the fins 8.
通常の状態では、 使用済核燃料集合体 1 4から放出された中性子は、 核燃料輸送容器 1 の半径方向においては、 バスケット 3のプレート、 第 1内側筒状体 4 , 中性子遮へい体 5 , 第 2内側筒状体 6, 中性子遮へい 体 7及び外側筒状体 9によって遮へいされる。 特に、 第 1内側筒状体 4 及び第 2内側筒状体 6は、 使用済核燃料集合体 1 4から放出された高工 ネルギ一中性子を遮へいする。 中性子遮へい体 5は、 金属のタンダステ ンで構成されており、 前述したように、 1 0 5〜 1 0 7 e Vのエネルギー を有する高エネルギー中性子に対する非弾性散乱断面積が大きい。 この ため、 中性子遮へい体 5は、 第 1内側筒状体 4及び第 2内側筒状体 6に おいて遮へい能力が低下する、 1 0 5〜 1 0 7 e Vの高エネルギー中性子 を効率良く遮へいする。 中性子遮へい体 7は、 第 2内側筒状体 6を透過 した中性子を減速させて遮へいする。 核燃料輸送容器 1の底部 (第 6図 において下側) においても、 中性子は、 バスケット 3の底板, 第 1内側 筒状体 4, 中性子遮へい体 5, 第 2内側筒状体 6, 中性子遮へい体 7及 び外側筒状体 9によって遮へいされる。 なお、 核燃料輸送容器 1の蓋の 部分でも、 中性子は、 一次蓋 1 1の金属部 (炭素鋼)、 中性子遮へい体 1 0、 二次蓋 1 3の金属部 (炭素鋼) 及び中性子遮へい体 1 2によって 遮へいされる。 中性子遮へい体 1 0は、 中性子遮へい体 5と同様に、 1 05〜 1 07 e Vの高エネルギー中性子を効率良く遮へいする。 中性子 遮へい体 1 0は、 一次蓋 1 1の金属部において遮へい能力が低下する、 1 05〜 1 07 e Vの高エネルギー中性子を遮へいする。 In a normal state, the neutrons emitted from the spent nuclear fuel assembly 14 are, in the radial direction of the nuclear fuel transport container 1, the plate of the basket 3, the first inner cylindrical body 4, the neutron shield 5, the second inner It is shielded by the cylindrical body 6, neutron shielding body 7 and outer cylindrical body 9. In particular, the first inner cylindrical member 4 and the second inner cylindrical member 6 shield high energy neutrons emitted from the spent nuclear fuel assembly 14. Neutron shielding body 5 is constituted by Tandasute emissions of metals, as described above, a large non-elastic scattering cross section for high energy neutrons having an energy of 1 0 5 ~ 1 0 7 e V. Therefore, the neutron shielding body 5, Oite shielding ability is lowered to the first inner tubular member 4 and the second inner cylindrical member 6, 1 0 5 to 1 0 7 high energy neutrons e V efficiently shielding I do. The neutron shield 7 slows down and shields neutrons transmitted through the second inner cylindrical body 6. At the bottom (lower side in Fig. 6) of the nuclear fuel transport container 1, neutrons are also supplied to the bottom plate of the basket 3, the first inner cylindrical body 4, the neutron shield 5, the second inner cylindrical body 6, and the neutron shield 7 And is shielded by the outer tubular body 9. The neutrons in the lid of the nuclear fuel transport container 1 are also the metal part of the primary lid 11 (carbon steel), the neutron shield 10, the metal part of the secondary lid 13 (carbon steel) and the neutron shield 1 Shielded by two. Neutron shield 10 is similar to neutron shield 5, The high-energy neutrons 1 0 5 ~ 1 0 7 e V efficiently shielding. Neutron shielding body 1 0, shielding ability is lowered in the metal portion of the primary lid 1 1, to shield high energy neutrons 1 0 5 ~ 1 0 7 e V.
次に、 火災時における核燃料輸送容器 1の放射線遮へい能力について 説明する。 火災時においては、 有機物で構成されている中性子遮へい体 7及び 1 2は焼失する。 従って、 使用済核燃料集合体 14から放出され た中性子は、 核燃料輸送容器 1の半径方向及び底部においては、 バスケ ット 3, 第 1内側筒状体 4, 中性子遮へい体 5, 第 2内側筒状体 6及び 外側筒状体 9によって遮へいされる。 また、 核燃料輸送容器 1の蓋の部 分においては、 中性子は、 一次蓋 1 1の金属部, 中性子遮へい体 1 0及 び二次蓋 1 3の金属部によって遮へいされる。  Next, the radiation shielding ability of the nuclear fuel transport container 1 in the event of a fire will be described. In the event of a fire, the neutron shields 7 and 12, which are composed of organic matter, will be destroyed. Therefore, the neutrons released from the spent nuclear fuel assembly 14 in the radial direction and the bottom of the nuclear fuel transport container 1 are the basket 3, the first inner cylindrical body 4, the neutron shield 5, and the second inner cylindrical body. Shielded by body 6 and outer tubular body 9. In the lid part of the nuclear fuel transport container 1, neutrons are shielded by the metal part of the primary lid 11, the neutron shield 10 and the metal part of the secondary lid 13.
火災によって中性子遮へい体 7及び 1 2が焼失した際における、 ①本 実施例における半径方向における中性子遮へい能力と、 ②中性子遮へい 体 5の替りに炭素鋼を用いた場合における核燃料輸送容器の半径方向に おける中性子の遮へい能力を、 それぞれ検討した。 ケ一ス② (炭素鋼設 置) では、 火災時の制限線量当量率 ( l OmS v/h r以下) を満足す る炭素鋼の板厚は約 3 3 Omm となった。 ケース① (中性子遮へい体 5設 置) では、 火災時の制限線量当量率 ( l OmS v/h r以下) を満足す る中性子遮へい体 5の厚みは約 1 3 0 mm であった。 比重は炭素鋼が 7.8 9 g/cm3、 タングステンが 1 9. 1 g /cm3である。 タングステン は、 比重が炭素鋼に比べて高いけれども、 中性子遮へい体 5の厚みは炭 素鋼の厚みに比べて約 2 0 Omm薄くできる。 したがって、 ケース①にお ける核燃料輸送容器の総重量は、 使用済燃料集合体が収納されていない 状態で、 ケース②におけるその総重量に比べて軽くなる。 その総重量の 低減分は、 ケース①での核燃料輸送容器内に収納できる使用済核燃料集 合体の収納体数を、 ケース②のその収納対数の約 2倍に増加できる。 す なわち、 中性子エネルギー 1 0 5〜 1 0 7 e V領域の非弾性散乱断面積が 大きいタングステンにより構成された中性子遮へい体 5を用いた場合は、 中性子遮へい体 5の替りに炭素鋼を用いた場合に比べて、 核燃料輸送容 器に収納できる使用済核燃料集合体の収納体数を約 2倍に増加できる。 これは、 使用済燃料集合体の輸送効率を増大する。 When the neutron shields 7 and 12 are burned down by a fire, (1) the neutron shielding capacity in the radial direction in this embodiment, and (2) the radial direction of the nuclear fuel transport container when carbon steel is used instead of the neutron shield 5 The neutron shielding ability of the neutrons was examined. In Case II (carbon steel installation), the thickness of carbon steel that satisfies the limited dose equivalent rate in the event of a fire (less than OmS v / hr) was about 33 Omm. In Case I (5 neutron shields installed), the thickness of the neutron shield 5 that satisfies the limited dose equivalent rate in the event of a fire (l OmS v / hr or less) was about 130 mm. The specific gravity of carbon steel is 7.89 g / cm 3 and that of tungsten is 19.1 g / cm 3 . Although the specific gravity of tungsten is higher than that of carbon steel, the thickness of the neutron shield 5 can be reduced by about 20 Omm compared to the thickness of carbon steel. Therefore, the total weight of the nuclear fuel transport container in Case I is lighter than the total weight in Case I in a state where the spent fuel assemblies are not stored. The reduction in the total weight is equivalent to the spent nuclear fuel collection that can be stored in the nuclear fuel transport container in Case II. The number of storage units in the united unit can be increased to about twice the number of storage units in Case II. Ie, the case of using the neutron shielding body 5 constituted by inelastic scattering cross section is large tungsten neutron energy 1 0 5 ~ 1 0 7 e V region, use of carbon steel in place of the neutron shielding body 5 The number of spent nuclear fuel assemblies that can be stored in a nuclear fuel transport container can be doubled as compared with the case where This increases the transport efficiency of spent fuel assemblies.
中性子遮へい体 5は、 中性子遮へい体 7よりも内側に位置しているた め、 核燃料輸送容器 1の重量が軽減される。 すなわち、 中性子遮へい体 5は、 半径方向においてどの位置に配置されても 1 0 5〜 1 0 7 e Vのェ ネルギ一の中性子を遮へいするために前述した所定の厚さを必要とする。 このため、 中性子遮へい体 5の重量は、 中性子遮へい体 5の内径が小さ いほど、 軽くなる。 Since the neutron shield 5 is located inside the neutron shield 7, the weight of the nuclear fuel transport container 1 is reduced. In other words, the neutron shielding body 5 requires a predetermined thickness as described above in order to shield any are arranged at positions 1 0 5 ~ 1 0 7 e V of E Nerugi one neutron be in the radial direction. For this reason, the weight of the neutron shield 5 decreases as the inner diameter of the neutron shield 5 decreases.
中性子遮へい体 5を構成するタングステンは、 もろいが、 剛体である 第 1内側筒状体 4及び第 2内側筒状体 6によって取囲まれているので、 周囲に飛散せず、 中性子遮へい体 5としての機能を発揮する。 例えば、 中性子遮へい体 5を、 第 2内側筒状体 6よりも外側、 例えば第 2内側筒 状体 6と中性子遮へい体 7との間に配置した場合には、 輸送中に核燃料 輸送容器が落下して外側筒状体 9が損傷を受けて中性子遮へい体 7が外 部に飛散したとき、 中性子遮へい体 5も外部に飛散する可能性がある。 中性子遮へい体 7の外部への飛散は、 核燃料輸送容器 1における、 105 〜 1 0 7 e V のエネルギーの中性子に対する遮へい能力を低下させる。 本実施例は、 中性子遮へい体 5を第 2内側筒状体 6の内側に配置してい るので、 そのような遮へい能力の低下を防止できる。 また、 第 1内側筒 状体 4を設けることによって第 2内側筒状体 6の内側で中性子遮へい体 5をほぼ均一な厚みで環状に配置できる。 バスケット 3の横断面は第 7 図に示すように正方形をしている。 このため、 第 1内側筒状体 4を設け ない場合は、 中性子遮へい体 5は、 第 2内側筒状体 6とバスケット 3と の間に配置される。 この場合、 中性子遮へい体 5の半径方向の厚みは、 一番厚みの薄い位置で前述の所定の厚みを満足させる必要がある。 した がつて、 中性子遮へい体 5の半径方向の厚みが必要以上に厚くなる場所 も有り、 核燃料輸送容器の重量が増加することになる。 The tungsten constituting the neutron shield 5 is fragile, but is not scattered around because it is surrounded by the rigid first inner cylindrical body 4 and the second inner cylindrical body 6, so that the neutron shield 5 is formed. Demonstrate the function of. For example, when the neutron shield 5 is disposed outside the second inner cylindrical body 6, for example, between the second inner cylindrical body 6 and the neutron shield 7, the nuclear fuel transport container falls during transportation. When the outer cylindrical body 9 is damaged and the neutron shield 7 scatters outside, the neutron shield 5 may also scatter outside. Scattering to the outside of the neutron shielding body 7, in the nuclear fuel transport container 1, reducing the shielding ability against 10 5 ~ 1 0 7 e V energy neutrons. In the present embodiment, since the neutron shield 5 is disposed inside the second inner cylindrical body 6, such a decrease in the shielding ability can be prevented. Further, by providing the first inner cylindrical body 4, the neutron shield 5 can be annularly arranged with a substantially uniform thickness inside the second inner cylindrical body 6. The cross section of basket 3 is 7th It is square as shown in the figure. For this reason, when the first inner cylindrical body 4 is not provided, the neutron shield 5 is disposed between the second inner cylindrical body 6 and the basket 3. In this case, the radial thickness of the neutron shield 5 needs to satisfy the above-mentioned predetermined thickness at the position where the thickness is the smallest. Therefore, there are places where the thickness of the neutron shield 5 in the radial direction becomes unnecessarily thick, so that the weight of the nuclear fuel transport container increases.
第 1内側筒状体 4の半径方向における厚みは、 第 2内側筒状体 4の半 径方向における厚みよりも薄い。 このため、 第 2内側筒状体 4に隣接し ている比重の大きな中性子遮へい体 5の内径が小さくなる。 これは、 中 性子遮へい体 5の重量低減につながり、 核燃料輸送容器 1の重量を低減 する。  The thickness of the first inner cylindrical body 4 in the radial direction is smaller than the thickness of the second inner cylindrical body 4 in the radial direction. For this reason, the inner diameter of the neutron shield 5 having a large specific gravity adjacent to the second inner cylindrical body 4 is reduced. This leads to a reduction in the weight of the neutron shield 5 and a reduction in the weight of the nuclear fuel transport container 1.
本実施例は、 一次蓋 1 1及び二次蓋 1 3によって二重に容器本体 1 5 を密封しているため、 万が一、 収納している使用済燃料集合体の燃料棒 被覆管が損傷しても燃料棒内の放射性物質は、 核燃料輸送容器 1外に放 出されない。 また、 内側に位置する一次蓋 1 1内に中性子遮へい体 1 0 を、 外側に位置する二次蓋 1 3内に中性子遮へい体 1 2を、 中性子遮へ い体 1 0及び中性子遮へい体 1 2を分けて設けているので、 一次蓋 1 1 及び二次蓋 1 3はコンパクトになりそれぞれの重量が低減される。  In this embodiment, since the container body 15 is double-sealed by the primary lid 11 and the secondary lid 13, the fuel rod cladding tube of the stored spent fuel assembly may be damaged by any chance. Also, radioactive materials in the fuel rods are not released out of the nuclear fuel transport container 1. Also, the neutron shield 10 in the primary lid 11 located inside, the neutron shield 12 in the secondary lid 13 located outside, the neutron shield 10 and the neutron shield 1 2 The primary lid 11 and the secondary lid 13 are compact, and their weights are reduced.
中性子遮へい体 5, 1 0は、 金属のタングステンではなく、 W— F e 及び W— P bのようなタングステン合金、 及びタングステンの焼結体の いずれかで構成してもよい。 更には、 中性子遮へい体 5, 1 0は、 ガド リニゥムまたはマンガンで構成してもよい。 ここで、 ガドリニウムは、 金属のガドリ二ゥム, G d— F e及び G d— P bのようなガドリニゥム 合金、 及びガドリニウムの焼結体のいずれかの形態で用いられる。 また、 マンガンを用いる場合には、 金属のマンガン, M n — F e及び M n— P bのようなマンガン合金、 及びマンガンの焼結体のいずれかの形態に なる。 中性子遮へい体 5, 1 0は、 タングステン, ガドリニウム及びマ ンガンのうち少なくとも 1つの物質を含んでいればよい。 The neutron shields 5, 10 may be made of a tungsten alloy such as W—Fe and W—Pb, or a sintered body of tungsten, instead of metal tungsten. Further, the neutron shields 5, 10 may be made of gadolinium or manganese. Here, gadolinium is used in the form of a metal gadolinium, a gadolinium alloy such as Gd-Fe and Gd-Pb, or a sintered body of gadolinium. When manganese is used, the metal manganese, M n — Fe and M n — It takes the form of either a manganese alloy such as Pb or a sintered body of manganese. The neutron shield 5, 10 only needs to contain at least one of tungsten, gadolinium, and manganese.
加圧水型原子炉から発生した使用済燃料集合体も、 核燃料輸送容器を 用いて輸送される。 この核燃料輸送容器にも、 核燃料輸送容器 1と同じ 構造を適用できる。 しかし、 加圧水型原子炉から発生する使用済燃料集 合体の横断面積は、 沸騰水型原子炉から発生する使用済燃料集合体のそ れよりも大きい。 このため、 加圧水型原子炉から発生した使用済燃料集 合体を収納する核燃料輸送容器は、 バスケット内に形成される燃料収納 空間の横断面積が、 沸騰水型原子炉から発生した使用済燃料集合体を収 納するその横断面積よりも大きい。 中性子遮へい体 5, 1 2を備えてい る、 加圧水型原子炉から発生した使用済燃料集合体を収納する核燃料輸 送容器は、 前述の核燃料輸送容器 1で生じる効果を得ることができる。 核燃料輸送 ·貯蔵容器は、 使用済燃料集合体の輸送及び貯蔵に用いら れる。 この核燃料輸送 ·貯蔵容器に、 核燃料輸送容器 1で用いられた中 性子遮へい体 5, 1 2を適用することもできる。 中性子遮へい体 5, 1 2を適用した核燃料輸送 ·貯蔵容器は、 核燃料輸送容器 1の構成を有 する。 核燃料輸送 ·貯蔵容器も、 核燃料輸送容器である。 産業上の利用可能性  Spent fuel assemblies generated from pressurized water reactors are also transported using nuclear fuel transport containers. The same structure as the nuclear fuel transport container 1 can be applied to this nuclear fuel transport container. However, the cross-sectional area of a spent fuel assembly generated from a pressurized water reactor is larger than that of a spent fuel assembly generated from a boiling water reactor. For this reason, the nuclear fuel transport container that stores the spent fuel assemblies generated from the pressurized water reactor has a cross-sectional area of the fuel storage space formed in the basket, and the spent fuel assemblies generated from the boiling water reactor Is larger than its cross-sectional area. The nuclear fuel transport container provided with the neutron shields 5 and 12 and storing the spent fuel assemblies generated from the pressurized water reactor can obtain the effects produced in the nuclear fuel transport container 1 described above. Nuclear fuel transport · Storage containers are used for transport and storage of spent fuel assemblies. The neutron shields 5, 12 used in the nuclear fuel transport container 1 can be applied to the nuclear fuel transport / storage container. The nuclear fuel transport and storage container to which the neutron shields 5 and 12 are applied has the structure of the nuclear fuel transport container 1. Nuclear fuel transport · Storage containers are also nuclear fuel transport containers. Industrial applicability
本発明は、 沸騰水型原子力発電所で発生する使用済燃料集合体を収納 する核燃料輸送容器だけでなく、 加圧水型原子力発電所で発生する使用 済燃料集合体を収納する核燃料輸送容器に適用することが可能である。 また、 本発明は、 貯蔵機能を有する核燃料輸送 ·貯蔵容器への適用も可 能である。  INDUSTRIAL APPLICABILITY The present invention is applied not only to a nuclear fuel transport container for storing a spent fuel assembly generated in a boiling water nuclear power plant, but also to a nuclear fuel transport container for storing a spent fuel assembly generated in a pressurized water nuclear power plant. It is possible. The present invention is also applicable to a nuclear fuel transport / storage container having a storage function.

Claims

請 求 の 範 囲 The scope of the claims
1 . 炭素鋼及びステンレス鋼のいずれかによつて構成され、 内部に収納 される複数の使用済燃料集合体を取囲む筒状体と、 前記筒状体に隣接し て設けられ、 かつ前記筒状体よりも非弾性散乱断面積が大きい材料によ つて構成された中性子遮へい体とを備えたことを特徴とする核燃料輸送 容器。  1. A tubular body formed of any one of carbon steel and stainless steel and surrounding a plurality of spent fuel assemblies housed therein; and a tubular body provided adjacent to the tubular body, and A nuclear fuel transport container, comprising: a neutron shield composed of a material having a larger inelastic scattering cross-sectional area than a lamella.
2 . 水素を含む第 2中性子遮へい体が環状に配置され、 前記環状に配置 された第 2中性子遮へい体の外側を取囲む外側筒状体が設けられ、 前記 中性子遮へい体である第 1中性子遮へい体、 及び前記内側筒状体が、 前 記第 2中性子遮へい体よりも内側に配置された請求項 1の核燃料輸送容 ¾ff。  2. A second neutron shield containing hydrogen is arranged in an annular shape, and an outer cylindrical body surrounding the outside of the second neutron shield arranged in an annular shape is provided, and the first neutron shield is the neutron shield. 2. The nuclear fuel transport container ff according to claim 1, wherein the body and the inner cylindrical body are disposed inside the second neutron shielding body.
3 . 前記第 1中性子遮へい体は、 1 0 5〜 1 0 7 e Vのエネルギーの中性 子に対する非弾性散乱断面積が前記筒状体のその非弹性散乱断面積より も大きい請求項 1の核燃料輸送容器。 3. The first neutron shielding body, 1 0 5 ~ 1 0 7 e V energy inelastic scattering cross section for neutrons of claim 1 greater than its non弹性scattering cross section of the tubular body of the Nuclear fuel transport container.
4 . 前記第 1中性子遮へい体は、 タングステン, ガドリニウム及びマン ガンのいずれかを含んでいる請求項 3の核燃料輸送容器。  4. The nuclear fuel transport container according to claim 3, wherein the first neutron shield includes any of tungsten, gadolinium, and manganese.
5 . 炭素鋼及びステンレス鋼のいずれかによつて構成され、 内部に収納 される複数の使用済燃料集合体を取囲む第 1筒状体と、 炭素鋼及びステ ンレス鋼のいずれかによって構成されて前記第 1筒状体を取囲む第 2筒 状体と、 前記第 1筒状体と前記第 2筒状体との間に設けられ、 前記筒状 体よりも非弾性散乱断面積が大きい材料によって構成された中性子遮へ い体とを備えたことを特徴とする核燃料輸送容器。  5. The first cylindrical body that is made of either carbon steel or stainless steel and surrounds a plurality of spent fuel assemblies housed inside, and that is made of either carbon steel or stainless steel A second cylindrical body surrounding the first cylindrical body, and provided between the first cylindrical body and the second cylindrical body, and having a larger inelastic scattering cross-sectional area than the cylindrical body. A nuclear fuel transport container comprising a neutron shield made of a material.
6 . 前記第 1筒状体, 前記第 2筒状体、 及び前記第 1筒状体と前記第 2 筒状体との間に設けられた前記中性子遮へい体である第 1中性子遮へい 体が、 水素を含んで環状に配置された第 2中性子遮へい体の内側に配置 され、 前記環状に配置された第 2中性子遮へい体の外側を取囲む外側筒 状体が設けられた請求項 5の核燃料輸送容器。 6. The first cylindrical body, the second cylindrical body, and a first neutron shielding body that is the neutron shielding body provided between the first cylindrical body and the second cylindrical body, Located inside the second neutron shield arranged in a ring containing hydrogen 6. The nuclear fuel transport container according to claim 5, wherein an outer cylindrical body surrounding an outside of the second neutron shielding body arranged in an annular shape is provided.
7 . 前記第 1筒状体の半径方向における厚みは前記第 2筒状体の半径方 向における厚みよりも薄い請求項 5または請求項 6の核燃料輸送容器。  7. The nuclear fuel transport container according to claim 5, wherein a thickness of the first cylindrical body in a radial direction is smaller than a thickness of the second cylindrical body in a radial direction.
8 . 前記中性子遮へい体は、 1 0 5〜 1 0 7 e Vのエネルギーの中性子に 対する非弹性散乱断面積が前記筒状体のその非弾性散乱断面積よりも大 きい請求項 5の核燃料輸送容器。 8. The neutron shielding body, 1 0 5 to 1 0 7 nuclear fuel transportation large heard claim 5 than the inelastic scattering cross sections of the non弹性scattering cross section is the cylindrical body against the neutron energy e V container.
9 . 前記中性子遮へい体は、 タングステン, ガドリニウム及びマンガン のいずれかを含んでいる請求項 8の核燃料輸送容器。  9. The nuclear fuel transport container according to claim 8, wherein the neutron shield includes any of tungsten, gadolinium, and manganese.
1 0 . 炭素鋼及びステンレス鋼のいずれかによつて構成され、 内部に収 納される複数の使用済燃料集合体を取囲む第 1筒状体, 炭素鋼及びステ ンレス鋼のいずれかによって構成されて前記第 1筒状体を取囲む第 2筒 状体、 前記第 1筒状体と前記第 2筒状体との間に設けられ、 前記筒状体 よりも非弾性散乱断面積が大きい材料によって構成された第 1中性子遮 へい体、 前記第 2筒状体を取囲んで環状に配置された、 水素を含む第 2 中性子遮へい体、 及び前記環状に配置された第 2中性子遮へい体の外側 を取囲む外側筒状体を有する容器本体と、 10. Constructed of either carbon steel or stainless steel and composed of the first tubular body surrounding multiple spent fuel assemblies contained inside, and composed of any of carbon steel and stainless steel A second tubular body surrounding the first tubular body, provided between the first tubular body and the second tubular body, and having a larger inelastic scattering cross-sectional area than the tubular body. A first neutron shield composed of a material, a second neutron shield containing hydrogen, which is annularly arranged around the second cylindrical body, and a second neutron shield which is annularly arranged. A container body having an outer cylindrical body surrounding the outer side;
炭素鋼及びステンレス鋼のいずれかによって構成された第 1金属部、 及びこの第 1金属部の内部に設けられ、 前記第 1金属部よりも非弾性散 乱断面積が大きい材料によって構成された第 3中性子遮へい体を有し、 前記容器本体に取付けられる第 1蓋と、  A first metal portion made of any one of carbon steel and stainless steel; and a first metal portion provided inside the first metal portion and made of a material having a larger inelastic scattering cross-sectional area than the first metal portion. 3 having a neutron shield, a first lid attached to the container body,
炭素鋼及びステンレス鋼のいずれかによって構成された第 2金属部、 及びこの第 2金属部の内部に設けられ、 水素を含む第 4中性子遮へい体 を有し、 前記第 1蓋を覆って前記容器本体に取付けられる第 2蓋とを備 えた核燃料輸送容器。 A second metal part made of one of carbon steel and stainless steel, and a fourth neutron shield provided in the second metal part and containing hydrogen, the vessel covering the first lid and covering the first lid A nuclear fuel transport container equipped with a second lid attached to the main body.
1 1 . 前記第 1中性子遮へい体は、 1 0 5〜 1 0 7 e Vのエネルギーの中 性子に対する非弾性散乱断面積が前記筒状体のその非弾性散乱断面積よ りも大きく、 前記第 3中性子遮へい体は、 1 0 5〜 1 0 7 e Vのエネルギ 一の中性子に対する非弾性散乱断面積が前記第 1金属部のその非弾性散 乱断面積よりも大きい請求項 1 0の核燃料輸送容器。 1 1. The first neutron shielding body, 1 0 5 ~ 1 0 7 e inelastic scattering cross sections for the neutral terminal of the energy of the V is greater Ri by the inelastic scattering cross section of the tubular body, the first 3 neutron shielding body, 1 0 5 ~ 1 0 7 e inelastic scattering cross section nuclear fuel transportation according to claim 1 0 greater than its inelastic scattered Randan area of the first metal portion relative to the neutron energy one V container.
1 2 . 前記第 1中性子遮へい体及び前記第 3中性子遮へい体は、 タンダ ステン、 ガドリニウム及びマンガンのいずれかを含んでいる請求項 1 1 の核燃料輸送容器。  12. The nuclear fuel transport container according to claim 11, wherein the first neutron shield and the third neutron shield include any of tundane, gadolinium, and manganese.
PCT/JP2000/006412 2000-09-20 2000-09-20 Container for nuclear fuel transportation WO2002025670A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/006412 WO2002025670A1 (en) 2000-09-20 2000-09-20 Container for nuclear fuel transportation
JP2002529786A JPWO2002025670A1 (en) 2000-09-20 2000-09-20 Nuclear fuel transport container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006412 WO2002025670A1 (en) 2000-09-20 2000-09-20 Container for nuclear fuel transportation

Publications (1)

Publication Number Publication Date
WO2002025670A1 true WO2002025670A1 (en) 2002-03-28

Family

ID=11736471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006412 WO2002025670A1 (en) 2000-09-20 2000-09-20 Container for nuclear fuel transportation

Country Status (2)

Country Link
JP (1) JPWO2002025670A1 (en)
WO (1) WO2002025670A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128902A (en) * 2019-02-07 2020-08-27 三菱重工業株式会社 Storage device for radioactive waste, monitoring device, and method for manufacturing radioactive waste

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202899A (en) * 1982-02-12 1983-11-26 クル−ゾ−・ロワ−ル Neutron protection device
JPS61195398A (en) * 1985-02-26 1986-08-29 株式会社日本製鋼所 Transport vessel for spent nuclear fuel
JPS6215493A (en) * 1985-07-15 1987-01-23 株式会社東芝 Spent fuel transport and storage vessel
JPH0224599A (en) * 1988-05-24 1990-01-26 Westinghouse Electric Corp <We> Cask for transporting radioactive material
JPH0850196A (en) * 1994-08-04 1996-02-20 Fuji Electric Co Ltd Shielding and cooling device for spent fuel transporting vessel
JPH08507381A (en) * 1993-10-08 1996-08-06 ベクトラ・テクノロジーズ・インコーポレーテッド Transport and storage barrels for spent nuclear fuel
JPH11326588A (en) * 1998-05-12 1999-11-26 Mitsubishi Heavy Ind Ltd Canister and facility for storing spent fuel, and cask for transporting the same
JPH11337684A (en) * 1998-05-29 1999-12-10 Hitachi Zosen Corp Cask made of stainless steel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58202899A (en) * 1982-02-12 1983-11-26 クル−ゾ−・ロワ−ル Neutron protection device
JPS61195398A (en) * 1985-02-26 1986-08-29 株式会社日本製鋼所 Transport vessel for spent nuclear fuel
JPS6215493A (en) * 1985-07-15 1987-01-23 株式会社東芝 Spent fuel transport and storage vessel
JPH0224599A (en) * 1988-05-24 1990-01-26 Westinghouse Electric Corp <We> Cask for transporting radioactive material
JPH08507381A (en) * 1993-10-08 1996-08-06 ベクトラ・テクノロジーズ・インコーポレーテッド Transport and storage barrels for spent nuclear fuel
JPH0850196A (en) * 1994-08-04 1996-02-20 Fuji Electric Co Ltd Shielding and cooling device for spent fuel transporting vessel
JPH11326588A (en) * 1998-05-12 1999-11-26 Mitsubishi Heavy Ind Ltd Canister and facility for storing spent fuel, and cask for transporting the same
JPH11337684A (en) * 1998-05-29 1999-12-10 Hitachi Zosen Corp Cask made of stainless steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020128902A (en) * 2019-02-07 2020-08-27 三菱重工業株式会社 Storage device for radioactive waste, monitoring device, and method for manufacturing radioactive waste
JP7221716B2 (en) 2019-02-07 2023-02-14 三菱重工業株式会社 RADIOACTIVE WASTE STORAGE DEVICE, MONITORING DEVICE, AND RADIOACTIVE WASTE MANAGEMENT METHOD

Also Published As

Publication number Publication date
JPWO2002025670A1 (en) 2004-01-29

Similar Documents

Publication Publication Date Title
El-Samrah et al. Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review
US10438710B2 (en) Systems and methods for dry storage and/or transport of consolidated nuclear spent fuel rods
US8822964B2 (en) Radioactive substance storage container
JP6878251B2 (en) Fuel assembly for light water reactors, core design method for light water reactors, and fuel assembly design method for light water reactors
JP2011174838A (en) Core of fast breeder reactor
WO2002025670A1 (en) Container for nuclear fuel transportation
JP2001318187A (en) Cask
JPH02222866A (en) Spent fuel basket
KR20220140708A (en) Fuel Design and Shielding Design for Radioisotope Thermoelectric Generators
US20010022827A1 (en) Nuclear reactor fuel assembly with a high burnup
JP2692215B2 (en) Storing method of fuel assembly in spent fuel cask
JP3825050B2 (en) Actinide combustion fuel elements
GB2055671A (en) Transport and storage of irradiated nuclear fuel elements
JPH11352272A (en) Reactor core and fuel assembly and fuel element used for the core
JPH0119555B2 (en)
US20110168926A1 (en) Compressed powder composite neutron absorber material
JPH06194477A (en) Nuclear fuel rod
US20220406485A1 (en) Fuel fabrication process for radioisotope thermoelectric generators
Ko et al. Design Features of an OASIS-32D Metal Cask for both Transport and Storage of SNF
JPH07306282A (en) Assembly for annihilation disposal of long life nuclide and core of reactor
Lewis Space shielding materials for Prometheus application
JP2001235583A (en) Spent fuel cask
RU2163038C2 (en) Manufacturing process for nuclear reactor control rod
JP5597523B2 (en) Fuel assembly storage method and fuel assembly storage body
Yun et al. Nuclear Criticality Analyses of Two Different Disposal Canisters for Deep Geological Repository Considering Burnup Credit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase