WO2002025203A1 - Inertial energy storage device - Google Patents

Inertial energy storage device Download PDF

Info

Publication number
WO2002025203A1
WO2002025203A1 PCT/CH2001/000572 CH0100572W WO0225203A1 WO 2002025203 A1 WO2002025203 A1 WO 2002025203A1 CH 0100572 W CH0100572 W CH 0100572W WO 0225203 A1 WO0225203 A1 WO 0225203A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
grid
blocks
heat
circuit
Prior art date
Application number
PCT/CH2001/000572
Other languages
French (fr)
Inventor
Michel Schmidt
Original Assignee
Deltablock Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deltablock Sa filed Critical Deltablock Sa
Priority to JP2002528763A priority Critical patent/JP2004508531A/en
Priority to EP01964802A priority patent/EP1319161A1/en
Priority to US10/380,903 priority patent/US20040035141A1/en
Priority to AU2001285645A priority patent/AU2001285645A1/en
Priority to CA002422931A priority patent/CA2422931A1/en
Publication of WO2002025203A1 publication Critical patent/WO2002025203A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0056Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/013Auxiliary supports for elements for tubes or tube-assemblies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates generally to space heating and air conditioning systems using renewable forms of energy, in particular by means of heat pumps.
  • the object of the present invention is therefore to ensure the advantages which can be obtained, by making an inexpensive inertial energy accumulation device comprising certain features which form the subject of the invention and are defined in claims 1 to 12 appended.
  • fig. 1 is a general schematic perspective view showing a dwelling house equipped with a heating and air conditioning system with an inertial energy storage device according to an embodiment of the invention
  • fig. 2 is a diagram showing a preferred embodiment of the inertial energy storage device according to the invention.
  • figs. 3 and 4 are views respectively in cross section and in front elevation in the direction of arrow A in FIG. 3, showing a block with two assemblies formed by a grid and a heat transfer fluid circuit, according to the preferred embodiment,
  • figs. 5 and 6 are sectional views similar to FIG. 3 showing two alternative layouts for the grids
  • fig. 7 is a front elevation view of a circuit mounted on a grid, showing the securing of the coil to the crossover points of the bars, and
  • fig. 8 is a diagrammatic perspective view on a larger scale showing a lashing flange in place on a duct and on a crossing of the bars of the carrier grid.
  • a villa 1 equipped with a heating system comprising an inertial energy accumulation device 2 comprising four accumulation blocks 3 embedded in the ground in the vicinity of the construction and means for driving as required the latent heat contained in the blocks.
  • a heating system comprising an inertial energy accumulation device 2 comprising four accumulation blocks 3 embedded in the ground in the vicinity of the construction and means for driving as required the latent heat contained in the blocks.
  • These are connected by a set of fluid circuit elements designated globally by 4, to a group heat generator 5 from which various secondary circuits supply usual auxiliaries such as domestic hot water conditioning 6, room radiators 7, underfloor heating circuit 8.
  • the generator group 5 is symbolized in FIG. 1 by two superimposed cabinets. Its structure is specified in the diagram in fig. 2. It is also connected by secondary circuits to a solar collector with water circuit 9 and to a recuperator 10 of excess heat capable of being produced by a living room chimney.
  • auxiliaries is given only by way of examples and is by no means exhaustive. As will be seen even further on, it also includes, for example, the case of a swimming pool as well as that of a high temperature solar oven. It simply shows the wide variety of applications that can be considered in any space heating and air conditioning problem.
  • the inertial energy accumulation device which will now be described makes it possible to satisfy, by standard and rational means, each particular case likely to be foreseen.
  • connection between the blocks 3 and the generator group 5, designated by 4 in FIG. 1 is made in fact for each block by pipes forming two circuits 12 and 13 each with an inlet 12a, 13a and an outlet 12b, 13b.
  • the active parts of the pipes 12, 13 are embedded in the concrete of the block 3 and from the inlet segments 12a, 13a are bent into coils in a sheet so that the contact surfaces are as large as possible and facilitate the exchange of heat between the heat transfer fluid circulating in the circuits and the concrete.
  • the heat generator group 5 is constituted in the embodiment described by two sets of heat pumps 14 and 15 entirely separate. Each set includes a complete loop of phase change heat transfer fluid, with: an upstream circuit element and a downstream circuit element, between the two elements a compressor and an expansion valve, on one of the elements a heat exchanger, and a secondary circuit with one or more radiators.
  • the compressor and the expansion valve are designated by 16 and 17, the upstream circuit is circuit 12, embedded in block 3 and operating as a condenser by supplying heat to the block.
  • the downstream circuit is then one evaporator designated by 18a, 18b.
  • the fluid passes through the heat exchanger 19 by absorbing the heat supplied by the secondary circuit 20 and captured in the refrigerator circuit 21. It is understood that this assembly can maintain a cold room or constitute an air conditioner intended to operate in summer. It could also fulfill other functions as will be seen below.
  • the assembly 15 consists of similar elements but operating in the opposite direction. We see in fig.
  • the water heater 6 will also be connected to circuit 26.
  • each block 3 are embedded two circuit elements 12, 13 each incorporated into one of the units 14 or 15 of group 5 and constituting one of the condenser 12 of the cold production unit 14 and the other 1 evaporator 13 of the heat production unit 15.
  • Figs. 3 and 4 again show the block 3 with the heat transfer fluid circuits 12 and 13 embedded in the concrete.
  • Each of these circuits is formed by a segment of tube of sufficient length, bent into a serpentine.
  • the tubes can be made of stainless steel or copper, for example with a diameter of 10 mm and a wall thickness of 0.5 mm. They can also be made of synthetic material, for example polyethylene, or even of composite materials.
  • Each circuit 12, 13 is mounted on a grid 28, 29.
  • This grid can be formed of metal bars, in particular of concrete bars, for example 6 mm in diameter and welded perpendicularly to each other so as to form a network with square or rectangular meshes, for example about 15 cm wide.
  • the grid can also be made of synthetic material, for example polyethylene, with welded or glued bars, or molded in one go.
  • the grids 28, 29 constitute support structures for the circuit elements, which are particularly useful for transporting and installing the circuit before pouring the concrete. In the case where the accumulator blocks are prefabricated, preferably use grids made of concrete bars, the grids then also having the function of ensuring the cohesion of the concrete.
  • the operation of bending the tubes and exact positioning of the coils relative to the nodes of the grid can be carried out rationally by means of a laying in the form of a plate having grooves in which the bars of the grid come to place.
  • the plate will be fitted with clamps fixing the tube with respect to the laying and with respect to the grid at the location where a bend in the coil must be made. We will return later to the technique of mounting the coils on the grids.
  • each grid-coil assembly has a weight of 50 to 100 kg, making handling easy. The site therefore does not require access means arranged for particularly heavy vehicles.
  • the blocks 3 can also be manufactured entirely in the factory and transported to the site as products ready for assembly.
  • the two grids 28, 29 are placed in a vertical position a short distance from each other in the center of the block.
  • Each serpentine circuit 12, 13 is fixed against the grid which carries it on the outside.
  • the grids and the branches of the coils are offset in height by one of the assemblies with respect to the other by 1/2 of the pitch of the grid. This arrangement ensures optimum thermal use of the properties of the concrete and of the bars. These play the role of thermal bridges and promote the diffusion of calories.
  • the blocks can be used as reservoirs of calories, either in accumulation or in "emptying", that is to say that only one of the two circuits, the condenser circuit 12 or the evaporator circuit 13, is in function.
  • the operating sequences can be variable, for example daily or seasonal. We can therefore conceive of cases where the two circuits operate at the same time, the energy only passing through the block. Such a configuration is particularly useful for hotels and hospitals, where continuous air conditioning and simultaneous domestic hot water production are required.
  • the close arrangement of the two assemblies 12-28, 13-29 then has the advantage that the temperature differences are very small. However, in this case, the grids 28 and 29 will be arranged at a substantially greater distance from one another than those shown in FIG.
  • Figs. 5 and 6 are sections similar to that of FIG.
  • the vertical bars of two grids 28, 29 are located in the same plane.
  • the horizontal bars can be placed as close to each other as possible (fig. 5) or, preferably, offset, for example by half a step (fig. 6).
  • Fig. 7 shows the securing of the heat transfer fluid tubes on the grids. It represents a view of the assemblies 12/28, 13/29 in the direction opposite to the arrow A in FIG. 3.
  • a portion of grid 29 is shown in elevation with a portion of a tube 13 of heat transfer fluid bent into a serpentine.
  • the horizontal branches of the coil 13 are fixed to nodes of the grid 29 by fasteners 30 formed of metallic or synthetic bands such as colson flanges. In the example of fig. 7, each flange is attached to a node of the grid and holds the horizontal branch of the tube 13 against a horizontal bar of the grid.
  • Fig. 8 further illustrates the arrangement.
  • the flanges are not hung on a node of the grid, but along a horizontal bar of the grid.
  • the number of flanges and their alternate arrangement on each horizontal branch of the coil will be chosen from case to case. It is noted that this mode of securing ensures an elastic pressure of the tubes against the bars of their support grid, which allows the assembly to withstand different expansions or contractions of grids / tubes during temperature variations.
  • the bent portions of the tube for the constitution of the coil can be provided with a device allowing a differentiated expansion / contraction of the tube relative to the concrete.
  • Such a device can be produced for example in the form of sleeves 31 (shown diagrammatically in FIG. 7) in compressible polyurethane foam (preferably with closed cells) which are arranged around the bent parts of the tube forming the coil.
  • the system described is particularly advantageous for several reasons: it makes it possible to make use of energy capture coming from accessory sources, such as a swimming pool or a solar collector with water circulation with a high coefficient of performance (COP), or even by example, a heat recovery from a chimney or that of a high temperature solar oven.
  • COP coefficient of performance
  • the accumulation of heat in the blocks can extend, during seasonal periods, to the surrounding soil which functions as both an insulator and a receiver.
  • the water tubes coming from solar collectors could be directly integrated into blocks 3 or some of these blocks, which avoids the intercalation of a heat exchanger. It is evident, finally, that the cases where the blocks 3 and the surrounding earth directly collect ambient heat during the summer and only the circuits 13 and the aggregate 15 are provided also represent an application of the present invention.
  • the inertial energy storage device can serve both as a thermal energy accumulator, as a temperature equalizer, as a temperature exchanger or as a temperature regulator, the whole being reversible.
  • the accumulation blocks shown in figs. 1 and 3 have a triangular or trapezoidal prism-shaped section with an upper base of dimension smaller than that of the lower base.
  • the blocks 3 can be made of any other shape, such as for example in the shape of a T, so as to prevent the block from sinking into the ground, or also of rectangular shape.
  • said blocks can also be made of other solid or semi-solid materials, such as for example with bentonite or other similar gels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Central Heating Systems (AREA)
  • Photovoltaic Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Road Paving Structures (AREA)

Abstract

The invention concerns a device wherein the coil tube (12) forming the condenser of a first heat pump assembly and the coil (13) which forms a second assembly are each fixed on vertical grids (28, 29). Said grids are arranged parallel to each other and are embedded in the concrete block (3) which forms one of the energy storage units incorporated in the system. The grids consist of concrete iron bars welded together into a network with square and rectangular meshes. The means fixing the tubes at certain intersections of the grid are clamps of a particular type. The grids, the tubes and the clamps are embedded in the concrete block (3).

Description

Dispositif d'accumulation d'énergie à inertie Inertia energy storage device
La présente invention concerne de façon générale les systèmes de chauffage et climatisation de locaux utilisant des formes d'énergie renouvelables, notamment par l'intermédiaire de pompes thermiques .The present invention relates generally to space heating and air conditioning systems using renewable forms of energy, in particular by means of heat pumps.
On a déjà proposé dans ce domaine l'utilisation d'accumulateurs de chaleur comprenant des blocs solides dans lesquels sont noyés un ou des circuits formés de tubes métalliques parcourus, quand le système est en service, par un fluide caloporteur qui peut être liquide ou gazeux. La demande de brevet WO 96/28703, par exemple, décrit un accumulateur de ce genre dont une des particularités est qu'il est en béton, matériau qui présente plusieurs avantages .It has already been proposed in this field the use of heat accumulators comprising solid blocks in which are embedded one or more circuits formed of metal tubes traversed, when the system is in service, by a heat transfer fluid which can be liquid or gaseous . Patent application WO 96/28703, for example, describes an accumulator of this kind, one of the particularities of which is that it is made of concrete, a material which has several advantages.
Les expériences récentes ont montré que le stockage d'énergie thermique dans des blocs rigides pouvait présenter des avantages pratiques très remarquables sur le plan de la rationalisation des travaux d'installation, du coût, de la fiabilité du service, du rendement et de la durée de vie, moyennant certaines dispositions à respecter de manière précise.Recent experience has shown that storing thermal energy in rigid blocks can have very remarkable practical advantages in terms of rationalization of installation work, cost, reliability of service, efficiency and duration. of life, subject to certain provisions to be observed precisely.
Le but de la présente invention est donc d'assurer les avantages susceptibles d'être obtenus, en réalisant à bon marché un dispositif d'accumulation d'énergie à inertie comportant certaines particularités qui forment l'objet de l'invention et sont définies dans les revendications 1 à 12 annexées .The object of the present invention is therefore to ensure the advantages which can be obtained, by making an inexpensive inertial energy accumulation device comprising certain features which form the subject of the invention and are defined in claims 1 to 12 appended.
On va décrire ci-après, à titre d'exemple, une forme d'exécution et quelques variantes du dispositif selon l'invention en se référant au dessin annexé, dont : la fig. 1 est une vue générale schématique en perspective montrant une maison d'habitation équipée d'un système de chauffage et climatisation avec un dispositif d'accumulation d'énergie à inertie selon une forme d'exécution de 1 ' invention,An embodiment and some variants of the device according to the invention will be described below, by way of example, with reference to the appended drawing, of which: fig. 1 is a general schematic perspective view showing a dwelling house equipped with a heating and air conditioning system with an inertial energy storage device according to an embodiment of the invention,
la fig. 2 est un schéma montrant une forme d'exécution préférée du dispositif d'accumulation d'énergie à inertie selon 1 ' invention,fig. 2 is a diagram showing a preferred embodiment of the inertial energy storage device according to the invention,
les figs . 3 et 4 sont des vues respectivement en coupe transversale et en élévation frontale dans le sens de la flèche A de la fig. 3, montrant un bloc avec deux assemblages formés d'une grille et d'un circuit de fluide caloporteur, selon la forme d'exécution préférée,figs. 3 and 4 are views respectively in cross section and in front elevation in the direction of arrow A in FIG. 3, showing a block with two assemblies formed by a grid and a heat transfer fluid circuit, according to the preferred embodiment,
les figs. 5 et 6 sont des vues en coupe analogues à la fig. 3 montrant deux variantes de disposition pour les grilles,figs. 5 and 6 are sectional views similar to FIG. 3 showing two alternative layouts for the grids,
la fig. 7 est une vue en élévation frontale d'un circuit monté sur une grille, montrant l'arrimage du serpentin aux points de croisement des barres, etfig. 7 is a front elevation view of a circuit mounted on a grid, showing the securing of the coil to the crossover points of the bars, and
la fig. 8 est une vue en perspective schématique à plus grande échelle montrant une bride d'arrimage en place sur un conduit et sur un croisement des barres de la grille porteuse.fig. 8 is a diagrammatic perspective view on a larger scale showing a lashing flange in place on a duct and on a crossing of the bars of the carrier grid.
A la fig. 1, on voit une villa 1 équipée d'un système de chauffage comportant un dispositif d'accumulation d'énergie à inertie 2 comportant quatre blocs d'accumulation 3 noyés dans le sol au voisinage de la construction et des moyens pour conduire selon les besoins la chaleur latente contenue dans les blocs. Ceux-ci sont reliés par un ensemble d'éléments de circuits de fluide désigné de façon globale par 4, à un groupe générateur de chaleur 5 dont partent différents circuits secondaires alimentant des auxiliaires usuels tels que conditionnement d'eau chaude sanitaire 6, radiateurs de chambre 7, circuit de chauffage par le sol 8. Le groupe générateur 5 est symbolisé à la fig. 1 par deux armoires superposées . Sa structure est précisée dans le schéma de la fig. 2. Il est aussi relié par des circuits secondaires à un capteur solaire à circuit d'eau 9 et à un récupérateur 10 de chaleur excédentaire susceptible d'être produite par une cheminée de salon.In fig. 1, we see a villa 1 equipped with a heating system comprising an inertial energy accumulation device 2 comprising four accumulation blocks 3 embedded in the ground in the vicinity of the construction and means for driving as required the latent heat contained in the blocks. These are connected by a set of fluid circuit elements designated globally by 4, to a group heat generator 5 from which various secondary circuits supply usual auxiliaries such as domestic hot water conditioning 6, room radiators 7, underfloor heating circuit 8. The generator group 5 is symbolized in FIG. 1 by two superimposed cabinets. Its structure is specified in the diagram in fig. 2. It is also connected by secondary circuits to a solar collector with water circuit 9 and to a recuperator 10 of excess heat capable of being produced by a living room chimney.
On comprend que cette énumération d'auxiliaires est donnée uniquement à titre d'exemples et n'est nullement exhaustive. Comme on le verra encore plus loin, elle englobe également, par exemple, le cas d'une piscine ainsi que celui d'un four solaire à haute température. Elle montre simplement la grande variété des applications qui peuvent être envisagées dans tout problème de chauffage et climatisation de locaux. Le dispositif d'accumulation d'énergie à inertie qui va être décrit maintenant permet de satisfaire par des moyens standards et rationnels chaque cas particulier susceptible d'être prévu.It is understood that this list of auxiliaries is given only by way of examples and is by no means exhaustive. As will be seen even further on, it also includes, for example, the case of a swimming pool as well as that of a high temperature solar oven. It simply shows the wide variety of applications that can be considered in any space heating and air conditioning problem. The inertial energy accumulation device which will now be described makes it possible to satisfy, by standard and rational means, each particular case likely to be foreseen.
A la fig. 2 on reconnaît les parois de la maison d'habitation 1 et un des blocs 3 d'accumulation d'énergie à inertie. Ce bloc est placé dans une excavation 11 creusée au voisinage de la construction 1 et remplie de terre. Il présente la forme d'un prisme avec une grande base rectangulaire placée horizontalement et une face supérieure plus étroite que la base et parallèle à cette dernière. Les blocs 3 sont en béton. Leurs dimensions seront standardisées: par exemple 2,5 x 1,7 x 0,5/0,3 m. Les dimensions de l'excavation 11 et la position de chaque bloc dans son excavation seront déterminées de cas en cas en fonction des quantités d'énergie à stocker et de la durée des périodes de renversement des flux comme on le verra plus loin.In fig. 2 we recognize the walls of the dwelling house 1 and one of the blocks 3 of inertial energy accumulation. This block is placed in an excavation 11 dug in the vicinity of construction 1 and filled with earth. It has the shape of a prism with a large rectangular base placed horizontally and an upper face narrower than the base and parallel to the latter. The blocks 3 are made of concrete. Their dimensions will be standardized: for example 2.5 x 1.7 x 0.5 / 0.3 m. The dimensions of excavation 11 and the position of each block in its excavation will be determined from case to case depending on the quantities of energy to be stored and the duration of the reversal periods of flows as will be seen below.
La connexion entre les blocs 3 et le groupe générateur 5, désignée par 4 à la fig. 1, est réalisée en fait pour chaque bloc par des tubulures formant deux circuits 12 et 13 avec chacun une entrée 12a, 13a et une sortie 12b, 13b. Les parties actives des tubulures 12, 13 sont noyées dans le béton du bloc 3 et à partir des segments d'entrée 12a, 13a sont coudées en serpentins en une nappe afin que les surfaces de contact soient aussi grandes que possible et facilitent les échanges de chaleur entre le fluide caloporteur circulant dans les circuits et le béton.The connection between the blocks 3 and the generator group 5, designated by 4 in FIG. 1, is made in fact for each block by pipes forming two circuits 12 and 13 each with an inlet 12a, 13a and an outlet 12b, 13b. The active parts of the pipes 12, 13 are embedded in the concrete of the block 3 and from the inlet segments 12a, 13a are bent into coils in a sheet so that the contact surfaces are as large as possible and facilitate the exchange of heat between the heat transfer fluid circulating in the circuits and the concrete.
Le groupe générateur de chaleur 5 est constitué dans la forme d'exécution décrite par deux ensembles de pompes thermiques 14 et 15 entièrement séparés. Chaque ensemble comprend une boucle complète de fluide caloporteur à changement de phase, avec: un élément de circuit amont et un élément de circuit aval, entre les deux éléments un compresseur et une vanne de détente, sur un des éléments un echangeur de chaleur, et un circuit secondaire avec un ou des organes radiateurs .The heat generator group 5 is constituted in the embodiment described by two sets of heat pumps 14 and 15 entirely separate. Each set includes a complete loop of phase change heat transfer fluid, with: an upstream circuit element and a downstream circuit element, between the two elements a compressor and an expansion valve, on one of the elements a heat exchanger, and a secondary circuit with one or more radiators.
Pour l'ensemble 14, le compresseur et la vanne de détente sont désignés par 16 et 17, le circuit amont est le circuit 12, noyé dans le bloc 3 et fonctionnant en condenseur en fournissant de la chaleur au bloc. Le circuit aval est alors 1 ' évaporâteur désigné par 18a, 18b. Le fluide passe dans 1 ' echangeur 19 en absorbant la chaleur fournie par le circuit secondaire 20 et captée dans le circuit réfrigérateur 21. On' comprend que cet ensemble peut entretenir une chambre froide ou constituer un climatiseur destiné à fonctionner en été. Il pourrait aussi remplir d'autres fonctions comme on le verra plus loin. L'ensemble 15 est constitué d'éléments semblables mais fonctionnant en sens inverse. On voit à la fig. 2 la vanne de détente 22, le compresseur 23, le circuit amont 24a, 24b fonctionnant en condenseur et fournissant à travers 1' echangeur 25 la chaleur captée dans le circuit aval 13 au circuit secondaire 26 alimentant le radiateur 27. Celui-ci correspond à l'élément 7 ou à l'élément 8 de la fig. 1. Le chauffe-eau 6 sera également branché dans le circuit 26.For assembly 14, the compressor and the expansion valve are designated by 16 and 17, the upstream circuit is circuit 12, embedded in block 3 and operating as a condenser by supplying heat to the block. The downstream circuit is then one evaporator designated by 18a, 18b. The fluid passes through the heat exchanger 19 by absorbing the heat supplied by the secondary circuit 20 and captured in the refrigerator circuit 21. It is understood that this assembly can maintain a cold room or constitute an air conditioner intended to operate in summer. It could also fulfill other functions as will be seen below. The assembly 15 consists of similar elements but operating in the opposite direction. We see in fig. 2 the expansion valve 22, the compressor 23, the upstream circuit 24a, 24b operating as a condenser and supplying through the exchanger 25 the heat captured in the downstream circuit 13 to the secondary circuit 26 supplying the radiator 27. This corresponds to element 7 or element 8 of FIG. 1. The water heater 6 will also be connected to circuit 26.
Ainsi, dans chaque bloc 3 sont noyés deux éléments de circuit 12, 13 incorporés chacun à l'une des unités 14 ou 15 du groupe 5 et constituant l'un le condenseur 12 de l'unité 14 de production de froid et l'autre 1 ' évaporateur 13 de l'unité 15 de production de chaleur. Cette disposition donne une très grande souplesse dans la gestion du système décrit . Les figs . 3 et 4 montrent à nouveau le bloc 3 avec les circuits de fluide caloporteur 12 et 13 noyés dans le béton. Chacun de ces circuits est formé d'un segment de tube de longueur suffisante, coudé en serpentin. Les tubes peuvent être en acier inox ou en cuivre, avec par exemple un diamètre de 10 mm et une épaisseur de paroi de 0,5 mm. Ils peuvent également être réalisés en matière synthétique, par exemple en polyéthylène, ou encore en matériaux composites. Chaque circuit 12, 13 est monté sur une grille 28, 29. Cette grille peut être formée de barres métalliques, notamment de fers à béton, par exemple de 6 mm de diamètre et soudés perpendiculairement les uns aux autres de manière à former un réseau à mailles carrées ou rectangulaires, ayant par exemple environ 15 cm de côté. La grille peut également être réalisée en matière synthétique, par exemple en polyéthylène, avec des barres soudées ou collées, ou moulée en une fois. Les grilles 28, 29 constituent des structures de support pour les éléments de circuit, particulièrement utiles pour le transport et la mise en place du circuit avant de couler le béton. Dans le cas où les blocs accumulateurs sont préfabriqués, on utilisera de préférence des grilles constituées de fers à béton, les grilles ayant alors également pour fonction d'assurer la cohésion du béton. L'opération de coudage des tubes et de mise en place exacte des serpentins par rapport aux noeuds de la grille peut être réalisée de manière rationnelle au moyen d'un posage ayant la forme d'une plaque présentant des rainures dans lesquelles les barres de la grille viennent se placer. La plaque sera équipée de pinces fixant le tube par rapport au posage et par rapport à la grille à 1 ' emplacement où un coude du serpentin doit être réalisé. On reviendra plus loin sur la technique de montage des serpentins sur les grilles.Thus, in each block 3 are embedded two circuit elements 12, 13 each incorporated into one of the units 14 or 15 of group 5 and constituting one of the condenser 12 of the cold production unit 14 and the other 1 evaporator 13 of the heat production unit 15. This arrangement gives great flexibility in the management of the system described. Figs. 3 and 4 again show the block 3 with the heat transfer fluid circuits 12 and 13 embedded in the concrete. Each of these circuits is formed by a segment of tube of sufficient length, bent into a serpentine. The tubes can be made of stainless steel or copper, for example with a diameter of 10 mm and a wall thickness of 0.5 mm. They can also be made of synthetic material, for example polyethylene, or even of composite materials. Each circuit 12, 13 is mounted on a grid 28, 29. This grid can be formed of metal bars, in particular of concrete bars, for example 6 mm in diameter and welded perpendicularly to each other so as to form a network with square or rectangular meshes, for example about 15 cm wide. The grid can also be made of synthetic material, for example polyethylene, with welded or glued bars, or molded in one go. The grids 28, 29 constitute support structures for the circuit elements, which are particularly useful for transporting and installing the circuit before pouring the concrete. In the case where the accumulator blocks are prefabricated, preferably use grids made of concrete bars, the grids then also having the function of ensuring the cohesion of the concrete. The operation of bending the tubes and exact positioning of the coils relative to the nodes of the grid can be carried out rationally by means of a laying in the form of a plate having grooves in which the bars of the grid come to place. The plate will be fitted with clamps fixing the tube with respect to the laying and with respect to the grid at the location where a bend in the coil must be made. We will return later to the technique of mounting the coils on the grids.
Bien que ces opérations de montage des serpentins sur les grilles puissent être effectuées sur le chantier, afin de permettre un contrôle optimal de la qualité de fabrication et de réduire au maximum le temps de travail sur le chantier, ces opérations seront de préférence effectuées en usine, les ensembles grille-serpentin étant transportés sur le chantier déjà assemblés, de façon à pouvoir être directement mis en place avec un coffrage, ou directement à l'intérieur d'une fouille dans le sol, les côtés et le fond de la fouille faisant office de coffrage, après quoi le béton peut être coulé. Les segments d'entrée et de sortie 12a, 12b, 13a, 13b des éléments de circuit seront prévus suffisamment longs pour permettre les raccordements ultérieurs . Avec les dimensions indiquées, chaque assemblage grille-serpentin présente un poids de 50 à 100 kg, rendant sa manutention aisée. Le chantier ne nécessite donc pas de moyens d'accès agencés pour des engins particulièrement lourds. Toutefois, si la situation le permet, les blocs 3 peuvent aussi être fabriqués entièrement en usine et transportés sur le chantier en tant que produits prêts au montage. Comme on le voit à la fig. 3, les deux grilles 28, 29 sont placées en position verticale à faible distance l'une de l'autre au centre du bloc. Chaque circuit en serpentin 12, 13 est fixé contre la grille qui le porte du côté extérieur. Les grilles et les branches des serpentins sont décalées en hauteur de l'un des assemblages par rapport à l'autre de 1/2 du pas de la grille. Cette disposition assure une utilisation thermique optimale des propriétés du béton et des fers des grilles. Ces dernières jouent le rôle de ponts thermiques et favorisent la diffusion des calories.Although these operations of mounting the coils on the grids can be carried out on the site, in order to allow optimal control of the quality of manufacture and to minimize working time on the site, these operations will preferably be carried out in the factory. , the grid-coil assemblies being transported to the site already assembled, so that it can be directly put in place with a formwork, or directly inside a excavation in the ground, the sides and bottom of the excavation making formwork office, after which the concrete can be poured. The input and output segments 12a, 12b, 13a, 13b of the circuit elements will be provided long enough to allow subsequent connections. With the dimensions indicated, each grid-coil assembly has a weight of 50 to 100 kg, making handling easy. The site therefore does not require access means arranged for particularly heavy vehicles. However, if the situation allows, the blocks 3 can also be manufactured entirely in the factory and transported to the site as products ready for assembly. As seen in fig. 3, the two grids 28, 29 are placed in a vertical position a short distance from each other in the center of the block. Each serpentine circuit 12, 13 is fixed against the grid which carries it on the outside. The grids and the branches of the coils are offset in height by one of the assemblies with respect to the other by 1/2 of the pitch of the grid. This arrangement ensures optimum thermal use of the properties of the concrete and of the bars. These play the role of thermal bridges and promote the diffusion of calories.
Les blocs peuvent être utilisés en tant que réservoirs de calories, soit en accumulation, soit en "vidange", c'est-à-dire que seul l'un des deux circuits, le circuit condenseur 12 ou le circuit évaporateur 13, est en fonction. Cependant, les séquences de fonctionnement peuvent être variables, par exemple journalières ou saisonnières. On peut donc concevoir des cas où les deux circuits fonctionnent en même- temps, l'énergie ne faisant que transiter à travers le bloc. Une telle configuration est particulièrement utile pour les hôtels et les hôpitaux, où la climatisation et la production d'eau chaude sanitaire simultanées en continu sont nécessaires. La disposition rapprochée des deux assemblages 12-28, 13-29 présente alors l'avantage que les différences de températures sont très faibles. Toutefois, dans ce cas, les grilles 28 et 29 seront disposées à une distance sensiblement plus grande l'une de l'autre que celles représentées à la fig. 3, généralement à une distance comprise entre 5 et 10 cm, de façon à permettre une bonne diffusion de l'énergie autour du tube. Si la différence de température entre la source des calories et le diffuseur de ces dernières est elle-même faible, alors le coefficient de performance (COP) des agrégats est particulièrement élevé. Ce sera le cas par exemple lorsque, dans l'entre-saison on désire utiliser l'énergie thermique de l'eau d'une piscine pour tempérer des locaux habités, ou inversement, lorsqu'un effet de climatisation ou le captage de la chaleur solaire par le capteur 9 sont utilisés pour chauffer l'eau de la piscine. Du fait que les pompes sont réversibles, les deux circuits peuvent également être utilisés simultanément, soit en accumulateur, soit en vidange. Les figs. 5 et 6 sont des coupes analogues à celle de la fig. 3 et montrent deux variantes de la disposition des assemblages 12/28, 13/29 qui, dans certains cas, conduisent à des performances encore meilleures que celles de la forme d'exécution préférentielle décrite jusqu'à maintenant. A ces deux figures, les barres verticales de deux grilles 28, 29 sont situées dans le même plan. Les barres horizontales peuvent être placées aussi près l'une de l'autre que possible (fig. 5) ou, de préférence, décalées, par exemple d'un demi-pas (fig. 6) .The blocks can be used as reservoirs of calories, either in accumulation or in "emptying", that is to say that only one of the two circuits, the condenser circuit 12 or the evaporator circuit 13, is in function. However, the operating sequences can be variable, for example daily or seasonal. We can therefore conceive of cases where the two circuits operate at the same time, the energy only passing through the block. Such a configuration is particularly useful for hotels and hospitals, where continuous air conditioning and simultaneous domestic hot water production are required. The close arrangement of the two assemblies 12-28, 13-29 then has the advantage that the temperature differences are very small. However, in this case, the grids 28 and 29 will be arranged at a substantially greater distance from one another than those shown in FIG. 3, generally at a distance of between 5 and 10 cm, so as to allow good diffusion of the energy around the tube. If the temperature difference between the source of calories and the latter is itself small, then the coefficient of performance (COP) of the aggregates is particularly high. This will be the case for example when, in the off-season one wishes to use the thermal energy of the water of a swimming pool to temper inhabited premises, or conversely, when an effect of air conditioning or the collection of solar heat by the sensor 9 are used to heat the pool water. Because the pumps are reversible, the two circuits can also be used simultaneously, either as an accumulator or as a drain. Figs. 5 and 6 are sections similar to that of FIG. 3 and show two variants of the arrangement of the assemblies 12/28, 13/29 which, in certain cases, lead to even better performances than those of the preferred embodiment described until now. In these two figures, the vertical bars of two grids 28, 29 are located in the same plane. The horizontal bars can be placed as close to each other as possible (fig. 5) or, preferably, offset, for example by half a step (fig. 6).
La fig. 7 montre l'arrimage des tubes de fluide caloporteur sur les grilles. Elle représente une vue des assemblages 12/28, 13/29 dans le sens opposé à la flèche A de la fig. 3. Une portion de grille 29 est représentée en élévation avec une portion d'un tube 13 de fluide caloporteur coudé en serpentin. Bien que l'on n'ait représenté que six branches horizontales et quatre coudes à 180 degrés, il est évident que ce nombre n'est pas déterminant et que, dans la pratique, il sera plus élevé. Les branches horizontales du serpentin 13 sont fixées à des noeuds de la grille 29 par des attaches 30 formées de bandes métalliques ou synthétiques telles que des brides colson. Dans l'exemple de la fig. 7, chaque bride est accrochée à un noeud de la grille et maintient la branche horizontale du tube 13 contre une barre horizontale de la grille. La fig. 8 illustre encore la disposition. Selon une variante, les brides ne sont pas accrochées à un noeud de la grille, mais le long d'une barre horizontale de la grille. Le nombre des brides et leur disposition alternée sur chaque branche horizontale du serpentin seront choisis de cas en cas . On note que ce mode d'arrimage assure une pression élastique des tubes contre les barres de leur grille de support, ce qui permet à l'ensemble de supporter des dilatations ou contractions différentes grilles/tubes lors des variations des températures. D'autre part, les portions coudées du tube pour la constitution du serpentin peuvent être munies d'un dispositif permettant une dilatation/contraction différenciée du tube par rapport au béton. Un tel dispositif peut être réalisé par exemple sous forme de manchons 31 (représentés schématiquement à la fig. 7) en mousse polyuréthane compressible (de préférence à cellules fermées) qui sont disposés autour des parties coudées du tube formant le serpentin.Fig. 7 shows the securing of the heat transfer fluid tubes on the grids. It represents a view of the assemblies 12/28, 13/29 in the direction opposite to the arrow A in FIG. 3. A portion of grid 29 is shown in elevation with a portion of a tube 13 of heat transfer fluid bent into a serpentine. Although only six horizontal branches and four 180-degree elbows have been shown, it is obvious that this number is not decisive and that, in practice, it will be higher. The horizontal branches of the coil 13 are fixed to nodes of the grid 29 by fasteners 30 formed of metallic or synthetic bands such as colson flanges. In the example of fig. 7, each flange is attached to a node of the grid and holds the horizontal branch of the tube 13 against a horizontal bar of the grid. Fig. 8 further illustrates the arrangement. According to a variant, the flanges are not hung on a node of the grid, but along a horizontal bar of the grid. The number of flanges and their alternate arrangement on each horizontal branch of the coil will be chosen from case to case. It is noted that this mode of securing ensures an elastic pressure of the tubes against the bars of their support grid, which allows the assembly to withstand different expansions or contractions of grids / tubes during temperature variations. On the other hand, the bent portions of the tube for the constitution of the coil can be provided with a device allowing a differentiated expansion / contraction of the tube relative to the concrete. Such a device can be produced for example in the form of sleeves 31 (shown diagrammatically in FIG. 7) in compressible polyurethane foam (preferably with closed cells) which are arranged around the bent parts of the tube forming the coil.
Le système décrit est particulièrement avantageux pour plusieurs raisons : il permet de valoriser des captages d'énergie provenant de sources accessoires, comme une piscine ou un capteur solaire à circulation d'eau avec un coefficient de performance (COP) élevé, ou encore, par exemple, un récupérateur de la chaleur d'une cheminée ou celle d'un four solaire à haute température. L'accumulation de chaleur dans les blocs peut s'étendre, durant des périodes saisonnières, au sol environnant qui fonctionne aussi bien comme isolant que comme récepteur. Ainsi, les tubes d'eau provenant de capteurs solaires pourraient être directement intégrés aux blocs 3 ou à certains de ces blocs, ce qui évite 1 ' intercalation d'un echangeur de chaleur. Il est évident, finalement, que les cas où les blocs 3 et la terre environnante captent directement la chaleur ambiante pendant l'été et seuls les circuits 13 et l'agrégat 15 sont prévus représentent aussi une application de la présente invention.The system described is particularly advantageous for several reasons: it makes it possible to make use of energy capture coming from accessory sources, such as a swimming pool or a solar collector with water circulation with a high coefficient of performance (COP), or even by example, a heat recovery from a chimney or that of a high temperature solar oven. The accumulation of heat in the blocks can extend, during seasonal periods, to the surrounding soil which functions as both an insulator and a receiver. Thus, the water tubes coming from solar collectors could be directly integrated into blocks 3 or some of these blocks, which avoids the intercalation of a heat exchanger. It is evident, finally, that the cases where the blocks 3 and the surrounding earth directly collect ambient heat during the summer and only the circuits 13 and the aggregate 15 are provided also represent an application of the present invention.
Ainsi, le dispositif d'accumulation d'énergie à inertie selon l'invention peut servir à la fois d'accumulateur d'énergie thermique, d' egalisateur de température, d' echangeur de température ou de régulateur de température, le tout étant réversible. Les blocs d'accumulation représentés aux figs. 1 et 3 ont une section en forme de prisme triangulaire ou trapézoïdal avec une base supérieure de dimension inférieure à celle de la base inférieure. Mais bien entendu, les blocs 3 peuvent être réalisés de toute autre forme, comme par exemple en forme de T, de façon à empêcher le bloc de s'enfoncer dans le terrain, ou également de forme rectangulaire .Thus, the inertial energy storage device according to the invention can serve both as a thermal energy accumulator, as a temperature equalizer, as a temperature exchanger or as a temperature regulator, the whole being reversible. . The accumulation blocks shown in figs. 1 and 3 have a triangular or trapezoidal prism-shaped section with an upper base of dimension smaller than that of the lower base. But of course, the blocks 3 can be made of any other shape, such as for example in the shape of a T, so as to prevent the block from sinking into the ground, or also of rectangular shape.
Bien que le dispositif selon l'invention ait été décrit avec des blocs 3 en béton, lesdits blocs peuvent également être réalisés en d'autres matières solides ou semi-solides, comme par exemple avec de la bentonite ou d'autres gels analogues .Although the device according to the invention has been described with concrete blocks 3, said blocks can also be made of other solid or semi-solid materials, such as for example with bentonite or other similar gels.
On n ' a pas décrit ici les moyens qui seront prévus pour permettre une gestion efficace de l'ensemble du système, tels que vannes à plusieurs voies permettant de piloter les flux, organes de vidange et, le cas échéant, de nettoyage des tubes, appareils de mesure et de contrôle. Ces moyens seront naturellement prévus en fonction des besoins. Bien que l'on ait décrit un système avec deux agrégats de pompes thermiques séparés fonctionnant l'un en producteur de chaleur et l'autre en producteur de froid, il est aussi possible de ne prévoir qu ' un seul agrégat .We have not described here the means which will be provided to allow effective management of the entire system, such as multi-way valves making it possible to control the flows, emptying bodies and, if necessary, cleaning of the tubes, measuring and control apparatus. These means will naturally be provided according to needs. Although a system has been described with two aggregates of separate heat pumps operating one as a heat producer and the other as a cold producer, it is also possible to provide only one aggregate.
De plus, les applications possibles du dispositif de stockage décrit ne se limitent évidemment pas au chauffage et à la climatisation de villas, mais touchent également toute construction dont les locaux doivent être tempérés ou refroidis . In addition, the possible applications of the storage device described are obviously not limited to the heating and air conditioning of villas, but also affect any construction whose premises must be tempered or cooled.

Claims

Revendications claims
1. Dispositif d'accumulation d'énergie à inertie, notamment pour système de chauffage et/ou climatisation de locaux, comprenant au moins un bloc (3) en matière solide ou semi-solide, et au moins un circuit de fluide caloporteur (12, 13) noyé dans chaque bloc, caractérisé en ce qu'au moins une grille (28, 29) est noyée dans chaque bloc (3) et en ce que chacun desdits circuits est constitué d'un conduit continu, coudé en serpentin, monté sur l'une des grilles de manière à permettre une dilatation/contraction différentielle des conduits par rapport à la grille.1. An inertial energy storage device, in particular for a space heating and / or air conditioning system, comprising at least one block (3) of solid or semi-solid material, and at least one heat transfer fluid circuit (12 , 13) embedded in each block, characterized in that at least one grid (28, 29) is embedded in each block (3) and in that each of said circuits consists of a continuous duct, bent in a serpentine, mounted on one of the grids so as to allow differential expansion / contraction of the conduits relative to the grid.
2. Dispositif selon la revendication 1, caractérisé en ce qu'au moins un circuit est intégré à une boucle de fluide caloporteur à changement de phase d'une pompe thermique2. Device according to claim 1, characterized in that at least one circuit is integrated in a loop of heat transfer fluid with phase change of a heat pump
(14, 15) .(14, 15).
3. Dispositif selon la revendication 1 ou la revendication 2, caractérisé en ce que chaque bloc (3) comporte deux assemblages (12, 28; 13, 29) d'une grille et d'un circuit, les grilles étant planes et placées parallèlement dans le bloc .3. Device according to claim 1 or claim 2, characterized in that each block (3) comprises two assemblies (12, 28; 13, 29) of a grid and a circuit, the grids being plane and placed in parallel in the block.
4. Dispositif selon la revendication 1, caractérisé en ce que le bloc (3) a la forme d'un polyèdre dont la base est rectangulaire et placée horizontalement et qui présente une face supérieure également plane et parallèle à la base, la ou les grilles (28, 29) étant verticales.4. Device according to claim 1, characterized in that the block (3) has the shape of a polyhedron whose base is rectangular and placed horizontally and which has an upper face also flat and parallel to the base, the grid (s) (28, 29) being vertical.
5. Dispositif selon la revendication 2, dans lequel les deux circuits (12, 13) d'un bloc sont intégrés à des boucles d'échange thermique différentes, caractérisé en ce que le dispositif est associé à deux agrégats de pompes thermiques (14, 15), l'un desdits circuits fonctionnant en évaporateur et 1 ' autre en condenseur .5. Device according to claim 2, in which the two circuits (12, 13) of a block are integrated into different heat exchange loops, characterized in that the device is associated with two aggregates of heat pumps (14, 15), one of said circuits operating as an evaporator and the other as a condenser.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le ou les blocs (3) ont une forme de prisme à section verticale triangulaire.6. Device according to any one of the preceding claims, characterized in that the block or blocks (3) have a prism shape with a triangular vertical section.
7. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce que le ou les blocs (3) ont la forme d'un T.7. Device according to one of claims 1 to 5, characterized in that the block or blocks (3) have the shape of a T.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le matériau du ou des blocs est le béton.8. Device according to any one of the preceding claims, characterized in that the material of the block or blocks is concrete.
9. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que le matériau du ou des blocs est un gel.9. Device according to any one of claims 1 to 7, characterized in that the material of the block or blocks is a gel.
10. Dispositif selon l'une quelconque des revendications 4 à 9, caractérisé en ce que le ou les blocs sont noyés dans le sol , leurs faces étant directement en contact avec la terre .10. Device according to any one of claims 4 to 9, characterized in that the block or blocks are embedded in the ground, their faces being directly in contact with the ground.
11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un circuit, dans au moins un bloc, est relié à une source de chaleur accessoire sans liaison avec une pompe thermique, la source de chaleur accessoire étant un capteur solaire (9) , un récupérateur de la chaleur d'une cheminée (10) , un four solaire à haute température, etc.11. Device according to any one of the preceding claims, characterized in that a circuit, in at least one block, is connected to an accessory heat source without connection to a heat pump, the accessory heat source being a solar collector (9), a heat recovery from a chimney (10), a high temperature solar oven, etc.
12. Dispositif selon l'une des revendications précédentes, caractérisé en ce que la grille est formée de barres métalliques liées entre elles à des points de croisement . 12. Device according to one of the preceding claims, characterized in that the grid is formed of metal bars linked together at crossing points.
13. Dispositif selon l'une des revendications 1 à 11, caractérisé en ce que la grille est en matériau synthétique.13. Device according to one of claims 1 to 11, characterized in that the grid is made of synthetic material.
14. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les conduits sont des tubes métalliques.14. Device according to one of the preceding claims, characterized in that the conduits are metal tubes.
15. Dispositif selon l'une des revendications 1 à 13, caractérisé en ce que les conduits sont des tubes en matériau synthétique.15. Device according to one of claims 1 to 13, characterized in that the conduits are tubes of synthetic material.
16. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les portions coudées du conduit formant le serpentin sont munies d'un dispositif permettant une dilatation/contraction différentielle du conduit par rapport au béton.16. Device according to one of the preceding claims, characterized in that the bent portions of the pipe forming the coil are provided with a device allowing differential expansion / contraction of the pipe relative to the concrete.
17. Dispositif selon la revendication 16, caractérisé en ce que les portions coudées du conduit sont munies de manchons (31) en mousse polyuréthanne compressible.17. Device according to claim 16, characterized in that the bent portions of the conduit are provided with sleeves (31) in compressible polyurethane foam.
18. Assemblage formé d'au moins une grille et comportant au moins un conduit continu coudé. en serpentin arrimé sur ladite grille, en tant que partie du dispositif selon l'une des revendications précédentes . 18. Assembly formed of at least one grid and comprising at least one bent continuous duct. serpentine stowed on said grid, as part of the device according to one of the preceding claims.
PCT/CH2001/000572 2000-09-22 2001-09-20 Inertial energy storage device WO2002025203A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002528763A JP2004508531A (en) 2000-09-22 2001-09-20 Indoor energy storage device
EP01964802A EP1319161A1 (en) 2000-09-22 2001-09-20 Inertial energy storage device
US10/380,903 US20040035141A1 (en) 2000-09-22 2001-09-20 Inertial energy storage device
AU2001285645A AU2001285645A1 (en) 2000-09-22 2001-09-20 Inertial energy storage device
CA002422931A CA2422931A1 (en) 2000-09-22 2001-09-20 Inertial energy storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18442000 2000-09-22
CH1844/00 2000-09-22

Publications (1)

Publication Number Publication Date
WO2002025203A1 true WO2002025203A1 (en) 2002-03-28

Family

ID=4566479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000572 WO2002025203A1 (en) 2000-09-22 2001-09-20 Inertial energy storage device

Country Status (7)

Country Link
US (1) US20040035141A1 (en)
EP (1) EP1319161A1 (en)
JP (1) JP2004508531A (en)
CN (1) CN1464967A (en)
AU (1) AU2001285645A1 (en)
CA (1) CA2422931A1 (en)
WO (1) WO2002025203A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098791A1 (en) * 2008-03-05 2009-09-09 Roth Werke GmbH Device for heating water
CN101957082A (en) * 2010-05-31 2011-01-26 安国民 Solar heat storage device and application method thereof
DE102009060911A1 (en) * 2009-12-31 2011-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 51147 Device and system for temporary storage of thermal energy
WO2012038620A1 (en) * 2010-09-24 2012-03-29 Fernand Scherrer Device for storing and delivering energy
WO2012007196A3 (en) * 2010-07-12 2012-05-10 Siemens Aktiengesellschaft Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
WO2012007216A3 (en) * 2010-07-12 2012-05-18 Siemens Aktiengesellschaft Thermal energy storage and recovery with a heat exchanger arrangement having an extended thermal interaction region

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9389008B2 (en) * 2006-10-23 2016-07-12 Ralph Muscatell Solar energy air conditioning system with storage capability
DE202007004243U1 (en) * 2007-03-22 2007-05-31 Renersys Gmbh Earth collector for transferring heat energy, has flexible pipes, which are arranged and attached at lattice units in meander shape in such a manner that pipes form and pass number of lattice units corresponding to number of running planes
DE102009005540B3 (en) * 2009-01-20 2010-08-05 TechConcept GbR (vertretungsberechtigte Gesellschafter: Hans-Ulrich Karsch, 96271 Grub und Harry Steinhäuser, 96191 Viereth-Trunstadt) A ground collector device and mounting device and method of making a ground collector device
CN102288056A (en) * 2011-06-20 2011-12-21 于奎明 Solar energy concrete heat storage device for compensating heat energy of heat pump
JP6485991B2 (en) * 2012-08-29 2019-03-20 那須 ▲丈▼夫 Underground heat storage method and system
FR3015644B1 (en) * 2013-12-20 2017-03-24 David Vendeirinho REVERSIBLE HEATING DEVICE HYBRID SOLAR WITH DOUBLE HEAT STORAGE
CN103807908B (en) * 2014-03-13 2017-04-12 兰州理工大学 Building foundation type sandy soil heat storage self-heating system
CN103807902B (en) * 2014-03-14 2016-08-31 兰州理工大学 The ultralow temperature convection current radiant heating system of porous sun-dried mud brick heat accumulation
WO2016065064A1 (en) 2014-10-21 2016-04-28 Bright Energy Storage Technologies, Llp Concrete and tube hot thermal exchange and energy store (txes) including temperature gradient control techniques
US11156374B2 (en) * 2018-03-13 2021-10-26 Michael ROPPELT Thermal-energy exchange and storage system
CN110425759A (en) * 2019-08-13 2019-11-08 深圳超极光新能源有限公司 Thermal energy storage system
CN112197324B (en) * 2020-11-10 2024-02-23 吉林省新生建筑工程公司 Indoor upper water heating and heat supply temperature regulating system based on building dismantling-free template

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153047A (en) * 1977-07-13 1979-05-08 Dumbeck Robert F Heat storage systems
DE2945612A1 (en) * 1979-11-12 1981-06-11 Helmut 6654 Kirkel Leidinger Heat storage unit with insulating casing - comprises foam material insulating panels with inside protrusions forming vessel containing heat exchangers
FR2481422A1 (en) * 1980-04-25 1981-10-30 Luvisutto Gerard PROCESS AND INSTALLATION FOR THE PRODUCTION AND DISTRIBUTION OF HEAT INSIDE THE PREMISES OF A BUILDING
BE895012A (en) * 1982-11-16 1983-03-16 Roosens Jean Pierre P J Heat storage energy economiser - is used with water or air central heating and uses stacks of briquettes
JPS61268984A (en) * 1985-05-24 1986-11-28 Asahi Glass Co Ltd Heat accumulating element
CH686641A5 (en) * 1995-03-10 1996-05-15 Michel Schmidt heat accumulator.
DE19632017A1 (en) * 1996-08-08 1998-02-12 Gerhard Hiesl Method for energy transfer of extraction storage in concrete blocks

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2125621A1 (en) * 1971-05-24 1972-12-07 Ctc Gmbh, 2000 Hamburg Heatable and coolable building structure layer
DE2700822C3 (en) * 1977-01-11 1979-06-21 Uwe 2251 Schwabstedt Hansen Method for storing thermal energy in a heat storage device and for extracting the stored thermal energy and device for carrying out the method
US4373573A (en) * 1980-05-02 1983-02-15 Albert Madwed Long term storage and use of solar energy
US4375831A (en) * 1980-06-30 1983-03-08 Downing Jr James E Geothermal storage heating and cooling system
US4466256A (en) * 1982-05-12 1984-08-21 Maccracken Calvin D Ground-installed coldness storage and utilization system
US4609036A (en) * 1985-08-07 1986-09-02 The Dow Chemical Company Bulk heat or cold storage device for thermal energy storage compounds
WO1988007159A1 (en) * 1987-03-18 1988-09-22 Messner Caspar O H Installation for the exploitation of atmospheric and terrestrial heat
US5944089A (en) * 1994-05-26 1999-08-31 Roland; Russel Anthony Thermal storage systems for buildings

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4153047A (en) * 1977-07-13 1979-05-08 Dumbeck Robert F Heat storage systems
DE2945612A1 (en) * 1979-11-12 1981-06-11 Helmut 6654 Kirkel Leidinger Heat storage unit with insulating casing - comprises foam material insulating panels with inside protrusions forming vessel containing heat exchangers
FR2481422A1 (en) * 1980-04-25 1981-10-30 Luvisutto Gerard PROCESS AND INSTALLATION FOR THE PRODUCTION AND DISTRIBUTION OF HEAT INSIDE THE PREMISES OF A BUILDING
BE895012A (en) * 1982-11-16 1983-03-16 Roosens Jean Pierre P J Heat storage energy economiser - is used with water or air central heating and uses stacks of briquettes
JPS61268984A (en) * 1985-05-24 1986-11-28 Asahi Glass Co Ltd Heat accumulating element
CH686641A5 (en) * 1995-03-10 1996-05-15 Michel Schmidt heat accumulator.
WO1996028703A2 (en) 1995-03-10 1996-09-19 Michel Schmidt Heat store
DE19632017A1 (en) * 1996-08-08 1998-02-12 Gerhard Hiesl Method for energy transfer of extraction storage in concrete blocks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 128 (M - 583) 22 April 1987 (1987-04-22) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098791A1 (en) * 2008-03-05 2009-09-09 Roth Werke GmbH Device for heating water
DE102009060911A1 (en) * 2009-12-31 2011-07-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), 51147 Device and system for temporary storage of thermal energy
WO2011079936A3 (en) * 2009-12-31 2012-01-05 Ed. Züblin Ag Device and system for the intermediate storage of thermal energy
CN101957082A (en) * 2010-05-31 2011-01-26 安国民 Solar heat storage device and application method thereof
WO2012007196A3 (en) * 2010-07-12 2012-05-10 Siemens Aktiengesellschaft Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
WO2012007216A3 (en) * 2010-07-12 2012-05-18 Siemens Aktiengesellschaft Thermal energy storage and recovery with a heat exchanger arrangement having an extended thermal interaction region
US8991183B2 (en) 2010-07-12 2015-03-31 Siemens Aktiengesellschaft Thermal energy storage and recovery device and system having a heat exchanger arrangement using a compressed gas
WO2012038620A1 (en) * 2010-09-24 2012-03-29 Fernand Scherrer Device for storing and delivering energy
FR2965340A1 (en) * 2010-09-24 2012-03-30 Fernand Scherrer ENERGY ACCUMULATION AND RESTITUTION DEVICE

Also Published As

Publication number Publication date
EP1319161A1 (en) 2003-06-18
AU2001285645A1 (en) 2002-04-02
CA2422931A1 (en) 2002-03-28
US20040035141A1 (en) 2004-02-26
JP2004508531A (en) 2004-03-18
CN1464967A (en) 2003-12-31

Similar Documents

Publication Publication Date Title
EP1319161A1 (en) Inertial energy storage device
US8286441B2 (en) System for collecting and delivering solar and geothermal heat energy with thermoelectric generator
US20130299123A1 (en) Geothermal System
US9683756B2 (en) Modular, fluid thermal transfer device
EP2561300B1 (en) Method for extracting heat from an effluent flowing in a duct, heat exchanger and system for carrying out such a method
CA2837373C (en) Modular, fluid thermal transfer device
JP6165617B2 (en) Steel sheet pile
EP2354713A1 (en) Thermal solar system for heating a habitable space.
Juanicó et al. A New Low‐Cost Plastic Solar Collector
WO2011132158A2 (en) System for extracting heat from an effluent flowing in a duct, and heat exchanger for such a system
WO2012038620A1 (en) Device for storing and delivering energy
FR3071045B1 (en) UNDERGROUND HEAT STORAGE SYSTEM FOR HEATING AND / OR HOT WATER PRODUCTION PLANT
FR2523701A1 (en) Linked internal and external buried heat transfer circuits - opt of plastic tubing, involve only one fluid and one compressor
FR3065976A1 (en) ABOVE GROUND POOL
EP3093582A1 (en) Device for geothermal storage comprising a reconstituted soil foundation
FR2912444A1 (en) SOLAR THERMAL SENSOR DEVICE INTEGRATED WITH ROOFS AND TERRACES
FR2481422A1 (en) PROCESS AND INSTALLATION FOR THE PRODUCTION AND DISTRIBUTION OF HEAT INSIDE THE PREMISES OF A BUILDING
FR2866101A1 (en) Air temperature modifying installation for e.g. dwelling premises, has connection units equipped with partition walls such that upstream and downstream compartments of different tubes communicate with each other
FR2955378A1 (en) THERMAL SOLAR SENSOR, THERMAL SOLAR SYSTEM COMPRISING SUCH A THERMAL SOLAR SENSOR AND METHOD FOR HEATING A HABITABLE SPACE
FR3080439A1 (en) METHOD AND DEVICE FOR THERMAL CONTROL OF A BUILDING
EP1772685A2 (en) Heat transfer control device for improving or adapting geothermal heat recuperation in a heat pump system
EP3187661B1 (en) Subsurface tank
BE1014656A5 (en) Solar collector for building has window frames with hollow frame members forming ducts for heat exchange fluid
FR2741367A1 (en) Pre=fabricated, modular and transportable building
AU2013101504A4 (en) Modular, fluid thermal transfer device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002528763

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10380903

Country of ref document: US

Ref document number: 2422931

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018161073

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2001964802

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001964802

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001964802

Country of ref document: EP